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I. MOTIVATION AND SUMMARY 

Increasing the share of renewables in the energy mix has a key function for the security of 

energy supply and the reduction of greenhouse gas emissions from fossil fuels. The purpose of this 

thesis is to develop new solar selective coating (SSC) designs for high temperature applications in 

order to improve the performance of concentration solar power (CSP) plants.  

The main part of this thesis has been carried out in the company Abengoa, which is a 

world leader in the development of CSP plants, but also with the collaboration of other well-

recognized academic organizations (Instituto de Ciencia de Materiales de Sevilla-CSIC, Center 

Tecnologic Manresa and the Helmholtz-Zentrum Dresden - Rossendorf) and the SME Metal 

Estalki. 

The improvement in efficiencies in solar thermal energy plants partially means the 

increase in the receivers’ temperature, reaching up to an average maximum temperature of 650ºC 

for superheated steam and molten salts receivers. There are several R&D approaches to substitute 

commercial absorber paints due to the degradation problems they show at high temperatures when 

exposed to air. The different routes include the development of new solar selective coatings 

fabricated using physical vapour deposition techniques.  

In this thesis, two potential candidates as solar selective coatings were selected: i) carbon–

transition metal carbides nanocomposites (a-C:MeC) and ii) aluminium titanium oxynitride 

(AlTi(OxN1-x)) based coatings.  

The methodology followed in this thesis contains aspects of very high novelty including 

optical simulation, coating deposition using cathodic vacuum arc (CVA) and advanced 

characterization. The computer program CODE was used to simulate the reflectance spectra of the 

different complete coatings. Simulated reflectance spectra were compared with the measured 

reflectance of the deposited films to verify the agreement between simulations and experimental 

results. The simulations allowed predicting the optical properties of solar selective coatings with 

different thicknesses and with different materials avoiding a try and error approach. Special 

attention was paid to the simulation of optical constants. The knowledge of the coating 

microstructure revealed critical for a proper design of solar selective coatings. In this thesis, 

valuable insight into the most accurate way of simulating nanocomposite materials and oxynitrides 

is given. Several optical models were evaluated and their appropriateness described in detail. 

Different SSC stacks were deposited with pulsed filtered cathodic vacuum arc (PFCVA) and non-

filtered CVA setup comparing different materials, compositions and thicknesses for each one of 

the layers that conforms the coating. After the deposition of single layers and complete SSC, the 
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stacks were characterized employing a wide range of techniques. The optical properties were 

characterized by UV-Vis-NIR and FT-IR spectrophotometers; the elementary compositions were 

determined by Rutherford Backscattering Spectroscopy (RBS), Nuclear Reaction Analysis (NRA) 

and Elastic Recoil Detection (ERD) ion beam techniques; the crystal structure was studied by X-

ray diffraction and Raman spectrometry was used to determine the chemical bonding of the carbon 

atoms; and finally, SEM and HR-TEM were employed to determine the morphology of the 

deposited thin films. The unique cluster tool (sited at HZDR) allowed the in-situ characterization of 

the films performance at high temperature. This novel technique provided a detailed study of the 

diffusion processes occurring at extreme temperatures in solar selective coatings of interest and the 

identification of their failure mechanism.  

The simulations, depositions and characterizations performed for the two selected 

candidate materials for SSC are thoroughly described in the following chapters. The introductory 

chapter 1 starts with a brief description of the advantages of thin films and coatings versus their 

bulk counterparts, followed by a summary of physical vapour deposition (PVD) techniques and the 

main growing mechanisms of thin films. The fundamental principles of the interaction of light with 

materials are also introduced, in order to get a better understanding of the thin film optical 

properties. The chapter ends with a summary of the current state of the art of SSC and the 

mechanisms employed to maximize the absorption of sunlight and to minimize the losses by 

thermal radiation.  

The methodology followed in this thesis for a complete design of solar selective coatings 

is fully explained in chapter 2. The design process starts with the selection of the material that 

composes each layer in the multilayer stack. Then, the different deposition systems employed are 

described followed by the complete characterization performed on the deposited thin films. Finally, 

the thermal treatment tests included in this work to analyse the durability in air at high 

temperatures and to predict their service lifetime are explained. 

Chapter 3 introduces the properties of transition-metal carbides and carbon as the 

individual components of the nanocomposite (a-C:MeC). Nanocomposite thin films consisting of 

interstitial metal carbide embedded in an amorphous carbon matrix exhibit a unique combination 

of properties which makes them very attractive candidates as absorber layer of SSC for thermo-

solar applications. In a first step, optical simulation based on literature optical constants was 

employed for optimizing SSC. After the initial simulation, the selected a-C:MeC candidates were 

deposited and characterized. Following a thorough analysis of their composition and 

microstructure, the simulations were feedback with experimental data. The simulated complete 

coating based on these measured properties provided excellent selective optical selective properties 

(α>96% and ε600ºC<14%). A complete solar selective coating was deposited and analysed and 

afterwards, a heating test was performed to study the stability of the coating at high temperature. 
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Aluminium titanium oxynitrides were selected as candidate materials for SSC on the basis 

of the state of the art described in the introduction of chapter 4. In this chapter, initial thermal 

treatment tests were performed to validate the stability of single oxynitride layers in air, showing no 

degradation at temperatures above 600ºC. A set of individual AlTi(OxN1-x) layers deposited by 

CVA were analysed in terms of composition, morphology and optical properties. A thoroughly 

study of the microstructure of the films, as a function of the oxygen content, was found to be key 

for a comprehensive analysis of the optical properties. A complete multilayer SSC was designed and 

deposited with optical simulations based on measured optical constants of each of the individual 

layers. Excellent agreement was found between simulated and experimental reflectance spectra. A 

solar selective coating with a simulated absorptance of 94.7% and an emittance of 5.6% is designed. 

To conclude, the thermal stability in air of the complete SSC was analysed by asymmetric and cyclic 

heating tests. Remarkable stability at temperatures as high as 650ºC after 750 hours of annealing 

was found for solar selective coatings based on oxynitrides.  

Chapter 5 described a novel technology for the in-situ characterization of coatings at high 

temperatures. This characterization is performed at the two materials candidates. In particular, an 

accurate knowledge of the variation of the dielectric function of thin films with the temperature 

and its relation to compositional and microstructural changes could help to prevent failures. The 

methodology employed combines a sequence of analytical techniques. An a-C:TiC thin film was 

studied first following the described methodology. Then, AlTi(OxN1-x) thin films with different 

oxygen concentration were investigated in order to understand the influence of the oxygen to 

nitrogen ratio on the optical properties and their failure mechanisms at high temperatures. No 

significant changes in optical properties and composition were found when heating oxynitride films 

in a vacuum atmosphere  at temperature above 800ºC, showing excellent high temperature stability. 

It is worth noting than a worldwide record of in-situ RBS measurement at 840ºC was performed in 

the framework of this thesis. 

The main conclusions of the thesis are discussed in chapter 6, including a comparative 

review of the different materials employed for SSC, along with the strengths and weaknesses 

observed for each one.  

 

.  
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II. MOTIVACIÓN Y RESUMEN 

Aumentar la cuota de energías renovables en el mix energético es fundamental para 

asegurar el abastecimiento de energía y disminuir las emisiones de gases de efecto invernadero 

asociadas al uso de combustibles fósiles. El objetivo de la presente tesis es desarrollar nuevos 

recubrimientos solares selectivos (SSC por sus siglas en inglés), estables a alta temperatura, que 

supongan una mejora en el rendimiento de las plantas de energía solar de concentración (CSP).  

La mayor parte del trabajo descrito en esta tesis se ha llevado a cabo en la compañía 

Abengoa, que es líder internacional en el desarrollo de plantas CSP. Sin embargo, ha sido 

fundamental la colaboración con centros de investigación como son el instituto de Ciencia de los 

Materiales de Sevilla, el Centro Tecnológico Manresa, el centro Helmholtz Zentrum Dresden-

Rossendorf, y la compañía Metal Estalki. 

El incremento de la eficiencia de las plantas CSP pasa en parte por conseguir un aumento 

de la temperatura de trabajo del receptor, llegando a una temperatura media máxima de 650ºC en el 

caso de receptores de vapor sobrecalentado y de sales fundidas. Desde un punto de vista de 

investigación y desarrollo de materiales ha habido diferentes intentos de sustituir  las pinturas 

comerciales usadas actualmente en los receptores pero que presentan degradación en aire a altas 

temperaturas. De especial interés es el desarrollo de SSC fabricados usando técnicas de deposición 

al vacío realizado por diversos grupos en el mundo en los últimos años. 

En esta tesis, se han seleccionado dos tipos de materiales para obtener nuevos 

recubrimientos solares selectivos: i) nanocompuestos de carbono y carburos de metales de 

transición (a-C:MeC); y ii) oxinitruros de aluminio-titanio (AlTi(OxN1-x)). 

La metodología que se ha seguido en este trabajo contiene aspectos novedosos en materia 

de simulación, deposición por arco catódico (CVA) y caracterización avanzada de recubrimientos. 

Para simular la reflectancia de los distintos recubrimientos se ha empleado el programa de 

simulación óptica CODE. La validez de los resultados de simulación se ha confirmado mediante la 

comparación de los espectros de reflectancia simulados con los medidos experimentalmente. La 

simulación permite predecir el comportamiento óptico de los recubrimientos en función de 

parámetros tales como el material del que están formados o el grosor de sus distintas capas. 

Durante este trabajo se ha prestado especial atención a la simulación de las constantes ópticas de 

los materiales. Se ha demostrado también, que el conocimiento de la microestructura del material es 

en muchas ocasiones fundamental para el diseño de recubrimientos solares selectivos. La idoneidad 

de varios modelos ópticos se ha evaluado y descrito en detalle, y como consecuencia, esta tesis 

supone una valiosa aportación al correcto modelado de las propiedades ópticas de materiales 
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nanocompuestos y oxinitruros. Utilizando como técnicas de deposición el arco catódico pulsado y 

filtrado (PFCVA), y el arco catódico no filtrado (CVA), se han depositado numerosos capas finas 

individuales, y también recubrimientos solares selectivos completos. Sus propiedades se han 

caracterizado de una manera exhaustiva utilizando un gran número de técnicas de análisis. Las 

propiedades ópticas de las películas se han caracterizado usando espectrofotómetros UV-Vis-NIR y 

FT-IR. La composición elemental se obtuvo mediante las siguientes técnicas de análisis de iones: 

espectrometría retrodispersión de Rutherford (RBS), análisis de reacción nuclear (NRA) y análisis 

por detección del retroceso elástico (ERD). La estructura cristalina se analizó por difracción de 

rayos X, y la espectroscopía Raman se usó para determinar el enlace químico en los átomos de 

carbono presentes en los nanocompuestos. La morfología y la microestructura se estudiaron 

mediante SEM y HR-TEM. Mediante el sistema de cluster tool situado en el centro HZDR, fue 

posible llevar a cabo una caracterización in-situ del comportamiento de los recubrimientos a alta 

temperatura. Este sistema supone una técnica novedosa para estudiar los procesos de difusión que 

tienen lugar a alta temperatura en los recubrimientos solares selectivos, permitiendo identificar sus 

mecanismos de fallo.  

En los distintos capítulos que conforman la presente tesis se describen en detalle las 

simulaciones, deposiciones y caracterizaciones llevadas a cabo en los dos tipos de materiales 

seleccionados como candidatos para recubrimientos solares selectivos. El capítulo 1, que sirve de 

introducción, comienza con una breve descripción de las ventajas de las películas finas respecto a 

los materiales en volumen, seguida de un resumen de algunas técnicas de deposición física al vacío 

(PVD) y los principales mecanismos de crecimiento de las películas finas. Con el objeto de conocer 

mejorar los principios que determinan las propiedades ópticas de estos recubrimientos, se incluyen 

en esta introducción algunos aspectos fundamentales de la interacción de la luz con los materiales. 

El capítulo termina con una revisión del estado del arte de los SSC, incluyendo los distintos 

mecanismos que han sido empleados para intentar maximizar la absorptancia y disminuir la 

emitancia de este tipo de recubrimiento.  

En el capítulo 2 se describe en detalle la metodología seguida en la presente tesis para el 

diseño de un recubrimiento solar selectivo completo. El proceso comienza con la elección de los 

materiales que van a formar las distintas capas del recubrimiento, seguido de la descripción de los 

distintos equipos que se van a utilizar para su fabricación. Finalmente, las técnicas de 

caracterización empleadas así como los procedimientos para testar la durabilidad de los 

recubrimientos son descritos.  

El capítulo 3 comienza con una descripción de los materiales que forman los 

nanocompuestos a-C:MeC: el carbono y los carburos de metales de transición. Como se describe 

en detalle en este capítulo, los nanocompuestos formados por carburos de metales de transición 

embebidos en una matriz de carbono amorfo presentan una combinación única de propiedades que 
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los hace ser candidatos muy prometedores para formar la capa absorbedora de un SSC para 

aplicaciones termosolares. En un primer momento se llevaron a cabo simulaciones ópticas basadas 

en constantes ópticas obtenidas de la literatura para optimizar el comportamiento de los SSC. Estas 

simulaciones sirvieron para hacer una primera selección de materiales nanocompuestos que fueron 

posteriormente depositados y caracterizados. Después de un completo análisis de su 

microestructura y composición, las simulaciones se retroalimentaron con los datos experimentales 

obtenidos. Estas simulaciones dieron lugar al diseño de un recubrimiento basado en 

nanocompuestos de carbono con excelentes propiedades ópticas (α>96% and ε600ºC<14%). 

Finalmente se fabricó un recubrimiento completo y se sometió a un tratamiento térmico a alta 

temperatura. 

La elección de los oxinitruros de aluminio titanio como candidatos para fabricar 

recubrimientos solares selectivos está ampliamente justificada en el estado del arte recogido en el 

capítulo 4. El estudio de estos recubrimientos comienza con una prueba de estabilidad inicial que 

muestra que son estables en aire por 2 horas a temperaturas por encima de 600ºC. Capas 

individuales de AlTi(OxN1-x) depositadas por CVA se analizaron en términos de composición, 

morfología y propiedades ópticas. Como se verá en este capítulo, un estudio exhaustivo de la 

microestructura de las películas ha resultado ser crítico para el análisis de las contantes ópticas de 

estos materiales. En base a simulaciones que emplean constantes ópticas medidas 

experimentalmente en capas individuales, se han diseñado y depositado recubrimientos SSC 

completos, encontrándose una excelente concordancia entre la reflectancia simulada y la medida 

experimentalmente. Se ha diseñado un recubrimientos solar selectivo basado en oxinitruros de 

aluminio titanio con una absorbancia simulada del 94.7 % y una emitancia del 5.6%. Finalmente, los 

recubrimientos depositados se sometieron a distintos tratamientos térmicos, presentando una 

excelente estabilidad tras un tratamiento térmico con una duración de 750ºC y una temperatura de 

testado de 650ºC.  

El capítulo 5 describe una novedosa metodología para caracterizar in-situ recubrimientos 

a alta temperatura. Esta caracterización se lleva a cabo en los dos materiales candidatos descritos en 

los capítulos anteriores. El objetivo de esta caracterización es conocer cómo las constantes ópticas 

varían con la temperatura y cómo este cambio se relaciona con variaciones de la microestructura 

para así prevenir posibles mecanismos de fallo. La metodología empleada comprende una serie de 

técnicas de análisis que se aplican sobre las muestras de manera secuencial. Primero se ha analizado 

un nancompuesto de a-C:TiC siguiendo la metodología descrita en este capítulo. Tras este análisis, 

películas de AlTi(OxN1-x) con distintos contenidos de oxígeno se han caracterizado para ver cómo 

la composición influye en los mecanismos de fallo a alta temperatura. Los recubrimientos de 

oxinitruros presentaron una excelente estabilidad en vacío a temperaturas por encima de los 800ºC. 
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También es importante resaltar que en esta tesis se describe el récord mundial de medida de RBS 

in-situ a alta temperatura (840ºC).  

Las principales conclusiones se resumen en el capítulo 6, que incluye una comparativa de 

los distintos materiales empleados, así como las ventajas e inconvenientes detectados en el uso de 

cada uno de ellos como SSC 
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CHAPTER 1: INTRODUCTION TO SOLAR 

SELECTIVE COATINGS 

This introductory chapter starts in section 1.1 with a brief description of the advantages of 

thin films and coatings versus their bulk counterparts, followed by a summary of physical vapour 

deposition (PVD) techniques and the main growing mechanisms of thin films. The main principles 

of the interaction of light with materials are introduced in section 1.2, in order to get a better 

understanding of the thin film optical properties. The third part of the chapter (section 1.3) 

describes the main parts of a concentrated solar power (CSP) plant, with particular interest on the 

solar selective coatings (SSC) of the receiver tubes. This part is focused on the state of the art of 

SSC and the mechanisms employed to maximize the absorption of sunlight and to minimize the 

losses by thermal radiation. Finally, the distribution of the chapters of the thesis is summarized in 

section 1.4. 
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1.1. Growth mechanisms of thin films  

Thin film materials are key elements of continued technological advances made in the 

fields of semiconductors [1,2], optics [3,4], wear resistant [5–7], decorative [8], medical [9] or solar 

energy technologies [10,11] in the last decades. Thin films have distinct advantages over bulk 

materials. Most processes used to deposit thin films occur in non-equilibrium conditions and 

hence, the composition of thin films is not constrained by metallurgical phase diagrams. 

Microstructure, surface morphology, tribological, electrical, and optical properties of the thin film 

are all controlled by the chosen deposition technique (i.e. sol gel, chemical vapour deposition, 

thermal evaporation, physical vapour deposition) [12,13]. 

Physical vapour deposition (PVD) is a well-established technology to synthesize coatings 

with tailored properties [14]. Optical coatings in particular are mainly produced by magnetron 

sputtering [15,16]. However, when temperature resistance is also required, as for the thin films 

studied in this work, highly ionized PVD techniques are more suitable. These techniques include 

cathodic vacuum arc (CVA), [17,18], ion beam assisted deposition (IBAD) [19] or high power 

impulse magnetron sputtering (HiPIMS) [20].  

Unravelling the atomic-scale mechanisms of thin films deposition proved to be difficult 

because of the different parameters involved in the process. The growth process of thin films by 

PVD includes i) nucleation, ii) island growth, iii) coalescence of islands, iv) formation of a 

connected network with islands and channels, v) development of a continuous structure based on 

filling and shrinking of channels, and finally, vi) continuous film growth [21,22]. Figure 1.1 (a) 

illustrates how atoms arrive on the surface and depending on their diffusion energy (Ed), they start 

to accommodate over the surface. During this process they can encounter other adatoms and form 

small clusters with the binding energy (Eb) or attach to already existing clusters [23]. Besides, 

nucleation kinetics is affected by the crystal structure of the substrate material, lattice defects, 

surface steps and surface contamination. Other atomistic processes like re-evaporation and 

interdiffusion can also occur during deposition [24].  

  
Figure 1.1 – (a) Schematic view of possible atomic processes on a solid surface. (b) Representation of the three basic modes 

of thin-film growth. 

(a) (b) 
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Diffusion and nucleation of atoms give rise to three main growth modes (Figure 1.1 (b)), 

distinguished in terms of surface and interface energies [21]. The Volmer-Weber mode describes 

3D island growth and occurs when the adatoms are more strongly bound to each other than to the 

substrate. In the opposite case, where the adatoms are more strongly attracted by the substrate than 

by themselves, layer-by-layer (Frank-van der Merwe) growth arises. Finally, the layer-plus-island or 

Stranski- Krastanov growth mechanism is an intermediate case, and occurs if, after the formation 

of one or more monolayers, subsequent layer growth becomes unfavourable and islands are 

created.  

These processes are mainly affected by the substrate temperature and the energy of 

incoming particles which can be used to manipulate adatom mobility and nucleation rates [25]. At 

identical deposition rates, the larger mobility will lead to a higher diffusivity, thus allowing a further 

transport from the original arrival site and earlier coalescence. Hence, higher energies lead to films 

with larger grains and less defects, while the momentum of the incoming particles can lead to 

alignment or orientation of the growing crystallites [26]. The description of microstructural 

evolution during PVD of thin films as function of growth conditions and material composition has 

attracted much attention over the last years and led to the development of various structure zone 

models (SZMs) or diagrams. Movchan and Demchishin proposed one of the first SZM in 1969 

[27]. In this model, the microstructural evolution of coatings can be systematically represented as a 

function of only one parameter, the homologous temperature (Th), defined as film growth 

temperature normalized by the melting temperature (Tm) of the growing material. More refined 

SZMs were developed, notably those by Thornton [28], Messier [29], Barna and Adamik [30] or 

Anders [31]. The latter is shown as an example of extended zone diagram in Figure 1.2, and 

includes the use of high energy ions.  

 

Figure 1.2 – Structure zone diagram applicable 

to energetic deposition; in function of  the 

generalized temperature (T*), the normalized 

energy flux (E*) and the net thickness (t*). 

The numbers on the axes are for orientation 

only as the values depend on the material and 

other conditions [31]  

Anders proposed to replace Th by a generalized temperature (T*) that includes changes in 

temperature with potential energy of arriving atoms to the surface. He also includes a parameter 

called normalized energy (E*), to describe displacement and heating effects caused by the kinetic 

energy of bombarding particles and a z-axis with for film thickness (t*). Anders’ SZM [32] shows 
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how fine grained and dense films are typically achieved with high energy ions techniques as CVA. 

Consequently, in the present work, CVA was selected as deposition technique in order to obtain 

dense films with improved thermal stability and good adhesion. 

The morphology of compound films is significantly more complex than for pure element 

ones. In these multi-element systems, limited solid solubility of the components can result in a 

phase separation or the existence of amorphous films. However, the structure zone models are a 

qualitative way to understand the film microstructure evolution and relate with the deposition 

parameters employed. As explained in this thesis, the comprehensive study of the thin film 

microstructure will be crucial to achieve the desired optical properties in solar selective coatings. In 

this regard, the basics of light interaction with matter are summarized in next sections.  

1.2. Interaction of radiation with matter: basic principles 

The vibration of electric and magnetic charges creates electromagnetic waves that have 

both an electric and a magnetic component (Figure 1.3). The electric field, (in red) is perpendicular 

to the magnetic field, (blue), and the motion direction is given by the cross product vector. 

Electromagnetic radiations are classified by the wavelength (λ) of their oscillations within the 

electromagnetic spectrum, which includes (ordered by increasing λ): gamma rays, X-rays, ultraviolet 

(UV) radiation, visible light (Vis), infrared (IR) radiation, microwaves and radio waves [33]. 

 

Figure 1.3 –Schematic electric (red) and 

magnetic (blue) fields that compose an 

electromagnetic radiation, propagating from 

left to right.  

All materials are constantly emitting electromagnetic radiation, with an intensity and 

wavelength dependent on its temperature and optical characteristics. For instance, a blackbody is 

an ideal material that emits the maximum possible radiation for each temperature, whose 

wavelength distribution (B (λ,T)) is given by Plank’s law [34], as expressed in equation (1.1) 

𝐵(𝑇, 𝜆) =  
𝑐1

𝜆5(𝑒𝑐2 𝜆𝑇⁄ − 1)
 (1.1) 

with c1 and c2 Plank’s constants (c1= 3.74⋅10-16 W m2; c2=1.44⋅10-2 m K) and T, the temperature in 

kelvin degrees. The maximum value in the blackbody radiation is displaced toward shorter 

wavelengths as the temperature increases, following Wien's displacement law , as observed in 

Figure 1.4 (a), at four selected temperatures.  
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Figure 1.4 – (a) Blackbody radiation spectrum at different temperatures, including the position of the wavelength for the 
maximum intensity of blackbody radiation at each temperature selected (b) Terrestrial solar spectral irradiance at AM 1.5: 

Direct + circumsolar for a 37º tilted surface as defined by ASTM-G173-03. 

Solar radiation or sunlight is the portion of electromagnetic spectrum emitted by the sun. 

Figure 1.4 (b) shows the solar spectra irradiance distribution (G(λ)) that reaches the surface of the 

Earth, as defined in the American Society for Testing and Materials (ASTM) G173-03 for an air 

mass 1.5 (AM1.5), at 37º sun facing tilted surface [35]. The solar radiation is limited to the range 

between 0.3 and 3 μm, i.e. ultraviolet-visible-near infrared (UV/Vis/NIR) wavelengths, so that 

there is almost no overlap with the blackbody spectra [36], until high temperatures (T> 450ºC) are 

reached.  

When sunlight radiation reaches a surface, part of this incident light is reflected from the 

surface and the rest enters into the medium. A fraction can be absorbed by the material and the 

remaining radiation is transmitted, as schematized in Figure 1.5. 

 

Figure 1.5 – Reflection, absorption and transmission of  a light beam 

incident on a material. 

The interaction of an electromagnetic radiation with the material can be quantified by 

intrinsic parameters of the material. The amount of light that is reflected is determined by the 

coefficient of reflectance (R) of the surface and is defined as the ratio of intensities of light 

reflected (IR) and incident light (I0). The coefficient of transmission (T) is defined likewise as the 

ratio of intensities of light transmitted (IT) and incident light. Application of conservation of energy 

leads to the statement that the sum of T, R and absorption (A) of the incident flux, for each 

wavelength, is equal to unity, as expressed in (1.2) [37,38]: 

𝑅 (𝜆) +  𝑇(𝜆) + 𝐴(𝜆) = 1 (1.2) 

The absorption is related with the attenuation of the light intensity (I) when it travels 

through a material, following Beer-Lambert law (equation (1.3)) [39]: 
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𝐼(𝑧) = 𝐼0𝑒
−a𝑑 (1.3) 

where a is the attenuation coefficient and d the thickness of the film. This coefficient a, is directly 

proportional to the extinction coefficient of the material (k) that measures how fast light vanishes 

in a material. If the material is transparent, k is equal to zero (and thus a), and all the radiation will 

be transmitted through the material. The relation between the speed of light in the material (v) and 

the speed of light in vacuum (c ≈ 3.00·108 m/s) is defined by the refractive index (n), as expressed 

in (1.4): 

𝑛 =  
𝑐0
𝑣

 (1.4) 

Both n and k are intrinsic values for each material and depend on the wavelength of the 

radiation. They can be incorporated into a single quantity called the complex refractive index (ñ), 

with n the real part and k the imaginary one. This ñ describes how an electromagnetic radiation 

propagates through a medium, as the example of shown in Figure 1.6. The relation of the complex 

refractive index with the dielectric function ( ̃), derived from Maxwell’s equations [40], is defined in 

equation (1.5) 

�̃� = 𝑛 + 𝑖𝜅 =  √ ̃(𝜔) (1.5) 

The dielectric function and the complex index of refraction are called optical constants. 

Real and imaginary parts of the optical constants are not independent and they are mathematically 

coupled through Kramers-Kronig relationships [41].  

 

Figure 1.6 – Light wave travels from air (n=1; k=0) 

into absorbing film 1 (n=4; k>0), and then into the 

transparent film 2 (n=2; k=0). The phase velocity 

and wavelength change in each material depending 

on its complex index of  refraction. 

Fresnel’s equations, describe the behaviour of light when crossing between two materials 

with differing optical constants [42]. These equations can be used to calculate the previously 

defined R(λ), A(λ) and T(λ) for each wavelength, as a function of the angle of incidence and 

polarization of the incident ray, and the complex refractive index of the two materials.  

The utilisation of the maximum energy coming from sunlight implies the design of 

materials with optical constants that absorb in the specific wavelengths of this radiation. Likewise, 

to avoid losses of the absorbed energy, the material must show poor irradiative properties, opposite 

to blackbody behaviour. These two conditions (high absorption and low emittance), are generally 
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competing. However, as they occur in different wavelength regions, they can be fulfilled in the so-

called solar selective surfaces as explained in the next section.  

1.3. Solar selective coatings for solar thermal energy  

The amount of solar energy incident on the Earth’s surface per year is about 1.5·1018 

kWh, approximately 10000 times the current annual energy consumption in the world [43]. 

Concentrating solar power (CSP) is a commercial available technology in the field of renewable 

energies, based on the conversion of concentrated solar energy into heat and subsequently into 

electrical energy [44]. CSP systems use mirrors to concentrate sunlight onto a receiver that transfers 

heat to the internal circulating fluid called heat transfer fluid (HTF). From the technological point 

of view, medium and high temperature CSP plants are distinguished [45]. Medium-temperature 

CSPs employ parabolic troughs as solar light collectors concentrating the light on vacuum 

protected receiver tubes. The operational temperature of the receivers is in the range of 150 to 

350°C. In high-temperature CSP, solar light is concentrated by large-area mirror fields onto a 

central receiver that is installed in a solar tower with current operational temperatures of 525°C. 

Solar receivers’ performance is determined by its solar absorptance (α) and thermal 

emittance (ε). For opaque materials (T(λ)=0), solar absorptance is defined as the fraction of 

incident radiation in the solar wavelength range that is absorbed, as expressed in equation (1.6):  

𝛼 =  
∫ [1 − 𝑅(𝜆)]𝐺(𝜆)𝑑𝜆
𝜆2
𝜆1

∫ 𝐺(𝜆)𝑑𝜆
𝜆2
𝜆1

 (1.6) 

where λ1, λ2 is the integration interval. In this thesis, the ASTM E903:2012 [46] is employed for α 

definition with G(λ) by ASTM G173:2008 [35] (see Figure 1.4 (b)) and λ1 - λ2 = 300 - 2500 nm. 

Thermal emittance is defined as the relative ability of a material to emit heat by radiation 

and it is the ration of the radiance of a surface to the radiance of a blackbody at a temperature. This 

magnitude is, therefore, dimensionless and ranges from 0 to 1 (the emissivity of a blackbody is 1). 

The thermal emittance is calculated from its reflectance spectra in the infrared region, applying 

Kirchoff’s law, for each temperature, following equation (1.7):  

 𝑇 = 
∫ [1 − 𝑅(𝜆, 𝑇)]𝐵(𝜆, 𝑇)𝑑𝜆
𝜆2
𝜆1

∫ 𝐵(𝜆, 𝑇)𝑑𝜆
𝜆2
𝜆1

 (1.7) 

where B (λ,T)) is the wavelength distribution of the blackbody [34], temperature T, as expressed 

above in (1.1). The integration interval selected in this thesis is λ1 λ2 = 0.3-2.5 µm, based on EN-

673:2011 [47], but with extended wavelength range to include all UV-Vis-IR spectra. 
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In order to maximize the photothermal conversion efficiency, the receivers need to 

absorb most of the solar light (high α) and retain the heat energy (low ε) to be carried effectively by 

HTF. The above conditions of an ideal SSC can be expressed in terms of an ideal spectral 

reflectance as expressed by equation (1.8) and graphically schematized in Figure 1.7: 

𝛼𝑚𝑎𝑥  → 𝑅(λ) = 0     𝑓𝑜𝑟      0.3 < 𝜆 < λc μm 

 𝑇,𝑚𝑖𝑛 → 𝑅(λ) = 1      𝑓𝑜𝑟      λc < 𝜆 < 30 𝜇𝑚 
(1.8) 

where λC is a critical wavelength between 2 or 3 µm depending on the operating temperature [38,48]  
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Figure 1.7 – Spectral reflectance of  an idealized solar 

selective coating with different critical wavelength (λC) 

for each temperature. The solar spectral irradiance 

(ASTM-G173-03) and the normalized Blackbody 

radiation spectrum at different temperatures are 

included for a better understanding. 

A variety of thin film architectures can be exploited as SSC depending on the physical 

mechanism for obtaining spectral selectivity. The SSC can be classified in i) intrinsic spectral 

selective materials, ii) semiconductor -metal tandem, iii) textured surfaces, iv) photonics crystals 

(PhC), v) solar selective transmitting coating with blackbody-like absorber, vi) dielectric –metal 

(cermet) composite and vii) multilayer interference stacks. The operating principle together with an 

example for each system type is reviewed below. 

i) Intrinsic spectral selective materials 

Intrinsic spectral selective materials are homogeneous films possessing some inherent 

spectral selectivity, induced by dielectric dispersion as a function of wavelength. Metals generally 

possess a plasmon wavelength (λp), below which absorptivity gradually increases. However, the λp of 

a typical metal in the UV region is below the ideal cut-off wavelength for ideal solar selectivity. 

There are few materials with intrinsic selective optical properties that show the desired intermediate 

behaviour between metals and heavily doped semiconductors (Figure 1.8), such as titanium, 

zirconium, or hafnium metal carbides, oxides, and nitrides (on a highly reflective substrate) [49] 
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Figure 1.8 – Reflectance of  an ideal selective absorber 

compared to that of  a metal and a heavily doped 

semiconductor [58] 

Substoichiometric compounds of TiNx, ZrNx, and ZrCxNy [50,51] have the best 

combination of high solar absorptance and low thermal emittance [52]. The IR reflectance of these 

materials is notable high (εRT<10%) and the absorption edge is located close to the Vis range [39]. 

Cr–Cr2O3 known as black chrome and Ni–Zn–S (black nickel) are frequent materials employed as 

intrinsic solar absorbers in solar thermal industry [53–55]. They have to be used over an IR 

reflectance metallic surface to achieve the desired optical selectivity. In general, these SSC are 

structurally stable and easy to fabricate. However, it offers less-than-ideal spectral selectivity and 

therefore this approach has not been particularly fruitful at commercial applications [56].  

ii) Semiconductor-metal tandem  

The combination of a semiconductor film onto a metal underlay results in a solar selective 

tandem stack. Semiconductors and doped semiconductors are characterised by their energy band 

structure, with occupied valence electron states and unoccupied conduction electron states 

separated by a forbidden energy gap where no allowed electron states exists. Solar photons with 

shorter λ than the semiconductor bandgap can be absorbed by semiconductor valence electrons, 

while photons with greater λ will be transmitted unaffected, and get reflected back by the metal 

layer [48]. Semiconductor materials suitable for this approach include Si, Ge, and PbS [57]. The 

semiconductors frequently have large refractive indices near the band edge [58], which tend to give 

strong reflection losses and decrease the final α, implying that a complex antireflection treatment 

will be necessary. Donnadieu [59] considered Si/Ge tandem absorber placed on a silver reflector 

with an AR coating in front. Optimization with optical simulation yielded spectrally selectivity of 

α=89% and ε300ºC = 3.9%. More recently, Chester et al. [60] optimized a Ge on Ag reflector, 

showing a performance of α=91% and ε120ºC = 2%, based on optical simulations.  

This selective coating can withstand continuous temperatures in excess of 500ºC with 

good stability. However the optical properties are very sensitive to film thickness and a careful 

monitoring of the deposition parameters is necessary. Barriers between layers are commonly 

required to prevent inter-diffusion as well as buffers to reduce thermal or structural mismatch [61]. 

Many processing challenges appears associated with deposition growth in industry of reliable and 
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high quality finishes on receivers tubes [48]. Additionally, achieving low emittance can be 

challenging for semiconductor absorbers, as electron hole pair generation and free carrier emission 

at high temperatures can lead to large radiated losses [44].  

iii) Textured surface 

Textured surfaces are studied as SSC due to they can achieve high α by multiples 

reflections against metal dendrites with sizes in the order of solar wavelengths [62], while the 

thermal emittance is rather unaffected by this treatment since the relevant wavelengths are much 

larger than the dendrite separation (Figure 1.9 (a)). The microstructure of the surface, such as the 

orientation and mean feature height, controls the degree of selectivity. 

 
 

Figure 1.9 – (a) Schematic dendritic selective surfaces [63]. (b) SEM images of laser sintered tungsten [64]. 

Ideally, surface-textured absorbers should withstand high temperature, and they must be 

protected from external damages such as contact or abrasion by protective coatings like sol-gels. 

Selection of surface materials with high absorptivity will further increase the overall efficiency. 

There are several ways to create surface texturing including unidirectional solidification of eutectic 

alloys, nanoimprint lithography, ion-exchange reactions between metals, vapour deposition or 

oxidation of metals at high temperature [57].  

For example, dendritic tungsten has been deposited in the form of forests of whiskers 

whose size and separation are of the same order of magnitude than the sunlight wavelength. Hence, 

they promote absorption by multiple cavity reflections [65,66]. Recently, Sha et al. [64] developed a 

SSC based on tungsten nano and micro particles (Figure 1.9 (b)) fabricated by laser sintering with a 

surface roughness from nanoscale to 2 μm that helped to achieve spectral selectivity. The 

performance obtained was α=92% and εRT =16%, and relatively the same before and after heat 

treatment 36 h up to 650ºC in air. The absorptance can be affected by the metallic oxidation in air 

but few data have been found on durability of texture surfaces due to the elevated cost of 

producing at industrial scale and the difficulties encountered to obtain high quality coatings 

(a) (b) 
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iv) Photonic crystals (PhCs) 

The recent advances in the semiconductor processing technology has developed the 

fabrication of nanostructures with wavelength-scale features, known as photonic crystals (PhCs) 

[67]. These PhC-based designs, allow a control over the spectral and angular selectivity of the 

devices, compared to other SSC candidates.  

