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Determining Asymptotic Behaviour from the
Dynamics on Attracting Sets
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Proposed running head: Determining asymptotic behaviour

Two tracking properties for trajectories on attracting sets are studied. We prove that
trajectories on the full phase space can be followed arbitrarily closely by skipping from
one solution on the global attractor to another. A sufficient condition for asymptotic
completeness of invariant exponential attractors is found, obtaining similar results as in
the theory of inertial manifolds. Furthermore, such sets are shown to be retracts of the
phase space, which implies that they are simply connected.
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1. INTRODUCTION

It is known that the theory of inertial manifolds (finite-dimensional, positively invari-

ant, exponentially attracting Lipschitz manifolds) for dissipative dynamical systems (see

Foias et al., 1988; Temam, 1990) enables the dynamics of many partial differential equa-

tions to be described by a finite dimensional system of ODEs. This is strongest when we

can show that any trajectory of the flow in the infinite dimensional Hilbert space H tends

to a trajectory on the manifold, so that we can track, exponentially fast, every trajectory

in H by a trajectory moving on the finite-dimensional inertial manifold. This property is

called asymptotic completeness or exponential tracking (see Constantin et al., 1998; Chow

et al., 1992; Foias et al., 1989; Robinson, 1996a). In Robinson (1996a) it is shown that the

property of flow-normal hyperbolicity is a sufficient condition for an inertial manifold to

be asymptotically complete.

On the other hand, the concept of exponential attractors (also called inertial sets)

was introduced in 1990 by Eden et al. (see also their 1994 monograph). An exponential

attractor is a compact set, with finite fractal dimension, which is invariant for the forward

flow, and attracts all the orbits at an exponential rate.

A natural question for any kind of attracting set is how much information can be

obtained from the dynamics on the attracting set that could be useful for the understanding

of the full dynamics on H.

In this paper, we first prove (section 3) that we can track arbitrarily closely any

trajectory in H for arbitrary large time-lengths by trajectories on the global attractor.

Furthermore, it is shown that every trajectory on the phase space H can be followed

for all time by skipping from one trajectory on the global attractor to another. Despite

being mathematically rather obvious, the results of this section indicate exactly how the

dynamics on the global attractor, in general, “determine” the asymptotic dynamics of the
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full equation.

Our second result (section 4) shows that, for invariant exponential attractors, and

under the hypothesis of flow normal hyperbolicity, we have asymptotic completeness.

Finally, we show (section 5) that a flow normally hyperbolic set X must be a retract

of the phase space, i.e. that is there is a continuous map π : H → X which is the identity

on X. This implies that X is both arcwise and simply connected, and may prove useful in

deducing new properties of global attractors.

2. BRIEF FORMULATION OF THE PROBLEM

Suppose we have a dissipative evolution equation of the form

du/dt + Au = f(u) u(0) = u0 (2.1)

in a separable Hilbert space H. The linear operator A is assumed to be positive, self-

adjoint, unbounded and with A−1 compact. We further assume that the nonlinear term

f is locally Lipschitz from D(Aα) into D(Aβ) (0 ≤ α − β < 1); under these conditions

the initial value problem (2.1) is solved by a semigroup of nonlinear operators {S(t)}t≥0,

that is continuous from D(Aα) into itself, for t ≥ 0 (Henry, 1981). Finally, we suppose

that there exists a compact, absorbing set B, invariant for the forward flow of (2.1), which

implies (Temam, 1988) the existence of a finite dimensional global attractor A, i.e., a

compact invariant set that attracts all the solutions of (2.1). In what follows, | . |α denotes

the norm in D(Aα) (i.e. |u|α = |Aαu|H).

Under these conditions, we have the following simple lemma on continuity of solutions

with respect to initial conditions, which will be one of the main tools in what follows

(cf. Henry, 1981).

