
Int. J. Open Problems Comput. Math. , Vol. 5, No. 1, March, 2012
ISSN 2074-2827; Copyright c©ICSRS Publication, 2012
www.i-csrs.org

Application of Statistical Techniques

for Comparing Lie Algebra Algorithms

D. Fernández-Ternero1, J. Núñez1, and A. F. Tenorio2

1Dpto. Geometŕıa y Topoloǵıa. Universidad de Sevilla
e-mail: {desamfer, jnvaldes}@us.es

2Dpto. Economı́a, Métodos Cuantitativos e H.a Económica.
Universidad Pablo de Olavide

e-mail: aftenorio@upo.es

Abstract
This paper is devoted to study and compare two algebraic

algorithms related to the computation of Lie algebras by us-
ing statistical techniques. These techniques allow us to decide
which of them is more suitable and less costly depending on
several variables, like the dimension of the considered algebra.

Keywords: Statistical techniques, algorithm, Lie algebras, computing time,
complexity.

2000 Mathematics Subject Classification: 17B30, 68W40, 68Q25.

1 Introduction

In this paper, several statistical techniques are used to decide on the feasibil-
ity of two algebraic algorithms. More concretely, the main goal is to carry
out a statistical study starting from the computational data obtained when
implementing and running these two algorithms in MAPLE to compute the
laws of two families of solvable Lie algebras. Indeed, these data are structured
according to the following two items: the computing time and the complexity
of these algorithms.

So we are interested in knowing whether there exists some type of depen-
dence between computing time and used memory. In the affirmative case, we
would like to determine the order of this dependence (linear, quadratic, cubic,
etc.) with respect to a third set of data: the dimensions of the algebras, for
instance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51410485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Application of statistical techniques ... 55

To do so, the two algorithms (previously obtained and implemented in Ben-
jumea et al. (2009) and Núñez and Tenorio (2010)) are schematically compared
to show the differences existing between them. Mainly, these differences are
related to both the computing time and the used memory when running the
two implementations.

We are using statistical techniques to compare these algorithms because,
in our opinion, these techniques can give us a valuable help to decide if the
research method for dealing with a particular mathematical topic (in this case,
Lie algebras) is appropriate to obtain notable results or, on the contrary, the
efforts made in this study are not proportional to the results so obtained.

Moreover, it might be thought that we are comparing algorithms perform-
ing two essentially different tasks and, hence, comparing them would make
absolutely no sense. However, this is not our intention. Which we try to get
with this process is to study if it is significatively easier to obtain precise re-
sults in the case of nilpotent Lie algebras than in the case of solvable ones,
which would be expected.

Then, getting back to Lie algebras, it is convenient to recall that the relation
between Lie groups and Lie algebras has been a profusely studied topic in both
Mathematics and, more concretely, Computer Algebra.

Let us note that the computational study of Lie algebras has been devel-
oped throughout the last four decades. Since the seventies of the 20th century,
several authors have used different software and algorithms to study the struc-
ture of Lie algebras (Beck and Kolman, 1973, for instance). Moreover, the
recent literature on this subject is even considering specialized computational
packages, like MAGMA (de Graaf, 2005) or GAP (Draisma, 2003).

When studying Representation Theory for finite-dimensional Lie algebras,
we can focus on representations by means of linear algebras, because there
exist isomorphisms between a given Lie algebra and a specific linear algebra
(see Ado Theorem in Jacobson, 1955). Indeed, some families of Lie algebras
can be represented by matrices verifying some special properties. In this sense,
every solvable Lie algebra is isomorphic to a subalgebra of the Lie algebra hn,
of n × n upper-triangular matrices, for some particular n ∈ N (see Theorem
9.11 in Fulton and Harris, 1991). Analogously, any nilpotent Lie algebra is
isomorphic to a subalgebra of the Lie algebra gn, of n × n strictly upper-
triangular matrices, for some particular n ∈ N \ {1} (see Theorem 9.9 in
Fulton and Harris, 1991).