One-dimensional (1D) patterns impact on the optical properties of the surface of the bulk 

material. This is attributed to surface plasmon resonance induced by the surface patterns. The 

effects of the geometry of gratings such as periodicity and depth on spectral behaviour have been 

studied. Recently, Babiek [68] proposed a 1D W complex pattern design (Figure 1.10 (a)). The 

complex grating is defined by the superposition of two or more 1D grating profiles. 

  
Figure 1.10 – Three W grating designs, two simples and one complex grating formed from superimposing both on top of 

each other. [68] (b) Schematic diagram of simulated nanocone PhCs [69]. 

Figure 1.10 (b) shows the simulated 2D Mo PhCs with a square array of nanocones [69]. 

Mo is stable at high temperature (1000ºC) and shows intrinsic solar selectivity. An optimized Mo 

nanocone surface can exhibit α = 91.9% and ε1000ºC = 14.9%. 

This emerging area of research is enabled by technological progress in the nanopatterning 

of surfaces. The manipulation of geometrical rather than material properties, could lead to a new 

generation of more efficient SSC. 

v) Solar selective transmitting coating on a blackbody-like absorber 

This concept consists of a two layer stack composed of a selective transmitter on top of a 

perfect absorber (Figure 1.11). The former has to be transparent in the range of the solar radiation 

(300 nm – 2000 nm) and reflective in the range of the thermal emission of the system (> 2000 nm), 

while the latter absorbs in the range of the solar radiation. The emerging heat radiation is reflected 

at the interface of those two layers and therefore not lost into the environment but used for heating 

of the transfer fluid below. 

(a) (b) 
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Figure 1.11 – Schematic representation of  SSC 

consisting on a solar transmitting coating (TCO) 

with a blackbody-like absorber [70]. 

Materials which have suitable properties for a selective transmitter are mainly the well-

known transparent conductive oxides (TCOs) [71–73]. The conductivity in those materials is given 

by the amount of free charge carriers, which, from an optical point of view, are in principle able to 

oscillate in resonance with an incoming light wave. At frequencies higher than its plasma frequency, 

the charge carriers can not follow the excitation and therefore the material is transparent. As the 

excitation frequency gets lower, the oscillations of the electron plasma are excited and the incoming 

light waves get reflected. Candidates for such a selective transmitter are e.g. SnO2:Ta and TiO2:Ta. 

Furthermore, this combination of a material with high concentration of charge carriers (ne;TiO2:Ta = 

1021 cm-3) and a material with high charge carrier mobility (µe;SnO2:Ta = 20 cm/Vs) may result in a 

solar selective coating with very good properties [70]. 

vi) Multilayer interference stack 

Multilayer stacks use optical interference effects to promote absorption by alternating 

dielectric and metal layers (Figure 1.12). The thickness of the films may be selected so that light in 

the solar region of the spectrum is transmitted through the coating and reflected form the 

film/metal interface, returning to interference destructively with light reflected from the front 

surface of the film and thereby, increasing the solar absorptance. As long as the thickness is kept 

<150 nm, the longwave thermal radiation passes through the films preserving the low emittance 

properties of the IR layer.  

 

Figure 1.12 – Schematic diagram of  a dielectric-metal multilayer 

interference stack on a IR reflective layer to produce solar 

selectivity 

This interference effect may be optimised by using several thin films to increase the 

number of multiple reflections and maximize α. The thicknesses and materials of each layer must 

be chosen carefully to set the electromagnetic amplitude to zero at desired wavelengths. Variations 

in films thickness due to environmental degradation of differential expansion of the layers can lead 
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to changes in the optical properties and a subsequent deterioration in the designed performance. Li 

et al [74] designed an aperiodic multilayer structure consisting on SiO2(105 nm)/Ti(15 nm)/SiO2(95 

nm)/Al(>100 nm), which provides an average α > 90% and ε323ºC < 7%.  

The optical properties in these multilayer stacks are complicated to maintain by the need 

of interlayers in order to overcome the diffusivity problems between layers at high temperature. 

vii) Ceramic – metal (cermet) composite  

Ceramic–metal composites, also known as cermets, containing metal nanoparticles 

embedded in a dielectric or ceramic matrix [75] should have ceramic characteristics in the visible 

spectrum and metallic properties in the IR. This design offers a large degree of flexibility and the 

optimization of the spectral selectivity can be made with regard to the choice of constituent 

materials, film thickness, particle concentration and grading, as well as the shape and orientation of 

the particles. Smaller particle sizes are beneficial for high absorptance in the visible range 

meanwhile increasing the particle radius, the number of scattering centres decrease, resulting in 

lower absorption. The thermal emittance in the IR can be decreased by decreasing the coating 

thickness and increasing the metal concentration [76].  

Stacks formed by a cermet on a metallic layer have been widely reported in literature [77] 

and successfully commercialized [78–80]. Good candidates for the cermet component are metals 

with high melting points (Cu, Au, Ni, Mo, Cr, Co, Pt, and W) and dielectrics such as SiO2, Al2O3, 

AlN, Si3N4 or MgO. A single cermet film does not high solar selectivity by itself; hence, more 

complex structures with increasing metal concentration have also been investigated.  

 

Figure 1.13 – Schematic diagram of  a double cermet solar selective 

coating, consisting in an antireflective layer on the top, low metal 

volume fraction (LMVF)) cermet, high metal volume fraction (HMVF) 

cermet and an infrared reflective layer. 

To mention a few cermet based SSC, Zhang et al developed a double W-AlN cermet solar 

coatings deposited by reactive DC sputtering [81,82]. Optical simulations based on Bruggeman 

theory [83] allows a more efficient design obtaining optimized coatings with film structures of 

AlN/W–AlN (low metal volume fraction (LMVF))/ W–AlN (high metal volume fraction 

(HMVF))/Al, which schematic is shown in Figure 1.13. This design gives values of α ≥ 95 % and 

ε350°C ≤ 6 % and stability at 500°C in vacuum. Similar SS-AlN double-cermet solar selective films 

[84] have high optical selectivity properties. In particular, the Chinese “TurboSun” company 
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produces SS-AlN double-cermet glass-tubes which are thermally stable between 350°C-500°C in 

vacuum and lower in cost.  

Among the previously described SSC, PVD deposited cermet-based are nowadays 

successfully employed with high absorptance (α>95%) and low emittance (ε < 10%) for 

temperatures up to 400ºC in the evacuated tubes of parabolic trough concentrated solar power 

applications [77]. In medium temperature receiver designs, the surface is protected by a transparent 

cove which reduces the convective heat losses and provides control to the atmosphere to which the 

coating is exposed. However, these solutions cannot be directly implemented in central receiver 

tower plants that are expected to operate in air (without the protective cover) and at higher 

temperatures (T > 450ºC) to increase the performance [45]. Commercial paints such as Pyromark® 

are commonly employed as absorber coatings in tower plant central receivers working up to a 

maximum temperature of 525ºC. Their disadvantages include a poor solar selectivity (εRT = 86%) 

and a fast degradation during operation, requiring permanent maintenance [85]. The maximum 

working temperature in CSP plants is limited by the stability of these paints.  

The improvements in efficiencies for solar thermal energy conversions partially implies 

the increase in the receivers’ temperature, aiming to reach up to a maximum temperature of 650ºC 

for new superheated steam and molten salts receivers [44]. Therefore, the development of SSC 

durable at high temperature in air is a scientific and technological challenge. SSC must be capable 

of resisting deterioration and of enduring a lifetime of ~20 years and must be chemically and 

structurally stable up to the temperature range of the new tower power plants. Moreover, they must 

withstand thousands of heating and cooling cycles during the operation time of the plant [86]. In an 

evacuated atmosphere, the principal degradation mechanisms are the interdiffusion between layers 

or the changes in surface morphology. In air conditions, internal chemical reactions can change the 

composition, interfacial reactions can lead to loss of adhesion and the SSC may be corrode under 

high temperatures. Finally, the coatings should be resistant to abrasive wear caused by wind and 

sand erosion and show good adhesion onto the receiver base material.  

In this thesis, the degradation mechanism will be minimized employing refractory metal 

compounds for the absorber layer and with the addition of an antireflective layer (AR) and an 

infrared reflection (IR) layer, deposited on a highly stable substrate, as schematized in Figure 1.14 

(a). An example of one layer of each type grown for this thesis is shown in Figure 1.14 (b). 

The IR layer is situated under the absorber layer to reduce the thermal emittance at high 

temperatures [48]. Metals, carbides and nitrides are good IR candidates due to their well-known 

metallic behaviour [50,87]. The IR layer also has to be stable at high temperatures to avoid 

diffusion of the substrate thorough the rest of the coating and have high melting points. To fulfil 

these high demanding properties refractory interstitial nitrides (TiN [88], ZrN [50] or VN [58]) are 



CHAPTER 1 

16 |  

excellent candidates as they exhibit higher melting points than their host metals (e.g. 2950ºC for 

TiN and 1660ºC for Ti) [89].).  

 

 

Figure 1.14 – (a) Schematic representation of a complete SSC. (b) CVA deposited thin films for the different layer types that 
make up the solar selective multilayer stack, including TiN on Si substrate as IR layer, a-C:MoC on inconel substrate as 

absorber layer and Al2O3 on glass as top AR layer. 

The AR top layer should reduce the light loss of the solar radiation and also must be 

thermal stable to reduce the corrosion rate and stabilize the whole coating at high temperatures 

[90]. The simplest AR coating consists of one transparent layer with a quarter-thickness of the 

bottom layer and with refractive index (n) the square root of n in the absorber layer. Following this 

procedure, it is possible to create a destructive interference effect, with decreased reflectance for 

wavelengths in a broad band around the solar range. Some of the commonly employed materials 

for AR layer are MgF2 [91], SiO2 [92], Al2O3 [93] or Si3N4 [94]. 

In this work two candidate materials were proposed as absorber layer, combining the 

previous spectral selectivity mechanisms. The first approach consist on interstitial metal carbide 

nanoparticles embedded in an amorphous carbon matrix [95]. This nanocomposite film shows 

optical selectivity that resembles cermets mechanism and enhanced by both the intrinsic 

absorptivity of carbon and the spectral selectivity of metal carbides. The other candidate consists 

on a graded AlTi(OxN1-x) multilayer stack which combines the multilayer interference mechanism 

with the intrinsic spectral selectivity of this refractory material.  

1.4. Description and scope of the thesis 

The overall plan of the thesis is summarized in Figure 1.15. The flow diagram shows that 

there are two common introductory chapters. This chapter 1 explains the interaction of light with 

materials and the state of the art of previous solar selective coatings (SSC) materials. The 

methodology for a complete design of SSC is described in chapter 2. This chapter illustrates the 

different steps followed, starting with the selection of materials, optical simulation, deposition, 

characterization and thermal treatments. 

(a) (b) 
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The research done on the candidate materials selected to be the absorber layer of the SSC 

has been arranged into two parallel chapters (chapters 3 and 4). In chapter 3, amorphous-carbon: 

transition metal carbides (a-C:MeC) nanocomposites are employed as solar absorber layer for the 

SSC. In this chapter, optical simulation based on literature optical constants is employed first for 

the optimization of complete SSC and for the selection of materials for each layer type. Then, these 

selected thin films are deposited and comprehensively characterized. The optical simulations are 

feedback with experimental data and a complete SSC is designed and deposited in order to validate 

the simulations. A heating test of the deposited multilayer stack is performed to study the failure 

mechanisms at high temperatures. 
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The experience and capacity acquired on previous chapter, allowed the improvement of 

the methodology for a complete design of SSC based on aluminium titanium oxynitrides described 

in chapter 4. The main difference in this from the previous approach is the initial thermal treatment 

tests performed to validate the stability of single AlTiON layers. A set of individual layers were 

analysed first, in terms of composition, morphology and optical properties. Then, a complete SSC 

is designed with optical simulations, based on measured AlTiON optical constants. The optimized 

multilayers were deposited, and characterized its thermal stability in air. 

Chapter 5 describes a novel methodology for high temperature tests that integrates 

complementary characterization techniques into a single device. The new cluster tool situated at 

Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany, includes thin films characterization 

techniques such as spectroscopic ellipsometry, Raman spectroscopy, and ion beam analysis in 

several environmental conditions and at different temperatures. The multichamber device has been 

tested for a-C:MeC and AlTiON single layers. Those samples have been exposed to an in-situ 

heating process while measuring spectroscopic ellipsometry. Before and after heating, the thin films 

were characterized with Raman spectroscopy and Rutherford Backscattering Spectroscopy (RBS) in 

order to analyse the compositional and microstructural changes occurred during the heating 

process. 

The conclusions of the different materials employed for SSC, along with the strengths and 

weaknesses observed for each one are summarized in chapter 6. 
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CHAPTER 2: METHODOLOGY FOR A 

COMPLETE DESIGN OF SOLAR SELECTIVE 

COATINGS 

All the colours make their first appearance about the edge of the 
circular spot. More explosions make them expand towards the 

extremity of the space first marked out; while others succeed in 

their places; till, after thirty of forty explosions, three distinct rings 
appear, each consisting of all colours. 

 
Joseph Priestley, describing interference colours of oxide coatings on glass by cathodic arcs, 1775. 

 

 

The methodology followed in this thesis for a complete design of solar selective coatings 

is fully explained in this chapter. The design process starts with the selection of the material that 

composes each layer in the multilayer stack, based on optical simulation (section 2.1). Then, the 

selected thin film candidates are grown by cathodic vacuum arc techniques. The different 

deposition systems employed are described in section 2.2. The complete characterization of the 

deposited thin films (section 2.3) was a key element in the validation of the initial simulations and 

the subsequent optimization of the desired multilayered SSC. Finally, heating tests are performed to 

analyse the durability of the coatings in air at high temperatures and to predict their service lifetime 

(section 2.4). 
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2.1. Optical simulation of multilayer solar selective coatings 

The optimization of the optical behaviour of solar selective stacks (i.e. high solar 

absorptance (α) in the visible range and low thermal emittance (εT) in the infrared wavelength), 

requires an accurate optical simulation. This simulation is a time and money saving matter, reducing 

the number of necessary thin film depositions and avoiding a try and error optimization strategy. 

Generally, optical simulation relies on literature data based to obtain the optical constants of the 

materials. However, in this thesis the microstructure and optical characterization of the samples will 

be used in order to obtain an optimized simulation. The commercial software CODE (Coatings 

Design) [1] was employed to carry out these simulations. The input parameters in the software are: 

 The complex refractive index of materials forming the layer stack. For the initial simulations, 

the optical constants were extracted from literature data [2–6]. After this preliminary study, the 

optical constants were obtained experimentally by spectroscopic ellipsometry (SE) 

measurements on deposited thin films. However, standard SE measurements are limited into 

the 190-1700 nm wavelength range. Therefore, in order to obtain a proper calculation of the 

emittance, the optical constants have been extrapolated in the infrared range. This 

extrapolation is based on the measured reflectance spectra in the infrared range, as detailed in 

section 2.1.1. In the case of nanocomposite materials, effective medium approximation (EMA) 

theories were employed (see section 2.1.2), combining the optical constants of the components 

that form the heterogeneous material.  

 The structure of the multilayer stack: number of layers, thickness of each layer and 

roughness of the interface (if scattering losses are expected).  

 The angle of incidence and polarization type of the incident radiation.  

2.1.1 Extrapolation of the optical constants in the infrared range  

The optical constants (n, k) determined by standard spectroscopic ellipsometry (section 

2.3.4) are usually restricted to UV-Vis range. A proper IR extrapolation of the optical constants is 

crucial for a proper estimation of the thermal emittance of thin films at different temperatures. 

Infrared ellipsometer devices could determine the optical constants in the infrared range [7,8], 

however, these systems are scarce and not available in most material science  laboratories. Hence, 

in order to overcome this limitation, an extrapolation of the optical constants measured in the UV-

Vis range to the infrared range is necessary. CODE software considers the last experimental value 

as a constant for the rest of wavelength range of interest (see Figure 2.3 (a)). In this thesis, an 

alternative approach is proposed. The extrapolation of the optical constants in the IR range is done 
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studying the measured reflectance in the infrared with an FTIR spectrometer. In the case that no 

discrete absorption is observed in the measured IR reflectance spectra (associated to vibrational 

modes as e.g. in doped semiconductor), the real part (n) can be directly calculated by extrapolating 

the optical model(s) employed to determine the optical constants in the UV-Vis measured range 

[9]. The optical constants are not independent of each other and the relation between n and k is 

described by the Kramers-Kronig relations (KKR), whose equations can be found elsewhere [10]. 

The imaginary part can be subsequently determined by applying KKR and avoiding k negative 

values in order to obtain physically reasonable models. 
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Figure 2.1 – (a) Optical constants of TiN extrapolated in the infrared wavelength region by CODE (black line) and based on 
the measured infrared reflectance (IR R) spectra employing Drude dispersion model (red line). (b) Experimental reflectance 
spectrum of TiN (grey dash line) compared to the simulated reflectance using CODE extrapolation in the IR (red) and using 

optical constants extrapolation applied in this thesis (black).  

In Figure 2.1 (b), the simulated reflectance obtained using the two extrapolation methods 

described above are compared to the experimental reflectance of a TiN film. It can be observed 

how CODE extrapolation underestimates the reflectance spectrum in the infrared range. On the 

other hand, the comparison of the simulated and measured spectra reveals that the extrapolation 

employed in this thesis properly describes the experimental reflectance in the whole wavelength 

range.  

2.1.2 Effective medium approximation (EMA) theories for nanocomposite 

materials 

The complex refractive index of two-phase nanocomposites can be determined by a non-

trivial mixing of the optical constants of the individual components by the so-called EMA theories. 

If the average size of the inhomogeneities or particles is much smaller than the wavelength of the 

incident radiation, the electric and magnetic fields are almost constant over this length [11], and 

hence, the composite behaves like quasi-homogeneous material, as represented in Figure 2.2. 
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Two phase composite Effective medium 

 
Figure 2.2 - Schematic idea of effective medium approximation theory, where the dielectric behavior of a two-phase 

nanocomposite can be described by an effective dielectric function (Ɛeff).  

These theories require the optical constants of the embedded particles (εP) and the host 

(matrix) material (εM) to determine the effective dielectric function (εeff) of the composite material. 

The particle size and distribution in the host matrix are assumed by the volume fraction f as defined 

in equation (2.1).  

  
          

      
 (2.1) 

The simplest EMA theory is the Maxwell-Garnett (MG) theory. This theory considers that 

the inhomogeneous material has a separated grain structure [12] without particle interactions (no 

percolation). MG is only applicable to systems of low volume fraction of embedded particles (f < 

0.3). The MG theory for identical spherical particles is defined in equation (2.2): 

           

            
  

      
        

 (2.2) 

The most commonly used EMA theory was proposed by Bruggeman (BRU) in 1935 [13]. 

It is applicable to aggregate microstructures where the host matrix and the distributed particles are 

hardly distinguishable. BRU theory has proven to be adequate for large particle volume fraction (f 

≥ 0.3) and percolated systems. The BRU formula for spherical shaped particles is expressed in 

equation (2.3) 

(   )
           

             
   

           

             
     (2.3) 

For very low volume fraction (f <0.3) BRU is equivalent to MG theory, and no 

percolation is considered. Above that threshold, the embedded particles are assumed to be partially 

connected. Both MG and BRU theories have in common that the effective dielectric function does 

not depend explicitly on the size of the inhomogeneities. This is because the electric dipole term, 

which is proportional to particle volume, is retained in the series expansion of the amplitude of the 

electric field scattered by a single particle. However, important discrepancies between experimental 

and simulation results are found when only volume fraction is taken into account to describe the 

micro-topology of a nanocomposite material [14]. 

In 1978, Bergman [15] developed a theory where the microgeometry of the 

nanocomposite is taken into account by a spectral density function g(n,f). Bergman representation 

(BER) is described by equation (2.4): 
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where t is the reduced dielectric function, that takes real values between 0 and 1, as equation (2.5): 

   
  

     
 (2.5) 

The function g(n,f) holds details of the microgeometry. It is a real, non-negative function, 

normalized in the interval [0,1] with an arbitrary number of points (n) that are used to define the 

shape of the function by a cubic spline interpolation. Any microgeometry can be represented with a 

specific g(n,f). However, it cannot be computed analytically for real systems since the topology is 

too complicated or not even known. If the system has some degree of connectivity between the 

embedded particles, it is useful to split the spectral density function in a diverging δ function and a 

continuous part [16] as defined in (2.6): 

 (   )     ( )         (   ) (2.6) 

where g0 is the percolation strength that describes the metallic or dielectric behaviour of the 

nanocomposite. The parameter g0 varies between 0 (no percolation) and 1 (total interconnection 

between the nanoparticles). BER representation parameters are difficult to determine and they are 

usually calculated by adjusting g(n,f) to experimental data [17]. The effective dielectric function 

obtained provides additional information related to the shape of the nanoparticles and their degree 

of percolation. BER theory is especially interesting when the microstructure plays a significant role 

in the optical properties of the heterogeneous material and it is the approach followed in this work 

for simulating the nanocomposites. In-depth discussion of the fitting of a measured reflectance 

spectrum in a a-C:VC nanocomposite thin film using MG, BRU, and BER approximations can be 

found in chapter 3. 

2.2. Thin film deposition 

The thin films deposited in this thesis were prepared by Cathodic Vacuum Arc (CVA) as 

it shows numerous advantages compared to other Physical Vapour Deposition (PVD) techniques 

[18]. The basics principles of the cathodic arc plasma generation and the three different CVA 

equipments employed in this these are described below.  

2.2.1 Introduction to cathodic vacuum arc deposition  

The vacuum arc is an electrical discharge between two metallic electrodes (electrode and 

cathode) produced in vacuum. The main components of an arc source are shown in Figure 2.3 (a). 
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The arc is an electrical discharge with a higher ionization degree than other PVD techniques [19], 

hence, denser, stoichiometric and better adhering coatings are obtained. The discharge is 

characterized by a low DC or pulsed voltage (typically <30 V) to trigger and sustains an arc plasma 

with high discharge current (>50 A), concentrated in non-stationary cathode spots. The arc is 

ignited by contacting the trigger (1 in Figure 2.4 (a)) with the cathode surface (2 in Figure 2.4 (a)) 

and it is afterwards self-sustained unless the power is cut off. Energetic ion plasma is generated 

from the source material by explosions at micrometre size cathode spots moving on the cathode 

surface. In the absence of an external magnetic field, the cathode spots motion has been considered 

random and with fractals features [20]. Different models based on random walk [21,22] or fractal 

have been employed to simulate the cathode spots movement.  

The vacuum arc plasma is produced at non-stationary cathodic spots with a very high 

current density of order 106 A/cm2. The high current density is associated with an extremely high 

power density of ~1013 W/m2 that can provide conditions for the phase transformation of the 

solid cathode material to a fully ionized dense plasma [23] and expands rapidly into the vacuum 

chamber. The plasmas can be altered with electric and magnetic fields. In most CVA systems, an 

external magnetic field is applied in a permanent ring magnet to steer the moving arc spots around 

the cathode. By doing so, a more efficient material utilization and a more homogeneous 

distribution of the heat on the cathode is attained. 

 
 

Figure 2.3 – (a) Detail of the arc source: (1) and (2) are the two electrodes where the electrical discharge is created, where (1) 
is the movable trigger that makes contact with the cathode to start the arc and (2) is the metallic cathode from where the 
plasma is produced at the cathode spots. (3) Annular grounded anode body that surrounds the cathode and (4) Cooling 
system to refrigerate the cathode. (b) Crater structure on a cadmium cathode produced by a 4.7-A arc in vacuum [24] 

The kinetic and potential energy of the ions created in the cathodic arc can be calculated 

through the measurement of the ion charge state distribution of the cathode material. The average 

ion energy plays an important role in the texture, stress or subimplantation depth of the growing 

thin films [25]. The kinetic energy of the ions can be increased by applying a negative bias voltage 

(DC or pulsed) to the substrate that also involves obtaining denser deposited films. If the bias 

voltage is very high, the ions will gain enough energy for ion subimplantation but nevertheless, it 

(a) (b) 
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can generate intrinsic stress in the resulting films. Therefore, special attention must be given to 

stress control, reducing the fraction high energy ions by i.e. pulsed biasing [26].  

2.2.2 Filtering of macroparticles 

The high energy of the arc can lead to the evaporation of macroparticles or droplets at the 

cathode spots as the result of the crater formation (see Figure 2.3 (b)) [24], where formed 

macroparticles can be observed at the boundaries. Hantzsche [21,27] and Jüttner [28] explained the 

formation of the craters due to incident ion flux on the cathode which applies a pressure on the 

melted metal, producing micropoints at the crater boundaries and numerous droplets. Several 

publications have reported the relationship between the macroparticles formation with the 

temperature, the current, the cathode material and the presence of external magnetic fields 

[24,29,30]. The authors concluded that the macroparticle generation is independent of the arc 

current but depends highly on the cathode material. The largest macroparticles are found in 

materials with low melting points. When a macroparticle reaches the growing film, it could be 

included in the coating material as shown in Figure 2.4 (a), or cause a hole in the film after the 

release of macroparticles in the sample (Figure 2.4 (b)). Top view SEM image in Figure 2.4 (c) 

shows an AlTiN film with a high concentration of macroparticles. 

   

Figure 2.4 – SEM images of AlTiN thin film deposited by unfiltered CVA. (a) Macroparticles incorporated in the growing 
film at different levels. (b) Hole in the film caused by the loss of a macroparticle as its low adhesion. (c) Top view of the 

numerous macroparticles with an average size of ~1µm.  

The detrimental macro-particles incorporation in the coating can be reduced either by 

reducing the macroparticle production [31] or by separating the plasma flow from the 

macroparticles using magnetic filters. The size of macroparticles are reduced by increasing the arc 

spot velocity by e.g. high current pulsed arcs [32]. Magnetic filters are commonly employed to 

separate the macroparticles from the plasma generated at cathode spots. The purpose of the coil is 

to guide the plasma through a duct to the substrate in the deposition chamber. In doing so, the 

plasma particles (electrons and ions) are separated from the microscopic, but relatively massive 

neutral droplets. Many different shapes and configurations have been designed for macroparticles 

filters differing in the bending angles and in the in the plane or out of phase bending [20,33–36]. 

Some examples are straight magnetic filters, 90º duct filters (Figure 2.5 (a)), knee filters, rectangular 



 METHODOLOGY FOR A COMPLETE DESIGN OF SOLAR SELECTIVE COATINGS  

   | 31 

duct filters or freestanding S-filters (Figure 2.5 (b)) among others. The classical 90º duct filter is the 

one employed in this work.  

  

Figure 2.5 – Different macroparticle filter configurations (a) classic 90º duct filter by Aksenov and co-workers (adapted 
from [34]) and (b) open S-filter [31].  

2.2.3 Cathodic vacuum arc deposition systems employed in this thesis 

Three different CVA systems were employed in this work, whose main differences are 

summarized in Table 2.1. A pulsed arc source cathodic vacuum arc (PFCVA) with 90º curved 

electromagnetic filter was employed for growing the a-C:MeC films described in chapter 3 (Figure 

2.6 (a)), sited at “Centro technologic Manresa” (CTM) at Manresa, Spain. For the AlTiON films 

described in chapter 4, a DC unfiltered cathodic vacuum system situated at Metal Estalki S.L 

(Bilbao, Spain) was employed (Figure 2.6 (b)). Both types of coatings were also deposited in a 

filtered cathodic vacuum arc DC (FCVA) (Figure 2.6 (c)) situated at Abengoa Research (Sevilla, 

Spain). Further details of the deposition parameters will be given in Chapter 3 and 4.  

Table 2.1 – Comparison of the three different equipments employed in this thesis (a) CVA: cathodic vacuum arc (non-
filtered) from Metal Estalki S.L., (b) PFCVA: pulsed filtered cathodic vacuum arc in CTM and (c) FCVA: filtered cathodic 

vacuum arc in Abengoa Research.  

Parameter (a) PFCVA – CTM (b) CVA - Metal estalki 
(c) FCVA – Abengoa 

Reseach 

Macroparticles filtering 90º duct filter No 90º duct filter 

Arc source 
Pulsed DC (3 ms 

repeated at 7.5Hz) 
DC DC 

Cathode size 
Cylindrical shape: 30 mm 

x ø10 mm 
331 x 174 mm 

Truncated cone: 50mm 
height x ø50 mm 

Number of  arc sources 2 1 2 
Distance to the substrate ~58 cm ~15 cm ~24 cm 

Bias voltage Max 1000 V pulsed Max 100V DC 
Max 1000 V pulsed + 

100V DC  
Pulsed biasing Yes. 0 to 80% at 100KHz No Yes. 0 to 80% at 40KHz 
Maximum T (ºC) 350ºC 500ºC 350ºC 

(a) (b) 
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Figure 2.6 – Images of  the three different CVA systems 

employed in this thesis: (a) pulsed filtered cathodic vacuum 

arc with two arc sources in CTM (b) PL70 Plattitt CVA non-

filtered chamber in Metal estalki S.L and (c) filtered cathodic 

vacuum arc with two arc sources in Abengoa Research. 

2.2.4 Substrate preparation 

The substrate of a solar selective coating for tower central receivers has to withstand 

temperatures higher than 700ºC and oxidation damage. Hence, the complete solar selective 

coatings are deposited on inconel HAYNES 230 or HAYNES 625 ® due to the high oxidation 

resistance in air (excellent at 1150ºC) [37]. Inconel substrates exhibit as well excellent infrared 

reflection properties with a thermal emittance of 7 and 13 % at RT and 600ºC, respectively. In 

addition, Si (100) wafers were used for specific characterization purposes (i.e. XRD, IBA, etc.), and 

glass substrates were required for measuring the transmittance of the antireflective oxide layers. 

All substrate types are subjected to the same chemical cleaning procedure. Before putting 

into the vacuum chamber, they were cleaned by ultrasonic agitator in distilled water, acetone and 

ethanol 15 minutes each solvent. Prior to the deposition, substrates were sputter plasma cleaned by 

ionized argon bombardment for 15 min, employing a pulsed bias discharge of 750V, 80% duty 

cycle (40 kHz frequency) at ~1.5 Pa pressure. 

2.3. Thin film characterization 

The characterization techniques employed in this thesis are summarized in Table 2.2, 

organized by the nature of the input probe and the output signal detected. Thickness and 

roughness were measured with optical and mechanical profilometers. Film composition and depth 

(a) (b) 

(c) 
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profiles were obtained combining different ion beam analysis (IBA) techniques. For the 

microstructural analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and high 

resolution transmission electron microscopy (HR-TEM) in combination with selected area electron 

diffraction (SAED) were employed. Raman spectroscopy was used for structural and chemical 

analysis of the bonding in the films. The optical constants were determined by spectroscopic 

ellipsometry (SE) while UV-Vis-NIR and FTIR spectrophotometry was employed for investigating 

the optical properties, i.e. spectral reflectance.  

Table 2.2 – List of characterization techniques employed for complete characterization of the deposited thin films. 

Technique 
Property 
analysed 

Input probe Schematic 
Output signal 

detected 

Mechanical profilometry 

Thickness and 
roughness 

Force 

 

Electrical signal 

Confocal microscopy 
Photons ((VIS 

laser λ) 
 

Photons 

Rutherford backscattering 
Spectrometry (RBS) 

Film composition, 
thickness, 

elemental profiles 

High energy 
light ions 

 

Backscattered light 
ions 

Nuclear reaction analysis 
(NRA) 

High energy 
ions  

 

Reactive ions 

Elastic Recoil Detection 
(ERD) analysis  

High energy 
heavy ions  

 

Recoiled light ions 

X-ray diffraction (XRD) Crystal structure  
Photons (X-

rays)  
 

Photons (X-rays) 

Raman spectroscopy 
Molecular 
structure 

Photons (Vis 
laser λ) 

 

Photons  

Scanning Electron 
Microscopy (SEM) 

Morphology Electrons 
 

Backscattered 
electrons (BE), 

transmitted 
electrons (TE), 
elastic/inelastic 

scattered electrons 
(ESE, ISE) , 

secondary electrons 
(SE), X-rays 

Transmission electron 
microscopy (TEM) 

 

Spectroscopy 
ellipsometry (SE) 

Optical constants, 
thickness and 

roughness 

Photons 
(polarized 

UV/Vis light) 
 

Photons (Polarized 
UV/Vis light) 

UV-Vis-NIR 
Spectrophotometry Transmittance and 

reflectance  

Photons (UV-
Vis) 

 

Photons (UV-Vis) 

FTIR spectroscopy Photons (IR)  Photons (IR) 

hγ hγ+δ 
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2.3.1 Thickness and roughness 

In this study, thickness and roughness have been measured with a mechanical 

profilometer DektakXT from Bruker. It includes an X-Y auto sample positioning stage that allows 

3D mapping along the sample. A diamond-tipped stylus (2 µm radius) with 3 mg force is used for 

the measurements. An optical profilometer, Confocal Microscope (Plµ 2300, SENSOFAR) with 

50x objective was employed too. It is equipped with a laser light source (λ=470nm) and an open-

loop z-scan device with a resolution of dz = 0.1 μm. In both equipments, the measurement of the 

thickness is based on the determination of the step in a marked area in the sample without coating. 

An example of thickness determination with a confocal microscope is shown in Figure 2.7. 

  

Figure 2.7 - Thickness determination of a-C:MoC sample deposited on inconel substrate with confocal microscope (a) 
Confocal image and (b) 146 nm step measurement after the leveling, both images from software SensoMap Plus 5.1.1 [38] 

To determine the deposition growth rate for each deposited material, single layers have 

been deposited with three different deposition times, as shown in the example in Figure 2.8 for an 

AlTiON sample deposited on inconel and silicon substrates.  
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Figure 2.8 – Calculation of  the growth rate on AlTiON (20 

at.% O) samples deposited on Si and Haynes 230 substrates. 

The roughness was analysed following the standard of ISO4287-1997 [39] that defines the 

parameters to employ for roughness comparison. The two most commonly employed are the 

arithmetical mean deviation roughness (Ra) and the root mean square roughness (Rq) as defined in 

equation (2.7): 

    
 

 
∑ |   〈 〉|
 
        ;          

 

 
√∑ (   〈 〉)

  
    (2.7) 

Where <z> is the mean height in a selected evaluation length and n is the defined number of 

sampling lengths. 

(a) (b) 
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2.3.2 Thin film composition by ion beam analysis (IBA). 

Ion beam analysis (IBA) techniques are widely employed for identifying the elemental 

composition of thin films [40]. During the bombardment of a sample with energetic ions, elastic 

and inelastic scattering, nuclear reactions and/or electromagnetic excitations take place. The 

advantages of IBA methods are the non-destructiveness, standard free and quantitative 

interpretation of the experimental results. The three different IBA techniques employed in this 

thesis are schematized in Figure 2.9: Rutherford backscattered spectroscopy (RBS), nuclear reaction 

analysis (NRA) and elastic recoil detection (ERD) analysis. All the experiments were performed at 

the ion beam centre at Helmholtz Zentrum Dresden-Rossendorf (HZDR) in Germany. The 

following sections further explained the IBA techniques employed in this work 

   

Figure 2.9 - Schematic representation of (a) RBS, (b) NRA and (c) ERD ion beam analysis techniques [41]. The figure 
depicts the interaction between ions and the material surface in the different IBA techniques. 

Rutherford Backscattering Spectrometry (RBS) 

RBS is one of the most frequently used techniques for quantitative analysis of 

composition and depth profiles of thin films up to 1-2 μm depending on the incident energy of the 

ions [42]. The basic RBS principle is that the energy of an elastically backscattered particle is 

proportional to: i) the mass of the atoms in the target material and ii) the depth at which the 

scattering takes place. The ratio between incident energy (E1) and the energy of the backscattered 

ions (E0) is called the kinematic factor (K=E1/E0), and the energy loss per unit path length is called 

the stopping power (dE/dx). RBS is best suited for the detection of heavy elements on light 

substrates and can reach accuracy below 1 at% and a depth resolution of 5-10 nm. However, with 

RBS technique, light elements in a heavy matrix of the substrate are not detectable.  

The cross section in RBS experiments is a known value that depends on the energy of the 

incident ion, the geometry of the detector and the atomic number of the target atoms. The absolute 

concentration of atoms (or areal density) in the target material can be determined from the RBS 

spectra without standards with a depth resolution <5nm and an analysis depth of a few 

micrometres.  