Lemma 2.1. Let u1(t), u2(t) be two solutions of (2.1) corresponding to initial data

u1(0),u2(0) ∈ B respectively. Then, there exists k > 0 (that depends on α, β and the
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Lipschitz constant of f on the absorbing set B) such that

|u1(t)− u2(t)|α ≤ |u1(0)− u2(0)|αektθ

(2.2)

for all t ≥ 0, with θ = 1− (α− β).

Proof. If we write the solutions u1(t), u2(t) using the variation of constants formula,

we get

ui = ui(0)e−At +
∫ t

0

e−A(t−s)f(ui(s)) ds, i = 1, 2.

If we call δ(t) = u1(t)− u2(t), δ(t) satisfies

δ(t) = δ(0)e−At +
∫ t

0

e−A(t−s)(f(u1(s))− f(u2(s))) ds.

We want to evaluate how the trajectories u1(t), u2(t) separate in D(Aα), so, taking the

norm in D(Aα),

|Aαδ(t)| ≤ |Aαe−Atδ(0)|+
∫ t

0

|Aαe−A(t−s)(f(u1)− f(u2))| ds

≤ ‖e−At‖op|Aαδ(0)|+
∫ t

0

‖Aα−βe−A(t−s)‖op|Aβ(f(u1)− f(u2))| ds

≤ |δ(0)|α + ccα−β

∫ t

0

(t− s)−(α−β)|u1(s)− u2(s)|α ds,

(bounding the operator norms by standard expressions, see Henry (1981) or Temam (1988))

and so, by Gronwall’s lemma,

|δ(t)|α ≤ |δ(0)|αektθ

.

with k = ccα−β/θ, and θ = 1− (α− β).

3. TRACKING TRAJECTORIES FOR ARBITRARILY LONG TIMES

Using the previous result it is now straightforward to prove the following one, which

gives us some information (for finite time intervals) about the relationship between trajec-

tories of (2.1) on H and trajectories on the global attractor A.
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Proposition 3.1. Given a trajectory u(t) of (2.1), ε > 0 and T > 0, there exists a

time τ = τ(ε, T ) > 0 and a point v0 ∈ A such that

|u(τ + t)− S(t)v0|α ≤ ε for all 0 ≤ t ≤ T. (3.1)

Proof. Since A is a global attractor, the trajectory u(t) tends towards A. Thus,

given ε > 0 and T > 0, and using the compactness of A, there exists a time τ and a point

v0 ∈ A such that

dist(u(τ),A) = |u(τ)− v0|α ≤ εe−kT θ

. (3.2)

We now consider the trajectory v(t) on A with v(0) = v0. Then, the two trajectories

u(t) (seen as a trajectory starting at the point u(τ)) and v(t) = S(t)v0 satisfy, by (2.2),

|u(τ + t)− S(t)v0|α ≤ |u(τ)− v0|αektθ

for all t ≥ 0

≤ |u(τ)− v0|αekT θ

for 0 ≤ t ≤ T

≤ ε by (3.2).

In fact, this proposition gives us a little more information, since it says that, given ε1

and T > 0, there exists a time τ1 such that, for all t ≥ τ1,

dist(u(t),A) ≤ ε1e
−kT θ

.

So, we can track the trajectory u(t) within a distance ε1 for a time T starting at any time

t ≥ τ1.

We can replace T by 2T and apply the same argument for ε2 < ε1, that is, there exists

a time τ2 such that, for all t ≥ τ2

dist(u(t),A) ≤ ε2e
−k(2T )θ

,
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and then, the trajectory u(t) can be tracked for a time 2T starting at any time t ≥ τ2.

Thus, u(t) can be followed from τ1 to τ2 by a distance ε1 with a finite number of

trajectories on A of time-length T , and when we reach τ2, we can start to track u(t) within

a distance ε2 with trajectories on A of time-length 2T , until we reach the corresponding τ3,

etc. Furthermore, note that, for two of these consecutive trajectories on A, the “jumps”

are bounded by εk + εk+1, since

|vk+1 − S(tk+1 − tk)vk|α

≤ |vk+1 − u(tk+1)|α + |u(tk + (tk+1 − tk))− S(tk+1 − tk)vk|α

≤ εk+1 + εk.