So this paper compares two algorithms such that their outputs are the laws
of the Lie algebras hn and gn, taking into consideration that both algorithms
are based on their respective usual associated Lie groups. As we have previ-
ously commented, both two algorithms were already introduced and explained
in Benjumea et al. (2009) and Núñez and Tenorio (2010), and they are now
computationally compared by using statistical techniques.

56 D. Fernández-Ternero et al.

2 Preliminaries

First, we recall some notions and results about Lie groups and Lie algebras.
For a general overview, the reader can consult Varadarajan (1984).

Given a finite-dimensional Lie group, its associated Lie algebra can be
computed by linearizing the Lie group. This method can be consulted in
Varadarajan (1984). Precisely, the algorithms shown here are based on its
direct application. Next we briefly summarize this method and the consequent
algorithms.

According to Theorem 9.11 in Fulton and Harris (1991), given a solvable Lie
algebra, there exists n ∈ N such that this algebra is isomorphic to a subalgebra
of the Lie algebra hn, of n × n upper-triangular matrices. Analogously, if
the given Lie algebra is nilpotent, then the isomorphism is between it and a
subalgebra of the Lie algebra gn, of n × n strictly upper-triangular matrices,
for some n ∈ N \ {1} (see Theorem 9.9 in Fulton and Harris, 1991). The Lie
groups Hn and Gn associated with these two algebras are formed by the n×n
upper-triangular matrices shown in Table 1.

Table 1: Expression of the elements in the Lie groups Gn and Hn.

Gn gn(xr,s) =


1 x1,2 · · · x1,n−1 x1,n

0 1 · · · x2,n−1 x2,n
...

...
. . .

...
...

0 0 · · · 1 xn−1,n

0 0 · · · 0 1



Hn hn(xr,s) =


ex1,1 x1,2 · · · x1,n−1 x1,n

0 ex2,2 · · · x2,n−1 x2,n
...

...
. . .

...
...

0 0 · · · exn−1,n−1 xn−1,n

0 0 · · · 0 exn,n



where xi,j ∈ C.

3 Algorithms to obtain laws of Lie algebras

The algorithms, the computational study of which is given here, were pro-
grammed to compute the laws of the Lie algebras gn and hn in Núñez and
Tenorio (2010) and Benjumea et al. (2009), respectively. Both of them were
based on obtaining the Lie algebras of left-invariant smooth vector fields asso-
ciated with the Lie groups Gn and Hn, respectively.

Both two were implemented with MAPLE and structured in five steps.
The first four steps computed a basis for the algebra gn or hn, according to the

Application of statistical techniques ... 57

one studied in each case. The fifth step was devoted to compute the nonzero
brackets in the law of the studied algebra with respect to the basis obtained
in the previous four steps. In this way, the outputs of these algorithms are a
basis of the Lie algebra and its law with respect to that basis. Let us note that
a unique input is necessary for the algorithms to start all their computations,
namely: the order of the matrices in the Lie group Gn or Hn, depending on
each case. Each of the five steps are summarized in Table 2, bearing in mind
that more comprehensive explanations can be consulted in Núñez and Tenorio
(2010) for gn and in Benjumea et al. (2009) for hn.

Table 2: Brief explanation of the steps in the algorithms.

Step L.A. hn (Benjumea et al., 2009) L.A. gn (Núñez & Tenorio, 2010)
1: Dimen-
sion of as-
sociated Lie
group.

dim(Hn) = n(n+1)
2 dim(Gn) = n(n−1)

2

2: Matrix
of associated
Lie group.


ex1,1 x1,2 · · · x1,n−1 x1,n

0 ex2,2 · · · x2,n−1 x2,n

.

.

.
.
.
.

. . .
.
..

.

..
0 0 · · · exn−1,n−1 xn−1,n

0 0 · · · 0 exn,n




1 x1,2 · · · x1,n−1 x1,n

0 1 · · · x2,n−1 x2,n

.