(a) (b)

) 

(c) 
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Figure 2.10 – RBS spectrum of  WSi2 thin film 

deposited on silicon substrate thermal oxidized, with 
4He+ ions with energy of  1.7 MeV. A schematic of  the 

analysed stack is included  

The RBS measurements were carried out at a 2 MeV Van der Graff accelerator by using 

4He+ ions with an energy beam of 1.7 MeV. The data were acquired with a silicon barrier detector 

located at a backscattering angle of 170º, whose energy resolution was 13 keV. As an example, the 

RBS spectrum of a WSi2 sample is shown in Figure 2.10 where the tungsten signal can is clearly 

separated from the Si one. The simulation software SIMNRA [30] version 6.06 was used to extract 

the metal areal density.  

Nuclear reaction analysis (NRA) 

NRA is a very useful technique to detect light elements in a heavy matrix or substrate. 

Once an ion ‘a’ impinges in an atom ‘A’, it can induce a nuclear reaction. An intermediate excited 

nucleus is then formed, which decays to the ground state ‘B’ by the emission of a particle ‘b’, 

normally gamma photons or light particles. The number of reaction products ‘b’ is proportional to 

the concentration of the specific element ‘A’ in the sample. This reaction is described in the 

abbreviated way A(a,b)B, and it occurs at a characteristic energy. The probability of a NRA is given 

by the corresponding cross section and depends on the energy, type of projectile and atoms in the 

target material, and there is no a simple method to predict it. Therefore, NRA is a powerful 

technique to quantify only a certain element in a sample, but not to probe the composition of an 

unknown sample, as RBS. A standard sample (reference material with known atom content) is 

required to determine the absolute concentration of atoms in the target material [43]. The depth 

resolution of NRA is ~8 nm and the analysis depth is up to 5 µm (depending on the matrix and on 

the substrate employed), with an accuracy of 0.05 at. %. 

NRA is employed in this thesis for an accurate determination of carbon content in the 

amorphous carbon-metal carbide nanocomposite thin films (Chapter 3). An example of a-C:WC 

sample measured by NRA is presented in Figure 2.11 (a) and the nuclear reaction is schematized in 

Figure 2.11 (b). 
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Figure 2.11 – (a) NRA spectrum of WSi2 as reference sample and a-C:WC samples deposited on a silicon substrate, 
employing deuterium ions with 1.238MeV. (b) Schematic of the nuclear reaction occurred for cabon. 

The NRA measurements were carried out at the 3 MeV Tandem accelerators, by using 

1.248 MeV deuterium ions as incident particles at a detection angle of 135º. The nuclear reaction 

12C(d,p)13C has its maximum cross section at an incident deuterium ion energy of around 1.2 MeV. 

The intensity of the emitted proton signal is proportional to the carbon concentration in the 

nanocomposite thin film [44]. 

Elastic recoil detection (ERD) analysis  

ERD analysis is an IBA method based on elastic scattering of ions. The light elements in a 

heavy matrix or substrate are extracted from the material when a heavy incident ion impinges into 

the sample. The atoms from the target material are recoiled, and can be quantified. In order to 

discriminate between the different types of recoiled particles, absorber foils or mass discriminating 

detectors are employed [45]. The main advantage of ERD over the other IBA techniques is the 

ability to measure all the elements of the target (including hydrogen) simultaneously and to separate 

one from each other, avoiding the overlapping as shown in RBS spectra. Figure 2.12 (a) shows 

ERD measurement for an AlTiN thin film. The areal density and depth profiles are obtained 

quantitative and without standards from the measurements after fitting the spectra with an accuracy 

of ~1 at. % (Figure 2.12 (b)). However, due to the usage of heavy ions (i.e. Cl+7), samples can be 

damaged by the ion beam. 

ERD measurements have high detection sensitivity for light elements in a heavy matrix or 

on a heavy substrate, which is hardly possible using RBS. However, it cannot be used to determine 

the content of heavy elements in a light matrix. The analysing depth is lower than for the other IBA 

techniques, <0.75 μm and the depth resolution is ~20 nm. 

(b) 
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Figure 2.12 - (a) ERDA spectrum of an AlTiN thin film on Si substrate measured with 43 MeV Cl7+ ion beam. (b) Resulting 

depth profile after the fitting of the AlTiN thin film in (a). 

ERD measurements in this work were carried out at a 6 MeV tandem accelerator using 43 

MeV Cl7+ ion beam. The angle between the sample normal and the incoming beam is 75° and the 

scattering angle is 31°. The analysed area is about 1.5x1.5 mm². The recoil ions have been detected 

with a Bragg ionisation chamber using a full energy detection circuit for the ion energies and a fast 

timing circuit to obtain a Z-dependent signal to separate ion species. H has been detected with a 

separate solid state detector at a scattering angle of 41° preceded by an 18 μm Al foil to stop other 

scattered and recoiled ions. All ERD spectra and the RBS spectrum (Cl7+scattering) were fitted 

simultaneously using the program NDF v9.3g [46]. For most of the samples, the part of the spectra 

corresponding to the surface is rounded, what which indicates roughness or thickness variation in 

the layer. A roughness model has been included in the fitting but it was sometimes not sufficient, 

resulting in an overestimation of the concentration of the elements.  

2.3.3 Microstructural characterization 

X-Ray diffraction analysis 

X-Ray diffraction is a common method which yields provides crystallographic 

information of solid materials from s the interaction of a monochromatic X-ray source with the 

periodic crystal lattice of the sample [47]. Diffraction takes place when the incident X-ray beam 

satisfies Bragg’s law and a constructive interference occurs [43]. Grazing incident geometries have 

been developed to render X-Ray diffraction more sensitive to the surface,[48], as shown in Figure 

2.13 (a). The penetration of the X-rays into the surface is lowered by reducing the incidence angle 

on the sample surface, and thus limits the depth from where the information is gathered.  

In this thesis grazing incident X-ray diffraction (GIXRD) is applied to study the phase 

structure and crystallinity of the carbide dispersed phase of a-C:MeC nanocomposites (chapter 3) 

and the phase transformation with oxygen/nitrogen ratio in the different AlTiOxNy in chapter 4 as 

shown in the example of Figure 2.13 (b) for an AlTiN sample. 
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Figure 2.13 – (a) Geometry in grazing incidence diffraction characterized by a small incidence angle (αi) that is kept constant 
during the measurement. (b) GIXRD pattern of AlTiN sample on Si substrate. The lines correspond to reference ICDD 

card of a cubic AlTiN [49].  

A PANalytical X’Pert PRO diffractometer with Cu-Kα radiation (λ=1.542 Å) is employed. 

The incident angle is 0.4º, and the XRD patterns are measured in the diffraction angle range of 30–

100º 2θ angles in steps of 0.05º. All samples were measured additionally by conventional θ-2θ 

geometry in order to analyse the preferential orientation or texture. the coating peaks were fitted to 

a pseudo-Voigt function to calculate the integral breadth from the X-ray diffractograms. The 

crystallite size t is estimated studying the full width at half maximum (FWHM) B of the diffraction 

peaks in radians, as an average of all the present peaks, following the Scherrer equation [50], as in 

equation (2.8): 

   
   

  (  )      
 (2.8) 

where k is the shape factor, λ is the wavelength of the X-rays, and θB is the angular position of the 

peak’s maximum. A shape factor of 0.94 is employed here, under the assumption that peak 

broadening is dominated by the small crystalline size. Phase identification was performed using the 

PANalytical X’Pert High Score Plus software and the ICDD (International Centre for Diffraction 

Data) PDF-4 database. 

Raman spectroscopy  

Raman spectroscopy is a non-destructive technique based on the measurement of the light 

dispersed by matter when a monochromatic light beam impacts on it. The interaction between a 

photon and a molecule can be elastically or inelastically scattered. In both cases, the molecule will 

be excited into a virtual state. Raman spectra are specially sensitive to the chemical structure of 

carbon materials, showing common features [51]. Hence, this technique was employed in chapter 3 

to determine the phase structure of the carbon matrix. Raman spectra of samples containing 

carbon were measured in the wavenumber range 700-2500cm-1, from as the Raman spectra of a a-

C:WC samples represented in Figure 2.14.  

(a) 
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Figure 2.14 – Normalized Raman spectra of  a-

C:WC samples with 3 and 8at. % W content. The 

spectrum of  the amorphous carbon sample is 

represented as reference 

Micro-Raman spectra were recorded on a LabramHR spectrometer (Horiba), situated at 

HZDR. The system is equipped with a liquid N2 cooled charge-coupled device detector and 

coupled to a BH2 microscope (Olympus). The laser beam of Nd:YAG solid-state laser with a 

wavelength of 532 nm was focussed to a spot diameter of 1 µm by a 50-fold magnifying objective. 

The laser power at the sample was 1mW. The scattered light was collected in 180º backscattering 

geometry and dispersed by a 300 line/mm grating. No sample degradation occurred under these 

conditions. For the analysis of the Raman line shape, the software PeakFit (version 4.12, Seasolve 

Software Inc.) was employed. 

Scanning electron microscopy (SEM) 

In SEM measurements, a focused electron beam is scanned over the surface of the 

sample. When the electrons strike it, different interactions can occur: emission of backscattered 

electrons, auger electrons, secondary electrons and X-rays. All these signals can be detected 

revealing morphology, chemical composition or microstructure information of the sample [52]. 

A Hitachi S5200 SEM equipped with FEG, located at “Instituto de Ciencia de Materiales 

de Sevilla” (ICMS) was employed in this study to analyse the microstructure of deposited samples. 

The cross sections and the top surface of the samples deposited on silicon substrates were 

measured without metallization in cross-sectional views at 1 and 5 kV electron beam energy. The 

microscope is dotted with an energy dispersive X-ray (EDX) spectroscopy Bruker X Flash 

Detector 4010 which allows quantifying the composition of the thin films. A SEM cross section 

image of a complete multilayer stack is shown in Figure 2.15 (a). As the alumina top layer is an 

electrically insulating material, it absorbs electrons and accumulate a net negative charge that repels 

the following electron beam, thereby degrading the image and making the imaging and analysis 

difficult by SEM if is not properly coated with a conducting film [53].  
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Figure 2.15 – Images of TiN / a-C:ZrC /Al2O3 multilayer film deposited by PFCVA. (a) SEM cross section image. (b) HR-
TEM cross section image. (c) Higher magnification of the a-C:ZrC layer,of (b) from where a multilayer self-formation can 

be appreciated. (d) Amplified image of (c) that allows determination of the crystallite size and interplanar distance of the fcc-
ZrC crystal structures.  

High-resolution transmission electron microscopy (HR-TEM) 

HR-TEM was employed to investigate the morphology cross-section of the samples[54]. 

In addition, selected area electron diffraction (SAED) patterns can be recorded which yield 

information on the nanoparticle phase and the degree of crystallinity of the matrix and the 

nanoparticles [55].  

The HR-TEM TECNAI F30 situated at the “Laboratorio de Microscopía de Avanzada” 

(LMA) from “Instituto de Nanociencia de Aragón de la Universidad de Zaragoza” (INA-

UNIZAR) was employed. The equipment operates at 300kV accelerating voltage is equipped with a 

Schottky-type field emission gun and an ultra-high resolution pole piece. The HR-TEM is also 

provided with a scanning transmission electron microscopy with the high angle annular dark field 

(STEM-HAADF) detector, and EDX analysis has been done to determine the composition of the 

samples in scanning mode. The cross-section analysis requires the preparation of thin lamellas. 

Those lamellas were made using a Focused Ion Beam (FIB) Dual Beam Helios 650, consisting of a 

30kV Ga focused ion beam combined with a 30kV electron beam placed at 52º between them. The 

preparation of the lamellas was done with the Omniprobe® manipulator. A protective Platinum 

thin film was deposited by electron beam deposition from a Pt-organic gas (CH3)3(CpCH3)Pt. As an 

example, the HR-TEM cross section of a multilayer stack is shown in Figure 2.15 (b). Higher 

resolution images of the same film (Figure 2.15 (c) and (d)) illustrate the resolution limits.  

2.3.4 Optical characterization  

Spectroscopic ellipsometry (SE) 

SE technique measures the change of the polarization state of the light after reflection on 

the surface to study [56,57]. The ellipsometric parameters measured are amplitude ratio (ψ) and 

phase difference (Δ), represented in Figure 2.16 (a). These two parameters are related to the 

(a) 
Al2O3 

a-C:ZrC 

TiN 

(b) 
Al2O3 

a-C:ZrC 

TiN 

(c) 

(d) 
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complex reflection ratio (ρ) between Fresnel reflection coefficients Rp and Rs for parallel and 

perpendicular polarized light, respectively, relative to the plane of incidence, as defined in (2.9): 

   
  

  
     ( )    (2.9) 

There exist different configurations of spectroscopic ellipsometer instruments. They all 

have in common, the presence of a light source and a polarizer on the incident side and an analyser 

and a detector on the reflection side. Figure 2.16 (b) shows the schematic diagram of the rotating-

compensator ellipsometer employed in this thesis.  

  

Figure 2.16 – (a) measurement principle of spectroscopic ellipsometry [57] and (b) optical configuration of rotating-
compensator ellipsometry.  

SE is commonly used to characterize the thickness and optical constants of thin films, i.e. 

refractive index, n and extinction coefficient k. It is a non-destructive and fast technique with a very 

high precision (thickness sensitivity ~0.1 Å) that does not require the use of reference samples to 

obtain quantitative results (see Figure 2.16 (b)). Moreover, ellipsometry can determine other 

physical properties of thin films such as surface and interfacial roughness, alloy composition, 

interband transitions (in particular the band gap, Eg), free carrier concentration and carrier mobility 

(in infrared ellipsometry). On the other hand, the main disadvantage of SE is the need of optical 

models in order to obtain the physical parameters of the layers from the ellipsometry measured 

values (ψ and Δ).  

The procedure followed to determine the properties of thin films from ellipsometry 

measurement can be divided into several steps, as shown in the flow chart of Figure 2.17: 

i) Measure the sample to obtain the spectral values ψ and Δ. 

(a) (b) 
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Figure 2.17 – Flow chart of  the data analysis 

procedure in spectroscopic ellipsometry: 

measurement, optical model, assignation of  the 

dielectric function for each layer on the optical 

model, fitting the error and determination of  the 

optical constants.  

ii) Develop a model based on the measured sample. The multilayer model employed for 

all the deposited samples assume a structure with ambient / roughness / film(s) / interface 

/substrate as shown in Figure 2.18. The surface roughness is modelled using BRU EMA, where we 

suppose a mixture of 50% of voids and 50% film material (see section 2.1.2 and equation (2.3). A 

crystalline Si substrate with 2 nm of SiO2 interlayer was employed for the model, with the optical 

constants taken from measured Si (100) substrate.  

 

Figure 2.18 - Schematic diagram of  a-C samples that consists of  four 

layers including surface roughness, an amorphous carbon layer, native 

silicon dioxide interlayer and the silicon substrate.  

iii) Assign the optical constants for each layer of the optical model. In case that the optical 

constants are unknown, it is necessary to employ the appropriate mathematical dispersion model(s) 

according to the optical properties of the sample.  

In transparent regions (k~0), at wavelengths lower than the fundamental frequency (λ0), 

Cauchy or Sellmeir model can be applied to determine the real dielectric part. The Sellmeier model 

is employed in this work, with dielectric function values given by equation (2.10): 

     ∑
   

 

      
 

 

                    (2.10) 

where A and B represent analytical parameters used in the data analysis.  

Lorentz and Tauc-Lorentz (TL) models [58] have been employed for amorphous 

materials to express the electric polarization in the UV-Vis region. While in Lorentz model, ε2 

peaks have a symmetric shape, in TL model ε2 exhibits asymmetric peaks. This imaginary part (ε2) 

of the dielectric function is determined by multiplying the Tauc joined density of states in the 

proximity of the fundamental optical bandgap Eg [59] by the Lorentz oscillator model, as in (2.11):  
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(2.11) 

where E0 is the Penn gap, i.e. the photon energy at which maximum optical absorption occurs, C is 

the broadening and A the strength of each Lorentz oscillators. The corresponding real part ε1 is 

then derived by using the Kramers-Kronig relations [60].  

For materials with free electrons like metals or with carrier absorption as in 

semiconductors, Drude model is employed to examine the infrared behaviour. The complex 

refractive index (ε1 and ε2) with Drude model is defined in equation (2.12):  

       
  
 

     
                                

  
  

 (     )
 (2.12) 

where ωp = (4πNe2/m)1/2 is the plasma frequency, that corresponds to the energy position where 

ε2~0. ε∞ is the dielectric constant at high frequencies and tends to the unity for high energies. Γ is 

the collision frequency and the absorption tail increases for higher values. 

EMA theories can be applied for composite materials, as explained in section 2.1.2. The 

dispersion models suitable for each one of the components of the composite material can be 

merged to calculate the effective refractive index.  

iv) Evaluate the fitting error until the optical constants obtained with the dispersion 

models are optimized, following a linear regression analysis.  

v) Determine optical constants and films thicknesses of the analysed samples.  

The optical constants of the deposited thin films were determined by SE using a rotating 

compensator ellipsometer M-2000FI from J. A.Woollam, Inc, situated at HZDR, in the wavelength 

range of 200 to 1700 nm at an angle of polarized light incidence of 75º The data were acquired and 

interpreted via modelling using WVASE32 software (J. A. Woollam, Inc) [61].  

UV-Vis-NIR and IR reflectance 

The solar absorptance (α) and thermal emittance (ε) were calculated by integrating the 

reflectance measurement following the standards [62,63] as explained in Chapter 1. Specular 

reflectance (R(λ)), is defined as the ratio of the radiant flux reflected (Ir(λ)) on a surface to the 

incident radiant flux (Ii(λ)), as equation (2.13):  

 ( )    
  ( )

  ( )
 (2.13) 

The total reflectance of a surface can be divided into a specular (perpendicular to the 

incident radiation) and a diffuse (scattered into the entire hemisphere) component.  The intensity of 

each component depends on the on the surface roughness of the sample, as schematized in Figure 

2.19.  
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Figure 2.19 –Schematic of types of reflectance of a beam light into a surface. (a) Specular and (b) diffuse reflection. 

In order to cover the whole wavelength range of interest (0.3 to 25 µm) is required the 

separate use of UV-Vis-NIR and IR spectrometers. The reflectance of the deposited samples at 

room temperature in the UV-Vis-NIR range was measured with two different double beam 

spectrophotometers: 

- The Shimadzu UV-Vis-NIR Solid Spec-3700 spectrophotometer situated in the HZDR 

was used to measure spectral reflectance in the range 250 to 3300 nm, with a direct detection unit 

accessory to measure with an incident angle of 5º from the normal. The system is equipped with a 

Halogen lamp as source and three different detectors for specific wavelength range: PMT for 200 -

870nm, InGaAs 870 – 1650 nm and PbS for 1650 -3300nm to increase the sensitivity in all the 

analysed range. An aluminium mirror was used as a reference and then corrected the reflectance 

with a calibrated Al standard. The data were processed with the software UVProbe 2.42 and 

multiplied by the correction factor.  

- The Perkin Elmer spectrophotometer Lambda 1050 sited in Abengoa Research was 

employed too. It is equipped with a deuterium (175-320 nm) and a tungsten-halogen lamp (320–

3300nm). Two accessories were employed to measure specular or diffuse reflectance. The 

Universal Reflectance Accessory (URA) measures absolute specular reflectance from 8 to 65º as 

incident angle, without the need of external reference mirrors. There is a silicon detector that 

covers the UV-visible range and a PbS detector for the NIR range. For rough samples, a 150 mm 

integrated sphere accessory consisting in two hemispheres coated with Spectralon and equipped 

with PMT and InGaAs detectors, was employed, shown in Figure 2.20. Spectralon as diffuse 

material was employed as a reference. The incident angle for the integrated sphere accessory is 8º. 

The UVWinlab V6 software was used to process the analysed data obtained with the Perkin –

Elmer spectrophotometer. 

Measurements of the reflectance in the IR were carried out with a Fourier Transform 

infrared (FTIR) spectrometer Bruker Vertex 70 situated in Abengoa Research. The measurement 

range was 400 to 4000 cm-1 (2.5 to 25 µm), with a resolution of 0.4cm-1. It is equipped with a HeNe 

laser, a DLaTGS detector and KBr beam splitter. A specular W type accessory is employed to 

measure reflectance of mirror like samples, employing a gold coated glass as reference. 

Additionally, the IR reflectance of rough samples was measured by an integrated sphere accessory 

coated with gold, shown in Figure 2.20. The software OPUS 7.2 was used to process the data. 
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Figure 2.20 –Reflectance spectra of  a 

deposited solar selective coating 

obtained joining UV-Vis-NIR + IR 

wavelength ranges. The Perkin Elmer 

Lambda 1050 spectrophotometer 

measures from 300 to 2500 nm and the 

FTIR Vertex70from Bruker, measures 

the reflectance in the IR range (2500- 

25000). The inset images show the 

integrated sphere accessories for both 

equipments.  

2.4. Durability tests of single layers and of complete 
multilayer stacks 

An optimal coating to be used for receivers in a CSP plant needs to show appropriate 

optical properties as well as thermal and mechanical stability in air at high temperatures. There are 

numerous publications [64–67] and different standards available, describing durability and 

accelerated ageing tests of solar thermal collectors. In Europe, the EN 12975 -1:2066+A1:2001 [68] 

has replaced all national standards. In order to simulate the expected service life time of the coating 

of 25 years, the International Energy Agency (IEA) in Task X of the Solar Heating and Cooling 

(SHC) program [69] developed a procedure to estimate the lifetime of solar absorber coatings. In 

this procedure, the performance criterion (PC) is defined by equation (2.14): 

PC    α   . 5  ε𝑇     {
𝑃   5 𝑃 𝑆𝑆
𝑃  5 𝐹  𝐿

 (2.14) 

where ∆α is the change in the solar absorptance, and ∆ε is the change in thermal emittance after 

and before the test calculated. If PC is ≤0.05, the sample passes the test.  

The thermal stability and ageing properties of the designed complete solar selective were 

investigated by exposing the samples at 450, 650 and 800ºC following three different durability 

tests: i) asymmetric, ii) cycling and iii) in-situ thermal treatment tests. 

Asymmetric thermal treatment tests 

The asymmetric thermal treatment consists of one heating cycle in which the temperature 

(450, 650 or 800ºC) is kept constant for 12 hours in an oven at atmospheric conditions. A 
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programmable heating ramp of 5ºC/min is established for reaching the desired temperature. After 

12 hours, the sample cools down to room temperature inside the oven.  

The furnace employed for this test was a Nabertherm L9/11 with controller P330, shown 

in Figure 2.21 (a). It is equipped with SiC rod heating and connected with Ar gas supply. The 

heating cooling ramps are schematized in Figure 2.21 (b). 
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Figure 2.21 – (a) Controllable heating ramp furnace employed for the asymmetric thermal treatments. (b) Schematic of the 
asymmetric thermal treatment. 

Cycling thermal treatment tests 

Coatings applied to central receivers do suffer thermal cycling during plant start-up and 

stop-down and in transitory because of the operation of the power plant or because of the clouds. 

Previous experience shows that coatings that can withstand high constant temperature, may fail 

when they are subjected to temperature cycling. Therefore, solar selective were exposed to cyclic 

symmetric heating test for 250 cycles after the asymmetric thermal treatment. 

The samples were introduced into the furnace at atmospheric conditions during 2 hours at 

each one of the defined temperatures (450, 650 and 800ºC) with a programmable heating ramp of 

10ºC/min. Then, the samples were cooled down to 300 ºC, with a cooling ramp of 10ºC/min. The 

tests are carried out in batches of 250 cycles. However, every 50 cycles, the samples were visually 

inspected and their optical properties measured.  
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Figure 2.22 – (a) Controllable heating and cooling ramp furnace for the cyclic thermal tests. (b) Schematic of the symmetric 
cycles for the thermal treatment. 
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The programmable furnace employed for the symmetric cyclic tests was a Hobersal 

13PR/300F (Figure 2.22 (a)) with adjustable cooling and heating ramp by Eurotherm controller. It 

is equipped with and special chimney with a turbine to allow the cooling. The schematic 

representation of the cycles employed is show in Figure 2.22 (b).  

In-situ thermal treatment tests 

Additionally, chapter 5 includes a set of in-situ studies of the high-temperature stability of 

the coatings performed in a new multi-chamber cluster tool developed in collaboration with the 

Helmholtz Zentrum Dresden-Rossendorf (HZDR). The cluster tool includes thin film 

characterization techniques such as spectroscopic ellipsometry, Raman spectroscopy, and ion beam 

analysis in several environmental conditions or/and at different temperatures [70]. This 

methodology will be considered as a fundamental research as is described in the advanced 

characterization procedure for single layers, to analyse the failure mechanism. 

After each thermal treatment, a visual inspection was carried out to evaluate the coating 

surface’s conditions, in which, the lack of homogeneity, changes in the colour or the apparition of 

cracks in the thin films can be directly detected. The samples that passed the visual inspection were 

analysed by optical and microstructural characterization in order to evaluate the possible 

degradation mechanisms.  
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CHAPTER 3: SOLAR SELECTIVE COATINGS 

BASED ON CARBON: TRANSITION METAL 

CARBIDE NANOCOMPOSITES 

Nanocomposites are functional advanced materials whose properties cannot be foreseen 

from those of their individual components. In particular, nanocomposites consisting of 

nanocrystalline interstitial metal carbide (nc-MeC) embedded in an amorphous carbon (a-C) matrix 

exhibit a unique combination of properties which makes them very attractive candidates as 

absorber layer of SSC for thermo-solar applications [1]. 

In this chapter, the properties of transition-metal carbides and carbon as the individual 

components of the nanocomposite (a-C:MeC) are introduced in section 3.1. In a first step, optical 

simulation based on literature optical constants references was employed for optimizing SSC 

(section 3.2). Sections 3.3 describe the deposition and microstructural characterization performed 

of the individual thin films. Following a thorough analysis of composition and microstructure of 

the deposited single layers, the simulations are feedback with experimental data (section 3.4). The 

simulated complete coating based on these measured properties provides excellent selective optical 

selective properties (α>96% and ε600ºC<14%). A complete solar selective coating were deposited and 

analysed in section 3.5 in order to validate the simulations. A heating test of the deposited 

multilayer stack was performed to study the failure mechanisms at high temperatures.  
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3.1. Introduction of a-C:MeC as solar absorber layer 

The term carbide is applied to a compound between carbon atoms and elements with 

lower or similar electronegativity [2]. Carbides can be divided in four general categories as shown in 

Figure 3.1: covalent, salt-like, metallic and interstitial carbides. This carbide formation and 

classification depends mainly in three atomic characteristics [3]: i) the affinity of the element 

towards the carbon or difference in electronegativity, ii) the size of the atoms and iii) the bonding 

characteristic of the atoms. 

 

Figure 3.1 - Periodic table with electronegativity values in Pauling scale. Different groups of carbide forming elements have 
been marked according to their affinity to carbon. Non-carbide forming elements have white background [4]. Lanthanides 

and elements from period 7 are omitted as they are non-carbide forming.  

Among carbides, the most interesting for high temperature applications are carbides 

formed with transition metals from groups 4, and 6 (with the exception of the chromium) due to 

their high chemical and thermal stability. This group is named interstitial carbides, and they have a 

huge difference in electronegativity with respect to the carbon atom. They also have larger atomic 

radius in comparison to carbon size, allowing the carbon atom to be placed in the interstices of the 

lattice. Geometrically, the ratio of carbon/metal atomic radius must be less than 0.59 to form an 

interstitial structure. On the contrary, transition metals of groups 7 to 10, as well as chromium, 

have an atomic radius small to accommodate the carbon atom in interstitial positions, which 

provokes distortion in the lattice and chemical instability of the carbides. Table 3.1 shows the 

atomic radius ratio in metals from groups 4 to 6. In the case of Cr-C, the ratio is higher than the 

limit for interstitial formation (0.59 following Hägg’s rule [5]), so its carbide cannot be considered a 

metastable. 

Table 3.1 – Ratio atomic radii of the components (Rc/RMe) of transition metals from groups 4,5 and 6 [6].  

Group 4 Group 5 Group 6 
Ti-C   0.551 V-C   0.560 Cr-C   0.615 

Zr-C   0.487 Nb-C   0.510 Mo-C   0.543 

Hf-C   0.493 Ta-C   0.514 W-C   0.547 

A 

A 

A 

A 

A A A 

A 

A 
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Interstitial carbides exhibit a bonding partly covalent, ionic and above all metallic [7]. 

Therefore, they have similar properties as metals (high electrical and thermal conductivities) and 

they are hard and chemically inert materials. Moreover, the melting point of interstitial carbides is 

generally higher than their host metals (e.g. 3160ºC in TiC in compare to 1660ºC in metallic Ti [8]). 

Other consequence of the metallic bonding in their properties is their high reflectance [9], 

associated to the large density of free electrons. 

The crystal structure in most of the interstitial carbides (TiC, ZrC, HfC, VC, NbC or TaC) 

is face-centred cubic closed-packed (fcc). In this structure, the carbon atom fits into an octahedral 

site, achieving the highest coordination number, as shown in Figure 3.2 (a). However, metals of 

group 6, can form simple hexagonal (hex) structures where the carbon atoms are in trigonal 

prismatic sites with the metals atoms in hexagonal arrangement (Figure 3.2 (b)), typically 

represented by the WC structure. Additionally of these two main crystal structures, Me2C 

configurations can be formed in metals from groups 5 or 6, with hexagonal close-packed (hcp) 

crystal structure, as Mo2C [10]. 

(a) 

 

(b) 

 

Figure 3.2 - Interstitial carbide crystal structures (a) face-centred cubic (fcc) close-packed type and (b) simple hexagonal (hex) 
non-close-packed structure [11] 

Remarkably, most of these monocarbides are non-stoichiometric compounds, as not all 

the possible interstitial sites in the lattice are occupied with carbon atoms. This fact offers a wide 

range of possible compositions; i.e. ZrC maintain the same NaCl structure from a range from 32 to 

50 at.% of carbon (ZrC0.65 to ZrC0.99), as shown in the binary phase diagram in Figure 3.3 (a). Of 

particular interest is the complex Mo-C system which has numerous possible monocarbide crystal 

structures [12] as can be observed in its phase diagram (Figure 3.3 (b)). This diagram shows that 

among all the only phases thermodynamically stable at room temperature are γ-MoC, and two 

Mo2C (β’ and β’’).  
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(a) 

 

(b)  

 

Figure 3.3 - Binary phase diagrams of (a) Zr-C and (b) Mo-C systems. The grey area in (a) is the single phase stable region, 
whereas white area represents two phase regions [3]. 

Attending to the previous phase diagrams, over a threshold of carbon content, free 

carbon atoms can result in different microstructures. Carbon thin films are versatile materials with 

properties that can be varied over a broad range by controlling the ratio of sp hybrid bonds [13] and 

the degree of clustering in the sp2 phase. The carbon allotropes can be classified as sp2 structures 

(graphitic like), sp3 structures (diamond like) or fullerenes (Figure 3.4).  

   

(a) (b) (c) (d) (e) 

Figure 3.4 - Structures of selected carbon allotropes with different hybridization states of the carbon – carbon bonds (a) 
graphite, (b) diamond (c) amorphous carbon, (d) fullerene (e) single walled carbon nanotube [14].  

Unlike the crystalline counterparts, amorphous carbon (a-C) consists of any mixture of 

the two bonding types. The mechanical, electrical and in particular optical properties of thin films 

carbon phase can be controlled by modifying the deposition conditions such as the substrate 

temperature or the energy of the deposition process. Figure 3.5 shows the differences in the optical 

constants in selected carbon allotropes.  
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Figure 3.5 – (a) Index of refraction (n) and (b) extinction coefficient (k) for pure diamond [15], glassy carbon [16] and a-C 
with a content of 76 and 20 at.% sp3 hybrid bonds [17] 
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While diamond is an isotropic transparent material (with UV absorption at ~291 nm and 

an absorption band in the 2 to 6 µm in the IR region due to multiphonon processes [15]), graphite 

has anisotropic hexagonal structure. Graphite exhibits high reflectance in the basal plane (normal 

incidence reflectance), however it has poor metallic behaviour perpendicular to the plane (along the 

c-axis) [18]. Glassy carbon is a pure sp2 C bonding with a structure of very small graphitic crystals, 

with no orientation between the planes [16].  

The sp3 content can be quantitatively determined by energy electron loss spectroscopy 

(EELS) [19], nuclear magnetic resonance (NMR) [20] or with optical spectroscopic [21]. In this 

thesis, Raman spectroscopy was used for the study of the vibrational modes, that allows to 

distinguish qualitatively between sp2 and sp3 C bonding [22] on the a-C:MeC nanocomposites 

(section 3.3.2).  

Generally, the sp3 content in a-C thin films deposited by PVD techniques can be 

controlled by the incident energy of the C species. Tetrahedral amorphous carbon (ta-C) is an 

amorphous carbon with the highest sp3 hybridized carbon atoms content [22]. It is typically 

obtained with deposition techniques that generates high ionization ratio such as high power 

impulse magnetron sputtering (HiPIMS) or cathodic vacuum arc (CVA), where a ~88% sp3 phase 

can be achieved [17]. Otherwise, magnetron sputtering or other low energetic deposition 

techniques produces a-C samples with lower sp3 content [23]. The optical constants of ~79 and 

~20% sp3 C bonding in a-C samples are also displayed in Figure 3.5. As expected, they show an 

intermediate behaviour and they can be predicted by employing an Effective Medium 

Approximation (EMA) and using graphite and diamond as constituents optical constants [17].  

Regarding solar applications, a-C with the appropriate sp3/sp2 ratio (between ~20 and 50 

at.% [17]) can be a good solar absorber material [24]. But nonetheless, a-C has a high thermal 

emittance showing no optical selective properties. Moreover, at temperatures above 300ºC, the 

material undergoes a graphitization process, which leads to an increase in sp2 and decrease in sp3 

bonding structure with the consequent loss of stability. 

Combining the advantageous optical and thermo-mechanical properties of amorphous 

carbon and transition metal carbides, nanocomposites materials can result, with adjustable solar 

selective properties with high-temperature resistance [25]. Amorphous carbon transition metal 

carbines (a-C:MeC) nanocomposite thin films have been previously grown by several physical 

vapour deposition (PVD) techniques such as magnetron sputtering [26], pulsed laser deposition 

[27], ion beam co-sputtering [28] or filtered cathodic vacuum arc (FCVA) [29]. Different 

microstructures of the carbon-carbide system have been reported: i) Carbide phases dispersed in a 

carbon matrix in the form of nanoparticles, with different morphology (globular or elongated 

[30,31])) and crystal structure (amorphous [32] or crystalline [33]) or ii) self-forming multilayer 

structures with periodic concentration fluctuations of metal in a-C [19].  
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Jansson et al. described detailed thoughtfully the formation of nanoparticles in the system 

carbon-carbide when co-deposited by magnetron sputtering at low temperatures. In this deposition 

conditions, far from the equilibrium, the microstructure evolution of the carbide-based coating in 

function of the carbon content is represented in Figure 3.6. The increment of carbon involves the 

formation of two separated phases: carbide nanoparticles embedded in an amorphous carbon 

matrix, as observed for the Ti-C system [34].   

 

Figure 3.6 - Schematic microstructure 

evolution in sputter co-deposition of  

transition metal - carbon when the carbon 

content increases [4].  

If the co-deposition of carbon and a transition metals occurs close from equilibrium 

conditions due to an increase of the energy of particles during the deposition, the structure can 

result in a self-organization multilayer sequences of metal-rich and metal-depleted nanolayers 

[35,36]. The self-assembling layer growth has been explained by many different theories [37,38], 

associating this phenomenon with high temperature, high energy subimplantation [39], catalytic 

effect of the metal [40] or effect of the substrate bias [41]. As an example, Figure 3.7 shows the 

proposed model by Hovsepian [42] for the multilayer self-organization in Cr/C system, attributed 

to segregation triggered by high-energy ion irradiation during film growth. These multilayer systems 

can exhibit improved mechanical properties (lower intrinsic compressive stress, improved 

adherence to the substrate or better wear resistance [20]) compared to dispersed nanoparticles 

microstructure. 

 

Figure 3.7 - Schematic model for the evolution 

in self-organization multilayer structure during 

the growth of  the co-deposition of  transition 

metal – carbon. Δ is the critical thickness and 

λ is the bi-layer thickness [42].  (a) (b) (c) 

The use of a-C:MeC deposited by PVD techniques as SSC has been previously reported. 