If we apply this process inductively, we obtain the following corollary (reminiscent of

a results of Vishik (1992) which use “finite-dimensional combined trajectories” to approx-

imate full trajectories of evolution equations under certain conditions):

Corollary 3.2. Given a solution u(t) of (2.1), there exists {εm}∞m=1, εm > 0, εm → 0,

a sequence of times {tm}∞m=1 and a sequence of points {vm}∞m=1, with vm ∈ A, such that

tm+1 > tm, ∀m ∈ N, tm+1 − tm →∞ as m →∞,

and

|u(t)− S(t− tm)vm|α ≤ εm for all tm ≤ t ≤ tm+1.

Furthermore, the jumps |vm+1 − S(tm+1 − tm)vm|α decrease to zero.

Note that our sequence of times {tm}∞m=1 verifies tm+1−tm →∞, and so the trajectory

u(t) is followed more and more closely for longer and longer lengths of time as m →∞.

Although elementary, this result is instructive. Indeed, it shows exactly how the

dynamics on A can be said to determine the asymptotic behaviour of trajectories on H.
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A trivial example (cf. Robinson, 1996a), the three dimensional system

dx/dt = z(x− y)

dy/dt = z(y − x)

dz/dt = −λz|z|,

has z ≡ 0 as an attractor, on which the dynamics are trivial. However, trajectories that

start off z ≡ 0, approach algebraically slowly according to

z(t) =
z0

1 + µ|z0|t
.

Thus for an initial condition (r, θ0, z0) (where the x and y have been turned into polar

co-ordinates), θ(t) is given by

θ(t) = θ0 +
1
µ

ln(1 + µ|z0|t).

The trajectory is “determined” by that on z ≡ 0 inasmuch as it remains constant (to

within an ε error) for longer and longer time intervals. Without a result like corollary 3.2,

this interpretation is not necessarily an obvious one.

Since the dynamics are determined by those on the global attractor, constructing a

finite dimensional system which reproduces the dynamics on (the finite dimensional set)

A is a good way to study the asymptotic behaviour of (2.1).

Eden et al. (1994, chapter 10) make a start on this in their monograph on exponential

attractors. The existence of a projection P : H → IRD, injective on A, is ensured by a

result of Mañé (1981), provided D > 2dF (A)+1, where dF (A) is the fractal (box counting)

dimension of A. Eden et al. project the dynamics on A into IRD by such an orthogonal

projection P , and construct the following finite dimensional non-smooth system of ODEs

dx/dt = α(ν(x)− x) + T (ν(x)), (3.3)

where α > 0, ν(x) is a point in PA such that dist(x, PA) = |x − ν(x)|, and T (v) =

PF (P−1v), with F (u) = −Au+ f(u) (note that T (v) is well-defined for v ∈ PA since P is
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injective on A). Furthermore, the projected set PA is exponentially attracting for (3.3). It

would be very interesting to apply the corollary 3.2 to this system of ODEs, since it would

mean that the dynamics of (3.3) is also limited by the dynamics on A. However, the non-

smooth terms in (3.3) mean that trajectories of this system do not depend continuously

on the initial conditions (as in lemma 2.1) and so, it is not possible to apply the above

argument to this system. Therefore, it would be very interesting to improve (3.3) by

obtaining a smooth set of ODEs.

Note that in the results of this section we can replace the global attractor A by any

positively invariant attracting set.