.

.
.
.
.

. . .
.
..

.

..
0 0 · · · 1 xn−1,n

0 0 · · · 0 1


3: 1-para-
meter sub-
group ϕi,j

of associated
Lie group.

The coordinates xi,j in Step 2 are replaced by

xr,s(t) =
{

0, if (r, s) 6= (i, j);
t, if (r, s) = (i, j).

4: Basis of
Lie algebra.

• Computing the orbits associated with ϕi,j :
hn(xr,s) · ϕi,j(t), gn(xr,s) · ϕi,j(t),

∀(i, j)∈{1, 2, . . . , n}2 ∀(i, j)∈{1, 2, . . . , n}2

such that i ≤ j such that i < j

• Differentiating the coordinates of these or-
bits with respect to the parameter t.
• Replacing t with 0 in these derivatives.

5: Nonzero
brackets
according
to basis in
Step 4.

• Defining a procedure to compute the brack-
ets with respect to the basis.
• Deciding which brackets are nonzero with
respect to the basis.
• For each nonzero bracket, determining the
resulting vector field of the basis.

58 D. Fernández-Ternero et al.

4 Computing time and complexity

This section shows and studies some differences appearing in the previously
cited algorithms. Such differences are related to both the computing time and
the memory used to carry out the computations according to the order n of
the matrices involved. These computations have been carried out for matrices
of order less than 15 and 12 for the Lie algebras gn and hn, respectively. From
here on, the respective algorithms are denoted by G and H. We have used a
personal computer Intel Pentium IV with 2.5 GHz and 256 MB of RAM. In
Table 3, some computational data are shown starting from the implementations
considered in this paper for the algorithms G and H.

Table 3: Data obtained with the implementations.

Input: n Dim. Comp. Used Dim. Comp. Used
(order n) of gn time mem. of hn time mem.

2 1 0 s 0 B 3 0.5 s 1.00 MB
3 3 0 s 832 KB 6 0.5 s 1.50 MB
4 6 0.25 s 1.31 MB 10 5 s 1.62 MB
5 10 1.3 s 1.44 MB 15 37.8 s 1.75 MB
6 15 7.8 s 1.50 MB 21 207.4 s 1.81 MB
7 21 37.2 s 1.62 MB 28 916 s 1.94 MB
8 28 144 s 1.69 MB 36 3427.9 s 2.06 MB
9 36 486.1 s 1.87 MB 45 11541.4 s 2.19 MB
10 45 1449.7 s 2.00 MB 55 33307.6 s 2.37 MB
11 55 3979.1 s 2.19 MB 66 97368.5 s 2.62 MB
12 66 10011.8 s 2.44 MB 78 262755.8 s 2.87 MB
13 78 23529.3 s 2.69 MB 91 — —
14 91 51288.0 s 3.06 MB 105 — —
15 105 110412.2 s 3.37 MB 120 — —

Moreover, Table 3 shows that the computing time increases faster for the
implementation of the algorithm H than the one of the algorithm G. By com-
paring these computational data with respect to the dimension of the algebras
and the order of their matrices, we can observe in Figures 1 and 2 that the re-
sults corresponding to both the computing time and the used memory are quite
a lot lower for G than for H. Both the computing time and the used memory
increase remarkably due to Step 5 and, more concretely, to the decision-making
procedures for determining the nonzero brackets and the basis vector resulting
from each of these nonzero brackets.

Regarding the complexity of the algorithms G and H, we have considered
the number of operations carried out in the worst case. In this way, the
value 1 is assigned for both the commands if and if else when counting the
operations in their respective implementations.

Application of statistical techniques ... 59

Figure 1: Comparison of the computing time and the used memory of algo-
rithms G and H with respect to the dimension of the algebras.

Figure 2: Comparison of the computing time and the used memory of algo-
rithms G and H with respect to the order of the matrices.