Harding et al. [43–45] reported that sputter deposited metal carbides (Cr, Fe, Mo, Ni, Ta and W) on 

copper substrates show good selective properties (α >80% and ε600ºC  ~7%). Gampp developed a 

multilayer coating based on hydrogenated a-C co-sputtered with Cr or W (a-C:H/Cr and a-C:H/W 

[46–48]). The reflectance spectra of the coatings at different temperatures are shown in Figure 3.8.  
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Figure 3.8 - Reflectance spectra of  as prepared and aged a-

C:H/W (14 at % W) on Cu substrate [46] 

However, the optical properties dropped drastically for temperatures higher than 600ºC 

due to different types of degradation mechanisms: a) undesired interaction between coatings and 

the metallic bottom layer, and b) degradation due to the intrinsic instability of the coating material 

itself due to oxidation and changes in the microstructure. At higher temperature, the a-C:H/W 

films become more transparent in the visible range, and the absorptance decrease sharply due a 

combination of both failure mechanisms. Moreover, the diffusion along the pores of the deposited 

absorber layer of Cu from the substrate creates a CuO layer on the top surfaceMore recently, 

Schüler et al. [49,50] developed a multilayer coating based titanium-containing amorphous 

hydrogenated carbon (a-C(H):TiC) films adding silicon to increase the durability in air. However, 

when silicon content is high, the resistance of the layer severely decreases with the humidity. 

Those previous published studies of a-C:MeC solar selective coatings show excellent 

optical performance and high stability in evacuated environments, although they were not stable at 

high temperatures in air. The main degradation mechanisms can be summarized as follows:  

 Diffusion of the substrate or intermediate layers along the absorber layer 

 Oxidation of the metal carbide component of the absorber layer what lead to a reduction 

of the absorptance 

 Graphitization or crystallization of the amorphous carbon component.  

The goal of the investigations in this chapter is the complete design of a SSC based on a-

C:MeC as absorber layer. After the initial optical simulations based on literature data, a-C:VC, a-

C:ZrC and a-C:MoC nanocomposite thin films were selected as candidate absorber layer (section 

3.2). These a-C:MeC coatings were deposited by pulsed filtered cathodic vacuum arc (PFCVA) and 

characterised using micro-structural techniques (section 3.3). The element composition was 

determined using Rutherford Backscattering Spectrometry (RBS) and Nuclear Reaction Analysis 

(NRA). The microstructure of the a-C:MeC was characterized by Raman spectroscopy, X-ray 

diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM). Reflectance 

spectra were obtained by UV-Vis-NIR spectrophotometry, and the optical constants were 

measured by spectroscopic ellipsometry (SE). Similar depositions and characterizations were 

performed to Al2O3 and SiO2 (as candidate materials for the AR layer) and TiN and ZrN for the 
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IR layer, selected in the initial optical simulation. The first optical simulations were feedback with 

real optical behaviour from deposited single layers (section 3.4) and validated in a complete SSC 

stack (section 3.5). Bergman representation was found the most suitable EMA for a-C:MeC 

materials, as it requires a detailed microstructural analysis for an accurate optical simulation. More 

accurate values were predicted after the complete characterization of each one of the individual 

layers that forms the SSC, obtaining an outstanding solar absorptance (α) of 96% and an emittance 

(ε) of 5/15% at 25/600ºC. This is significantly better than the values reported for this class of 

materials so far, which were an α = 91.0% with ε = 11% at 100ºC for an a-C:TiC/SiO2 stack on Cu 

substrate [49,50]. 

3.2. Optical simulation based on literature optical constants 

Simulation of the reflectance spectra allows an optimization of each one of the individual 

layers (composition, thickness, degree of percolation, etc.). After a definition of the individual 

layers, a multilayer stack can be designed, where the solar absorbance and the thermal emittance are 

optimized. In this initial process, all simulations are based only on theoretical optical constants 

from literature data.  

3.2.1 Optical simulations of the a-C:MeC absorber layer. 

As discussed in chapter 2, Bergman is the most complete and accurate EMA to simulate 

optical constants in nanocomposites when the microgeometry of the film is known. However, 

Bruggeman (BRU) theory was employed in these initial simulations to calculate the effective optical 

constants of the films as a first approximation previous to deposition and characterization of the 

thin films. The optical constants of the following carbides are extracted from literature: TiC [51], 

VC [52], NbC [53], ZrC [54], HfC [55], MoC [56], TaC [57] and WC [58]. Optical constants from 

an amorphous carbon (a-C) available at CODE database [59] were used for simulation of the 

carbon matrix.  

In order to compare the reflectance of the films as a function of the metal carbide present 

in the nanocomposite, several nanocomposites were simulated with a fixed volume fraction and 

thickness. The effective optical constants for the different a-C:MeC are calculated with BRU 

theory, fixing a volume fraction (VF) content of metal carbide  the specular reflectance spectrum of 

each nanocomposite was simulated using the effective optical constants, as shown in Figure 3.9 for 

30% VF and 100 nm thickness. The incidence angle selected for the simulations was 11º for 

equivalency with the experimental measurements. In order to select the most promising metal 
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carbide, the solar absorptance was calculated and the results are summarized in Table 3.2 for 10 

and 30% VF. 
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Figure 3.9 - Simulated reflectance spectra of  
100 nm a-C:MeC with BRU theory for 30% VF 
of  metal carbide embedded on a-C matrix on 
inconel substrate.  

Table 3.2 – Simulated absorptance of different a-C:MeC with 100 nm thickness on inconel substrate for two volume 
fractions of metal carbide (30% and 10%), embedded in a-C matrix. The estimated error in the simulation was 0.1%.  

Carbide type TiC ZrC VC NbC TaC MoC WC 

α (30% VF MC) 83.1 84.8 85.0 81.3 81.7 83.9 80.4 
α (10% VF MC) 73.7 75.5 77.2 77.0 82.5 73.2 73.5 

 

The nanocomposites with the highest α (VC ZrC and MoC), were selected for further 

simulations to study the influence of the carbide volume fraction and thickness of the layer in the 

solar absorptance. In Figure 3.10 (a), it can be observed how the best α values (fixing the thickness 

to 100 nm) were obtained within a range of ~20 to 30% carbide VF. The maximum values of 

absorptance for the three pre-selected systems are 85.2 %, 85.6 % and 84.0 % for VC (20% VF), 

ZrC (25 % VF) and MoC (30 % VF), respectively.  

These volume fractions were selected to analyse the solar absorptance dependence on the 

layer thickness (Figure 3.10 (b)). Solar absorptance increases from 32% (absorptance of the inconel 

substrate) until it stabilized for thicknesses above ~70-75 nm for the three a-C:MeC with no 

considerable improvement for larger thicknesses. 

0 20 40 60 80 100

40

50

60

70

80

90

=85.2%

VF=20% VC�

S
o

la
r 

ab
so

rp
ta

n
ce

 (
%

)

Carbide content (% VF)

 a-C:VC

 a-C:ZrC

 a-C:MoC

100% a-C 100% CM

=85.6%

VF=25% ZrC�

=84.0%

VF=30% MoC�

(a)

10 15 20 25 30 35 40
75

80

85

90

 

0 25 50 75 100 125 150 175 200

40

50

60

70

80
=85 %

=85.2%

S
o

la
r 

ab
so

rp
ta

n
ce

 (
%

)

a-C:MeC thickness (nm)

 a-C:VC(20% VF VC)

 d=100nm -> =85.2%

 a-C:ZrC(25% VF ZrC)

 d=75 nm ->= 85.7% 

 a-C:MoC(30% VF MoC)

 d=75nm -> =84.3%

(b)

 

Figure 3.10 – (a) Simulated solar absorptance (α) of a-C:VC, a-C:ZrC and a-C:MoC with thickness of 100nm on inconel 
substrates with different volume fraction of metal carbide embedded in the a-C matrix. (b) Simulated solar absorbance of a-
C:VC, a-C:ZrC and a-C:MoC with 20, 25 and30 % VF, respectively, on inconel substrate as a function of layer thickness (d).  
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Finally, both parameters were optimized simultaneously. The maximum α achieved was 

91.5 ± 0.1 % for a 82 nm thick a-C:VC single layer with 18 % volume fraction of VC. In the case 

of the a-C:ZrC system, a maximum absorptance of 89.5 ± 0. % was found for a films with 85 nm 

and 27% of volume fraction of ZrC and 90.2 ± 0.1 % using a 65 nm of a-C:MoC with 29% VF of 

MoC. 

3.2.2 Optical simulations of the infrared reflective (IR) layer  

Four interstitial nitrides (TiN [60], ZrN [61], VN [62] and HfN [63]) were initially selected 

as potential candidates for IR layer. The simulated reflectance spectra of these nitrides are 

compared in Figure 3.11 (a), all with a thickness of 300 nm. The plasma frequency in nitrides would 

vary depending on the deposition conditions, but generally is in UV or Vis wavelength regions. 

Reflectance above this plasma wavelength is supposed to increase continuously to IR, so the 

reflectance has in similar values up to the far IR region. TiN, ZrN and HfN give the highest 

reflectance values (RIR > 92, 91 and 85 % for the TiN, ZrN and HfN, respectively). The variation 

of thermal emittance of a complete SSC employing an AR layer of Al2O3, a-C:ZrC as absorber layer 

(with the optimized thicknesses and VF form the previous section) and TiN, ZrN or HfN as IR 

layer is represented in Figure 3.11 (b). From this figure it can be noted that for all the nitrides the 

emittance decreases with thickness of the IR layer until ~150nm, when it keeps constant. The ɛ 

does not further improve for thicknesses higher than 200 nm.  
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Figure 3.11 - (a) Simulated reflectance spectra for single layer of TiN, HfN, ZrN and VN. (b) RT thermal emittance of 
simulated SSC (53 nm of Al2O3/ 85 nm of a-C:ZrC with 27% VF of ZrC /IR= TiN, ZrN or HfN) for different thicknesses 

of the IR layer 

TiN and ZrN are selected in this work as IR layer candidates due their higher reflectance 

in compared to the other two studied nitrides. Additionally, TiN and ZrN are thermal oxidation 

resistance materials at temperatures above 900ºC [64,65] and extensive research has being 

previously reported of the deposition conditions for those nitrides with FCVA [66–69]. 
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3.2.3 Optical simulations of the antireflective (AR) layer  

In order to check the best AR layer, from an optical point of view, a complete SSC was 

simulated using different candidate materials. Initially, a thickness of 70 nm was fixed. A schematic 

of the SSC employed for the simulation is represented in Figure 3.12, where the AR top layer was 

varied for the simulations. The calculated solar absorptance values are presented in Table 3.3, 

together with the refractive indexes (n) of the different AR layers at λ = 550 nm, extracted from the 

literature [62,70–72]. All the materials selected as AR, have common optical characteristics such as 

high transmittance in the visible range (k~0) and n almost constant in the UV-Vis range. They also 

have infrared vibrational phonon absorption and the band gap in the UV region.  

Table 3.3 – Refractive index (n) for different dielectric materials at λ = 550 nm, and simulated solar absorptance (α) for a 
SSC on inconel substrate, with TiN (300nm) / a-C:ZrC (85nm and 27% VF) / 70 nm of the different AR layer. The 

estimated error in the simulation was 0.1%. 

AR layer Al2O3 MgO WO3 ZrO2 SiO2 Si3N4 MgF2 
n (550 nm) 1.67 [62] 1.84 [62] 2.06 [70] 2.16 [71] 1.44 [62] 2.01 [72] 1.38 [62] 

α (%) 93.0 90.5 89.6 90.0 92.5 90.1 92.8 

 

As expected, the materials with the refractive index closer to the square root of the 

absorber layer (at 550nm, na-C:Zr=2 → nAR ~1.41) should be the most effective as single AR layer 

(i.e. SiO2, MgF2 or Al2O3). Eventually, Al2O3 and SiO2 are selected as candidates materials due to 

they show the highest simulated solar absorbance (93.0 and 92.5%, respectively), and also inasmuch 

as they are very stable materials at temperatures up to 1100ºC [73] in comparison with MgO or 

MgF2.  

By using several layers of low refractive index, it is possible to increase the antireflection 

effect. However, the absorptance values can only be improved 0.5% so it is not worthwhile the 

complexity of the 3 layer AR system. This is the reason why the solar selective coating is designed 

with only one AR layer. The same complete multilayer stacks were simulated with different 

thicknesses of SiO2 and Al2O3 layer to optimize the thickness of the single AR layer. Figure 3.12 

compares the simulated reflectance spectra of the system with and without antireflective layer, 

employing the optimized thickness for SiO2 or Al2O3 as AR layer. 
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Figure 3.12 –Simulated reflectance of  

complete SSC without AR layer, with 

SiO2 and Al2O3 as AR layer with 

previously optimized thickness and 

VF. The AM 1.5 solar spectrum from 

ASTM G173 is also represented. The 

simulated SSC with AR layer / a-

C:ZrC (85 nm and 27% VF of  ZrC) / 

TiN (300nm) on inconel substrate is 

included. 
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Both AR layer candidates show quite similar solar absorbance results (α=93.3% for 60 nm 

of Al2O3 and 93.6% for 82 nm of SiO2) and both have well-known thermal stability at high 

temperature. Therefore, the decision for the best top layer will be completed once the optical 

constants and the thermal stability have been experimentally verified.  

3.2.4 Optical simulation of the complete solar selective multilayer stack 

In this section, the solar absorptance and thermal emittance were optimized 

simultaneously by CODE for a complete SSC, including TiN as IR layer, an a-C:MeC as absorber 

layer and Al2O3 layer as AR on the top of the coating (Figure 3.13). The optimized parameters of 

the multilayer stack for the three selected MeC as dispersed nanoparticle in the a-C:MeC absorber 

layer are represented in the schematic of Figure 3.13.  
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Figure 3.13 - Simulated reflectance 

spectra of  a complete SSC 

optimizing the thickness of  the 

different layers and the volume 

fraction in the a-C:ZrC, a-C:VC or 

a-C:MoC absorber layer. 

In order to summarize the different steps followed along this section to achieve this 

optimized SSC, Table 3.4 includes α values obtained for the three selected carbide candidates for 

each step. The VF and thickness of the absorber layer are also included in the table. It should also 

be emphasized that only the last line includes a multilayer SSC with AR and IR layers, and is 

exclusively for that stack when both α and ε were optimized simultaneously. The TiN thickness was 

fixed to 400 nm for all the designs. The best solar selectivity α/εRT achieved was 94.9/12.5 % for a 

stack composed by Al2O3 (60nm)/ a-C:VC (107nm and 37%VF of VC)/TiN(400nm).  

Table 3.4 – Simulated solar absorptance (α) obtained in the different optimization steps followed in this work. For the three 
a-C:MeC (Me = V, Zr, Mo) selected initially the values of the employed volume fraction (VF) and thickness (d) are included. 

The estimated error in the simulation was 0.1%. 

Simulation 
a-C:VC a-C:ZrC a-C:MoC  

α 
VF 
(%) 

d 
(nm) 

α 
VF 
(%) 

d (nm) α 
VF 
(%) 

d 
(nm) 

a-C:MeC (10%VF, d = 100 nm) 77.2 10 100 75.5 10 100 73.2 10 100 
a-C:MeC (30%VF, d = 100 nm) 85.0 30 100 84.8 30 100 83.9 30 100 
Optimization VF (fixed d = 100 nm)  85.2 20 100 85.6 25 100 84.0 30 100 
Optimization d (fixed optimized VF) 85.2 20 100 85.7 25 75 84.3 30 75 
Optimization VF & d  91.5 19 82 89.5 27 85 90.0 29 63 

Optimization VF & d (complete stack) 94.9 37 107 93.9 41 90 93.3 44 113 
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The addition of graded films as absorber layer with increasing carbide VF, α/ε ratio has 

been reported to increase in cermet materials [74]. Figure 3.14 shows the simulated R, the 

parameters of the SSC and the calculated α/ε using one, two and three a-C:ZrC layers as graded 

absorber layer. Solar absorptance increases Δα=+1.7% adding a second absorber layer, but no 

further improvement is observed for the third a-C:ZrC layer. The thermal emittance slightly 

increases (Δε= +0.7%) associated with the total higher total thickness. However, this improvement 

in α does not compensate the increase in complexity and uncertainty of the thickness and VF in the 

final design of the absorber. Therefore, in this thesis the solar selective coatings will be designed 

using a single absorber layer.  
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Figure 3.14 - Simulated reflectance spectra of complete absorber selective coatings with one, two and three a-C:ZrC 
absorber layers. The solar absorptance and thermal emittance at RT are also indicated. 

Simulation results from Table 3.4 confirms that, if thicknesses of the different layers and 

volume fraction of the nanocomposite were optimized, very promising results can be obtained with 

the combination of materials proposed within this work. These designs significantly improve the 

solar absorptance from 90.98% reported in previous studies of similar selective coatings [50] 

(Cu/a-C:TiC/SiO2) to 94.2% with an emittance at 400ºC of 8.9%. 

These simulation based on literature optical constants will be compared in section 3.4 with 

simulations based on microstructural and optical analysis of deposited layers. 

3.3. Deposition and microstructure characterization of SSC 
individual layers  

Taking into account the results obtained with optical simulations, the pre-selected layers 

which make up the complete SSC were deposited by pulsed filtered cathodic vacuum arc (PFCVA). 

Their composition, microstructure and morphology were comprehensively analysed in this section.  
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3.3.1 Deposition of individual SSC single layers  

All the samples described in this chapter were deposited in Centre Tecnologic de Manresa 

(CTM), using a pulsed filtered cathodic vacuum arc (PFCVA) device which schematic diagram is 

represented in Figure 3.15, and fully explained in chapter 2. The common deposition parameters 

for all the layer types are sumarized Table 3.5.  

 

Figure 3.15 - Schematic diagram of  the 

pulsed filtered cathodic vacuum arc 

(PFVCA) system the two cathodic arc 

sources. 

Table 3.5 – Common deposition conditions for the PFCVA samples 

Base pressure 2.00∙10-3 Pa 
Operating pressure 0.11 Pa  
Argon flow rate 3.5 sccm 
Duct bias voltage -20 V 
Duct bias current  15 A 
Axial magnetic field  200 G 
Cathode diameter  10 mm 
Pulse duration of  the discharge  3 ms (7.5 Hz frequency) 
Bias voltage at deposition stage  - 400 V (100 kHz pulsed) 
Duty cycle of  the bias  20 %  
Rotation speed of  the substrate  1.4 rpm 
Distance from the filter to the substrate  240 mm 

 

The samples include materials for each layer type (IR, absorber and AR), and they were 

grown on crystalline silicon (100) and mirror polished inconel HAYNES ® 625 substrates. During 

film deposition, 3 sccm of Ar gas flow was introduced into the chamber to stabilize the arc. 

Deposition of a-C:MeC absorber layers  

a-C:MeC nanocomposite thin films (with Me =V, Zr and Mo) were prepared by the co-

evaporation of both cathodic arc sources simultaneously. For each metal, two different metal 

concentrations were deposited, denominated high (h) and low (l) metal content throughout this 

thesis. The metal content was controlled varying the current applied to each one of the cathodes. 

The intensity of the carbon arc source was kept constant at 2.5 A, and the metal arc source was 

varied from 0.6 to 2.5 A for low and high metal content, respectively. A pure carbon reference film 

was prepared with similar deposition conditions but using only the carbon arc source.  
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Deposition of infrared reflection (IR) layers 

TiN, ZrN layers were deposited in reactive mode employing only one of the arc sources 

with a metallic cathode and with the adition of 3 sccm of N2 gas flow. The substrate temperature 

during the deposition was varied from room temperature to 300ºC.  

Deposition of antireflection (AR) layers 

Al2O3 and SiO2 layers were deposited employing Al or Si cathodes in a reactive deposition 

with 3 sccm of O2 gas flow. Grounded bias was employed to deposit these thin films to lowered 

the refractive index [75]. Glass substrate was also employed for transmittance measurements.  

3.3.2 Composition and microstructural characterization of a-C:MeC thin films as 

absorber layer 

The element concentration was accurately determined using Rutherford Backscattering 

Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA) ion beam techniques. The structure of 

the nanocomposite was investigated in detail by Raman spectroscopy, X-ray diffraction (XRD) and 

high-resolution transmission electron microscopy (HR-TEM). 

Film composition and depth profiles  

The carbon and metal (V, Zr or Mo) areal densities of films grown in Si substrates as 

absorber layer were determined by a combination of RBS and NRA measurements. The RBS 

intensity of backscattered deuterium ions is proportional to the atomic number Z of all elements of 

the sample. Here it was used for the determination of the metal contents. Since the RBS cross 

section of carbon is low and the carbon signal is superimposed to that of the Si substrate, NRA 

measurements were employed to accurately determine carbon areal densities. 

In order to calibrate the equivalent areal density for each metal content, data obtained in 

RBS experiments of samples with the highest V, Zr and Mo content (a-C:VC (h), a-C:ZrC (h), and 

a-C:MoC (h) samples) were used. The RBS spectra (Figure 3.16 (a) to (c)), shows the V, Zr and Mo 

metal signals appearing at approximately 1280, 1450 and 1480 keV, respectively. Due to the high Z 

of the metals, these signals are strong and clearly differentiated from the overlapping signals of the 

silicon substrate and carbon below 900 keV and at 440 keV, respectively. The weak peak around 

1100 keV is caused by the incorporation of less than 4 at.% Ar used to stabilize the arc formation 

during the deposition. In the case of the Zr-C, less than ~0.5at.% of Ta from the Zr cathode 

contamination has been found.  
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Figure 3.16 - RBS spectra of  a-C:MeC thin films to calculate 
the equivalent metal concentration. The areal density for 
each metal is also displayed in the figure (a) a-C:VC(h), (b) 
a-C:ZrC(h) and (c) a-C:MoC(h) 

A closer look at the vanadium RBS signal in a-C:VC (h) (inset in Figure 3.16 (a)) reveals 

an inhomogeneous depth distribution of the metal. In fact, in order to fit the spectrum properly, 

five different layers with alternating high (22 at.%) and low (17 at.%) vanadium content were taken 

into account. To a lesser extent, this depth inhomogeneity of the metal concentration is also 

observed in the a-C:ZrC (h) and a-C:MoC (h) sample. These results will be discussed in detail later 

in combination with HR-TEM images. 

NRA analysis using 1.248 MeV deuterium ions was performed for accurately 

determination of the carbon and metal content. The equivalent areal density N (total deposited 

amount per cm-2) for each metal type was extracted from RBS analysis, with, 2.7·1017, 2.2·1017and 

1.1·1017 atoms cm-2 for V, Zr and Mo, respectively.  
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Figure 3.17 – Cross section for the 12C(d,p)13C 
reaction measured at 135º. 

A reference C:Ni sample, with a known areal density of carbon atoms (tC=5.8·1017 C 

at·cm-2), was measured in the same NRA experiments to determine the total amount of carbon of 

the carbon-metal samples. The nuclear reaction 12C(d,p0)13C cross section exhibits its maximum at 

1.2-1.4 MeV deuterium ion energy, as shown in Figure 3.17 [76].  
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The intensity of the emitted proton signal is proportional to the carbon concentration in 

the nanocomposite thin film [77], while the RBS signal of the scattered deuterium ions is 

proportional to the atomic number Z of all elements of the sample. The two distinct regions in the 

spectra obtained are shown in Figure 3.18 (a) to (c) for the different a-C:MeC deposited samples.  
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Figure 3.18 – RBS-NRA spectra of  a-C:MeC samples 
with high (h) and low (l) metal content, showing the 
characteristic backscattering or nuclear reactions. (a) a-
C:VC, (b) a-C:ZrC and (c) a-C:MoC. In (b), the spectrum 
of  the C:Ni sample employed as reference for carbon 
areal density is included. 

The carbon and metal film areal densities (tC and tMe respectively) were determined by 

integrating the area under the peaks corresponding 12C(d,p)13C and Me(d,d)Me reactions. To find 

out the areal density, NRA measurements were performed with both the reference metal (the one 

measured with RBS) and the unknown one. The areal density is calculated by equation (3.1): 

    
            

       
           

          

      
 (3.1) 

with Ime and IC the integrated are of the unknown metal or carbon, after a proper subtraction of the 

background. The metal-carbon ratio in metal atomic percentage was calculated as equation (3.2). 

    (  )  
   

      
      (3.2) 

where Me can be one of the metals employed (V, Zr and Mo).  

The averaged metal contents of the samples are given in Table 3.6. The film density can 

be estimated from the RBS areal density and film thickness [44]. In the case of a-C:VC (h) sample, 

the density is ~3.0 g·cm-3, i.e. lower than the density of bulk vanadium carbide (5.7 g·cm-3 [45]) and 

higher than in amorphous carbon (2.1·cm-3 [46]) typically obtained with cathodic arc deposition. In 

the case of the a-C:ZrC(h) sample, the estimated average density e 5.6 g cm-3 (in contrast with 6.6 g 

cm-3 of a pure fcc ZrC [78]) and 4.8 g cm-3 for a-C:MoC (h) film.  
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In the initial simulations (section 3.2), the ideal metal content of the composite absorber 

layers, calculated with BRU EMA was around 30-50 at.% VF of MeC in the nanocomposite. For a 

comparison with the measured concentration values, the content of metal (in at.%) obtained 

experimentally RBS-NRA was converted into volume fraction (% VF) of metal carbide using the 

densities of the individual components. MeC o density values of 5.6, 6.6 and 9.5 g·cm-3 for VC, 

ZrC and γ-MoC, respectively were obtained from literature data [3,54,79]. The samples deposited 

with high metal content were in good agreement with the simulated for a-C:VC and a-C:MoC.  

Table 3.6 – Relative at.% Me / C content for the a-C:MeC samples with high(h) and low(l) metal content. The estimated 
error is ± 0.5%. The equivalent %VF of carbide of MeC in a-C is calculated using densities from literature [3,54,79].  

Cathodes 
a-C: MeC (l) a-C: MeC (h) 

at.% Me (l) %VF MeC (l) at.% Me (h) %VF MeC (h) 
C-V  6.0  11.7 20.5 40.4 

C-Zr  11. 0 27.9 38.0  81.3 

C-Mo  3.5  7.0 20.0 40.0 

 

The metal content varies between 3.5 and 11.0 at. % for the low ratio C/Me intensity 

depositions, and between 20.0 and 38.0 at.% for the high ones. The deposition conditions were the 

same for all high and for all low metal content, however, the C and Me at.% depend on the metal 

employed. 

X-ray diffraction (XRD) analysis 

The phase structure and crystallinity of the a-C:MeC absorber layers grown on Si substrate 

were investigated by GIXRD (Figure 3.19). It is worth noting that the patterns are intermitted 

between ~50 and 58º in order to blind the intense peak at ~52º attributed to the (311) peak of 

crystalline Si substrate. The crystallite size is estimated by Scherrer [80].  

The diffraction pattern of the a-C:VC film (20.5 at% V) shows four well-defined Bragg 

peaks positioned at 2θ =37º, 43º, 63º and 79º (Figure 3.19 (a)). These peaks are assigned to 

interferences of the (111), (200), (220) and (222) planes of a fcc vanadium carbide [81,82], 

respectively. Applying Bragg’s equation the lattice constant (4.13 Å) is obtained in good agreement 

with the reference value (4.16 Å). A crystallite size of 27 ± 1 nm was estimated by Scherrer. A 

second set of interferences is observed at 2θ values of 36.7°, 42.7°, 63.0°, and 74.9°. The diffraction 

angles are slightly smaller than those of the first set, and moreover, the peaks are significantly 

broader. The diffractogram pattern points to a second fcc-VC structure with a lattice constant of 

4.25 Å and crystallite size of 7 ± 1 nm. The coexistence of two fcc-VC phases can be rationalized by 

assuming regions with a different V content, what is consistent with the observed fine structure of 

the RBS signal. The data are in qualitative agreement with those of a recent study on magnetron 

sputtered a-C:VC films [26]. Similar as in the present study, a slight decrease of the VC lattice 

constant with increasing V content was reported therein. No significant diffraction peaks were 

identified in the low metal content a-C:VC sample with 6 at. % V. 
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Figure 3.19 - XRD patterns of  (a) a-C:VC, (b) a-C:ZrC and (c) 
a-C:Mo thin films. The dotted lines indicate the more 
prominent peak position for each main crystal structure. The 
XRD pattern of  the Si(100) substrate is included in (b).  

Figure 3.19 (b) represents the X-ray diffraction patterns of the carbon-zirconium samples. 

The ZrC main peaks are represented in the figure. In the diffraction pattern of a-C:ZrC with low 

content (11 at.% Zr) not diffraction peaks are observed. Thus this sample can be considered as 

XRD amorphous [83]. However, in the a-C:ZrC sample with 38 at.% of Zr, the crystallinity 

increases as revealed by the appearance of one well-defined Bragg peak situated at 2θ ≈ 32º 

assigned to the (111) plane of ZrC fcc structure [81,84]. Other peaks can be observed at 2θ ~54º 

and ~65º, assigned to the crystal planes (220) and (311) respectively. The estimated average crystal 

size is 3.0 ± 0.5 nm and the calculated lattice constant is 4.75 Å in excellent agreement with the 

reference value (4.76 Å).  

Table 3.7summarizes the estimated average carbide particle crystal size derived from XRD 

of the fcc MeC crystal stuctures. The crystallite size of VC is around 10 times bigger than for ZrC. 

Comparing the carbide melting temperatures, VC(2830ºC)< ZrC (3420ºC) [3]. Hence, for lower 

carbide crystal stability, the temperature at which the metal atoms can leave the surface of carbide 

particle and diffuse to another particle is lower as well, and following Ostwald ripening process, the 

carbide grains become bigger [83]. 

Table 3.7 - Crystallite size of a-C:VC and a-C:ZrC from the XRD patterns of the deposited samples. The average lattice 
constant (a) is also indicated.  

Sample Crystal size (nm) a (Å) 
a-C:VC(h) 27 ± 1 (7 ± 1) 4.13 ± 0.01 (4.25± 0.01) 
a-C:ZrC(h)  3 ± 0.5 4.75 ± 0.01 

 

Figure 3.19 (c) shows the XRD pattern of the a-C:MoC samples. The diffractogram 

pattern of a-C:MoC (20.0 at.% Mo) shows four broad diffraction peaks at 2θ = 36º, 41º, 61º and 
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73º. The pattern closely resembles that of simple hexagonal monocarbide γ-MoC [81]. Its main 

peaks are tabulated at 2θ = ~36º, 42º, 61º and 73º and assigned to the crystal planes (101), (104), 

(110) and (116), respectively. The main peaks observed here for a-C:MoC (20 at.% Mo) are also 

close to those of hcp β-Mo2C [81]. The Mo-C phase diagram has up to 6 different possible phases 

[10] (the so-called MoC problem [12,85]), which differs in the stoichiometry and in the 

order/disorder of the carbon atoms. But, according to the binary phase diagram of Mo and C [86], 

the thermodynamically stable phase for a Mo content of ≤ 50 at.% is γ-MoC with hexagonal simple 

space group P6m2. Therefore we tentatively assign the observed diffractogram of a-C:MoC (19 

at.% Mo) to the γ-MoC phase. The phase structure of a-C:MoC (20.0 at.% Mo) will be further 

discussed in the subsequent section about the HR-TEM analysis. Scherrer equation gives a 

minimum γ-MoC crystallite size of 3.5 ± 0.5 nm. For a-C:MoC (3.5 at.% Mo), no significant 

diffraction peaks were identified. As for a-C:ZrC(11at.% Zr) and a-C:VC (6 at.% V), the low metal 

content is presumably responsible for a small number of MeC crystals, which moreover are too 

small in order to provide a sufficiently large volume for coherent scattering of X-rays that is 

necessary for the observation of diffraction interferences.  

In summary, only for high metal content films nanocrystalline carbides are observed. No 

crystalline phases can be identified for low metal content films. It is plausible that the excess of 

carbon limits the growth of crystalline carbide grains during deposition [87]. Neither crystalline 

metal nor graphitic phases are observed. The latter finding is in agreement with the Raman analysis.  

Raman spectroscopy analysis. 

The Raman spectra of carbons films show common features in the 800–2100 cm-1 region, 

due to sp2 sites: the G peak (or graphite) and D peak (disorder-induced). The G peak that lies at 

1500-1630 cm-1 wavenumber is due to the bond stretching vibrations of all pairs of sp2 carbon 

atoms (either in -C==C– chains or rings). The D peak situated at around 1350 cm-1, is related with 

the breathing modes of sp2 carbon atoms in six-foil aromatic rings [22], therefore, only sp2 sites 

participating in rings contribute to this mode [88]. As introduced before, the structure of the 

carbon can be classified with the intensity of the peaks (ID/IG ratio), the position and the width of 

D and G peaks, and allows distinguishing between graphitic, or disorder carbon. 

The Raman spectra depend fundamentally on the degree of clustering of sp2 sites, the 

bond disorder, the presence of sp2 rings or chains and the ratio sp2/sp3. Ferrari & Robertson [22] 

described a three stage model to use visible Raman to describe all carbon films (Figure 3.20 (a), 

characterized by the evolution of the ID/IG ratio of D and G peaks heights and the position of the 

G peak. The amorphization trajectory consists on i) ordered sp2 graphite to nanocrystalline graphite 

with smaller sp2 groups, ii) nanocrystalline graphite to disordered amorphous carbon in rings 

configuration and iii) a-C to sp3 bonded chains of ta-C (as in Figure 3.20 (b)).  
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Figure 3.20 – (a) Three-stage model of the variation of the Raman G position and the D to G intensity ration ID/IG with 
increasing disorder and (b) variation of the sp2 configuration on the three amorphization stages [89]. 

The measured spectra were fitted with a combination of a linear background fixed at the 

noise level of the spectra at 850 - 2000 cm-1, a symmetric Lorentzian shape for D peak, and an 

asymmetric Breit-Wigner-Fano (BWF) line for the G peak [26,28,90]. The intensity I as a function 

of the wavenumber ω for the BWF line shape is described by equation (3.3) 

 ( )   
      (    )     

    (    )    
 (3.3) 

with the intensity maximum  

                 (3.4) 

positioned at  

               (3.5) 

where I0 is the peak intensity, ω0 the peak position, Γ the FWHM, and q is the BWF coupling 

coefficient. The Lorentzian line shape corresponds with the limit q-1→0. The intensity maximum 

defined by equation (3.4) will be used to denote the intensity of the G and D peaks and equation 

(3.5) to define their wavenumber position.  

The a-C:MeC samples are compared with the deposited pure carbon reference sample, 

which exhibits one peak that is asymmetrically broadened towards smaller Raman shifts (Figure 

3.21). This line is attributed to the G line of sp2-C. The D-line, which is characteristic for 6-fold 

aromatic ring clusters, is virtually absent. On the other hand, the Raman line fit is improved by 

using the 2 line model described in before instead of a single BWF function for the G line. 

Therefore, the phase structure of the carbon reference is attributed to a-C with a small degree of 

six-fold sp2-C ring clustering. Hence, the sp2 atoms are located on chains, and eventually, isolated sp2 

molecules within the sp3 matrix. The reduced intensity of D peak in the Raman spectra is explained 

by the structural arrangement of sp2 in pairs [91].  

(a) (b) 
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Figure 3.21 – Normalized Raman spectra of  pure 

carbon deposited by PFCVA with D and G peaks 

fitted. The schematic vibrational modes of  G 

(Graphite) and D (disorder-induced) of  the carbon 

atoms are represented. 

The evolution of the sp2 in the pure carbon varying the substrate temperature was also 

analysed (not shown here). By increasing the substrate temperature, the sp2 hybrids cluster in 

aromatic rings, as indicated by the promotion of the D peak [92]. The increase of the ID/IG ratio 

indicates a transition between ta-C to a-C. However the adhesion of the films deteriorates 

drastically when the deposition temperature increases. The significant worsening of the film 

adhesion made discard heating the substrate during the PFCVA deposition. The analysis of pure 

carbon Raman spectrum validates the decision of selecting a-C as matrix material in the 

nanocomposites employed for the simulations.  

The normalized Raman spectra of the a-C:MeC (Me = V, Zr and Mo) nanocomposite thin 

films together with the a-C deposited under identical conditions are compared in Figure 3.22.  
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Figure 3.22 - Normalized Raman spectra of (a) a.C:VC, (b) a-C:ZrC and (c) a-C:MoC samples all with high and low metal 

content. The Raman spectrum of the deposited carbon sample is represented as reference (d) Ratio ID/IG and (e) Gpeak 
position a-C and a-C:MeC deposited samples. The lines are to guide the eye.  
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For the sake of completeness, the ratio of the peak intensities ID/IG, the peak position and 

the FWHM have been calculated following the equations (3.3), (3.4) and (3.5), and the obtained 

values are summarized in Table 3.8.  

Table 3.8 - Experimental results from visible Raman spectroscopy of the deposited a-C:MeC thin films. 