4. ASYMPTOTIC COMPLETENESS FOR INVARIANT EXPONENTIAL

ATTRACTORS

We now suppose that we have an exponential attractor E for ({S(t)}t≥0, B), that

is, E is a compact set, positively invariant, contains the global attractor A and attracts

exponentially fast every solution with initial data in B. We can consider an exponential

attractor as an intermediate step between global attractors and inertial manifolds. Thus,

we try to find a result about the asymptotic completeness property similar to some of

the results in the theory of inertial manifolds. However, without the hypothesis of the

invariance of the exponential attractor (that is, S(t)E = E , ∀t ≥ 0) it seems difficult. So,

we have restricted to the case of invariant exponential attractors, obtaining a sufficient

condition for this attractor to be asymptotically complete. Nevertheless, even with this

restriction, the proof improves on that of Robinson (1996a), based on inertial manifolds

given as graphs, since it makes no assumptions on the form of the dynamics on the set.

We start with the following definition:

Definition 4.1. An invariant exponential attractor M is flow-normally hyperbolic
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if

dist(u(t),M) ≤ ce−νt for all t ≥ 0,

for any solution u(t) of (2.1), and

|v1(t)− v2(t)|α ≤ De−γt|v1(0)− v2(0)|α for all t ≤ 0,

for two solutions v1(t) and v2(t) lying on M, where ν > γ.

This concept is a generalisation of the classical definition of linearised normal hyper-

bolicity, which is based on a linearised version of the flow on the manifold, and is used in

analyses that show the persistence of invariant manifolds (e.g. Fenichel, 1971).

Theorem 4.2. If an invariant exponential attractor is flow-normally hyperbolic,

then it is asymptotically complete. Furthermore, the rate of tracking is the same as the

rate of attraction towards the exponential attractor.

Proof. Since M is an exponential attractor, we have that for all u0 ∈ D(Aα)

dist(u(t;u0),M) ≤ c(u0)e−νt, t ≥ 0,

and so, for all t ≥ 0, there exists vt ∈M such that

|u(t)− vt|α ≤ ce−νt. (4.1)

Define

v∞(t) = lim
T→∞

v(t;T, vT ), (4.2)

where v(t;T, vT ) denotes the solution of (2.1) with v(T ;T, vT ) = vT ∈ M, and hence

|u(T )− vT |α ≤ ce−νT .

Since M is invariant, the trajectory v(t;T, vT ) is on M. Defining v∞(t) in the form we

have done is a logical step because, roughly speaking, we want a trajectory that is ‘equal’

9

https://www.researchgate.net/publication/265462120_Persistence_and_Smoothness_of_Invariant_Manifolds_for_Flows?el=1_x_8&enrichId=rgreq-07a478bbc5808f82bd4a6a1f5f4b25fa-XXX&enrichSource=Y292ZXJQYWdlOzI2MzE4OTEwNztBUzo5OTc5MDU5NTU1OTQzMUAxNDAwODAzMzQwNjA0


to u(t) when ‘T = ∞’ (see Marlin & Struble (1969) and Robinson (1996a) for a similar

construction). We are going to show that v∞(t) is well defined, is a solution of (2.1), and

is a tracking trajectory for u(t).

First of all, we want to evaluate

|v(t; s + h, vs+h)− v(t; s, vs)|α = |v(t− s; 0, v(s; s + h, vs+h))− v(t− s; 0, vs)|α.

Since M is flow-normally hyperbolic, we obtain that this expression is

≤ De−γ(t−s)|v(s; s + h, vs+h)− vs|α

= De−γ(t−s)|v(s; s + h, vs+h)− v(s; s + h, S(h)vs)|α,

and again by the flow-normal hyperbolicity

≤ De−γ(t−s)Deγh|vs+h − S(h)vs|α. (4.3)

Let us evaluate this last expression:

|vs+h − S(h)vs|α ≤ |vs+h − u(s + h)|α + |u(s + h)− S(h)vs|α,

and by definition of vs+h and (2.2) (the result of lemma 2.1)

≤ ce−ν(s+h) + Eekhθ

|u(s)− vs|α

≤ ce−ν(s+h) + Eekhθ

ce−νs.