Besides, the big O notation has been used to express the complexity of each
algorithm starting from their respective implementations. Let us recall that,
given two functions f, g : R → R, we can say that f(x) = O(g(x)) if and only
if there exists M ∈ R+ and x0 ∈ R such that |f(x)| < M · g(x), for all x > x0.

Next we prove that the complexity is polynomial for both algorithms. In
fact, Step 5 is the most computationally expensive for both of them. To do
so, we summarize the computation of the complexity for each step in the algo-
rithms, showing the difference for the complexity order in Step 5 too. Tables
4 and 5 show both the complexity order and the total number of performed
computations for the algorithms G and H, respectively.

Table 4: Complexity of each step and total complexity of algorithm G.

Complexity Computations
Step 1 O(1) 3

Step 2 O(n2) 2 +
n(n−1)/2∑

i=1

1 +
n∑

j=1

(
j−1∑
k=1

1 + 1 +
n−j∑
k=1

1

)

Step 3 O(n4)
n−1∑
h=1

n∑
i=h+1

2 +
n∑

j=1

(
n∑

k=1

1 + 1

)
Step 4 O(n4)

n−1∑
h=1

n∑
i=h+1

3 +
n∑

j=1

n∑
k=j

1

+
n(n−1)/2∑

l=1

1 +
n−1∑
j=1

n∑
k=j+1

1


Step 5 O(n6) 3 +

n(n−1)/2∑
h=1

1 +
n(n−1)/2−1∑

i=1

n(n−1)/2∑
j=i+1

1 + 3 ·
n(n−1)/2∑

k=1

1


Total O(n6)

As we can see in Tables 4 and 5, the complexity order for Steps 1 to 4
does not depend on the algorithm considered. Indeed, the complexity is the
same for each step, being of polynomial order 4 at most. Nevertheless, let us
emphasize that an essential difference can be observed for the complexity order
in Step 5: Although this is also polynomial for both algorithms, its order is
quite a lot greater for H than for G.

60 D. Fernández-Ternero et al.

Table 5: Complexity of each step and total complexity of algorithm H.

Complexity Computations
Step 1 O(1) 3

Step 2 O(n2) 6 +
n(n+1)/2∑

i=1

1 +
n∑

j=1

(
j−1∑
k=1

1 + 1 +
n−j∑
k=1

1

)

Step 3 O(n4)
n∑

h=1

n∑
i=h

3 +
n∑

j=1

(
n∑

k=1

1 + 1

)
Step 4 O(n4)

n∑
h=1

n∑
i=h

3+
n∑

j=1

n∑
k=j

1

+
n∑

j=1

(
3+

n−j∑
k=1

1

)
+

n(n+1)/2∑
l=1

1+ n∑
j=1

n∑
k=j

1


Step 5 O(n14) 3 +

n(n+1)/2∑
h=1

1 + A

Total O(n14)

where A =
n(n+1)/2−1∑

i=1

n(n+1)/2∑
j=1

1 +
n(n+1)/2∑

k=1

1 +
n(n+1)/2∑

k=1

n(n+1)/2∑
k=1

1

.

5 Statistical study for the computational data

Next, by using the data in Table 3, a statistical study is achieved to check
whether the computing time and the used memory obtained in a theoretical
way match with the ones obtained empirically when running the algorithms.

In this way, some statistical variables are considered: the order of the
matrices n, the computing times T1 and T2 and the used memories M1 and
M2 for the algorithms G and H, respectively. Besides, two additional variables
C1 and C2 are used to represent the complexity order of the algorithms G and
H, respectively. Remember that these two orders were previously determined
as the polynomials n6 and n14, respectively. The values for each variable can
be seen in Table 6.

Regarding the computing time in comparison with the complexity order,
a linear correlation analysis is performed. In Table 7, the Pearson coefficient
R is shown, being very close to 1 for both algorithms and furthermore with a
2-tailed significance level lower than 0.01. Hence, the computing time in both
algorithms fits quite well with a polynomial model similar to the complexity
order for each algorithm.