Sample 
D band G band 

ID/IG 
Peak (cm-1) FWHM (cm-1) Peak (cm-1) FWHM (cm-1) 

a-C 1392 ± 1 236.5 ± 0.5 1550 ± 1 190.0 ± 0.5 0.48 

a-C:VC (20.5 at.%V) 1364 ± 1 238.0 ± 0.5 1545 ± 1 166.5 ± 0.5 0.81 
a-C:VC (6 at.%V) 1364 ± 1 227.0 ± 0.5 1539 ± 1 185.0 ± 0.5 0.56 

a-C:ZrC (38 at.%Zr) 1389 ± 1 283.0 ± 0.5 1570 ± 1 108.5 ± 0.5 068 
a-C:ZrC (11 at.%Zr) 1357 ± 1 237.0 ± 0.5 1534 ± 1 187.5 ± 0.5 0.88 

a-C:MoC (20 at.%Mo) 1363 ± 1 231.5 ± 0.5 1539 ± 1 173.0 ± 0.5 0.64 
a-C:MoC (3.5 at.%Mo) 1373 ± 1 223.5 ± 0.5 1543 ± 1 183.0 ± 0.5 0.50 

 

In the case of the a-C:ZrC (~38at.%Zr) sample, whose Raman spectra is shown in Figure 

3.22 (b), the high metal content reduces the intensity of the Raman spectra. This effect is mainly 

due to a high percentage of the laser beam reflected with high metal content and the higher fraction 

of carbon bonded with the metal which no produces Raman signal, as observed by Adelhelm [93]. 

These combined effects make very difficult a correct measurement of a-C:ZrC (38 at.%) sample, 

hence this spectrum is not considered for further analysis. The square shaped peak at 950 cm-1 in 

the a-C:ZrC (11at.%Zr), not visible in the other spectra, is due to the second order of Raman from 

the Si substrate. This peak is a signature of ta-C film, and it indicates high sp3 content in this sample 

[94], associated with high optical transparency. 

The Raman spectra of a-C:VC, a-C:Zr (11 at.%Zr), and a-C:MoC exhibit similar 

behaviour with the carbon content. The corresponding sp3 content of the carbon matrix is in the 

order of 10 to 15 %, assigned to the second step in view of Ferrari’s model (Figure 3.20 (a)). The 

Raman spectra of the a-C:MeC nanocomposite films exhibit a shoulder in the range of the D line 

and a maximum at the Raman shift of the G line of sp2-C. At first glance, the intensity of the D line 

increases with increasing metal content (Figure 3.22 (d)). The ID/IG ratio varies from 0.56 (0.50) for 

the a-C:VC (a-C:MoC) with lower metal content to 0.8 (0.64) for the higher metal samples up to 

0.88 for the a-C:ZrC (11at.%Zr). Together with the position of the G line, which is observed nearly 

unchanged at 1540 cm-1 for all samples, the three stage model of Ferrari and Robertson [22] implies 

a sp2-C phase consisting of a-C with a higher degree of 6-fold aromatic ring clusters than in the 

reference sample of pure carbon [22,95].  

In summary, the addition of metal increases the ordering of the carbon in the samples, 

and the carbon of the low metal carbon samples has higher degree of amorphization. The latter 

finding is in agreement with the XRD analysis.  
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High resolution transmission electron microscopy (HR-TEM) 

The microstructure and film morphology of the a-C:MeC deposited samples were 

investigated with HR-TEM analysis. Cross-sectional HR-TEM images of the a-C:MeC samples 

deposited on Inconel substrates are shown in Figure 3.23, Figure 3.24 and Figure 3.25.  

In the HR-TEM images of the a-C:VC (20.5 at.% V) sample shown in Figure 3.23, a well-

defined multi-layer structure is observed. In total, five regions are found. Three of them exhibit an 

ordered multilayer pattern with a period of 5 ± 1 nm. In the other two regions, this periodicity is 

apparently lost (Figure 3.23 (a)). The observed layer sequence is correlated with the different 

compositional ranges observed in RBS (see Figure 3.16). High-resolution imaging was applied for 

detailed analysis of the ordered and non-ordered regions of a-C:VC (20.5 at.% V) in Figure 3.23(b). 

The two different regions are labeled as 1 and 2. The FFT analysis of the non-ordered region 1 

reveals only one lattice plane distance of 2.4 Å (Figure 3.23 (c)). This distance is attributed to the 

(111) planes of fcc-VC phase, revealing VC nanocrystals embedded in the a-C matrix. The self-

organized multi-layers of region 2 are composed of alternating dark contrast carbide-rich (1 to 1.5 

nm thick) and bright contrast carbide-depleted (~ 3-4 nm) nanolayers. The FFT of this region 

shows three circular intensity maxima (Figure 3.23 (d)). The corresponding lattice plane distances 

of 1.4, 2.0 and 2.4 Å are in very good agreement with those of fcc-VC [96].  

  

 

 

Figure 3.23 – HR-TEM analysis of a-C:VC (20.5 at.%V) deposited on Inconel. (a) Overview image. (b) High resolution 
image of a representative sample section. (c) and (d) FFTs analysis of selected regions 1 and 2 of (b), respectively.   

The periodicity of the layers does not match the rotation speed of the substrate holder. 

Therefore, the multilayer structure observed for a-C:VC (21 at.% V) cannot be associated with the 

sample rotation during the deposition. Moreover, it is neither correlated with the pulse sequence 

during the deposition nor with the lamellae preparation by FIB. In conclusion, the formation of the 

layered structure is attributed to a self-organization process previously reported in the literature 

[39–41,97]. In order to support this assumption, an element analysis has been done with energy 

dispersive X-ray (EDX) spectroscopy with high angle annular dark field detector, along the cross 
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section (EDX not shown here). The composition analysis reveals how the multilayer alternates 

bright carbide-rich and dark carbide-depleted zones. Oxygen presence can be detected (at.% O < 

5%), with a maximum value in the surface of the sample and decreasing with the depth, attributed 

to superficial oxidation of the thin films. 

The overview TEM image of the a-C:ZrC (~38at.%Zr) sample is shown in Figure 3.24 (a). 

As in a-C:VC, a multilayer structure can be observed. In this case a total of 28 nanolayers with an 

individual thickness of about 5-8 nm can be resolved, although they are not as clearly defined as for 

a-C:VC. In the higher amplification HR-TEM images (Figure 3.24 (b)), it can be observed how the 

layers are composed of small globular nanocrystals of ZrC carbides, with an average size of ~3 nm, 

surrounded by amorphous areas. Ordered lattice planes of the ZrC grains can be detected in Figure 

3.24 (b1). Fast Fourier Transform (FFT) of the selected area in the HR-TEM image (Figure 3.24 

(b2)) shows three clear diffraction rings. Two of them are associated to lattice parameters of 2.7 

and 1.7 Å and reveal that the film has randomly oriented crystallites of ZrC fcc system. These values 

are associated to the crystal orientation (111), (220) observed in the XRD pattern. The third 

interplanar distance of 2.3 Å corresponds to a crystal orientation (200) at 2θ= 38º, that was not 

detected in the GIXRD difractogram. HR-TEM images of low metal content a-C:ZrC (not shown 

here) reveals no multilayer self-formation. Moreover, no nanocrystalline structure was found, in 

concordance with XRD analysis.  

  

Figure 3.24 – HR-TEM analysis of a-C:ZrC (38 at.%V) deposited on Inconel. (a) Overview image. (b) High resolution image 
of a representative sample section. (b1) Selected region of (b) in higher magnification. (b2) FFT analysis of sections of (b1) 

with the different diffraction rings associated to the main lattice spacing of ZrC.  

Finally, HR-TEM images of the a-C:MoC (20 at.% Mo) sample reveal that in this case, the 

sample has not developed a clear multilayer structure (Figure 3.25 (a)), but molybdenum carbide 

nanoparticles were embedded in a carbon matrix (Figure 3.25 (b)). The main interplanar spacing 

was calculated and represented in Figure 3.25 (c), and the FFT analysis from this selected area gives 

three circular intensity maxima associated with lattice parameters of 1.5, 2.1 and 2.5 Å (Figure 3.25 
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(d)). These interplanar distances are in good agreement with those of the (110), (103) and (101) 

crystal planes of γ-MoC. Based on the slightly better agreement of the lattice plane distances and 

the thermodynamics, the carbide phase is attributed to γ-MoC and not to β-Mo2C.  

  

 

Figure 3.25 - HR-TEM analysis of a-C:MoC (20 at.%Mo) deposited on Inconel (a) Overview image, (b) High resolution 
image of a representative sample section. (c) Selected region of (b) in higher magnification and (d) FFT analysis of (c). 

Conversely, in the a-C:MoC (3.5 at.%Mo) sample, a self-forming multilayer can be 

observed, as shown in Figure 3.26. In the HR-TEM image the layers are not easily distinguishable 

due to the low crystallinity exhibited in the sample, as has been shown in XRD analysis. The 

amorphous character also inhibits the detection of the diffraction rings in the FFT analysis. 

However, in the STEM image shown in Figure 3.26 (b), the different composition contrast helps to 

visualize non-homogeneous nanolayers with variable Mo content (from ~1 to 5 at.%. Mo), as 

verified by EDX analysis. The origin of the self-formation observed for a-C:MoC sample is still 

under debate.  

  

Figure 3.26 – a-C:MoC (3.5 at.%Mo) films deposited on Inconel (a) HR-TEM image and (b) STEM image. 

As explained in section 1.1, the growth model for self-organized layer growth is still not 

clear and different theories have been proposed to explain this phenomenon. The diffusivity of the 

adatoms on the substrate surface during the film growth, enhanced by the energetic deposition of 
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the PFCVA deposition technique, as described in previous works [38], [42], can be the best 

explanation behind this phenomenon.  

In summary, the comprehensive characterization gives a consistent scenario of the 

microstructure evolution of the nanocomposites under study. The formation of nanocomposites 

structures of dispersed metal carbide crystals embedded in amorphous carbon was confirmed by 

Raman, XRD and TEM for the samples with high metal content. The phase structure is 

thermodynamically driven by the immiscibility of the phases which lead to a phase separation. In 

addition to the generally observed phase separation, a spontaneous formation of ordered 

multilayers for the cases of the a-C:VC (20.5 at.% V), a-C:ZrC (38 at.% V) and a-C:MoC (3.5 at.% 

V) thin films are found.  

3.3.3 Microstructural characterization of IR and AR layers 

The composition of IR layers (TiN and ZrN) deposited at different temperatures were 

characterized by EDX and by RBS analysis in the case of the AR samples (SiO2 and Al2O3). In 

both cases the phase and crystal structure were identified by XRD.  

Film composition and depth profile 

The composition of the IR layer was obtained by EDX analysis (results not shown here). 

No differences were detected in the compositions of the IR layers between the two different 

deposited temperatures and stoichiometric TiN and ZrN films were obtained. Oxygen content was 

detected in all samples, having low content in samples deposited at higher temperature (300ºC). 

However, it should be noted that EDX is not an accurate method to obtain the composition as it 

has a low resolution for light elements.  

RBS measured spectra for Al2O3 and SiO2 samples deposited on Si substrate (not shown 

here) indicate that for both AR layers, stoichiometric films were formed (40at.% of Al and 60at% 

of O in the Al2O3 films and 33at.% of Si and 67at.% of Si for the SiO2) for the deposited 

conditions.  

X-ray diffraction (XRD) analysis  

The IR samples were deposited at RT and at 300ºC, and the influence of the deposition 

temperature is analysed by XRD (Figure 3.27). For both nitrides, stoichiometric NaCl structures 

were formed with extreme stability, as expected for PVD techniques with high energy of 

bombarding species. The crystal size of the ZrN and TiN at the two deposition temperatures is 

shown in Table 3.9.  



SOLAR SELECTIVE COATINGS BASED ON CARBON: TRANSITION METAL CARBIDE 

   | 81 

30 40 50 60 70 80 90 100

1
1
1

ZrN (RT)

Si(100) substrate

X
R

D
 I

n
te

n
si

ty
 (

a.
 u

.)

 

ZrN (300ºC)

 

fcc ZrN

2
0
0

Difraction angle (2 (º))

2
2
0

3
1
1

3
3
1 4
2
0

(a)

 

30 40 50 60 70 80 90 100

S
i 
su

b
st

ra
te

TiN (RT)

X
R

D
 I

n
te

n
si

ty
 (

a.
 u

.)

 

TiN (300ºC)

 

fcc TiN

2
2
0

Difraction angle (2 (º))

1
1
1

2
0
0

3
1
1

(b)

 

Figure 3.27 - XRD patterns of stoichiometric (a) ZrN and (b) TiN deposited at RT and 300ºC. The symbols represent the 
position of the XRD peaks taken from the database International Centre for Diffraction Data (cards 00-035-0753 for ZrN 

and 00-006-0642 for TiN)  

As is shown previously in literature, the crystallite size of the nitrides increases with 

deposition temperature [98], with a post deposition annealing [99,100], increasing the negative bias 

of the deposition chamber [101,102] or with lower deposition pressure [103]. All those deposition 

conditions increases the kinetic energy of the ions, resulting in the increment of the crystallite size 

and the concomitant higher reflectance in the infrared wavelength range, as shown in next section. 

The deposition of nitrides at high temperature also leads to an improvement of adhesion [104], to a 

higher lateral homogeneity. These are highly valued properties in IR candidate layers for SSC. The 

improvement of the quality of the sample was directly verify with a visual inspection of the 

deposited samples.  

Table 3.9: Crystallite size of ZrN, CrN and TiN calculated from the XRD patterns of the deposited samples. 

Sample 
Crystallite size (nm) 

RT 300ºC 
ZrN 8 ± 1 13 ± 1 
TiN 12 ± 1 16± 1 

 

Regarding AR layers, XRD profiles show that the both SiO2 and Al2O3 AR films 

deposited with identical conditions were XRD amorphous.  

This complete microstructural characterization of the different single layers will play a key 

role in the simulations of the optical properties, as show in the following section. The variety of 

obtained microstructures and the comprehensive characterization provides the basis for a complete 

simulation of the optical properties of different layers that form a complete SSC. 

3.4. Optical optimization of SSC based on composition and 
microstructure characterization  

The optical characterization of the deposited individual layers for the AR, IR and absorber 

layer was explained along this section. The optical constants were measured by spectroscopic 
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ellipsometry (SE) and reflectance spectra by UV-Vis spectrophotometry. The measured reflectance 

spectra of the individual layers were compared with simulated one, which allow an improvement of 

the EMA employed for the initial simulations. Based on the microstructural and optical 

characterization results from the individual layers, a redesign of the complete SSC was performed 

for each one of the selected a-C:MeC as absorber layer.   

3.4.1 Optical characterization and simulation of a-C:MeC absorber layer 

Spectroscopic ellipsometry (SE)  

The optical constants of a-C:MeC were determined by SE in order to feedback the initial 

simulation. The measured ellipsometric values (ψ, Δ) of pure carbon sample deposited on silicon 

can be modelled in different ways. As the properties of the a-C films depend strongly on the sp2/sp3 

hybrid fraction [24,105], an EMA theory combining sp2 and sp3 pure bonded carbon optical 

constants was employed to determine the optical constants. The excitations of π electrons occurs at 

lower energy than the σ excitations, therefore sp3 and sp2 bonded sites have different optical 

constants[106]. However, with this EMA approach, no satisfactory results were obtained, due to 

the lack of good references for the dielectric functions of “pure” sp2 and sp3 bonded materials.  

In this work, the optical constants of a-C were successfully determined employing only 

one Tauc-Lorentz (TL) dispersion model [107,108], commonly used to determine dielectric 

function of amorphous materials (see chapter 2). The ellipsometric measured and modelled values 

along with the parameters employed for the TL dispersion model are shown in Figure 3.28, and the 

corresponding optical constants in Figure 3.29 (b).  
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Figure 3.28 – Psi and delta measured and modelled values 
for the pure carbon sample deposited on silicon substrate. 
The Tauc Lorentz parameters employed in the model are 
also icluded in the figure. 

In the case of the a-C:MeC samples, in order to merge the metallic behaviour of the MeC 

with the semi-insulating properties observed for a-C, the fitting of the experimentally SE data 

includes a combination of Drude [54] and Tauc-Lorentz [72] dispersion models. The separation 

into contributions from interband transitions and from free-electrons was then analysed.  

The complex refraction index of the deposited a-C:MeC samples are represented in Figure 

3.31. The three metals selected have similar trend and the main deviations are related to the metal 
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content. The values of n and k at λ= 550 and 1500 nm were included in the figure. The real part of 

the refractive index (n) of a-C:VC samples (Figure 3.31 (a)), monotonously increases for both metal 

contents up to a wavelength ~600 nm. For higher wavelengths, the a-C:VC (h), n continues 

increasing, as expected from the metallic behaviour of the carbides. Meanwhile n remains almost 

constant (n~2.3) for the a-C:VC (l) sample. On the other hand, the extinction coefficient (k) is 

substantially different between high and low metal content samples in the whole wavelength range. 

k increases steadily for the a-C:VC(h) since this sample is nearly a pure carbide and follows Drude’s 

free-electron model. On the contrary, for the low metal sample, k is close to zero, as expected in 

dielectric materials. The behaviour of the optical constants in the a-C:ZrC samples (Figure 3.31 

(b)), follows the same tendency. 
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Figure 3.29 – Refractive index (n) and extinction coefficient 
(k) of  the a-C:MeC after modelling the ellipsometry results 
for (a) a-C:VC, (b) a-C pure samples and a-C:ZrC and (c) a-
C:MoC samples with high and low metal content deposited 
on Si substrate. The n and k values at λ=550 and 1500 nm are 
included in the figure. 

Contrary to expectations, a-C:MoC(h) has lower n than a-C:MoC(l) up to ~1500 nm 

(Figure 3.29 (c)). This could be assessed to a lower density for the a-C:MoC (h) sample, associated 

to the nanoparticle morphology observed in the HR-TEM image (Figure 3.25). The extinction 

coefficient for the a-C:MoC samples shows the same behaviour than for the other two metals.  

The analysis of the optical constants shows how the metal content influences in the 

optical constants modelled for a-C:MeC films. Hence, for an appropriate adjustment of the SE 

results, Drude’s dispersion model must be incorporated together with the Tauc-Lorentz (TL) 

model employed for pure a-C.  
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Reflectance spectroscopy of a-CMeC absorber layers and simulation validation. 

Reflectance spectra of all deposited samples were measured i) to verify whether the optical 

constants have been properly calculated and ii) to determine the best EMA model to employ in the 

case of the a-C:MeC nanocomposites.  

The measured reflectance spectra were compared with the simulated ones using the 

experimental optical constants from Figure 3.29. An appropriate multilayer model (a-C:MeC / SiO2 

/ Si) is necessary for an accurate optical simulation (see Figure 2.18). An excellent agreement 

between simulated and experimental reflectance was obtained. This confirms that the optical 

constants were correctly calculated.  

In order to simulate the optical properties of heterogeneous materials with different 

volume fractions, it is crucial to find an EMA which accurately describes the combined effect of 

the nanocomposite components (see chapter 2). Therefore, the measured reflectance spectrum of a 

selected nanocomposite film, namely a-C:VC (20.5 at.% V), was compared to simulated spectra 

obtained by using Maxwell-Garnett (MG) [47], Bruggeman (BRU) [48], and Bergman (BER) [49] 

EMA theories (Figure 3.30). The experimental optical constants of nanocomposite components (a-

C matrix and metal carbides) as well as the VF of carbide are required. In this regard, the complete 

compositional and microstructural analyses performed on the previous sections provide essential 

information to an accurate simulation of the optical performance of the coatings. Raman analysis 

confirmed that the nanocomposite matrix was amorphous carbon and its optical constants were 

estimated from SE. No metallic phases were found in any of the single a-C:MeC layers. Therefore, 

the MeC was considered to be the particle component of the nanocomposite. The experimental VF 

according to Table 3.6 was employed for feedback the simulations.  

The comparison of simulated and measured spectra reveals that Bergman model properly 

describes the experimental reflectance of a-C:VC (20.5 at.% V) in the whole wavelength range 

(Figure 3.30). The differences of the three EMAs are reflected in the solar absorptance (Table 

3.10).  
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Figure 3.30 - Measured reflectance spectrum of  a-
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obtained for the same composition employing 
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Maxwell-Garnett overestimates the experimental reflectance up to 10% in the visible and 

underestimates it up to 15% in the near infrared spectral range, giving the largest deviation of the 

simulated α (Δα = -3.0%) of all the employed EMAs. MG approximation is only applicable to 

systems with volume fraction below 30% without percolation. The volume fraction of the carbide 

particles in the a-C:VC (20.5 at.% V) is 41%, hence, a high degree of percolation is expected. This 

accounts for the strong deviation of MG simulation.  

Bruggeman theory is adequate for large particle volume fraction and percolated systems, 

and it was the one employed in the initial simulations (section 3.2). However, this approach does 

not properly simulates the experimental reflectance spectra for a-C:VC films (Figure 3.30). This 

model provided an excellent agreement for the visible range but underestimated the reflectance in 

the near-infrared range. This results in small deviation of solar absorptance (Δα = +1.0%), but 

from deviations in the IR range one could expect misleading thermal emittance values.  

Table 3.10: Solar absorptance of deposited a-C:VC (20.5 at.% V) sample compared with the calculated solar absorptance 
using MG, BRU and BER EMA theories. Results for the the multilayer a-C/VC are also included. 

EMA model Solar absorptance (%) 

Maxwell- Garnett (MG) 61.3 ± 0.1 
Bruggeman (BRU) 65.3 ± 0.1 
Bergman (BER) 63.8 ± 0.1 

Multilayer a-C / VC 63.7 ± 0.1 

Measured R(λ) 64.3 ± 0.1 

 

As mentioned above, Bergman representation gives the best agreement between the 

simulated and experimental spectra in the whole wavelength range, with the most accurate value of 

solar absorptance (Δα = -0.5%). A tentative explanation for this finding is that this EMA 

incorporates the shape and degree of percolation of the embedded nanoparticles as additional 

parameters to the simulation.   

In order to clarify whether the multilayer structure of a-C:VC (20.5 at.% V) observed in 

the HR-TEM images affects the optical film properties, a multilayered structure was also simulated. 

It is formed of 21 bilayers of pure metal carbide and pure amorphous carbon of 4 and 5 nm 

thickness, respectively, corresponding to the measured carbide volume fraction (41% VF). No 

significant differences were observed between the multilayer reflectance simulation (α=63.7%) and 

BER simulation (α=63.8%) as shown in Table 3.10. This result implies that the film growth mode 

(self-organized layered structure or dispersed carbide nanoparticles in an a-C matrix) does not 

affect the optical properties. A similar result has been observed in solar selective coatings based on 

silicon nitride cermets [109].  

Once the appropriateness of the Bergman model to simulate a-C:MeC composites is 

demonstrated, this EMA was used to simulate reflectance spectra of the rest of nanocomposites. 

An excellent agreement was obtained for all the studied systems, independently of the metal and 

the metal carbide content (Figure 3.31(a), (b) and (c)). BER model allows extracting percolation 
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behaviour according to the metal content in the samples. In the case of nanocomposites with high 

metal content, the percolation strength (g0) parameter for a proper fitting was ~1. This is an 

indication of the interconnection of the embedded carbide particles, pointing to a metallic character 

of the a-C:MeC(h) films. On the contrary, samples with low metal content exhibit no percolation 

(g0(f)=0). This is characteristic for a dielectric or insulating behaviour, caused by the missing 

connection between the carbide particles.  
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Figure 3.31 – Comparison of  measured and simulated reflectance 
spectra of  (a) a-C:VC, (b) a-C:ZrC and (c) a-C:MoC for samples 
with high and low metal content. The solid lines represent the 
measured reflectance spectra, while the dash-dot lines are the 
simulated following Bergman EMA. Solar absorptance values are 
included for each sample.  

On the basis of the BER representation, the α was computed as a function of carbide VF 

and thickness for the a-C:MeC samples on Inconel substrate. As an example, Figure 3.32 shows the 

α dependence on VF and thickness for a-C:VC sample. 
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Figure 3.32 – Solar absorptance for different 

thickness and volume fraction of  a- C:VC. The 

maximum α obtained from simulation, as well as 

the one obtained experimentally are included in 

the graph.  

The solar absorptance maximum was found in the range of 15 to 40% VF. By variation of 

the thickness, α increases from 36% (absorptance of the inconel substrate) until it reaches a 

maximum for a thickness of 50 to 70 nm. For thicknesses higher than 150 nm, the absorptance 



SOLAR SELECTIVE COATINGS BASED ON CARBON: TRANSITION METAL CARBIDE 

   | 87 

increases again, reaching a maximum constant value similar to the one in the thinner range. 

However, increasing the absorber layer thickness can negatively affect to interlayer adherence 

and/or increase of thermal emittance in a complete solar selective coating. 

The maximum α is 91.5 ± 0.5 % for a a-C:VC single layer 62 nm thick a-C:VC single layer 

with 19 % volume fraction of VC (equivalent to 9.7 at.% of V). In the case of the a-C:ZrC (and a-

C:MoC) system, maximum α of 92.0 (90.0) % was found for a film with thickness of 134 (55) nm 

and 31 (28)% VF of ZrC (MoC).  

3.4.2 Optical characterization of IR layers 

Optical constants of TiN and ZrN films deposited at 300ºC were modelled employing a 

Drude dispersion model (Figure 3.33 (a)). The minimum value of k coincides with the plasma 

wavelength (λp) and for both nitrides is located around 400 nm. Above this wavelength, k increases 

drastically and so does the reflectance. This increase in k is sharper for the TiN, resulting in the 

highest nitride reflectance, in line with the initial simulations (Figure 3.11).  

These experimental optical constants obtained by modelling SE reveal a denser TiN film 

than the one selected in the initial simulation (section 3.2). Hence, a higher simulated IR reflectance 

(RIR ≈ 94 %) was obtained compared with the simulations based on literature data (RIR ≈ 91 %). 

200 400 600 800 1000 1200 1400 1600
0

1

2

3
k

k

ZrN

ZrN

TiN  AR15-049_TiN_si up2.txt

 TiN_si_t3.txt

 AR15-049_TiN_si up2.txt

 TiN_si_t3.txt

Wavelength (nm)

n

TiN

n

0

2

4

6

8

 k

(a) p

 

500 1000 1500 2000 2500 3000
0

20

40

60

80
ZrN

R
ef

le
ct

an
ce

 (
%

)

Wavelength (nm)

 RT

 

 300ºC

TiN

Temperature of the substrate

 during deposition

(b)


P

 

Figure 3.33 – (a) Optical constants determined with data analysis from SE measurements of the 300ºC deposited IR layers 
TiN and ZrN and (b) measured reflectance spectra of ZrN and TiN. The solid lines represent the samples deposited at RT 

and the dash-dot line the 300ºC ones. Photographs of TiN samples deposited at RT and at 300ºC are also included. 

In Figure 3.33 (b) the experimental reflectances of the IR layers deposited at RT and at 

300ºC are represented. As expected from XRD results, samples deposited at higher temperature 

showed higher RIR (ΔRRT->300 = +2% for ZrN and +5% for the TiN). This improvement is related 

to the shift of the λp to lower values associated to an increase of the concentration of free electrons 

with bigger crystals [9]. The photographs of TiN samples deposited at the two temperatures are 

included in Figure 3.33 (b), showing an improvement of the homogeneity, brightness, golden 

colour and adhesion for the sample deposited at 300ºC. 
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In summary TiN deposited at 300ºC was selected as the best infrared reflective layer for 

the complete SSC.  

3.4.3 Optical characterization of AR layers 

Figure 3.34 (a) shows the modelled optical constants of the dielectric thin films, calculated 

employing Sellmeier dispersion model, which is shown to be appropriate for transparent materials. 

The measured wavelength region show transparent behaviour with extinction coefficient k~0, and 

the Al2O3 provided higher refractive index. The measured values are in accordance with the optical 

constants selected initially for the simulation (Table 3.3), slightly higher in the deposited SiO2 

(measured n550nm = 1.49 compared to 1.44 from the data base), probably due to the different 

deposition conditions between deposited and reference sample.  

The reflectance and transmittance spectra of the deposited AR thin films are represented 

in Figure 3.34 (b). Both AR layer were transparent in all the UV-Vis-NIR measured range, as 

expected in stoichiometric amorphous films, without energy loss caused by firm absorption in the 

Vis-NIR. In general, the transmittance of oxide films would decrease in the UV range if there is 

oxygen deficiency. This is not observed for both oxide thin films in Figure 3.34 (b). The measured 

roughness with confocal profilometer indicates a smooth surface with Rq values below 2 nm on Si 

substrate. This low roughness surface contribute to remove surface light scattering losses, resulting 

in high transmittance of the films..  
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Figure 3.34 – (a) Optical constants determined with data analysis from ellipsometry measurements of the deposited 
antireflective layers Al2O3 and SiO2. The n values at 550 nm are indicated in the figure. (b) Measured reflectance spectra of 
Al2O3 and SiO2 deposited on silicon substrate with the measured thickness in brackets and transmittance of Al2O3 and SiO2 

deposited on glass substrate. The Si reflectance and glass transmittance spectra are also included.  

Alumina and silica are both insulating ceramic material which exhibits excellent chemical 

inertness, and high optical transparency, and the desired behaviour as effective antireflective layer. 

Al2O3 was selected in this work based on its higher thermal stability (1500 °C) [110,111].  
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3.4.4 Simulation of the complete stack based on experimental optical constants 

Three different complete solar selective coatings where simulated, based in the three a-

C:MeC types studied as absorber layers. In the recalculated simulations, the optimized thickness, 

volume fraction and BER experimental spectral density were employed.  

An Al2O3 thin film was included above all as AR layer. The analysed TiN films deposited 

at 300ºC as IR layer was included between the substrate and the absorber layer. Figure 3.35 shows 

the optimized designed models the three studied carbides. In the optimized complete SSC, the 

thickness of the AR Al2O3 layer varies between 40 to 60 nm according to the thickness and the a-

C:MeC selected as absorber layer. The selected thickness of the TiN is independent of the absorber 

layer, and as analysed in Figure 3.11 (b), it should be higher than 150 nm to an efficient effect as IR 

layer. Higher thickness would help the effect as thermal barrier coating due to its high stable at high 

temperatures and avoid possible diffusion of the substrate. However, it should not exceed ~1µm 

due to residual in FVCA deposited nitrides increases with thickness [112]. Hence, 400 nm was the 

thickness selected for the TiN in all the multilayer stacks.  

1000 100000

20

40

60

80

100


RT

 =96.7 / 5.0 %

AR/a-C:ZrC/IR

Solar spectra

AM 1.5


RT


RT

 =95.5 / 4.9 %

AR/a-C:MoC/IR


RT

 =96.5 / 4.3 %

AR/a-C:VC/IR

R
ef

le
ct

an
ce

 (
%

)

Wavelength (log nm)
 

Figure 3.35 - Simulated 

reflectance spectra of  a 

complete SSC with the 

optimized a-C:ZrC, a-C:VC 

and a-C:MoC as absorber 

layer. 

The optimized VF obtained in the simulation has to be converted into metal atomic 

percentage. This inverse calculation gives a resulted metal content for the optimized absorber layers 

of 10 at.% of V (a-C:VC with 19% VF of VC), 12 at% of Zr (a-C:ZrC with 31% VF of ZrC) and 

14 at.% of Mo for the a-C:MoC with 28% VF of MoC. In all the nanocomposite types, the desired 

composition has intermediate values between the high and low metal content deposited for the 

individual layers. This metal content can be obtained with a modulation in the intensity ration 

between the metal and carbon arc sources.  

The best re-simulated complete solar selective coatings provided a selectivity ratio α/ƐRT = 

96.7/5. When the temperature increases to 600ºC, the emittance worsen to 14.0, 13.5 and 15.8 % 

for the simulated multilayer stack with a-C:VC, a-C:ZrC and a-C:MoC as absorber layer 

respectively. The thermal emittance obtained in the simulation with real values is better than the 

initial calculate, due to as mentioned in the optical characterization of the IR layers, the deposited 
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nitrides are denser and show higher reflectance in the IR region, and therefore a lower thermal 

emittance. Those values are significantly better than the values reported for this class of materials 

so far, which were an α = 91.0% with ε = 11% at 100ºC for an a-C:TiC/SiO2 stack on Cu substrate 

[49,50]. 

3.5. Deposition, characterization and durability test of 
complete SSC 

A first attempt to deposit a complete selective coating by PFCVA was done, based on the 

excellent results obtained with the improved simulations feedback with the outcomes of the 

individual layers characterization. a-C:ZrC was selected as absorber layer, as it showed the best 

simulation performance (Figure 3.35). The deposition parameters employed for each layer are the 

same than explained for the individual layers in section 3.3.1. The thickness and volume fractions 

of the individual layers were not optimized in this first approach as the aim of this deposition is the 

validation of the goodness of fit of the CODE optical simulations.  

The HR-TEM cross section image of the complete SSC deposited is represented in Figure 

3.36, and the thicknesses of each layer were determined directly from the image. An enlargement of 

the a-C:ZrC absorber layer is shown in Figure 3.36 (b), where the self-organized multilayer 

structure was appreciated, as observed for the individual a-C:ZrC (Figure 3.24).  

 

Figure 3.36 - HR-TEM image of the complete SSC deposited multilayer stack. (a) Overview image of the stack with the 
measured thickness of each one of the individual layers and (b) amplified image of a-C:ZrC absorber layer. (c) HR-TEM 

images of the same multilayer after heating up to 600ºC 2h. Photographs of the SSC before and after heating are included.  

EDX qualitative analysis was carried out in the STEM mode to determine the 

composition of the different layers along the cross section of the sample. The results indicated in 

Table 3.11, show reasonable good agreement with the composition analysis performed before. 

However, oxygen content of ~4 at% was detected in the a-C:ZrC absorber layer. A content of 

~10at.% of carbon was observed in both AR and IR layers, not quantified in the composition 

analysis for the individual layers.  
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TiN 

204 nm 
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82 nm 
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Table 3.11 - EDX elementary composition analysis of the as deposited TiN / a-C: ZrC / Al2O3 multilayer coating PFCVA 
deposited on inconel substrate. 

Layer Al (at.%) O (at.%) C (at.%) Zr (at.%) Ti (at.%) N (at.%) 
Al2O3 44.1 45.7 10.2 - - - 

a-C:ZrC - 4.1 68.7 22.1 - - 
TiN - - 9.0 - 53.2 37.8- 

The measured reflectance spectrum of the multilayer stack is shown in Figure 3.37. A 

comparison between measured and simulated reflectance spectra was performed, employing the SE 

optical constants of each one of the single layers that compose the stack, and the thickness from 

the HR-TEM image. The SE measured range was limited to a 1900 nm maximum wavelength, so 

simulations based on measured optical constants were only simulated up to this range. The 

simulated spectrum for λ>1900nm was extrapolated by CODE. The simulated and measured 

spectra show an excellent fitting in the entire measured wavelength (200 to 2500 nm). Solar 

absorptance is slightly overestimated (1.5%), due to discrepancy in the visible range. A possible 

explanation is the increase in the surface roughness of the Al2O3 when deposited over the rest of 

the layers, reducing the antireflective effect when is perfectly smooth.  
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Figure 3.37 - Comparison between measured and 
simulated reflectance spectra, employing HR-TEM 
measured thickness and the optical constants 
experimentally determined for each one of  the 
individual materials. For wavelength higher than 1900 
nm, the simulations were done with extrapolated optical 
constants. Solar absorptance values are included in the 
figure.  

Although the deposition parameters of the complete SSC were not optimized yet, a 

durability test was performed to test its air stability before continuing with the optimization of the 

deposition parameters. The complete stack was heated up to 600ºC in air for 2 hours. Figure 3.36 

shows the HR-TEM cross section images of the coatings before and after 2 hours of thermal 

treatment. Figure 3.36 (a) and (c) shows how in the a-C:ZrC absorber layer a crack was developed 

after the heating test. The failure was directly detected after the durability test with a visual 

inspection. As observed in the inserted photographs before and after the test, the colour of the 

sample shifts from a homogeneous dark blue, expected for a solar absorber material, to a non-

uniform yellow-brown appearance. 

The elementary composition was analysed with EDX-HAADF detector in different 

points of the cross section of the heated sample, with the STEM mode. Figure 3.38 (a) shows the 

STEM image of the heated sample, with numbered points associated to the composition values 

presented in Table 3.12 The number of counts for each element along the cross section is 

represented in Figure 3.38 (b), with the points indicated from Table 3.12 as well.  



CHAPTER 3 

92 |  

  

Figure 3.38 – (a) STEM image of complete absorber layer after heating up to 600ºC 2h. (b) EDX counter for the different 
elements analysed. The points are related to the EDX analysis, which values are shown in Table 3.12.  

In STEM mode, the contrast in the image depends on the atomic number (Z-contrast), 

thus facilitating the detection of light elements. Between the TiN and the a-Z:ZrC layer, a dark 

region appears, not noticed before. In the IR layer (point 1), the nitrogen content was mostly 

replaced by oxygen, and there is a delamination observed between the absorber and the IR layer. 

This incorporation of the oxygen did not come from the diffusion of the substrate due to the N 

content is higher in point 1 than in point 2. Presumably the O comes from the crack of the 

absorber layer. The AR layer (point 9), did not show significance differences in the content after 

heating 600ºC, as its expected good oxidation stability in air.  