Thus, returning to (4.3)

|v(t; s + h, vs+h)− v(t; s, vs)|α ≤ De−γ(t−s)Deγh[ce−ν(s+h) + Eekhθ

ce−νs]

≤ Ke−γ(t−s)e−νs,

for h < h∗, choosing some h∗ > 0.

Using this expression, it is now clear that (4.2) converges uniformly on bounded in-

tervals of [0,+∞), since, for any τ > T ,

|v(t;T, vT )− v(t; τ, vτ )|α ≤ K
∞∑

n=0

e−γte−(ν−γ)(T+nh)

≤ Ke−γte−(ν−γ)T [1− e−(ν−γ)h]−1

≤ Ke−(ν−γ)T ,
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which tends to zero uniformly on [0, t0], for all t0 > 0, as T →∞. Therefore, the limit in

(4.2) exists and satisfies equation (2.1), since it is the uniform limit of solutions of (2.1).

To see that v∞(t) has the tracking property for u(t) is now straightforward, since

|v∞(t)− u(t)|α ≤ |v∞(t)− vt|α + |vt − u(t)|α

≤ K
∞∑

n=0

e−γte−(ν−γ)(t+nh) + ce−νt

≤ Ke−γte−(ν−γ)t[1− e−(ν−γ)h]−1 + ce−νt

≤ K′e−νt.

Note that we also have ν as the exponential rate of tracking.

In applications it may be difficult to check the normal hyperbolicity condition, partic-

ularly the backwards separation of trajectories on the attractor. In the infinite-dimensional

case, one generally does not expect the backwards separation to obey an exponential in-

equality. Indeed, on the attractor one would only expect the expression

F (u) = −Au + f(u)

to be Hölder: if E is bounded in D(A3/2), for example, then

|Au−Av| ≤ c|u− v|1/3|A3/2(u− v)|2/3 ≤ K|u− v|1/3,

for u, v ∈ E , using a standard interpolation inequality (see Temam (1988), for example).

Thus F : D(Aα) → D(Aα) will also be Hölder with exponent 1/3, and the backwards

separation not exponentially bounded in general.

Nonetheless, there do exist some interesting cases where we find invariant exponen-

tial attractors. For example, in Robinson (1996b), the limiting behaviour of a family of

problems

du/dt + Au + fN (u) = 0 (4.4)
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is studied, with fN → f in the C0 norm, where each of the equations of (4.4) has an inertial

manifold MN ; it is shown that the inertial manifolds MN converge to a finite dimensional

invariant exponential attractor M∞ which, in general, is not given as a graph. It is clear

that we could apply this result to the exponential attractor M∞ provided we had the flow

normal hyperbolicity property for M∞, which will follow also from the limiting procedure

provided all the manifolds MN are flow-normally hyperbolic with the same constants.

The theory is also applicable to inertial manifolds which are not given in the standard

form of graphs.

In finite dimensional systems of ordinary differential equations one would indeed ex-

pect such an exponential bound on the separation, and this will be of interest in the next

section. Note, however, that although Eden et al. (1994) prove that the projected attrac-

tor PA is an invariant exponential attractor for the finite-dimensional system (3.3), we

find again that the non-smooth terms in this system obstruct the application of our result,

since we do not have continuous dependence on initial conditions. Once more, this problem

would be alleviated by obtaining a smooth system.

5. FLOW NORMAL HYPERBOLICITY & RETRACTIONS

The topology of the global attractor in general is not well understood, and standard

results only ensure that it is connected. In this section we show that if the attractor is

flow normally hyperbolic then it is simply connected, and in fact integrally connected in

every dimension (see definition 6.2) - this follows from showing that the set is a retract of

the phase space. A retract is simply a set X onto which there exists a retraction, i.e. a

continuous function r : H → X such that r is the identity on X.