When studying the used memory in each algorithm, the value of the Pear-
son coefficient is not as close to 1 as that obtained for the computing time (see
Table 8).

Therefore, we consider advisable and suitable the study of the regression by

Application of statistical techniques ... 61

using non-linear estimation models (including polynomial ones). The results
obtained in this study are shown in Tables 9 and 10. As some models require
that non-missing values are positive, we have ignored every null value of used
memory to get the corresponding regression analysis.

Figures 3 and 4 represent the models with Pearson coefficient R being the
closest to 1. The best models are linear, quadratic and cubic for the algorithm
G; whereas the logarithmic, quadratic and cubic ones are the most appropriate
for the algorithm H. For both cases, the equations of the compound, growth
and exponential models which we obtained are similar.

Figure 3: Estimation models of used memory for the algorithm G.

Figure 4: Estimation models of used memory for the algorithm H.

For both algorithms, the regression model which better fits the used mem-
ory in function of the order n is the cubic model with null constant, because
this gives the best possible value for the Pearson coefficient (i.e. R = 1).
Consequently, the used memory also fits accurately with a polynomial model,
although its order is less than that of the theoretical complexity of the algo-
rithm. In this way, the behavior of the used memory is better than the one
that can be theoretically expected.

Specifically, the estimated equations are G(n) = 0.437n−0.042n2+0.002n3

and H(n) = 0.680n − 0.086n2 + 0.004n3. So we can use these equations to
realize estimations of the used memory for values of the order greater than the
considered values in Table 3. For example, for order 15 in the algorithm H, we
can estimate that the needed memory is approximately 4.35 MB.

6 Some conclusions

As we pointed out in Introduction, our main goal is to take advantage of
statistical techniques to decide which way is the most appropriate to study
certain mathematical topics: Lie algebras, in our particular case. Indeed, we
want to determine which algorithm in our study is the best.

Starting from the data obtained by using these statistical techniques when
comparing the utility of the algorithms G and H to deal with Lie algebras, we
can assert that there are really few significative differences between them with
respect to their main technical characteristics.

Among these differences, we find that the computing time increases faster
for H than for G; whereas this does not happen with the used memory and
both algorithms have a similar behavior with respect to this variable.

62 D. Fernández-Ternero et al.

Apart from that, both algorithms have a polynomial complexity, the order
of which does not depend on the algorithm for its first four steps. However,
when taking into account the complexity of the fifth step, the total complexity
order is quite a lot greater for H than for G.

Finally, we can clearly assert that the cubic model with null constant is the
regression which better fits the used memory for both algorithms in function
of the order n. In this way, we can estimate the used memory for values of n
not appearing in Table 3. Particularly, for n = 15, the used memory is almost
4.5 MB when running the algorithm H.

7 Open Problems

The final section of this paper is devoted to expound some problems still
unsolved and to be tackled in the future. First, it would be necessary to find
the reason why the theoretical behavior of the used memory for both algorithm
is worse than the one determined by the empirical data.

The following fact should be also explained: Whereas the used memory for
n in the algorithm H is nearly similar to the one for n + 1 in the algorithm
G, their respective computing times are significatively different and no trivial
similarity relation can be arisen from them.

Another interesting question is focused on determining an alternative al-
gorithm for solvable Lie algebras in such a way that the complexity order
decreases, not being more than the double of the complexity order in the
nilpotent case; but preserving all the statistical properties and relations of the
one studied here.

Finally, another question rises up from searching a complete view of the
Lie-algebra representation. More concretely, an algorithm, analogous to the
ones studied here, can be stated and implemented for non-solvable (and hence
non-nilpotent) Lie algebras when considering the general linear algebra gl(n),
of n × n square matrices. Once the algorithm was implemented, we might
wonder if it conserves some of the statistical relations among computing time,
used memory, complexity order and input order, previously determined for the
nilpotent and solvable cases.

ACKNOWLEDGEMENTS. The authors thank to Professor Jebril for
his useful suggestions and comments.