Table 3.12 - EDX elementary composition analysis of the TiN / a-C: ZrC / Al2O3 coating deposited on inconel substrate 
after heating in air during 2 hours at 600ºC. The position of the points was indicated in Figure 3.38. 

Point Description 
Al 

(at.%) 
O 

(at.%) 
C 

(at.%) 
Zr 

(at.%) 
Ti 

(at.%) 
N 

(at.%) 
(1) TiN layer - 45.1 - - 44.4 10.5 
(2) TiN close to a-C:ZrC - 53.2 - >0.1 46.8 0 
(3) a-C:ZrC close to TiN - 49.1 0 0.2 41.9 8.8 
(4) a-C:ZrC - 12.9 0 78.0 9.1 0 
(5) a-C:ZrC in the crack - 65.41 0 34.6 0 0 
(6) a-C:ZrC above crack - 44.4 3.0 52.4 0 0.5 
(7) a-C:ZrC upper crack - 42.2 0 57.8 0 0 
(8) a-C:ZrC - 45.8 2.6 51.5 0 0 
(9) Al2O3 layer 50.6 49.4 - - - - 

 

However, the absorber layer was divided into different sub-layers, with cracks or breaks in 

the middle, represented by points 3 to 8 Figure 3.38 (a). In point 3, the part of the absorber layer 

situated closest to the TiN layer, some diffusion of Ti was observed. While the carbon content was 

~69 at % before heating, after 2 hours in air at 600ºC it was replaced by oxygen. Only in the top 

region without cracks in the a-C:ZrC layer (point 6 and 8), a content of ~3 at% of C can be 

detected, but almost nothing in the rest of the absorber layer.  

Different assumptions were made to explain this break in the absorber layer: i) the crack 

could result from the elevated stresses of the coating after heating, as has been shown previously in 

thin films deposited with tis cathodic arc technique [113] ii) the oxygen diffused thorough the AR 

layer by the porosities. This second reason was not considered due to no oxygen content is 
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observed in the break. In effect, there was almost no presence of any element in the break. Besides, 

the oxygen content was drastically increased in the a-C:ZrC layer, achieving ~65 at % O on the 

broken part (point 5). This oxidation in the carbon – zirconium layer was a sign of the lack of 

stability of the absorber coating at high temperature. 

3.6. Conclusions of solar selective coatings based on a-
C:MeC as absorber layer. 

Solar selective surfaces have been designed based on carbon transition metal carbide 

absorber layers. Filtered cathodic arc was used for depositing a-C:MeC films. The main conclusions 

obtained after the comprehensive characterization are described below. 

Optical simulations based on literature data  

The initial optical simulations with CODE with materials optical constants from literature 

database provide a good basis for the selection of the materials to employ for each layer type. The 

a-C optical constants reported in the literature exhibit wide variations depending mainly on the 

deposition technique employed, the deposition parameters and the sp3-C hybrid bonding fraction. 

The same applies for the metal carbides, whose optical constants depend to a great extent on their 

stoichiometry and crystal phase formed.  

Bruggeman EMA theory was initially employed to simulate the optical constants of the 

heterogeneous nanocomposite materials, due to the lack of microstructural information. The 

volume fraction and the thickness of a-C:MeC samples were varied. VC, ZrC and MoC refractory 

interstitial carbides were selected as the best candidates for solar absorber layer. As AR layer, SiO2 

and Al2O3 materials fulfil the double objective required of reducing the solar light reflection in the 

visible wavelength range and being stable at high temperatures. The reflectance spectra of different 

interstitial nitrides were simulated to decide the best candidates as IR reflective layer. TiN and ZrN, 

with thickness higher than 150 nm, exhibit the best performance, obtaining a theoretical thermal 

emittances below 8% at room temperature.  

The thicknesses and volume fractions of the different layers of the complete solar 

selective stack were optimized in order to maximize the solar absorptance (α) and minimize the 

thermal emittance (ε). Very promising results were obtained with a proper selection of materials in 

the initial simulation, obtaining promising values of α = 94.9 % and εRT = 12.5 for a stack 

composed by Al2O3 (60nm)/ a-C:VC (107nm and 37%VF of VC)/TiN(400nm). 
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Optimization of the individual layers of the SSC based on a-C:MeC 

Pulsed filtered cathodic arc was successfully used for depositing each one of the different 

layers that form the complete multilayer stack, based on the candidates selected before. A 

thoughtful analysis of the deposited samples was carried out. The composition of the absorber 

layers were determined accurately by RBS and NRA. XRD and Raman techniques confirmed the 

formation of nanocomposites structures of metal carbides particles embedded in an amorphous 

carbon matrix for samples deposited with higher metal content. In the case of a-C:VC films, a 

spontaneous arrangement of composite multilayers was found with HR-TEM images. XRD 

analysis proved that the nitrides employed for IR layer must be deposited at high temperature 

(300ºC) in order to obtain and homogeneous, smooth, dense and high-reflective IR film. Al2O3 

film was selected as AR layer according to higher stability criteria and good agreement between the 

previous simulated results. 

Spectroscopic ellipsometry were performed in all layers to determine the real optical 

constants. The modelled optical constants were validated with spectrophotometry measurements. 

Reflectance spectra were simulated employing different EMA models using experimentally 

measured optical constants for a-C. An excellent agreement between simulated and measured 

reflectance for single a-C:MeC layers was only achieved in the whole wavelength range using a 

Bergman approach that requires a detailed microstructural analysis.  

Optimization of the complete SSC  

The simulation of a complete solar selective surface and antireflective and IR mirror layers 

leads to a solar absorptance higher than 96% with a thermal emittance at room temperature below 

5% and 14% at 600ºC. This demonstrates the potential of a-C:MeC as an absorber layer material 

for high-temperature applications.  

Based on the improved simulated results after the feedback with the outcomes of the 

individual layers characterization, a complete coating with Al2O3 / a-C:ZrC (38at.% Zr) / TiN was 

deposited. The multilayer stack was submitted to an asymmetric thermal test, showing no stability 

after 2 hours in air at 600ºC.  
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CHAPTER 4: SOLAR SELECTIVE COATINGS 

BASED ON ALTI(OXN1-X) 

Aluminium titanium oxynitrides were selected as candidate materials for solar selective 

coatings on basis of the state of the art described in section 4.1. The experience and capacity 

acquired on the previous solar selective coatings based on a-C:MeC (Chapter 3), allowed the 

improvement of the methodology to follow for a complete design of the coating.  

In this chapter, initial thermal treatment tests were performed to validate the stability of 

single oxynitride layers in air, showing no degradation at temperatures above 650ºC. A set of 

individual AlTi(OxN1-x) layers deposited by cathodic vacuum arc (CVA) were analysed in section 

4.2 in terms of composition, morphology and optical properties in order to investigate the 

relationship between their chemical bonding and properties  

Once single AlTi(OxN1-x) thin films were fully characterized, complete solar selective 

coatings (SSC) were designed with optical simulations, based on measured optical constants of each 

of the individual layers, providing excellent selective optical selective properties (α=94.7% and 

εRT=5.6%). The selected multilayers stacks were CVA deposited, obtaining excellent agreement 

between simulated and experimental reflectance spectra (section 4.3). In last section (4.4), the 

thermal stability in air of the complete deposited SSC were analysed by asymmetric and cyclic 

heating tests, showing no degradation after 750h of cycles in air at 600ºC. 
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4.1. Introduction 

Similar than interstitial carbides explained in chapter 3, interstitial metal nitrides have a 

complex electronic bonding system which includes metallic, covalent, and ionic components [1], as 

proposed by Holleck for wear resistant materials [2,3] (Figure 4.1). Interstitial nitrides are formed 

by the incorporation of nitrogen atoms into the interstitial spaces between metal atoms and they 

are situated in the middle of the triangle. The incorporation of a third element in the transition 

metal nitride matrix, i.e. Si or Al, changes the bonding to more covalent character. Covalent 

bonded materials (e.g. AlN) are characterized for having very high melting points and high 

hardness [4], however, they normally shows a lack of adherence to metallic substrates due to their 

brittleness. This adhesion problem does not appear with metallic bonding materials as TiN. 

Therefore, the combination of metallic and covalent bonding character in ternary compounds 

results in improvement in the thermal stability at high temperatures. 

 

Figure 4.1 – Different materials grouped by their 

bonding type. 

Metal oxynitride (MeON) coatings are a new class of multifunctional materials which 

allow a transition of the properties of nitride and oxide based coatings [5]. The presence of oxygen 

and nitrogen allows the tailoring of film properties between those of the metal nitride (MeN) and 

the correspondent oxide (MeO). MeON have been known for almost a century and their industrial 

interest keeps growing, not only in the traditional and well-established applications also in new and 

promising fields such as optoelectronics on solar energy applications.  

One of the great advantages of MeON thin films is the possibility of tuning their 

crystallographic order between the oxide and nitride with a variation of the nitrogen/oxygen 

content. Hence, the overall set of properties of the metal oxynitride materials (band gap, the 

electronic conductivity and microstructure) can be tuned by a meticulous control of the O-to-N 

ratio in the non-metal sublattice. Merging the benefits of both metal nitrides and oxides, MeON 

have shown excellent physical, chemical and mechanical properties for a wide range of industrial 

applications with a promising future. Their remarkable properties such as diffusion and corrosion 

resistance [6], high hardness [7], chemical and thermal stability [8] and electronic properties [9], lead 

to a wide variety of unexpected uses in many fields. Examples of promising applications of metal 
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oxynitrides include optoelectronics [10], biocompatible coatings [11], gas barriers films [12] or 

microelectronics devices [13].  

In particular for this thesis, PVD deposited nitrides and oxynitrides coatings are 

considered to have potential application prospect in high temperature for solar selective coatings 

(SSC) due to the excellent oxidation resistance and thermal stability. This has been extensively 

reported in literature. Table 4.1summarizes the multilayer stack, the PVD technique employed and 

the optical selective characteristics of different solar absorbing coatings prepared by combinations 

of transition metal nitrides and oxynitrides. 

Table 4.1 – Oxynitride based spectrally selective coatings for high temperature, ordered by publication date. The solar 

absorptance (α) and thermal emittance (ε) values are indicated before/after the stability test indicated. Thermal emittance is 

calculated at room temperature, unless another temperature is expressed. Duration and temperature of the stability test in air 
are listed. The substrate(s) employed is expressed in the table being SS = Stainless steel. The SSC based on Al-Ti-O-N 

materials are highlighted in bold.  

Coating 
Deposition 
technique 

Substrate α εRT 
Stability in 

air 
Ref. 

AlTiON / SiO2 Activated 
reaction 

evaporation 

Al / Cu 92/85 4/8 at 
200ºC 

265ºC (19h) [8,14,15] 

TiAlN/TiAlON/Si3N4 DC-MS Cu / SS 96/96 7/7 at 
82ºC 

525ºC (50h) [16–18] 

NbAlN/NbAlON/Si3N4 DC-MS Cu / Si 94.7/91.9 7/9 at 
82ºC 

250ºC (350h) [19] 

TiAl/TiAlN/TiAlON/TiAlO Multi arc ion 
platting 

SS / Cu 90/80 8/18 600ºC 2h [20] 

TiAl/TiN/(TiN-AlN)H/(TiN-
AlN)L/AlN 

DC and RF –
MS 

SS 94.3/92 8/16 600ºC (2h) [21] 

TiAlN/TiAlON/AR DC-MS Glass / Al 95 9 - [22] 
TiAlSiN/TiAlSiON/SiO2 DC-MS + 

PECVD 
(SiO2) 

Glass/Cu/Al 95/93 6/6 at 
100ºC 

278ºC (600h) [23] 

NbTiON/SiON DC-MS Cu / SS 95/94 7/8 at 
80ºC 

500ºC (2h) [24] 

TiAlN/TiAlON/SiO2 DC-MS + 
PECVD 
(SiO2) 

Glass/Cu 95.5/95 8/9 at 
100ºC 

278ºC (600h) [25] 

NbTiON/SiON DC-MS Cu / SS 95/94 7/8 at 
80ºC 

500ºC (2h) [24] 

Ti0.5Al0.5N/Ti0.25Al0.75N/AlN DC and RF –
MS 

SS /Si 92.2/92 6/5 at 
82ºC 

475ºC (2h) [26] 

CrMoN (H)/CrMoN(L)/ 
CrON 

DC-MS SS / Al 92/92 13/14 425ºC(7h) [27] 

Ti/AlTiN/AlTiON/AlTiO DC-MS SS 93/91.9 16/16 350ºC 
(1000h) 

[28,29] 

TiAlCrN/ TiAlN/ AlSiN CVA Cu / SS 88/88 9/9 600ºC (4h) [30] 
Mo/TiZr/TiZrON/SiON DC and RF –

MS 
SS thermal 
oxidized 

95/92 8/10 at 
80ºC 

500ºC 
vacuum 
(300h) 

[31] 

W/AlSiN/AlSiON/AlSiO DC-MS SS 94.2/94 8.3/8.9 400ºC 
(1200h) 

[32] 

CrAlN/CrAlON DC-MS Cu 98.4/91.1 7/21 at 
82ºC 

600ºC (100h) [33] 

Al/NbMoN/NbMoON/SiO2 DC-MS SS 94.8/94 5/5 at 
80ºC 

400ºC ( 500h 
vacuum) 

[34] 

W/TiAlC/TiAlCN/ 
TiAlSiCN/ TiAlSiCO/ TiAlSiO 

DC-MS SS 96/<96 7/<7 at 
82ºC 

325ºC (400h) [35] 

W/TiAlN/TiAlON/ TiAlO DC-MS SS 94 8 at 
82ºC 

325ºC (2h)  [36] 

AlMoN(H)/AlMoN(l) DC-MS SS / Si 93/93 13/13 at 400ºC (2h) [37] 
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82ºC 
HfMoN/HfON/Al2O3 DC-MS SS 95 14 - [38] 
TiAlN/TiAlSiN/Si3N4 DC-MS SS 94.5/91 9/10 at 

75ºC 
500ºC (2h) [39] 

Cr/ TiAlCrN (Grad)/ TiAlN/ 
AlSiN/ AlSiO 

CVA Cu / SS 95/95 9/18 600ºC (12h) [40] 

W/WAlN/WAlON/Al2O3 DC and RF –
MS 

SS 94.8/95 8/11 550ºC 
(350ºC) 

[41] 

AlCrSiN/AlCrSiON/AlCrO CVA ion 
plating 

SS 95/92 15/16 600ºC (600h) [42] 

 

As can be observed from the summary table, different PVD processes were employed for 

solar selective coatings in order to synthesize MeON with different oxygen/nitrogen ratio. Among 

these processes, magnetron sputtering is widely employed for large area depositions and is an 

attractive way to achieve adjustable chemical compositions and consequently the desired tunable 

optical properties. Notwithstanding the foregoing, little research attention has been done to the use 

of the industrially well-established cathodic vacuum arc (CVA) deposition technique. However, 

CVA is well known for metal nitride and oxynitride deposition for many other applications. For 

instance, AlTi(OxN1-x) and AlCr(OxN1-x) coatings were deposited with rotating cathodes as 

protective cutting tools [6,7] obtaining excellent wear resistance at temperatures up to 600ºC.Until 

now, only Valleti et al. research group [30,40] in Balapour (India) and Zou et al. (Lingnan, China) 

[42] are currently employing cathodic arc deposition with cylindrical cathodes to produce different 

combinations of MeON for SSC. In particular, the former cited group has developed multilayer 

stack consisting on TiAlCrN/ TiAlN/AlSiN [30] and Cr/TiAlCrN (Grad)/TiAlN/AlSiN/AlSiO 

[40], in which each layer plays a role (IR reflector / absorber / antireflection) for maximizing the 

spectral selectivity properties. 

In this thesis, CVA technique was employed to growth MeON thin films, as this 

technique produces dense and uniform films, with excellent adhesion and therefore, perfectly 

suitable for high-temperature applications. In addition to the previous requirements, the deposition 

process must be simple to implement involving the minimum deposition steps and the raw 

materials must be cost effective as the purpose of this work is the design of a coating for 

subsequent application on an industrial scale. These contrains imply reducing the number of 

employed metals and to utilise economic ones. Hf, Nb or Ta transition metals have been discarded 

beforehand due to the high price for large scale production, although Hf and Ta oxynitrides could 

have higher melting points. A thorough review of the MeON candidate materials was conducted to 

determine the most suitable materials to serve as an antireflective layer, absorber and IR layer in an 

industrial scalable process.  

Rebouta et al. obtained remarkable results in 2012 with Al50Ti50 oxynitride multilayer 

stacks deposited by DC-MS and with a top antireflective layer of SiO2 (n~1.44) deposited by 

plasma enhanced chemical vapour deposition (PECVD) in a different coating chamber. The system 

was thermally stable 600h in air at a temperature up to 278ºC, with no changes in the solar 
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absorptance of 95% and thermal emittance of 6%. Barshilia’s AlTiN/AlTiON multilayer coatings 

exhibited a 95% and 7% thermal emittance at 82ºC on Cu substrate with Si3N4 (n~2.00) as AR 

layer [17]. They employed an Al50Ti50 cathode for the oxynitrides and a second Si cathode for the 

AR layer. The coatings show no degradation of the optical properties 50h in air at 525ºC. Both 

multilayer designs require a different cathode (Si) or deposition chamber for the antireflective layer, 

increasing the complexity of the system.  

Lei et al. [20] in 2009, developed a multilayer stack deposited with a multi-arc ion plating 

system, using only one Al50Ti50 cathode for the complete stack, including an AlTiO as AR layer. 

They obtained a solar absorptance around 90%, stable at 650ºC in air with a thermal emittance of 

below 8%. However, the macroparticles deposited along the coating with this arc ion plating 

system are pretty large (~0.5µm), and an appropriate system to remove the droplets is needed.  

Afterwards, in 2014, Barshilia [28,36] designed a similar stack based on Ti and Al 

separated cathodes, using a pulsed DC-MS system to control the stoichiometric of each layer 

independently. This new configuration includes AlTiO (n~1.8) as AR layer and Ti chrome as IR 

interlayer. This system did not offer same optimal performance as the previous ones (α=93% and 

ε82ºC=16%), nevertheless, it resulted simpler to implement and clearly more oriented towards 

industrial applications. Following the same AlTi(OxN1-x) structure, in 2015 Barshila’s group added a 

W layer between the substrate and the MeON multilayer stack in order to reduce the emittance and 

avoid diffusion from the substrate to the coating up to 300ºC [36]. Several patents were published 

by Barshilia employing AlTi oxynitride multilayer stacks (Table 4.2) based on the previous 

explained results. In 2014, they patented a hybrid system combining pulsed DC-MS AlTi(OxN1-x) 

stack with a sol-gel AR top layer of organically modified silica (ormosil) [43].  

Table 4.2 – Patents review of solar selective coatings based on AlTi(OxN1-x) multilayer stacks. The maximum solar 
absorptance (max α) and the minimum thermal emittance at 82ºC (min ε82ºC) evaluated for each multilayer system are also 

indicated.  

Coating 
Deposition 
technique 

Cathodes 
Max 
α 

Min 
ε82ºC 

Stability in 
air 

Year Ref. 

AlTiN/AlTiON/Si3N4 DC-MS Al50Ti50, Si 95 6 525ºC (50h) 2009 [44] 
Ti chrome 
interlayer/TiAlN/TiAlON/TiAlO 

Electroplating + 
Pulsed DC-MS 

Al, Ti 92 17 
350ºC 

(1000h) 
2013 [45] 

Ti chrome 
interlayer/TiAlN/TiAlON/TiAlO 
and ormosil  

Electroplating + 
Pulsed DC-MS + 
sol gel (ormosil) 

Al, Ti 95 11 
500ºC 

(1000h) 
2014 [43] 

 

The failure mechanism observed in most of those AlTi(OxN1-x) SSC follows a similar 

pattern [46]. At temperatures above 500ºC, the main microstructural modifications include 

interdiffusion between the AlTi(OxN1-x) layers to produce new phases and subsequent diffusion of 

the metal substrate (Cu, SS) into the coating [8]. All those alterations affect the initial optical values, 

reducing the solar selectivity. In addition, delamination problems were observed at T > 600ºC 

when coatings are deposited directly on a Cu substrate. The Al50Ti50N layer employed as a thermal 

barrier would minimize the lack of adhesion; however, the stoichiometric of this layer was not 
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optimized to the best convenient for high-temperature resistance, as discussed below. The 

increment of the ε after thermal treatments at high temperature was frequently attributed to the 

increase of roughness. The uncontrollable formation of oxide layers at the surface of the SSC could 

be the responsible of this increase of roughness [17]. In order to prevent these failure mechanisms 

an insight on the microstructural phases in AlTiN and AlTiON systems is required.  

Based upon the successful results of AlTiN/AlTiON tandem absorber coating developed 

by Barshilia [16–18], Lei [20], Zhu [22]or Rebouta [23,25] using magnetron sputtering, this chapter 

aims to develop cathodic vacuum arc AlTi nitride and oxynitride based solar selective coating. 

Those systems exhibit the best optical properties (α=95%, εRT=8%) [16–18] and demonstrate good 

thermal stability in air. Additionally, AlxTi1-x alloy cathode has an affordable price for industrial uses 

and it has been widely employed for different Al/Ti compositions.  

The ternary system Al-Ti-N is a well-known industrial hard coating that presents 

composition variations lying in a ternary diagram, which includes TiN, AlN and Ti2N [47]. As 

stated before, AlTiN films can be obtained by pure Al and Ti cathodes or an AlxTi1-x alloy cathode 

with a different composition. Previous studies analysed the microstructure of AlxTi1-xN coatings in 

function of the Al content [48–53]. As shown in Figure 4.2 (a), the crystal structure is cubic for 

x≤0.62, mixed cubic and wurtzite for x=0.67, and single phase wurtzite for x≥0.75 [48]. In the 

cubic structure range, the lattice parameter decreases monotonically from 4.26 Å for TiN to 4.16 Å 

in the (Al0.3Ti0.7)N, due to the substitution of the Ti by Al atoms that have smaller atomic radius 

[54]. The behaviour after a thermal treatment at high temperature in air also varies according to the 

Al content. The oxides Al2O3 and TiO2 (as well as Al2TiO5 in minor proportion) will appear 

depending on the Al content, showing the more α-Al2O3 content, the higher Al content. The 

formation of a dense Al2O3 top layer is beneficial for the oxidation resistance. Al2O3 layer either 

retards the inward diffusion of O2 during oxidation and avoids the formation of TiO2 porous layer 

associated with compressive stress and crack formation [55]. The oxidation resistance increases 

with the increment of Al, but until ~65 at. %, while for higher content of Al, the oxidation 

resistance is reduced and becomes comparable to that of pure AlN [55,56]. Therefore, Al67Ti33N 

shows the best oxidation resistance due this composition allows the transition from the cubic 

structure to wurtzite. The maximum hardness is also obtained for this composition being the most 

common composition employed for hard coatings since the mid-1990s [57].  
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Figure 4.2 – (a) Ternary diagram of the Al-Ti-N system with the different crystal structures observed. The lattice parameter 

(in Å) of the cubic structures is also included in the figure for the different Al content. (b) Index of refraction n and 
extinction coefficient k of AlxTi1-xN films deposited by magnetron sputtering determined by spectrophotometric data [58]. 

Regarding the optical properties, the influence of the Al/Ti ratio was analysed by several 

authors and is directly related to the two possible crystal structures discussed before [25,29,50,58]. 

While the cubic formed phase (x≤0.62) is electrically conductive, showing metallic bonding 

behaviour and thus high reflectance (for λ > ωp), the wurtzite phase observed when Al content is 

high has dielectric properties, transparent in the visible and insulating behaviour [50]. Figure 4.2 (b) 

shows the variation of the complex refractive index for AlxTi1-xN with different Al/Ti contents 

[58]. The modulation observed in function of the Al content provides the possibility to control the 

optical constants in order to optimize the desired solar spectral selectivity. 

The Ti-Al-O-N phase diagram presents a broad number of mixed phases of (Al,Ti)N-

(Al,Ti)2O3 without any thermodynamically stable quaternary phase reported before [7]. When the 

oxygen content is low (<~30 at.% [59]), the O atoms can be incorporated in the cubic structure by 

replacement of N. The incorporation of oxygen into the nitride lattice affects the properties of the 

compound due to different charges and differences in the nature of metal-anion bonds [60]. Two 

nitrogen atoms (N3-) need to be replaced by three oxygen atoms (O2-) in order to maintain the 

electrical neutrality of the network. Whether the O content increases, other binary or ternary phases 

are expected to be formed. The influence of the N/O ratio in AlON and TiON ternary systems 

have been thoroughly analysed before [61,62], however, the AlTi(OxN1-x) system includes many 

possibilities in the microstructural design, very influenced by the deposition technique employed 

and its conditions. Structural and chemical properties of magnetron sputtered [63] and cathodic 

vacuum arc [7] AlTi(OxN1-x) were studied, showing the improvement of the thermal resistance and 

mechanical properties with the addition of a certain oxygen content. A solid understanding of the 

correlations between bonding type and composition is required to foreseen the final properties in 

oxynitride materials.  

Therefore, the goal in this thesis is to contribute towards the understanding the effect of 

oxygen incorporation in the morphology and optical properties in Al-Ti-O-N coatings to design a 

complete SSC based on these materials. For that aim, a set of individual AlTi(OxN1-x) layers grown 

(a) (b) 
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by CVA were analysed in terms of composition, morphology and optical properties to investigate 

the relationship between their growing conditions (oxygen content and deposition pressure) with 

the final properties (section 4.2). 

Once the optical constants of each one of the individual layers were determined, a 

complete solar selective multilayer stack was first optimized by optical simulations and then 

deposited by CVA, obtaining excellent agreement between reflectance spectra simulated and 

experimental (section 4.3). It has been shown that the addition of a dense (Al,Ti)2O3 top layer [64] 

increases the diffusion and oxidation resistance of AlTiN, therefore this oxide layer was employed 

as antireflective top layer.  

In last section 4.4, the thermal stability in air of the complete multilayer stacks deposited 

following the optimized simulated results were analysed by asymmetric and heating – cooling cycles 

heating tests. 

4.2. Optimization of AlTi(OxN1-x) individual layers 

A series of AlTi(OxN1-x) samples with different nitrogen/oxygen ratio were deposited by 

CVA. Upon verification of no significant changes in the optical properties after 2 hours annealing 

in air at temperatures up to 650ºC, the single layers were then fully characterized.  

The element concentration and depth profile were determined by elastic recoil detection 

analysis (ERD), the morphology was analysed by X-ray diffraction (XRD), scanning electron 

microscope (SEM) and high-resolution transmission electron microscopy (HR-TEM). The optical 

constants were modelled from spectroscopic ellipsometry (SE) and the optical performance was 

determined with reflectance spectrophotometry.  

4.2.1 Preliminary thermal tests on AlTi(OxN1-x) layers 

As mentioned in the introduction, the decision to pursue AlTi(OxN1-x) as based materials 

for SSC was supported by the preliminary stability tests performed at high temperature. AlTiN and 

AlTiON (20% O2/O2+N2) samples were deposited in Metal Estalki S.L using a CVA device. The 

deposition parameters employed are explained in next section 4.2.2. These samples were subjected 

to asymmetric heating tests in air up to 650ºC during 2h. Their optical constants and reflectance 

spectra were measured after each heating test, and the calculated solar absorptance as a function of 

annealing temperature is shown in Figure 4.3.  
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Figure 4.3 – Thermal treatment test for AlTiN and AlTiON 

(21%O2/(O2+N2)) thin films CVA deposited. Each 

temperature was maintained 2 hours. 

The optical response was preserved and even slightly increased after the heating test in 

the. At high temperature, a dense Al2O3 layer may be formed on the top of the single AlTiN and 

AlTiON films, as has been reported for the cathode composition employed (Al67Ti33) [55]. The 

growing of this Al2O3 layer may also help to improve α, as it behaves as antireflective layer 

reducing the reflectance radiation in solar wavelength range. A visual inspection of the samples 

after heating in air show no changes or damages or delamination failure. 

After checking the good stability of the samples at high temperatures and the possibility to 

modulate the optical constants with the different oxygen content, a depth study of AlTi(OxN1-x) 

thin films as promising materials for solar selective coatings for high-temperature applications was 

carried out. 

4.2.2 Deposition of AlTi(OxN1-x) individual layers with variable O2/N2 ratio  

A set of AlTi(OxN1-x) thin films were deposited in Metal Estalki S.L., using a direct 

current (DC) cathodic vacuum arc (CVA) device. Only one rectangular Al67Ti33 cathode was 

employed for all the depositions, varying the O2 and N2 gas flow as reactive gases. The CVA 

system was fully described in chapter 2, and the common deposition parameters applied for the 

AlTi(OxN1-x) samples are summarized in Table 4.3.  

Table 4.3 – Common deposition parameters employed for AlTi(OxN1-x) samples grown by CVA technique.  

Base pressure 2·10-4 Pa 
Operating pressure 1.5 Pa   
Arc current discharge 125 A 
Deposition temperature  450 ºC 
Cathode size  331 x 174 mm2 
Cathode material Al67Ti33 
Bias voltage at deposition stage  - 75 V  
Rotation speed of  the substrate  10 rpm 
Distance from the filter to the substrate  150 mm 

 

The composition of AlTi(OxN1-x) coatings deposited by CVA can be controlled by a 

careful adjustment of the kinetic and thermodynamic parameters, i.e. the rate of the metallic atoms 

arriving at the substrate versus the thermodynamic affinity of the reactive gases with the Al and Ti. 
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Taking into account the available thermochemical data for Al and Ti oxides and nitrides, a 

complete oxidation of the films would be expected as long as enough oxygen is available, since the 

formation of a metal-oxygen bond is energetically more favourable [65,66] (ΔHfºTiO2 =-933.7 

kJ/mol and ΔHfºAl2O3 =-1669.8 kJ/mol) than the one of a metal-nitrogen bond (ΔHfºTiN = -338.1 

kJ/mol and ΔHfºAlN = -317.9 kJ/mol).  

Among all the possible parameters that could be selected to change the kinetic versus the 

thermodynamics in CVA deposition (deposition temperature, working pressure, arc current, 

substrate bias potential or partial pressure of the reactive gases), in this thesis, the partial pressure 

of O2 and N2 reactive gases and the working pressure (varied from 1.5 to 2.1 Pa) were selected. The 

substrate temperature (450ºC), the arc current (125 A) and the substrate bias (-75 V) were kept as 

constant parameters, as they have been optimized previously for similar nitride films in this CVA 

chamber [51,59], obtaining low residual stress and good adhesion samples. Therefore, due to the 

high affinity of metals towards to O2 rather than to N2, the composition of the gas mixture should 

always contain an excess of nitrogen.  

The nitrogen and oxygen flow rate employed for the different AlTi(OxN1-x) samples are 

summarized in Table 4.4. Samples #1-6 were deposited at a working pressure of 1.5 Pa while 

sample #7 (AlTiON_21_HPw) was deposited at a higher working pressure of 2.1 Pa. Only for the 

deposition of sample #6 (nitrogen-free), 10 sccm of Ar gas flow was introduced into the chamber 

to stabilize the arc. Samples #2, #3, #4, #5 and #7 were deposited on top of ~0.5 µm AlTiN in 

order to improve the adherence. No delamination was observed between the layer and the 

substrate or between in any of the deposited thin films.  

Table 4.4 – Deposition parameters for the different AlTi(OxN1-x) thin films, including working pressure (PW), and gas flow. 

# Coating_%O2/(O2+N2) 
PW 

(Pa) 
Ar 

(sccm) 
N2 

(sccm) 
O2 

(sccm) 
O2/(O2+N2) 

(%) 

1 AlTiN 1.5 0 70 0 0 

2 AlTiON_4 1.5 0 72 3 4.0 

3 AlTiON_8 1.5 0 61 5 7.6 

4 AlTiON_13 1.5 0 52 8 13.3 

5 AlTiON_21 1.5 0 46 12 20.7 

6 AlTiO 1.5 10 0 50 100.0 

7 AlTiON_21_HPW 2.1 0 64 17 21.0 

 

The films were deposited on Si (100) and mirror polished inconel HAYNES ® 230 

substrates. Figure 4.4 shows an image of each sample type on inconel substrate. Under this 

conditions, a first set of thick samples (d >1.5 µm) were deposited to determine their composition 

and optical properties. Subsequently, and after initial simulations of a complete SSC based on the 

modelled optical constants, a new set of samples were grown. This new batch of AlTi(OxN1-x) films 

with thickness from ~30 to 500 nm, were subjected to a comprehensive complete characterization 

that includes XRD, TEM, and optical analysis.  
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Figure 4.4 – Photos of the deposited samples on inconel substrate for different oxygen – nitrogen ratio. 

In a parallel process, equivalent AlTi(OxN1-x) samples were deposited in a filter cathodic 

vacuum arc (FCVA) situated in Abengoa Research laboratory, also further explained in chapter 2. 

For the sake of simplicity, the development of these equivalent coatings is not included in this 

thesis, as the design followed a parallel process. 

4.2.3 Morphological characterization of AlTi(OxN1-x) individual layers 

Film composition and depth profile 

The elemental composition and depth profiles of the AlTi(OxN1-x) samples with different 

O2/( O2+N2) ratio or reactive gases were analysed by ERD analysis. Glow discharge emission 

spectrometry (GDOES) and energy dispersive x-ray spectroscopy (EDX) techniques were 

employed initially to measure the composition of the samples, however, they are not accurate 

enough to determine quantitatively the content and depth profile of light elements (N, O, C and H) 

present in the samples. Meanwhile, ERD ion beam analysis technique allows simultaneous 

measurement of light and heavy (Ti and Al) elements present in the sample. The depth profiles 

extracted from the measurements are displayed in Figure 4.5 (a) to (g). The thickness in atoms/cm2 

is directly obtained from the measurements and is displayed in the depth profiles. The depth 

profiles are based on the recoil spectra unless otherwise noted, as for Ti where the depth profiles 

for both Cl scattering (marked as Ti (RBS)) and the Ti recoils are displayed in order to increase the 

depth resolution. The analysis depth is different for each element due to limitations in the 

separation of each recoil ion from the scattered Cl ions and is reached when the profile abruptly 

drops to zero in the graph.  

A roughness model was included in the fit, but sometimes was not sufficient, resulting in 

an overestimation of the concentration of O. The depth profiles were corrected for the roughness 

model, but residual rounding is reflected in the profiles. This effect is clearer in sample #5, where 

the oxygen content in the top of the layer (~100nm) increases up to 35 at.% O, which lead to 
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decrease the nitrogen content. Sample #6, deposited only with O2 reactive gas, has a thickness 

much thinner and is in the only one where the Si substrate is visible (Figure 4.5 (f)). 
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Figure 4.5 – Depth profiles of  samples #1 to #7, including 

the ratio of  reactive gases employed for each sample 

analysed by ERD. 

The elemental concentration of the deposited samples measured by ERD analysis is 

summarized in Table 4.5. These values are valid for the deeper part in the samples with uniform 

film composition, below the surface region where there are distortions due to roughness.  
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Table 4.5 – Elemental ERD composition of AlTi(OxN1-x) thin films. The estimated uncertainty is 1% at. % for 
concentrations higher than 10 at.%. For concentration smaller than 10at.%, the uncertainty is 10% of the measured value.  

# Coating_%O2/(O2+N2) 
Elemental composition (at. %) (Ti+Al)/ 

(N+O) 
%(Ti+Al)/ 

(Ti+Al+N+O) 
% O/ 

(N+O)  
% Al / 
(Al+Ti) O N Ti Al C H 

1 AlTiN 0.5 51 17 31 0.3 0.17 0.95 48.8 0.9 65.1 

2 AlTiON_4 4 46 18 30 0.5 0.34 0.96 49.4 8.6 62.6 

3 AlTiON_8 9 45 16 30 0.3 0.30 0.86 46.6 16.3 66.1 

4 AlTiON_13 14 40 16 30 0.3 0.30 0.85 46.3 25.6 65.8 

5 AlTiON_21 20 35 14 30 0.4 0.29 0.82 45.4 37.0 68.2 

6 AlTiO 60 0.5 9 28 0.4 0.30 0.65 39.7 99.3 75.1 

7 AlTiON_21(HPW) 58 2 9 31 0.2 0.16 0.68 40.7 97.3 77.7 

 

As observed from Table 4.5, H and C concentration in the AlTi(OxN1-x) samples are 

insignificant and independent on the reactive gases ratio or the operating pressure. The low C 

concentration is close to the detection limit and it could have high uncertainties. The concentration 

of oxygen (nitrogen) in the films increases (decreases) linearly with the O2/(N2+N2) ratio of 

reactive gases of samples deposited with the same Pw = 1.5 Pa (#1-5), as shown in Figure 4.6.  
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Figure 4.6 – Al, Ti, N and O concentration of  

AlTi(OxN1-x) samples deposited at 1.5 Pa for different 

concentration ratio of  O2 /(O2 + N2) reactive gases 

during the deposition, measured by ERD ion beam 

analysis. 