Theorem 5.1. If an invariant exponential attractor is flow normally hyperbolic,

then it is a retract of the phase space.
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Proof. We show, following Rosa & Temam (1994), that the map u0 7→ πu0, where

πu0 is the point v∞(0) given by (4.2) in theorem 4.2, is a retraction. Clearly πu = u if

u ∈ M, so it only remains to show that π is continuous. Suppose not. Then there exists

a sequence uk → u0 such that

|πuk − πu0| ≥ ε, (5.1)

for some ε > 0. Now consider the sequence {πuk}. Since A is compact, there is a subse-

quence ukj such that

πukj
→ v0 ∈ A,

and by (5.1) |v0 − πu0| ≥ ε. Since

|S(t)ujk
− S(t)πujk

| ≤ Ce−kt,

then taking limits (by lemma 2.1) yields

|S(t)u0 − S(t)v0| ≤ Ce−kt,

and combining this with the tracking of S(t)u0 by S(t)πu0 shows that

|S(t)πu0 − S(t)v0| ≤ 2Ce−kt.

However, by the flow-normal hyperbolicity assumption two trajectories on M cannot ap-

proach faster than e−γt, which is a contradiction.

An immediate corollary is a general connectedness result for flow-normally hyperbolic

sets. Indeed, it is “connected in dimension n” for any n.

Definition 5.2. (Kuratowski, 1968). A set X is connected in dimension n if

given a continuous function f from the n-sphere into X, f : Sn → X, there is a continuous

extension F of f , from the n-ball into X, F : Qn → X.
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Note that if n = 0 then X is arcwise connected, and if n = 1 then X is simply

connected.

Proposition 5.3. Let H be connected in dimension n, and X is a flow normally

hyperbolic invariant subset of H. Then X is connected in dimension n.

Proof. By theorem 5.1 there exists a retraction π from H onto X. Now take a

function f : Sn → X. This can also be viewed as a function f : Sn → H, and so can be

extended to a continuous map F : Qn → H since H is n-connected. Then F = π ◦ F is a

continuous extension of f which maps Qn onto X.

Since in general the phase space H is connected in all dimensions, any flow-normally

hyperbolic set will also be connected in all dimensions. This shows that a flow-normally

hyperbolic set is simply connected: current results for global attractors (e.g. Hale, 1988;

Temam, 1988) only guarantee standard connectedness rather than the stronger properties

that arise from the retraction.

For any finite-dimensional global attractor X, Günther (1995) constructs a finite-

dimensional system that has a set homeomorphic to X as an attractor, and on which

the dynamics are trivial. If one could show that the flow could be altered to make X

exponentially attracting, this would uncover many connectivity properties of the global

attractor currently unknown.

Note, however, that one cannot show that any attractor is a retract. Günther &

Segal (1993) remark that one can construct a flow for which the pseudo-arc (Bing, 1951)

is the global attractor, and this set is not arcwise connected, and hence not a retract. The

topological properties of the global attractor are therefore intimately related to the rates

of attraction towards it and expansion within it.
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CONCLUSION

We have shown that any trajectory of the dynamical system can be followed arbitrarily

closely by a sequence of trajectories (which are longer as t →∞) on the global attractor.

This result gives us some relevant information about how the dynamics on the attractor

relates to the asymptotic behaviour of the evolution equation (2.1).

On the other hand, we have found a sufficient condition for an invariant exponential

attractor to be asymptotically complete, so that we can apply this result directly to obtain

asymptotic completeness for flow-normally hyperbolic global attractors. The result could

also be applied to invariant inertial manifolds not given as graphs.

Developing the above ideas, it would be interesting to try to generalise persistence

results for linearised hyperbolic sets to sets that are not manifolds using the flow normal

hyperbolicity assumption, and to try to use the retraction arguments of section 5 to further

investigate connectivity properties of the global attractor.

Finally, the non-applicability of these results to (3.3) highlights the importance of

obtaining a smooth system along similar lines.
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