References

[1] Beck RE, Kolman B, “Computers in Lie algebras I. Calculation of inner
multiplicities”, SIAM J Appl Math, Vol. 25, (1973), pp. 300–312.

Application of statistical techniques ... 63

[2] Benjumea JC, Núñez J, Tenorio AF, “Computing the law of a family of
solvable Lie algebras”, Internat J Algebra Comput, Vol. 19, (2009), pp.
337–345.

[3] de Graaf WA, “Classification of Solvable Lie Algebras”, Experiment Math
Vol. 14, (2005), pp. 15–25.

[4] Draisma J, “Constructing Lie algebras of first order differential opera-
tors”, J Symbolic Comput, Vol. 36, (2003), pp.685–698.

[5] Fulton W, Harris J, Representation Theory: A first course, Springer-
Verlag: New York, (1991).

[6] Jacobson N, “A note on automorphisms and derivations of Lie algebras”,
Proc Amer Math Soc Vol. 6, (1955), pp. 281–283.

[7] Núñez J, Tenorio AF, “A computational study of a family of nilpotent Lie
algebras”, J. Supercomputing, (2010), doi: 10.1007/s11227-010-0430-2.

[8] Varadarajan VS, Lie Groups, Lie Algebras and Their Representations,
Springer: New York, (1984).

64 D. Fernández-Ternero et al.

Table 6: Statistical variables.

Order (n) T1 M1 C1 T2 M2 C2
2 0.0 0.0 64 0.5 1.00 16384
3 0.0 0.83 729 0.5 1.50 4782969
4 0.25 1.31 4096 5.0 1.62 268435456
5 1.3 1.44 15625 37.8 1.75 6103515625
6 7.8 1.50 46656 207.4 1.81 7.84E+010
7 37.2 1.62 117649 916.0 1.94 6.78E+011
8 144.0 1.69 262144 3427.9 2.06 4.40E+012
9 486.1 1.87 531441 11541.4 2.19 2.29E+013
10 1449.7 2.00 1000000 33307.6 2.37 1.00E+014
11 3979.1 2.19 1771561 97368.5 2.62 3.80E+014
12 10011.8 2.44 2985984 262755.8 2.87 1.28E+015
13 23529.3 2.69 4826809 — — —
14 51288.0 3.06 7529536 — — —
15 110412.2 3.37 11390625 — — —

Table 7: Linear correlation of computing time.

T1 vs. C1 T2 vs. C2
Pearson Correlation 0.966 0.997
Sig. (2-tailed) 0.000 0.000
N 14 11

Table 8: Linear correlation of used memory.

M1 vs. C1 M2 vs. C2
Pearson Correlation 0.821 0.698
Sig. (2-tailed) 0.000 0.017
N 14 11

Application of statistical techniques ... 65

Table 9: Regression analysis of used memory for the algorithm G.

Model Summary Parameter Estimates
Equation R Square Significance b1 b2 b3
Linear 0.991 0.000 0.216
Logarithmic 0.978 0.000 0.976
Inverse 0.481 0.006 9.218
Quadratic 0.992 0.000 0.248 -0.003
Cubic 0.999 0.000 0.437 -0.042 0.002
Compound 0.972 0.000 1.076
Power 0.906 0.000 0.323
S 0.283 0.050 2.429
Growth 0.972 0.000 0.074
Exponential 0.972 0.000 0.074

Table 10: Regression analysis of used memory for the algorithm H.

Model Summary Parameter Estimates
Equation R Square Significance b1 b2 b3
Linear 0.966 0.000 0.261
Logarithmic 0.993 0.000 1.071
Inverse 0.487 0.012 6.282
Quadratic 0.989 0.000 0.421 -0.017
Cubic 0.999 0.000 0.680 -0.086 0.004
Compound 0.984 0.000 1.095
Power 0.981 0.000 0.367
S 0.327 0.052 1.771
Growth 0.984 0.000 0.091
Exponential 0.984 0.000 0.091