In samples #1-5 the Al and Ti content remains almost constant, with a slight deviation of 

the Al:Ti ratio when compared to the cathode composition (67:33). This deviation could be 

explained by the different degree of ionisation of Al and Ti for CVA depositions [67]. Ti ions arrive 

with higher energy to the substrate and could penetrate deeper into the surface than Al ions, and 

might create differences in the composition. The pure nitride sample (#1) had an oxygen impurity 

level of ~1 at. %O. The ratio metal to nitrogen was approximately 1:1. As the oxygen flow 

increases, the metallic proportion (i.e. (Ti+Al)/(Ti+Al+N+O)) decrease from 48.8% in sample #1 

to 45.4% in sample #5. This reduction was attributed to either the formation of nitrogen vacancies 

in the cubic lattice or the formation of Al2O3· and TiO2.  

The pure oxide film (samples #6) were deposited as AR top layer and to provide integrity 

and environmental protection at high temperatures [68]. The metallic proportion decreases, 

practically reaching the stoichiometric (Al,Ti)2O3 composition, with 40% of metal versus 60at% of 

oxygen. The Al:Ti ratio differs the initial cathode composition, obtaining approximately 75:25 ratio. 

Energetically it resulted much more favorable the bonding of O with Al is than with Ti, which can 

lead the formation of mixed aluminum-titanium oxide in the form (Al0.66Ti0.33)2O3 along with free 

alumina Al2O3.  
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Sample #7, was deposited with same reactive gases ratio than sample #5. However, the 

increasing of 40% the working pressure in comparison with rest of samples resulted in a drastic 

effect in the composition and, as shown in next sections, in the morphology and final optical 

properties. This sample has a composition nearly equivalent to the pure oxide sample #6, with only 

a residual content of 2 at.% of N against 58 at% O, although 64 sccm of reactive N2 were 

introduced during the deposition. These results will be further discussed with the results obtained 

in the following characterization techniques. 

Film morphology studied by SEM  

The cross-section SEM images of AlTiN films deposited with three different thicknesses 

are shown in Figure 4.7. As clearly observed in Figure 4.7 (a), the 1.6 µm thick film exhibits a dense 

columnar growth regime, with columns width in the order of ~30 nm. This structure is typical of 

samples grown under some compressive residual stress and recrystallization grain structure (zone 2 

described by Anders model [69]). Additionally, as no filter was employed in the deposition, the film 

shows numerous macroparticles that can exceed 2 µm. Holes due to the release of these poor 

adherent macroparticles can also be observed. Conversely, in the other two thinner AlTiN with 

0.47 and 0.12 µm thick shown in Figure 4.7 (b) and (c), respectively, no macroparticles are 

observed although identical non-filtered chamber and deposition parameters were employed. 

Although some droplets may be generated, their quantity and probability of incorporation into the 

growing samples increases with the deposition duration. This is of importance because, as the 

average individual thickness for the designed SSC multilayer stack will be in the order of ~100 nm, 

no detrimental optical problems associated with the apparition of droplets are expected.  

   
Figure 4.7 – SEM cross-section micrographs of AlTiN samples deposited by non-filtered CVA on Si substrate. (a) 1.6 
µm sample with an incrusted macroparticles and a hole as a macroparticle lost, (b) 0.47 µm and (c) 0.12 µm thickness 

samples. No macroparticles were found in (b) and (c).  

SEM analysis of the cross-sectional morphology revealed the dependency of the oxygen 

content on the coating structure of AlTi(OxN1-x) (Figure 4.8). As explained above, there is a 

pronunced dense columnar micrsotructure observed for the oxygen-free AlTiN (sample #1), with 

the columns extend throughout the whole coating thickness. Samples #2, #3, #4, #5 and #7 

(Figure 4.8 (b), (c), (d) (e) and (g)) were grown ot top of a ~0.5 µm thick AlTiN layer. There is a 

transition region bewteen the AlTiN underlay layer and the upper one where the columnar growing 

1.60 µm 
0.12 µm 

(a) (c) (b) 

0.47 µm 
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regime continues. However, when the thickness increases and with the incorporation of more O2 

reactive gas, it resulted in a monotouos width and length shrink of the columns in the AlTi(OxN1-x) 

samples, clearly distinguished in samples #2 and #3 with 4.4 and 8.8 at% O content, respectively. 

Above an oxygen concentration of ca. 9 at.%O (samples #4 and#5), the columnar features are 

practically absent, indicatting an amorphous or very fine grained film morphology. It is known that 

small concentration of oxygen can significantly modify the morphology of the film, promoting 

renucleation during films growth and formation of smaller grains [59].  

  

  

  

 

Figure 4.8 – SEM cross-section images of  ~1.5 

µm thick AlTi(OxN1-x) films with different 

oxygen content on Si substrate. Samples #2, #3, 

#4, #5 and #7 were deposited on top of  ~0.5 

µm AlTiN film. Sample #6 is deposited directly 

on the Si substrate. 
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The pure oxide samples (Figure 4.8 (f)) was not deposited on top on the AlTiN film and it 

was thinner in comparison with the rest of the samples. No columnar growth is observed in this 

film. The microstructure of sample #7, (AlTiON_21 (HPw)), shows as well columnar feature, but it 

can be appreciated two different regions with non-uniform composition and morphology.  

After this initial characterization, the AlTi(OxN1-x) samples can be classified into three 

groups according to their microstructure. A first group with well-developed columnar structure 

(samples #1, #2 and #3). Another group includes samples #4 and #5 and #7 with more diffuse 

columns structure and higher oxygen content. The third group is in the nitrogen free sample #6. 

According to this classification and based on preliminary optical simulations of complete 

SSC (results not shown here), a more detailed analysis are performed only on selected samples (#1-

AlTiN, #4-AlTiON_13, #5-AlTiON_21, #6-AlTiO) as they were the most promising to form a 

SSC multilayer stack showing clear contrast in their optical properties. Sample #7 was also selected 

in order to obtain more data about its microstructure. These microstructure, morphology and 

optical properties of these selected samples will be analysed by XRD, HR-TEM and SE as 

explained in next sections. After a complete comprehensive analysis, a complete SSC will be 

designed with optimized optical performance.  

4.2.4 Characterization of selected AlTi(OxN1-x) individual layers 

X-ray diffraction (XRD) analysis 

The GIXRD patterns of the deposited AlTi(OxN1-x) films are represented in Figure 4.9. 

All samples were measured additionally by θ-2θ geometry in order to analyse the preferential 

orientation (XRD patterns not shown). The crystallite sizes were calculated from Scherrer’s as an 

average of all the observed peaks, and they are summarized in Table 4.6 along with the interplanar 

spacing and the lattice constant.  

Table 4.6 – Microstructural data for AlTi(OxN1-x) thin films on Si substrate obtained from XRD patterns. The interplanar 
spacing (d) and lattice constant (a) were deduced from the (200) crystal orientation.  

Sample # X Pref. orientation Crystallite size (nm) d (Å) a (Å) 

1 0.01 200 11 ± 0.5 2.088 4.176 
4 0.26 200 6 ± 0.5 2.087 4.174 
5 0.37 200 4.5 ± 0.5 2.086 4.172 
6 0.99 No pref. 3.0 ± 0.5 2.011 8.018 
7 0.97 No pref. 1.5 ± 0.5 2.035 4.071 

 

A purely cubic B1 osbornite structure, typical for titanium-based nitrides, was observed 

for the AlTiN coating (#1) in Figure 4.9 (a). Several authors have shown that in the (TiyAl1-y)N for 

Al concentrations up to y<0.6 a solid solution is formed by incorporation of Al atoms into the 

NaCl-type lattice of TiN. However, when Al content is approximately 0.6<y<0.75, the structure 

consists of a mixture of cubic and hexagonal phase [51,70], or a h-AlN incorporated in a cubic 
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TiAlN matrix [71], as shown in Figure 4.2. No wurtzite structure was observed in the AlTiN 

sample although the measured Al content was y= 0.63. The observed peaks were displaced to 

higher angles than the cubic TiN (at 2θ =36.8, 42.8, 61.9º and 74.1º) as the lattice parameter of the 

AlTiN (4.17 Å) was slightly smaller than TiN (4.23 Å), deposited at the same CVA chamber. This 

results suggest that titanium atoms in the TiN lattice are substituted by Al atoms with smaller 

atomic radius [54]. The (200) crystal plane at 2θ=43.3º was the preferential orientation observed for 

AlTiN. The other peaks identified at 2θ = 37.3, 63.2, 75.6 and 80.0º associated to the crystal 

orientations (111), (220), (311) and (222), respectively (ICCD card 00-037-1140 for cubic AlTiN) 

[72]. The dependence of the crystallite size with the thickness was studied by depositing additional 

AlTiN layers with thicknesses of 100 and 240 nm. There is a dependence on the grain size with the 

thickness of the layer, correlated to the evolution of the thin film growth. The thinner AlTiN layer 

(corresponding to the first nanometres of film growth) shows a fine grained structure, with 

crystallite size of 6 nm. This microstructure evolved into a well-defined columnar structure, with 

larger crystallite of 11 nm average size. This evolution in the crystallite size was also appreciated in 

the previous SEM image of the AlTiN film (Figure 4.8 (a)).  
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Figure 4.9 – GIXRD patterns of samples on Si(100) substrate (a) AlTi(OxN1-x) samples with 0; 14; 20; 58 and 60 at.% O 

content. The vertical lines indicate the peak positions for fcc-AlTiN (ICCD card number 00-037-1140) (b) AlTiO and 
AlTiON_21(HPw) samples represented with increased intensity resolution. The peak positions of fcc-AlTiN and γ-Al2O3 

(ICCD card number 00-001-1308) are indicated.  

The GIXRD diffractograms of the oxynitride films (samples #4 and #5) are qualitatively 

similar to the oxygen-free AlTiN sample (Figure 4.9 (a)). These samples show again the typical 

cubic NaCl-type structure, with (200) as preferential orientation at 2θ=43.3º. However, a 

progressive shift of the (200) diffraction peak toward higher diffraction angles with increasing 

oxygen concentration can be appreciated. This corresponds to a diminution of the lattice parameter 

caused by the formation of metal vacancies or replacement of N atoms by smaller O ones. 

Additionally, this shift is accompanied by a broadening of the peak associated to a decrease in the 

crystallite size. No crystallite reflections associated to oxide phases were observed in samples #1 to 

#5. However, a broad peak at 30º<2θ <40º can be appreciated for the high oxygen content 
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samples #4 (14 at.% O) and #5 (20 at.% O) [73]. This can be related with the formation of 

amorphous phases in the coating [7] in agreement with the decrease in the (Ti+Al):(N+O) ratio 

measured by ERD (Table 4.5).  

It is also worth mentioning that the observed peaks of al XRD patterns shown in Figure 

4.9 could be attributed to fcc-AlTi metallic crystals incorporated into the films, in the form of 

droplets, as has been previously observed [74,75].  

The coatings become practically XRD amorphous for samples #6 and #7. However, if 

they are represented separately with increasing the intensity resolution (Figure 4.9 (b)), small 

crystallites are revealed. In sample #7 (AlTiON_21 (HPw)), the fcc lattice still appears despite the 

large proportion of oxygen as confirmed by the two broad diffraction peaks at 2θ = 44 and 65º. 

These peaks could be associated to (200) and (220) crystal planes, respectively, of the fcc-AlTiN 

NaCl-type structure. The displacement to higher angles observed in these peaks could be explained 

as the lattice parameter is much smaller in the oxidized sample (4.02 Å) than in the nitride (4.18 Å) 

and a high value of replacement of N by O in the nitride lattice [59]. The formation of small AlTiN 

crystallites (1.5 ± 0.5 nm) encapsulated by an amorphous oxide phase has been previously reported 

[76]. Meanwhile, the pure oxide coating (sample #6) is X-ray amorphous/nanocrystalline having a 

structure corresponding to metastable cubic γ-Al2O3 phase (ICCD card 00-004-0880) [59], with 

small peaks at 2θ = 38º, 45 and 45º corresponding to (311), (400) and (441), respectively, of the 

cubic structure. No crystal TiO2 or Al2TiO5 phases were observed, as these crystal structures are 

associated to higher deposition temperatures (Ts>750ºC) [77,78] than the employed for these 

samples (Ts=450º). These results, together with the ERD analysis, suggest the formation of an 

poorly crystalline γ-Al2O3 phase embedded in an amorphous TiO2, Al2TiO5 and (Al,Ti)2O3. HR-

TEM images will confirm these results as discussed in the following section. 

Film morphology studied by HR-TEM 

HR-TEM and electron diffraction (ED) patterns give more accurate information of the 

crystal structure for the different AlTi(OxN1-x) samples. In addition, the STEM mode along with 

the EDX spectroscopy would provide information of the composition for specific selected regions 

or a profile in the cross section. Cross-sectional HR-TEM and STEM micrographs of samples #1, 

#5 and #7 deposited on inconel substrate are shown in Figure 4.10, to Figure 4.15. 

An overview HR-TEM image of the AlTiN sample #1 (Figure 4.10(a)), shows an initial 

columnar growing (region 1) of ~150 nm with narrow well-defined columns, and crystallite size of 

~ 6nm, in agreement with XRD patterns. This region was followed by a second columnar growth 

regime (region 2) with wider columns and bigger crystallite size (11 nm). This growth was only 

interrupted by some defects (indicated in the figure) attributed to the release of a macroparticle and 

the subsequent growing on the remaining hole.  
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The corresponding SAED pattern (Figure 4.10 (b)) is constituted of rings, exhibiting some 

spots originating from the large size of the crystallites in the films. The spots are concentrated into 

groups, which can suggest certain film texturing. From SAED pattern it could be derived that the 

phase formed in the films is solid solution fcc-AlTiN without phase separation observed. The 

interplanar distances (d) calculated from the ED pattern, closely matches with (111), (200), (220), 

(311) and (400) planes of the B1 cubic AlTiN (ICCD card 00-037-1140) [72], confirming the results 

from XRD.  

Amplified HR-TEM images were taken to assess microstructural changes in the different 

growth regimes. Figure 4.10 (c) shows a higher amplification image of the initial region close to the 

substrate (designated as region 1 in Figure 4.10 (a)), displaying a perfect adherence between 

substrate and AlTiN film. The differences in this first growing region were attributed to a transition 

between the amorphous oxidized top layer of the substrate (> 5 nm), and a stable crystallite 

columnar growth with (200) as preferential orientation plane. In this growing regime, the AlTiN 

has polycrystalline structure, as revealed by the FFT analysis (inset in Figure 4.10 (c)) that shows 

three circular intensity maxima corresponding to lattice plane distances of 1.49, 2.07 and 2.37 Å, in 

good agreement with (220), (200) and (111) of fcc-AlTiN [79].  

  

  

Figure 4.10 – HR-TEM cross-section images of 1.6 µm AlTiN sample deposited on inconel. (a) Overview image, indicating 
a initical 150 nm growing regime with narrower columns. A deffect assigned to a macroparticle loss is indicated. (b) Selected 

area electron diffraction pattern. (c) Amplified image of the interface region between AlTiN and the substrate, region 1 in 
(a). (d) Amplified image of the developed columnar regime, region 2 in (a). The FFT analysis of (c) and (d) are included. 
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Figure 4.10 (d) shows the amplified HR-TEM image of the upper region 2 of the AlTiN 

sample (designated as region 2 in Figure 4.10 (a)). The sharp diffraction spots of the FFT (inset in 

Figure 4.10 (d)) corroborate the crystalline columnar growth of AlTiN cubic structure. The FFT of 

this region reveals only one lattice plane distance of 2.07 Å, attributed to the (200) crystal planes, 

the preferential orientation indicated previously. In order to evaluate element content differences in 

in the region where the macroparticle made a defect, images in STEM mode were obtained (Figure 

4.11) (a)). EDX results from regions i and ii in the STEM image of Figure 4.11 (a) were in very 

good agreement with the composition obtained with ERD. No main differences were found 

between the selected regions (Figure 4.11 (b)). Similar composition results were obtained as well for 

the two growing regions 1 and 2 indicated in the previous HR-TEM images (Figure 4.10).  

 

 
 

 

Figure 4.11 –STEM image of AlTiN sample on inconel. A deffect assigned to a macroparticle loss is indicated (b) EDX 
analysis in selected areas: region (i) corresponds to the developed columnar crystal growth and region (ii) corresponds to the 

area with a defect in the growth assigned to a macroparticle loss (brigther region). 

HR-TEM images of AlTiON sample with 21 at.% O (sample #5) grown on a 0.5 µm of 

AlTiN are shown in Figure 4.12. As observed from previous SEM images, even small 

concentration of oxygen can significantly modify the morphology of the film, promoting 

renucleation during films growth and formation of smaller grains. This can be better appreciated in 

the overview HR-TEM image (Figure 4.12 (a)) where AlTiN and AlTiON layers are clearly 

distinguishable. The interface analysis shows that the clear columnar structure in the AlTiN is 

blurred in the AlTiON region. These not-well defined AlTiON columns grow from the underneath 

layer, as if the AlTiN serves as a template for promoting pseudomorphic growth of the AlTiON 

layer [7,64]. The interplanar distances observed in SAED pattern of the AlTiON layer (Figure 4.12 

(b)), correspond to fcc-AlTiN crystal structure [72], but the presence of diffraction rings varying 

sharpness indicate very small misoriented crystallites and amorphous regions. As the grains get 

smaller, less spots are visible in the rings. No evidence of crystalline Al2O3 or TiO2 was observed. 

The interface was imaged in higher resolution in Figure 4.12 (c) and (d). The prolongation 

of the columns from AlTiN to AlTiON was still visible. However, a periodic multilayer structure 

with periodicity of ~2 nm was now detected in large columnar grains of the AlTiON (Figure 4.12 

ii 
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ii 
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(e)). Similar multilayer structure with small columnar grains was described by Sjölen for equivalent 

CVA system [7], associated to rotation of the substrate holder during the deposition. The FFT 

analysis of this layer (inset in Figure 4.12 (e)) cannot clearly identify single crystallites. This is most 

probably due to the superposition of several crystallites over the thickness and an amorphous 

matrix. Two circular intensity maxima were hardly identified, corresponding to lattice plane 

distances of 1.45 and 2.37 Å, in agreement with (220) and (200) of fcc-AlTiN [79], but with smaller 

lattice parameter than for AlTiN sample. 

  

 

 

  
Figure 4.12 – HR-TEM cross-section images of 1.6 µm AlTiON_21 with 20at.% O / AlTiN on inconel substrate (a) 

Overview image, indicating AlTiON and AlTiN layers. (b) Selected area electron diffraction pattern. (c) and (d) amplified 
images of the interface region between AlTiN and AlTiON. (e) Amplified image of the AlTiON layer, with the FFT analysis 

of this region included. 

STEM images of the interface between AlTiN and AlTiON (21at.% O) were obtained 

(Figure 4.13 (a)) to determine the differences elemental concentration of the different layers by 

EDX analysis. The table inserted in Figure 4.13 (b) shows the composition was in good agreement 

with the values obtained by ERD (Table 4.5). 

Results of STEM image and the corresponding EDX analysis of the multilayer region are 

shown in Figure 4.13 (c) and (d). The STEM image reveals how the multilayer are likely to be a 

result of modulation of the films composition, where the bright layers have high metal 

concentration (i.e. (Ti+Al)/(Ti+Al+N+O)) and dark layers where the reactive gases have high 

content. The rotation of the sample holder was accounted to be the responsible of this periodic 

multilayers formation.  
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Figure 4.13 – (a) STEM image of AlTiON / AlTiN on inconel. (b) EDX analysis in selected areas of AlTiON and AlTiN 
layers. (c) Amplified STEM image of AlTiON where multilayers with ~2nm periodicity are distinguishable and (c) EDX 

analysis of the profile indicated in (c). Vertical lines are included to guide the eye.  

Finally, an overview HR-TEM image of the sample #7, AlTiON_21 (HPw), is shown in 

Figure 4.14 (a). In the region close to the interface, a periodic multilayer AlTiON structure was 

observed once more. The periodicity was clearer observed in the enlarged HR-TEM images (Figure 

4.14 (b) and (c)) showing equivalent periodicity than in the previous AlTiON (21 at.%O) sample. 

This region indicate a first epitaxial growth of a cubic fcc-AlTiN columnar structure continuing 

from the AlTiN layer, with an amorphous matrix, as confirmed with the FFT analysis (Figure 4.14 

(d)), but distributed in multilayers. The crystalline structure was cubic despite the high levels of 

oxygen. The continuous deposition at higher pressure supresses gradually the multilayer by an 

increased renucleation in the upper region and final transformation into an amorphous-fine grained 

multiphase (Figure 4.14 (e)). The transition is attributed to a progressive increase in the oxygen 

content and in the pressure, what involves a less conductive surface of the coating, reducing the 

impact energy of the arriving ions [7]. This could lead to less adatom mobility due to the higher 

deposition pressure and an increase of the renucleation rate (and reduction in the grain size). 

Hence, the previous multilayer microstructure is transformed into a solid solution of crystalline 

nanoparticles embedded in an amorphous matrix (Figure 4.14 (f)). The FFT of a selected grain 

(Figure 4.14 (g) and (g)) reveals only one lattice plane. 
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Elemental composition (at. %) 
O N Ti Al 
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2-AlTiN 0 58 13 29 

 

AlTiON_21 

AlTiN 

AlTiON_21 (a) (b) 

AlTiN 

(c) (d) 



CHAPTER 4 

124 |  

  

 

 

  

 

 
Figure 4.14 – HR-TEM cross-section images of ~1 µm AlTiON_21 (HPw) sample·#7, over a AlTiN film on inconel 

substrate (a) Overview image, indicating AlTiON and AlTiN layers. (b) and (c) Amplified images self-formed multilayer 
region with (d) FFT analysis of (c). (e) Overview image, indicating the formation of nanoparticles in the upper region of the 

AlTiON. (f) and (g) Amplified image of the nanoparticles, and (h) FFT analysis of nanoparticle shown in (g). 

In the STEM images shown in Figure 4.15 (a), the two different regions are clearly 

differentiated. An overall EDX analysis of the multilayer region (Figure 4.15 (b)), show good 

composition agreement with the previous ERD analysis and only a 3at.% of N was detected. On 

the other hand, an EDX analysis zoomed on a nanoparticle reveals 14% at. N. this reveals the 

AlTiN nanoparticles embedded on an oxide amorphous matrix. The EDX analysis of the 

multilayer structure reveals bright and dark regions associated with the rotations of the sample 

holder, with high similarity to the previous HR-TEM image in the AlTiON_21 sample.  

The multilayer structure observed on the samples, has been observed previously in 

commercial cathodic vacuum are coatings, which commonly employed a rotatory substrate holder 

to maximize the number of coatings in the same deposition. However, it is worth highlighting the 

lack of studies describing in such detail the multilayer composition, as done in this work with high 

resolution TEM. 
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Figure 4.15 –STEM image of  AlTiON (HPW) on inconel substrate. (b) EDX 

analysis in selected areas on a nanoparticle in upper region and the nanolayers 

region. (c) Amplified STEM image of  the self-formed nanolayer region on the 

AlTiON_21 (HPw). 

In summary, the microstructural and morphological characterization show the evolution 

of the Al-Ti-N ternary phases when the oxygen concentration or the pressure was increased. This 

evolution of the material when increasing the O content was schematized in Figure 4.16 [76].  

 
Figure 4.16 – Stages of the microstructures of Al–Ti-O–N coatings at increasing O concentrations. 

There is a pronunced columnar micrsotructure observed for the oxygen-free AlTiN 

samples, parallel to the preferential (200) crystal orientation of the cubic structure. Increasing the O 

content resulted in a width and length shringk of the columns, with smaller cristallites embedded 

on amorphous matrix, as confirmed by XRD, SEM and HR-TEM characterization and previously 

reported by Petrov et al [80]. The higher oxygen content cannot be accommodated into the AlTiN 

lattice, and amorphous (Al,Ti)2O3, Al2O3 and TiO2 phases appeared between the grain boundaries, 

what results in a reduction of the grain size. An initial region of epitaxial growth following 

columnar AlTiN was detected, despite the fact of the multilayers formed associated with sample 

rotation. Larger oxygen concentrations (by increasing the deposition working pressure) the epitaxial 

growth of individual crystals is periodically interrupted by the formation of an amorphous matrix 

which completely covers the AlTiN nanocrystals embedded in it. The composite film is composed 
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of three dimensional globular grains separated by an amorphous (Al,Ti)2O3 phase. At even higher 

oxygen concentrations (sample #6) amorphous Al,Ti oxide film is formed.  

The high solar absorptance expected from graded SSC based on AlTi(OxN1-x) films are 

attributed to the morphology structure detected in the AlTi(OxN1-x) layers, as schematized at Figure 

4.17. The incident light is scattered by the AlTiN nanocrystalline embedded in the amorphous 

(Al,Ti)2O3 matrix in the AlTi(OxN1-x)  layers and hence, the optical path is enlarged [33]. 

 

Figure 4.17 – Schematic diagram 

of  the reflectance as interference 

sum of  multiples reflections of  

the interfaces and multiple 

scattering effects in 

AlTiO/AlTiON/AlTiN multilayer 

SSC stack. 

The solar absorption is related to light-matter interaction mechanisms, including photon-

induced electronic transitions, and photon-induced collective electron oscillations in the 

nanoparticles [81]. Moreover, when the particle density is high, the coupling of plasmon between 

neighbouring particles can occur, which increases the heating and helps transmitting it efficiently to 

the metallic substrate [82]. This multilayer structure consisting of layers with graded oxygen 

concentration, is expected to be very efficient for solar selectivity [32,83].  

4.2.5 Optical characterization of AlTi(OxN1-x) individual layers 

A proper analysis of the optical constants is crucial to success in the design of the 

multilayer SSC. After a detailed microstructural and morphological analysis, the optical properties 

of the selected AlTi(OxN1-x) films deposited with different O2/(O2+N2) ratio of reactive gases were 

analyzed by SE. Then, the reflectance spectra were measured in order to verify the correct 

modelling of the optical constants, comparing measured and simulated specular reflectance.  

Spectroscopic ellipsometry (SE) 

Figure 4.18 (a) shows the experimentally measured SE values of the AlTiN sample along 

with the best fitted theoretical spectrum. In this oxygen free sample (sample #1), Drude model is 

needed to model the metallic behaviour [25]. The Drude term involves two independent 

parameters whose relations are described in Chapter 2 and included in Figure 4.18 (a). The 

unscreened plasma energy (EPU) measures the concentration of conduction electrons in the film 
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and it can be used to quantify the metallic character. The second parameter is the damping factor 

(ΓD) related to the scattering of electrons [50]. 
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Figure 4.18 – Experimental psi and delta along with fitted values for (a) AlTiN and (b) AlTiO samples deposited on silicon 

substrate. The parameters employed for each optical model are icluded in the figure. 

When the oxygen comes into play, the analysis of SE results gets more complicated. In the 

case of the pure oxide film (sample #6), the microstructural characterization reveals that the film 

was almost amorphous. As a semi-transparent dielectric film in the visible, the optical constants 

were modelled by using Cauchy’s dispersion formula, which main parameters employed and the 

goodness of the fitting are represented in Figure 4.18 (b).  

The complex refractive index of the intermediate oxynitride films (samples #4 and #5), 

was calculated as a contribution of intraband (electronic conductivity) and interband absorptions. 

As analysed by XRD and HR-TEM, the samples present columns of cubic crystalline structure 

along with amorphous regions. Therefore, in this thesis the optical constants of these samples were 

assumed to follow the Drude dispersion model for the contribution of the intraband transitions 

combined with Tauc-Lorentz (TL) peaks. TL has been previously employed to describe the optical 

constants in case of amorphous or polycrystalline dielectric materials [84,85], and assuming non-

interaction between atoms. Drude parameters required for the modelling of these samples were 

pretty similar than the employed for the AlTiN, showing no main differences in their metallic 

behaviour. The best fitting obtaining for AlTi(OxN1-x) samples with 14 and 20 at.% of O are show 

at Figure 4.19 (a) and (b), respectively.  
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Figure 4.19 – Psi and delta measured and modelled values for (a) sample #4, 14 at.% O and (b) sample #5, 20 at.% O 

deposited on silicon substrate. 
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In the case of sample #7, deposited with higher working pressure, their optical constants 

cannot be modelled following a similar pattern. After the analysis by HR-TEM, the sample shows a 

solid solution of crystalline nanoparticles embedded in an amorphous matrix (Figure 4.14). The 

fitting of this sample (Figure 4.20) were successfully performed by a Bruggeman EMA, with 

inhomogeneous material consisting on an amorphous AlTiO matrix, with a volume fraction of 5% 

of AlTiN globular particles (depolarization factor 0.55). The employed optical constants for the 

EMA model were the measured of the AlTiO (sample #6) as matrix component and the AlTiN 

(sample #1) as the embedded nanoparticles, represented in Figure 4.18. 
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Figure 4.20 – Psi and delta measured and modelled values 

for sample #7 with 58at% O on silicon substrate. 

The refractive index (n) and extinction coefficient (k) as a function of wavelength, for the 

AlTi(OxN1-x) samples generated from the best fit parameters of the above described optical models 

are shown in Figure 4.21.  
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Figure 4.21 – (a) Refractive index (n) and (b) extinction coefficient (k) after modelling the measured SE values of 

AlTi(OxN1-x) samples on Si substrate with 0.5, 14, 20 and 60 at.% of O.  

The n and k values of AlTiN (sample #1) show a minimum at λ~500 nm and thereafter, 

increases monotonically with increasing wavelength. This increment with the wavelength indicates 

the metallic behaviour of AlTiN sample. However, the plasma wavelength of the AlTiN shows a 

higher value than typical metals, resulting in a possible candidate as intrinsic selective material itself. 

The absorption coefficient (a=4πk/λ) increases in the visible region and decreases in the IR. Similar 

trend were observed for the complex refractive index of AlTiON_13 and AlTiON_21 samples 

[86].  
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The refractive index of the deposited AlTiN, AlTiON (14 at.% O), AlTiON (20 at.% O) 

layers were 2.42, 2.31 and 2.21, respectively at a wavelength of 550 nm (Figure 4.22). At the same 

wavelength, the extinction coefficients of the AlTiN, AlTiON(14 at.% O) and AlTiON(20 at.% O) 

were 0.58, 0.45 and 0.40, respectively. The refractive index and extinction coefficients of the AlTiN 

and AlTiON samples are comparable to the values of transition metal nitride and oxynitride films 

reported elsewhere [25,33,58,87]. The decrease of the n and k values with higher oxygen 

concentrations indicate the intermediate character, i.e. a transition between the metallic and the 

dielectric behaviour, which is in good agreement with the previous morphology and microstructure 

characterization. It can be concluded how by increasing the oxygen content, there is a clear 

transition from metallic to dielectric nature. This gradient in the refractive index will enhance the 

overall absorptance in a designed SSC employing the different AlTi(OxN1-x) samples [28].   
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Figure 4.22 – Evolution of  the refractive index (n) and 

extinction coefficient (k) with the O content.of  AlTi(OxN1-

x) coatings deposited at Pw=1.5 Pa.  

The abrupt decrease in the extinction coefficient for high oxygen content has been  

attributed to the loss of percolation between crystalline particles and the appearance of a thick 

amorphous region around the AlTiN crystallites that separates the crystallites from each other [76]. 

It has been previously reported a change in the behaviour from metallic to dielectric at oxygen 

concentrations higher than 25-30 at.% [6,18]. 

The pure oxide sample #6 is transparent in the Vis-NIR wavelength range and the n 

values decreases with the wavelength, following a normal dispersion. The refractive index 

n550nm=1.64, is similar than the previously measured for Al2O3 (n550nm =1.67) in chapter 3. 

Furthermore, the extinction coefficient values of AlTiO sample was found to be negligible in all 

wavelength regions, as expected for a dielectric materials. This implies that incident photon loss 

caused by absorption in the antireflection layers can be neglected. The fundamental band gap, as in 

the alumina, is situated at λ<~200 nm, and below this wavelength interband transitions are possible 

and the k reaches high values. 

Contrary to expectations sample #7 oxide sample shows no dielectric behavior but a high 

absorption coefficient within the whole wavelength range, with n550nm =1.84 and k550nm =0.15. Such 

behaviour is typically exhibited by amorphous semiconductors materials, but the polycrystalline 
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contributions cannot be ruled out, as confirmed by the tiny peaks in the XRD patterns and the HR-

TEM images.  

Spectral reflectance UV-Vis-NIR + FTIR 

The reflectance spectra of the individual single layers were recorded in order to verify the 

modelling of the previous optical constants. Very good agreement was found between simulated 

and measured reflectance (Figure 4.23) in the SE measured range.  
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Figure 4.23 – Reflectance spectra measured of  AlTi(OxN1-x) 

samples on Si substrate compared with the reflectance 

simulated by CODE employing the measured optical 

constants. (a) AlTiN, (b) AlTiON (14at.%O), (c) AlTiON 

(20at.%O), (d) AlTiO and (e) AlTiON_21 (HPW). The 

dotted line indicates the wavelength division between 

reflectance spectra simulated based on measured optical 

constants, and based on extrapolated n, k.  

The simulated reflectance spectra includes a pure oxide top layer with a graded 

composition between air and the final AlTi(OxN1-x) material for a good fitting along the SE 

measured wavelength range. 

The n, k values measured in this work were restricted by the SE device to the 190-1700nm 

wavelength range. Hence, the optical constants must be extrapolated up to the IR range for a 

proper estimation of the thermal emittance. Figure 4.23 includes the reflectance measured and 
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simulated in the complete wavelength range (300 to 25000 nm), with the optical constants 

extrapolated in the IR following the procedure explained in chapter 2. In samples #1, #4 and #5 a 

discrete absorption is observed at λ~8000 nm, associated to vibrational modes from the 

amorphous matrix phase. This vibrational mode cannot be included in the proposed extrapolation 

model. However, the fitting is completely satisfactory and far better than the extrapolation 

performed by the simulation software and the one commonly employed in literature [88–90]. This 

is a proof of the suitability of the optical constants for designing multilayer coatings based on these 

oxynitrides. 

The reflectance spectra measured in the whole wavelength range of interest (0.3 to 25 µm) 

for the AlTi(OxN1-x) selected samples on inconel substrate are shown in Figure 4.24. As explained 

in the SE analysis, AlTiN, AlTiON (14at.%) and AlTiON (20at.%) show intrinsic selective 

behaviour, with low reflectance in the Vis range, and high IR reflectance. The position of the 

minimum value of the reflectance curve can be modulated by tuning the film thickness.  
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Figure 4.24 – Measured reflectance spectra of  

AlTi(OxN1-x) samples on inconel substrate with 

different thickness, combining UV-Vis-NIR and IR 

wavelength range. The reflectance spectrum of  the 

inconel substrate is also included in the figure 

The nitrogen free sample (AlTiO) is transparent in all the range of interest and does not 

show interband absorptions in the IR. However, the sample acts as antireflective layer, decreasing 

the reflectance in the Vis-NIR range and showing the typical modulations of dielectric materials.  

AlTiON sample #7 deposited at higher pressure does not exhibit the typical optical 

response for oxides. This sample shows intrinsic selectivity with a minimum of reflectance at 

λ=750nm and very high IR reflectance. However, this sample was not employed in the design of 

the complete SSC, due to its non-homogeneous morphology along the thickness, as observed in 

the HR-TEM images.  
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4.3. Optimization of solar selective multilayer stack based on 
AlTi(OxN1-x) 

The design of a complete SSC multilayer based on AlTi(OxN1-x) materials requires an 

absorber layer with a gradient composition of AlTi(OxN1-x) in combination with a dielectric 

antireflective layer of (Al,Ti)2O3 and an IR reflective metallic layer. The oxygen/nitrogen ratio and 

sequence of layers for the simulation of complete SSC were decided once the optical constants of 

AlTi(OxN1-x) samples were determined.  

Two designed SSC were deposited by CVA, and thereafter, their morphology and optical 

properties were analysed. In order to verify the temperature resistance, the multilayers were 

submitted to asymmetric and cyclic thermal stability tests. 

4.3.1 Simulation of a complete SSC based on AlTi(OxN1-x) 

Using the measured and verified optical constants of the single AlTi(OxN1-x) layers, 

complete SSC with different configuration were designed, denominated as Multilayer 1, 2 and 3. 

The complete stacks were simulated on 2 mm thick Inconel HAYNES@230 whose n and k were 

as well experimentally measured. The number of AlTi(OxN1-x) layers, oxygen concentration and 

layer thickness were optimized in order to maximize the solar absorptance and minimize the 

thermal emittance. The simulated reflectance spectra of three configurations, and the parameters 

employed for each one are schematized in Figure 4.25.  
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Figure 4.25 – Specular reflectance obtained from CODE simulation of three different configurations: multilayer 1, 2 and 3. 

The details of the parameters employed and the values for the solar absorptance (α) and thermal emittance (ε) from 
simulation are included in the figure 

The absorptance and thermal emittance are included in Figure 4.25. Multilayer 1 

composed of AlTiO/AlTiON (14at.%)/AlTiN/TiN exhibited α = 90.9% and εRT=13.5%, 

multilayer 2 (AlTiO/AlTiN/TiN) exhibited slightly lower values for both α = 89.1% and 

εRT=10.2%. Multilayer 3 has the best optical performance, employing a design with 5 layers of 
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AlTiO / AlTiON(14at.%) / AlTiON(20at.%) /AlTiN / TiN with values of α = 94.7% and 

εRT=5.6%.  

This improvement in the third design may be attributed to the contributions of not only 

the metallic nanoparticles dispersed in the amorphous matrix but also by the multilayer interference 

effect. The thicknesses were selected to promote multiple reflexions in the interfaces, returning to 

interference destructively after the light is reflected from the front surface of the films. The 

thicknesses of each layer must be carefully chosen to set the electromagnetic amplitude to zero at 

desired wavelengths and hence, slight variations in film thickness can lead to significant changes in 

the optical properties.   

Due to the technical difficulties associated to an accurate adjustment in the growing 

thickness for each layer with the rotatory CVA system, and the possible errors in the transition 

between layers, the designed multilayer 1 and 2 were the selected ones to be deposited and thermal 

tested, as explained in next section.  

4.3.2 Deposition and characterization of complete SSC based on AlTi(OxN1-x) 

The simulated multilayers 1 and 2 were deposited by CVA on mirror polished Inconel 

substrates, employing similar deposition parameters as the explained for the individual layers. The 

cross sectional morphology of the two multilayers was analysed by SEM (Figure 4.26). From these 

images it can be observed that there is a good adhesion without delamination problems between 

the substrate and the TiN IR layer and between layers that comprises the stack. The thicknesses of 

the different layers are included in the SEM images. As expected for thin layers, no droplets or 

macroparticles were detected in the cross sections of both complete SSC.  

   
Figure 4.26 – SEM cross section images of deposited SSC. (a) Multilayer 1 and (b) multilayer 2. The measured thickness and 

layer distribution are indicated in the images. 

Only three different layers can be distinguished from the SEM image of the multilayer 1 

(Figure 4.26 (a)), where the medium layer corresponds to AlTiON (14at.%) and AlTiN with no 

differentiated growing regime. The total thickness of these two layer should be 160 nm instead of 

the 146.7 nm deposited. There was also a slight difference in the AR layer thickness, showing 5.5 

(a) (b) 
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nm less than designed. These discrepancies between simulated and deposited thickness may result 

in differences in the optical outcomes. The deposited thicknesses of Multilayer 2 (Figure 4.26 (b)) 

were in good agreement with the nominal values.  

The spectral reflectance of the multilayer stacks were measured by UV-Vis–NIR and 

FTIR spectrophotometers in the range of 0.3 – 25 µm. In Figure 4.27, the experimental reflectance 

is compared with the optical simulated reflectance for the two designed multilayer stacks. 
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Figure 4.27 –Simulated and experimentally measured reflectance spectra of (a) multilayer 1 and (b) multilayer 2. The solar 
absorptance and thermal emittance values obtained from the measured curves and the images of the as deposited SSC are 

also indicated in the figure. An optimized simulated spectra in included in (b) 

The absorptance (indicated in Figure 4.27) was 88.9 and 91% for multilayer 1 and 

multilayer 2, respectively, with a variation Δα ±2% in comparison to simulated results. The 

measured thermal emittance at room temperature also shows a slight difference with regard to the 

simulated, obtaining εRT =18 and 9% for multilayer 1 and multilayer 2, respectively. Deposited SSC 

multilayer 2 shows improved values for α and ε than the simulated, turning into the most promising 

design. 

The fitting of the simulated reflectance of the tandem SSC is not completely satisfactory 

as the interfaces between AlTiN AlTiON and AlTiO are not sharp and well-defined in the 

deposited stack. Nonetheless, the behaviour is as a gradient in the optical constants. Hence, a new 

simulations was performed in multilayer 2 (Figure 4.27 (b)), introducing an EMA interlayer 

between AlTiN and AlTiO. Thanks to the experience gained in chapter 3 with the different EMA 

models, a Bergman effective medium was selected, with 33% VF of AlTiN embedded into AlTiO 

matrix, with percolation degree of 0.66 and a fitted spectral density plot. 

Hence, and despite of all these uncertainties an excellent fitting of multilayer 1 was 

obtaining, and it was significantly improved in multilayer 2 with the incorporation of a Bergman 

EMA interlayer composed for the upper a lower layers. These results shows once again the 

strength and validity of the optical simulations performed in this thesis. 
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4.4. Durability tests of complete SSC based on AlTi(OxN1-x) 

In this section, a detailed analysis of the thermal stability of the deposited multilayer stacks 

was carried out. The thermal stability and ageing properties of the designed complete solar selective 

were investigated by exposing the samples at asymmetric and cycling thermal treatment tests, 

described in chapter 2. Their microstructure and optical properties were characterized after each 

thermal treatment. The performance criterion (PC) from the IEA SHC program task X, as defined 

in chapter 2, was employed to simulate the expected service life time of the coating of 25 years [91].  

4.4.1 Asymmetric thermal treatment test on complete solar selective coatings 

The asymmetric thermal treatment consists of heating the complete stack at 450, 650 and 

800ºC for 12 hours in air, with a heating ramp of 5ºC/min. Figure 4.28 shows the reflectance 

spectra of the deposited multilayer after each temperature.  
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Figure 4.28 – Reflectance of multilayer SSC before and after the asymmetric thermal treatments. (a) Multilayer 1 and (b) 

multilayer 2. The values of the measured α and εRT after each temperature are tabulated in the figure. The photographs of the 
degraded SSC after the thermal test at 800ºC are included. 

The SSC solar absorptance and thermal emittance did not change significantly after heat 

treatment up to 650ºC, showing high thermal stability in air, as observed from the values included 

in Figure 4.28. Minor variations were observed in the solar absorptance (Δα = +0.1 %) and thermal 

emittance (Δε = -0.8 %) for multilayer 1, even better than the as deposited values. The changes on 

multilayer 2 were slightly larger (Δα =-2.2 and Δε = +3.4%) but they were valid for the 

performance criteria of thermal stability defined (PC = 3).  

The high thermal stability of the multilayers deposited was attributed to several factors. 

The interdiffusion between AlTiN/AlTiON and AlTiON/AlTiO is expected to be very low up to 

650’ºC because of the high activation energies needed, the high melting points of materials and the 

stable microstructures.  

However, a drastic failure was observed when the temperature was increased to 800ºC 

with many defects even visually observed, such as change of colour from dark blue to yellowish-

brown (see photo included in Figure 4.28). The annealing in air of the complete SSC may induce 
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several microstructural modifications such as interdiffusion, reaction between layers to produce 

new phases, transformation within one or all layers and oxidation. These modifications resulted in 

changes in the optical properties and the final optical performance. In order to analyse the 

microstructural evolution with temperature, the heat treated multilayers were analysed by GIXRD 

(Figure 4.29).  
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Figure 4.29 –GIXRD patterns of the SSC as deposited and after thermal treatment 12 h at 450ºC, 650ºC and 800ºC of (a) 

multilayer 1 and (b) multilayer 2.  

The GIXRD patterns did not detect significant changes in the crystal microstructure at 

450ºC and only the peaks of the cubic AlTiN were observed (2θ =36.8º, 43.7º, 61.8º, 74.9º and 

97.0º) [72]. When the temperature increases up to 650ºC, small peaks were detected associated to 

rutile TiO2 (ICCD 01-073-2224 for rutile TiO2 [92]) at 2θ =27.6º, 36.5º, 54.4º and 56.6º. At 800ºC, 

the TiO2 peaks become narrower and better defined and additional peaks also appears associated 

with other crystal oxide phases such as α-Al2O3 (ICCD card 00-043-1484) [59] and Al2TiO5 in 

minor proportion, for both multilayers [68]. The metastable cubic γ-Al2O3 detected in the as 

deposited individual AlTiO layers, changes during the thermal treatment and consists of a mixture 

of rutile TiO2 and α-Al2O3 grains what contributes to a formation of voids along grain boundaries, 

allowing the external atmosphere (O2) to penetrate along them [77].  

The thermal stability up to 900ºC of the AlTiO top layer deposited by CVA with this 

stoichiometry has been widely reported previously [6,68]. In the (Al67Ti33)(OxN1-x) films, the high 

temperatures oxidation mechanism expected implies the formation of a beneficial stable corundum 

α-Al2O3 top layer, that retards the inward diffusion of O2  avoiding the formation of porous TiO2 

[55]. Hence, it is more likely that the titanium of the detected TiO2 comes from the diffusion of the 

IR reflective TiN layer instead from the (AlTi)(OxN1-x) layers. This result can also be derived after 

the visual inspection of the heated multilayers, which show a yellowish coloration more 

characteristic of TiN [93].  

The peaks associated with fcc-AlTiN were still detected after heating at 800ºC, although a 

broadening of only the (200) peak situated at 2θ =36.8º was observed, characteristic feature for 

spinodal decomposition during annealing of AlTiN films [71,80]. The degradation mechanism 
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observed include the increase of roughness of the multilayer surface compared to the smooth 

surface of the as deposited coatings, which correlated to an increase of the emittance [36]. This 

effect, coupled to the pronounced oxidation of titanium from the TiN make a completely lost of 

the selective properties.  

This failure observed at 800ºC, raise to proceed with accelerated ageing tests at a lower 

temperature. In particular, cyclic tests will be performed at 600ºC for both deposited SSC.  

4.4.2 Cycling thermal treatment test on complete SSC 

The multilayer SSCs were exposed to 750 hours of cyclic symmetric heating tests, i.e. 250 

cycles heating up to 600ºC for 2 hours in air and cooling down to 300ºC (cyclic test further 

explained in chapter 2). The reflectance spectra of the deposited multilayers after the symmetric 

cycles at 600ºC are shown in Figure 4.30. The values of α and εRT extracted from these spectra for 

every 50 cycles are included.  
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Figure 4.30 –Reflectance of the (a) multilayer 1 and (b) multilayer 2 after 250 cycles at 600ºC during 2 hours with symmetric 

heating and cooling rams at 10ºC / min. The values of measured α and εRT for every 50 cycles are tabulated in the figure. 

The thermal emittance at 600ºC (ε600ºC) was calculated and plotted together with α and εRT 

for every 50 cycles (in Figure 4.31). The resulted values of α and εRT of the multilayer SSC after 250 

cycles at 600ºC (i.e. total 750 hours including heating and cooling ramps) show long term stability 

at high temperature. Minor variations were observed in the solar absorptance (Δα = -0.8 %) and 

thermal emittance (ΔεRT = +5.4 % and Δε600ºC = 2.1 %) for multilayer 1, resulting in a valid 

accelerated performance criteria (PC= 2.15). Similarly, small changes were also detected in the 

optical properties of multilayer 2 (Δα =-1.0%, ΔεRT=+5.1 % and Δε600ºC = 2.1 %), showing an 

excellent optical performance (PC= 2.27).  
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Figure 4.31 – Measured α, εRT and ε600ºC for every 50 of the (a) multilayer 1 and (b) multilayer 2 after 250 cycles at 600ºC 

during 2 hours with symmetric heating and cooling ramps at 10ºC / min 

The accelerated life-time tests revealed a very good oxidation resistance after 750 hours of 

symmetric cycling. The formation of nanocrystalline AlTiN surrounded by the amorphous matrix 

can protect the coating from oxidation due to increasing diffusion path of oxygen. This concept of 

AlTiN nanocrystals embedded in an amorphous matrix for high temperature resistance coatings 

has been widely employed for superhard nanocomposites of AlTiN on a-Si3N4 [94,95] mainly 

deposited by CVA. The principle of self-organization of the nanostructure also observed in the 

SSC based on AlTi(OxN1-x) significantly improved the life-time of the coatings at high temperature.  

Table 4.7 summarized α and εRT obtained for multilayer 1 and 2 in the different multilayer 

SSC design steps, since the initial optical simulated stacks to the deposited, and their variations with 

the different thermal treatments tests.  

Table 4.7 – Simulated and measured solar absorptance (α) and thermal emittance (εRT) obtained in the different steps 
followed for the design of a SSC based on AlTi(OxN1-x) and after the asymmetric and cycling thermal treatment tests. 

 

 

 

Previous experience shows that some of the coatings that can withstand high constant 

temperature fail when they are subjected to temperature cycling. Very promising results were 

obtained with a proper design of the multilayer SSC stack, obtaining promising values of α=91.0% 

and εRT =9.0 % with no degradation after cycling 750 at 600ºC in air. This is significantly better 

than thermal stability values reported for this class of SSC so far, wherein AlTiON based stacks 

deposited by magnetron sputtering shows stability under cyclic heating condition only at 350ºC[28]. 

Maximun T 
Multilayer 1 Multilayer 2 

α ε  α ε 
Simulated 90.9 13.5  89.1 10.2 
As deposited 88.9 18.0  91.0 9.0 
 PC  Δα Δε PC Δα Δε 

12 h@450ºC 0.6 -0.6 -0.1 0.2 -0.2 0.0 
12 h@650ºC -0.3 +0.1 -0.8 3.0 -2.2 +3.4 
250 cycles@600ºC  2.15 -0.8 +5.4 2.27 -1.0 +5.1 
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4.5. Discussion and conclusions of SSC based on 
AlTi(OxN1-x) 

A systematic, scientifically rigorous and successful study of AlTi(OxN1-x) single layers was 

conducted in this chapter. AlTi(OxN1-x) thin films with different oxygen content were prepared by 

CVA. After checking the good stability of selected AlTiN and AlTiON (20 at.%O) individual layers 

at high temperatures and the possibility to modulate the optical constants with the different oxygen 

content, a depth study of AlTi(OxN1-x) thin films was carried out. 

Deposition and characterization of AlTi(OxN1-x) individual layers  

A first set of samples were deposited to determine their composition and optical 

properties. Thin films with thickness below ~150nm did not show evidences of macroparticles, 

and hence, no problems are foreseen for the deposition of a multilayer stack with the non-filtered 

CVA. After initial simulations a new set of samples were grown including AlTiN, AlTiON (14 

at.%), AlTiON (20 at.%), AlTiO and AlTiON deposited at higher Pw. The latter sample has a 

composition nearly equivalent to a pure oxide, with only a residual content of 2at.% of N. 

The microstructural and morphological characterization shows the evolution of the AlTiN 

ternary phases when the oxygen concentration or the pressure was increased. The deposited AlTiN 

film exhibits a dense and columnar structure with diameters in the order of 30 nm extended 

throughout the whole coating thickness and parallel to the preferential (200) crystal orientation of 

the cubic structure. With the incorporation of O2 as reactive gas, it resulted in a monotouos width 

and length shrink of the columns, with smaller cristallites embedded on amorphous matrix, as 

confirmed by XRD, SEM and HR-TEM. The higher oxygen content cannot be accommodated 

into the AlTiN lattice, and amorphous (Al,Ti)2O3, Al2O3 and TiO2 phases appeared between the 

grain boundaries, what results in a reduction of the grain size. An initial region of epitaxial growth 

following columnar AlTiN was detected. Amorphous phases in the coating were identified with the 

incorporation of oxygen. The epitaxial growth of individual crystals is periodically interrupted by 

the formation of an amorphous matrix which completely covers the AlTiN nanocrystals embedded 

in it. Pure oxide samples were practically XRD amorphous with tiny peaks associated to the 

metastable cubic γ-Al2O3 phase.  

Excellent fitting of the measured spectroscopic ellipsometry data of single AlTi(OxN1-x) 

layer was accomplished using a combination of Drude and Tauc-Lorentz dielectric function 

models. After the analysis of the SE data it can be concluded that there is a transition from metallic 

to dielectric by increasing the oxygen content. The optical properties of these AlTi(OxN1-x) films 

can be controlled in a wide range from metallic to dielectric character by choosing the oxygen 
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concentration. The results revealed that both the refractive index and the extinction coefficient are 

decreased when oxygen was introduced.  

The optical constants were extrapolated in the whole wavelength range of interest (300-

25000 nm) for a proper estimation of the thermal emittance, and their fitting was verified 

comparing simulated reflectance with UV-Vis-NIR + IR measured one on individual layers, 

obtaining an excellent agreement.  

Deposition and characterization of SSC based on AlTi(OxN1-x)  

An exhaustive simulation work was performed in order to obtain trustful models for the 

reflectance based on optical constant measurements. Once achieved this mastering, simulations of 

two different SSC multilayers were done, employing the measured optical constants of the 

individual AlTi(OxN1-x) and extrapolated in the IR. The SSC composed of AlTiO / 

AlTiON(20at.%) /AlTiON (14at. %)/ AlTiN / TiN exhibited α = 94.7% and εRT=5.6%. However, 

due to the technical difficulties to obtain an accurate adjustment of each layer thickness, two 

alternative multilayers, which also show good optical selectivity values, were the selected ones to be 

deposited.  

These two simulated SSC were deposited by CVA on mirror polished Inconel substrates. 

Their reflectance spectra were recorder and compared their α and εRT obtaining slight differences 

on the results, attributed to inaccuracies in the determination of the optical constants, which were 

assigned to the uncertainties in the values obtaining from the SE fitting and furthermore, to the 

gradient nature of the AlTi(OxN1-x) coatings, without well-defined interfaces.  

The multilayers stacks show good thermal stability up to 650ºC. However, above 800ºC 

noticeable oxidation was identified which in turn leads to degradation of the optical properties. Ti 

diffusion through the film from the TiN involves subsequent oxidation to crystalline rutile TiO2 

and the reflectance spectra show how the selectivity properties were completely lost. The formed 

crystalline oxides affect the solar absorptance.  

Preliminary accelerated thermal ageing tests comprise 750 hours in air (250 cycles with 2 

hours per cycle at 600ºC and cooling down to 300ºC) showed that the multilayers pass the test with 

PC value of 2.1 which is below the lower limit of 5.  

This results confirm that the designed SSC based on AlTi(OxN1-x) materials withstand 

breakdown at 600ºC in air, and therefore, they can be an exciting candidate material for CSP 

applications at high temperature.  

More experimental results are underway to validate the failure mechanism that would 

include SEM and HR-TEM analysis of the heat treated coatings and in-situ evaluation of their 

microstructure and optical constants on the cluster tool, as described further in chapter 5. 
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CHAPTER 5: COMPREHENSIVE IN-SITU 

CHARACTERIZATION OF THIN FILMS AT HIGH 

TEMPERATURE  

This chapter presents the environmental in-situ characterization performed to the two 

candidate materials proposed in this thesis as absorber layer in a SSC. In particular, an accurate 

knowledge of the variation of the dielectric function of thin films with the temperature and its 

relation to compositional and microstructural changes could help to prevent failures.  

In the first section 5.1, an introduction to in-situ characterization of coatings is given. The 

capabilities of the cluster tool sited in HZDR and used in this thesis are introduced in section 5.2. 

A new test procedure for the qualification of solar selective coatings (SSC) at high temperature is 

proposed in section 5.3, which combines a sequence of analytical techniques in the multi-chamber 

cluster tool at different environments and temperatures.  

An amorphous carbon titanium carbide thin film had been studied (section 5.4) as an 

example of the described methodology. In next section 5.5, AlTi(OxN1-x) thin films were 

investigated in order to understand the influence of the oxygen to nitrogen ratio on the optical 

properties and their failure mechanisms at high temperatures. The analysis was performed first in 

vacuum inside the multi-chamber cluster tool heating samples from RT to 800°C without sample 

exposure to undefined atmospheres. In the same way, ex-situ annealing in air was performed to 

compare with the previous results observed when vacuum annealing. The low emittance properties 

of AlTi(OxN1-x) samples, allowed to perform in-situ RBS analysis at temperature above 800ºC. No 

significant changes in optical properties and composition were found when heating in vacuum 

atmosphere the films, showing excellent high temperature stability.  
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5.1. Multichamber cluster tool for SSC coating analysis  

Solar selective coatings for CSP plants have to withstand extreme environmental 

conditions. The improvements in efficiencies for solar thermal energy conversions partially implies 

the increase in the receivers’ temperature, aiming to reach up to a maximum temperature of 650ºC 

for new superheated steam and molten salts receivers [1]. This requires not only the development 

of new SSC durable at high temperature in air but also a better understanding of those coatings. 

Coatings for high temperature applications require an in-depth study of thin films 

properties at high temperatures. In some of the CSP designs, the coatings of the central receiver 

tubes are applied in vacuum (parabolic troughs), but in central power tower plants they are exposed 

to atmospheric environments. In an evacuated atmosphere, the principal degradation mechanisms 

are the interdiffusion between layers, diffusion or segregation of some internal layers to the surface, 

thermal expansion or the changes in surface morphology [2]. In air conditions, internal chemical 

reactions can change the composition and microstructure, oxide may growth induced by 

temperature [3,4], interfacial reactions can lead to loss of adhesion and evaporation of volatile 

components [5]. Finally, the coatings should be resistant to abrasive wear caused by wind and sand 

erosion and show good adhesion onto the receiver base material.  

To understand the failure mechanism at high temperature of the new developed SSC it is 

crucial to understand how material properties change with temperature. A comprehensive analysis 

of the failure mechanism in SSC should combine the study of how composition, microstructure 

and optical constants vary with environment and temperature changes. In order to predict and 

improve the reliability of the new designed SSC under working conditions in a CSP plant, it is 

necessary to characterize optical and microstructural properties versus temperature in the same 

experimental setup. 

SSC are designed to be used over a large range of temperatures and hence, the 

temperature dependence of their optical properties is of great importance. A scan of the literature 

reveals the scarcity of optical data above room temperature [6]. In addition, the data scatter widely 

when more than one measurement is reported for the same material. Due to thermal expansion, 

systematic errors are difficult to minimize, since the surface condition of a sample may change 

irreversibly. Calculating the thermal emittance from spectral data taken at room temperature 

assumes that the spectral characteristics do not change with increasing temperature. This is only 

valid if the material is invariant and does not undergo a phase change, breakdown or oxidation at 

higher temperatures. It is therefore necessary to measure the optical properties of the solar selective 

coatings at the temperature at which they will be used. 

Real time spectroscopic ellipsometry (SE) has proved to be a powerful tool for 

investigating optical constants in thin films and it has been used during in-situ growth of samples 
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installed inside a deposition chamber [7], or inside a vacuum chamber in order to study the 

temperature dependence of optical constants in thin films with thermally tunable optical constants 

[8,9]. Besides the dependence upon temperature, the optical effects associated with defects in the 

films, such as vacancies, interstitials, dislocations and grain boundaries, should be determined. Such 

measurements would require a combination of composition and microstructure analysis. Raman 

spectroscopy and ion beam analysis techniques have been widely applied to characterize chemical 

bonding and atomic composition respectively [10], but commonly both techniques are used in 

different set ups suffering from possible oxygen incorporation when the samples are moved from 

one characterization device to the other.  

In order not to break the vacuum during characterization and to give the possibility of 

characterizing different properties of materials in a connected multi-chamber device, various 

approaches have been designed. A cluster tool is namely a device that allows making multi-steps 

experiments. Some cluster tools with ultra-high vacuum technologies and different characterization 

chambers have been employed previously. For instance, the cluster tool at Forschungszentrum 

Jülich GmbH (Germany) is dedicated to the study of magnetism and spintronics within an 

ultrahigh vacuum (UHV) environment [11]. This cluster tool combines a SEM chamber, a spin 

polarization detector, and a FIB, as shown in Figure 5.1 (a). Additionally, there is another chamber 

that houses the low temperature Scanning Tunnelling Microscope (STM) and lastly, a preparation 

and analysis chamber. A transfer chamber connects the two main units and enables in-situ access to 

all attached preparation and characterization tools without vacuum break.  

  

Figure 5.1 - (a) Top view of the Nano-Spintronics-Cluster-Tool at Forschungszentrum in Jüllich (Germany) [13]. (b) Top-
view schematic of cluster tool with intra-tool robotic sample transfer [14]. 

In Princeton University, there is a four chamber UHV cluster tool that allows in-situ 

structural analysis on specific photovoltaic materials [12]. These studied materials can be deposited, 

processed, measured, and characterized using the process development and integration approach. 

Another four chamber cluster tool example is situated in the “Process Development & Integration 

Laboratory” of the National Renewable Energy Laboratory (NREL), in Denver US (Figure 5.1 (b)). 

(a) (b) 
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The main tasks are the fabrication and study of a wide range of solar cell technologies by an 

integrated tool that uses the robotic transfer chamber to connect capabilities: optical, structural, 

morphological, and chemical compositional techniques.  

In all these examples, the samples cannot be exposed to different temperatures and 

atmospheres, thus making them unsuitable for in-situ environmental characterization. 

Environmental characterization of optical and microstructural properties of thin films continues to 

be a challenging task, and they have frequently been performed independently. There is an urgent 

requirement to develop instrumentation to measure the composition, optical and microstructural 

properties at very high temperatures of solar selective coatings and also to develop a universal test 

procedure for the performance criterion [15].  

5.2. Multichamber cluster tool in HZDR  

This chapter presents a novel methodology for environmental high temperature tests that 

integrates complementary characterization techniques into a single device. The new cluster tool 

situated at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany, combines the study of 

the optical constants in an environmental chamber by SE, compositional depth profile analysis 

using ion beam analysis techniques and microstructural analysis by Raman spectroscopy in several 

environmental conditions and at temperatures up to 1000 ° C (section 5.3). The main novelty of 

the proposed methodology is the possibility of performing different measurements sequentially in 

the same multi-chamber cluster tool, without breaking the vacuum, avoiding the oxygen 

enrichment of the samples at specific environmental conditions. Other advantages include the 

possibility of combining optical and structural characterization analysis and the presence of a 

heatable sample holder in all the chambers, allowing characterization of the samples at different 

temperatures.  

The in-situ high vacuum analysis cluster tool consists of three characterization chambers. 

A general view of the cluster tool is shown in Figure 5.2. The environmental chamber (E-C), the 

analysis chamber (A-C), and the ion beam analysis chamber (IBA-C) are shown. A central 

distribution chamber connects all the different units and enables in-situ access to the different tools 

without breaking the vacuum. All experimental chambers offer the possibility of heating the 

samples through a heatable sample holder which can reach up to 1000ºC. 
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Figure 5.2 - (a) Top view of the cluster tool: the central distribution chamber connects the different units and allows in-situ 
access to all preparation and characterization tools without breaking the vacuum  (b) the analysis chamber contains the in-

situ Raman spectrometer; (c) the environmental chamber houses the real time spectroscopic ellipsometry with different 
possible simulated environments; (d) the ion beam analysis chamber connected to the 6 MeV accelerator allows 

characterization of the samples by different IBA techniques (RBS, NRA, ERD). 

The E-C houses a real time spectroscopic ellipsometer (SE) and includes the possibility of 

simulating different environmental conditions, i.e. in vacuum conditions as well as in controlled 

atmospheres containing O2, N2 and Ar, or water vapour. A turbo pump equipped with a butterfly 

valve helps to limit the gas inlet in environmental operation. There is a heatable sample holder up 

to 1000°C,that allows the measurement of the optical constants of the samples at different 

temperatures. 

The optical properties of the thin films in the energy range of 370 to 1000 nm at an angle 

of incidence of 70º can be determined by spectroscopic ellipsometry (SE) using a rotating 

compensator ellipsometer M-2000FI (J. A. Woolam, Inc.) installed inside the environmental 

chamber. The acquired data is analysed using WVASE software from J. A. Woolam, Inc.  

To determine the variation in the ellipsometry parameters at different temperatures or 

environments, the integrated area between 450 to 850 nm of measured ellipsometric parameters (Δ, 

ψ) was evaluated at each temperature (SET), as described in equation (5.1). This energy region is 

selected as it is the region where Δ and ψ have higher accuracy and are more relevant for solar 

applications. The variation of the ellipsometry parameters between two temperatures ∆(SE) is 

described by the equation (5.2). 

𝑆𝐸𝑇 = ∫ 𝜓𝑇  𝑑𝐸
850 𝑛𝑚

450 𝑛𝑚

+ ∫ ∆𝑇 𝑑𝐸
850 𝑛𝑚

450 𝑛𝑚

 (5.1) 

∆(𝑆𝐸) = 100 ×  |
𝑆𝐸𝑇2 − 𝑆𝐸𝑇1

𝑆𝐸𝑇1

| (5.2) 

The IBA-C of the cluster tool is connected to the 6 MV Tandem ion accelerator of the 

ion beam centre, which can provide ions of different nature and charge state. In this chamber, 
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4He2+ ions up to 4 MeV, 2D+ up to 1.8 MeV and 35Cl7+ up to 14MeV energy can be employed to 

carry out several ion beam analysis techniques. RBS, NRA and ERD ion beam analysis techniques 

are currently implemented in the IBA-C. The mentioned techniques together allow identification of 

the overall elements and depth profiles of thin films. The technique, or the combination of 

techniques, used in each case will depend on the characteristics of the sample [16]. Moreover, the 

sample holder in the IBA-C is heatable up to 1000°C, allowing a non-destructive compositional 

analysis of the samples at different temperatures, as well as depth profile composition monitoring. 

However, only samples with low infrared radiation at high temperatures could be measured due to 

the incident IR radiation could saturate the semiconducting detector.  

The A-C is equipped with a Raman spectrometer. A modular fibre-coupled iHR 550 

Raman spectrometer equipped with 3 changeable gratings (1800/mm, 600/mm, 300/mm) is 

connected to the A-C. Two lasers, green and blue, with laser wavelength of 532 nm and 473 nm, 

respectively, are available. In-situ operation is possible by two fibre-coupled remote Raman heads 

(one for each wavelength). The incorporation of a TV camera allows a close visualization of the 

samples inside the vacuum chamber. The back illuminated deep depletion CCD detector with 90% 

quantum efficiency in the spectral range from 400 nm to 800 nm helps to keep the measurement 

times at bay. As in the other chamber, the sample holder in the A-C is heatable up to 1000ºC, 

allowing the study of the variation of the chemical bonding of the samples at different 

temperatures in a non-destructive manner. 

Visual inspection can be also very useful to examine sample deterioration. Depending on 

the sample and the type of failure, it is possible to detect surface cracks, delamination of the 

coating, extreme change or colour or the migration of elements to the surface. Therefore, after 

each heating step, it would be helpful to verify the integrity of the sample before the next heating 

step. The camera of the A-C allows visual sample evaluation in order to decide whether the 

characterization procedure needs to be stopped due to a catastrophic failure of the film. 

5.3. Qualification test procedure for SSC durability  

An optimal SSC needs to show appropriate optical properties as well as thermal and 

mechanical stability in air at high temperatures. Numerous publications [5,17–19] and standards 

describes the durability and accelerated ageing tests of solar thermal collectors. However, all these 

tests are valid only for solar collectors exposed to 200ºC as maximum temperature. The required 

temperature of the SSC evaluated in this thesis is higher (T>600ºC), and hence, a new test 

procedure is proposed. This methodology combines a sequence of characterization techniques in 
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the cluster tool at different environments and temperatures. The steps to follow in a complete 

thermal characterization process are shown in Figure 5.3.  

 

Figure 5.3 - Flow chart of  the methodology described for 

high temperature testing of  SSC. The different chambers 

represented in the diagram: the analysis chamber (A-C), the 

environmental chamber (E-C) and the ion beam analysis 

chamber (IBA-C). 

1. Installation of the sample in the transfer chamber.  

2. Transfer of the sample to the IBA-C to examine its elementary composition and its depth 

distribution along the thickness. The IBA technique selected depends on the sample type.  

3. Sample transfer to the A-C. Measure with Raman spectroscopy if desired. 

4. Visual inspection of the state of the sample in the A-C. In the case of sample 

deterioration, the characterization process is finished. If no visual failure is observed, 

continue with the next step. 

5. Transfer the sample to the environmental E-C. Measure using in-situ spectroscopic 

ellipsometry (SE). Depending on the type of sample and desired study, it is possible to do 

SE in vacuum or in a controlled environment as described above. 

6. Increase the temperature by 100ºC (only until the first changes are measured. upon 

beginning deterioration round, increase by 25ºC) and measure the ellipsometry parameters 

(Δ, ψ) at each temperature in the whole energy range.  

7. If ∆(SE) < 5% (defined in equation (5.2)), go to the previous step increasing the 

temperature by 100ºC (25ºC after the first changes).  

8. If ∆(SE) ≥ 5 %, stop heating, and perform final IBA and Raman characterization.  

As an example of the versatility and the great potential of the system, the methodology 

was applied to a carbon-titanium nanocomposite (a-C:TiC) thin film deposited by pulsed filtered 

cathodic vacuum arc (PFCVA), as explained in section 5.4. The samples were exposed to an in-situ 

heating process while measuring spectroscopic ellipsometry. Before and after heating, the thin films 

were characterized with Raman spectroscopy and Rutherford Backscattering Spectroscopy (RBS) in 

order to analyse the compositional and microstructural changes occurred during the heating 

process. Changes in both chemical bonding and optical constants with increasing temperature were 

recorded in a single experiment.  
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In section 5.5, AlTi(OxN1-x) thin films were investigated in order to understand the 

influence of the oxygen to nitrogen ratio on the optical properties and their failure mechanisms at 

high temperatures. The analysis was performed first in vacuum inside the cluster tool heating 

samples from RT to 800°C and subsequently, annealing in air was performed to compare with the 

previous results. No significant changes in optical properties and composition were found when 

heating in vacuum atmosphere the films, showing excellent high temperature stability.  

5.4. In-situ multichamber characterization of a-C:MeC 

Carbon-transition metal nanocomposite films have been studied in chapter 3 as absorber 

layer of a SSC as they show a combination of remarkable properties, which includes high melting 

points and spectral selectivity [20,21]. An a-C:TiC sample was selected as an example of the in-situ 

characterization methodology described above. The a-C:TiC sample was grown on silicon (100) 

substrate by PFCVA (as explained in chapters 2 and 3) by the co-evaporation of carbon and 

titanium in two different cathodic arc sources [22].  

Firstly, a sample was introduced in the IBA-C and the amount of carbon and metal were 

determined by RBS measurements [23,24]. The elementary areal density and the depth profile can 

be obtained directly, fitting the spectra with the software SIMNRA [25], as shown in Figure 5.4, 

where 30 at.% of Ti is found.  

200 400 600 800

 Experimental

 Simulation

 I
n

te
n

si
ty

 (
a.

u
.)

(a)

N
V
=1.4·10

18
at.·cm

-2

Ti

C

Energy (keV)

a-C:TiC(h) on Si

Si substrate

 

Figure 5.4 - (a) RBS ion beam analysis of  carbon - titanium 

(30 at.% Ti) sample deposited with PFCVA technique on Si 

(100) 

Figure 5.5 shows the Raman spectra of the a-C:TiC thin films as deposited and after 

heating 650ºC, in the wavenumber range of 800 to 2500 cm-1 and measured with 532 nm excitation 

light. The D and G peaks can be observed for both temperatures. To obtain quantitative 

understanding of the temperature dependence structural changes of the films, the Raman spectra 

were fitted by a combination of an exponential background, a symmetric Lorentzian for the D peak 

and an asymmetric Breit-Wigner-Fano (BWF) shape for the G peak [26], as further described in 

chapter 3. The intensity of the D peak is significantly lower than that of the G peak region, and this 

difference increases with temperature. After annealing at 650ºC, the G peak is clearly defined and it 
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shifts towards higher wavenumbers from 1549 to 1579 cm-1, while D peak position decreases 

slightly. The ID/IG ratio dispersion decreases with temperature (from 1.21 at RT to 0.876 at 650ºC). 

The presence of the D band indicates the presence of aromatic rings in the sp2 phase of the carbon, 

while the ID/IG ratio is related with the size of these aromatics clusters in disordered carbons. As 

reported before [27], in the a-C:TiC deposited thin films, we have 6-fold ring clusters and the 

average cluster size higher than in pure carbon films. The decrease in the G peak at increasing 

temperature indicated the graphitization of carbon, and the promotion of the nucleation and 

growth of 6-fold ring clusters by the presence of the Ti. This indicates that the Ti nanoparticles act 

as nucleation centres of 6-fold rings at low temperatures while at high temperatures the Ti favours 

the ordering within the clusters [28]. 
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Figure 5.5 - Normalized Raman spectra at different 
temperatures of  a-C:TiC sample on stainless steel substrate 

Once the elementary distribution and the chemical bonding were analysed, the sample is 

transferred to the E-C. The optical constants of the a-C:TiC film were determined by SE using the 

in-situ ellipsometer. The sample was measured during a heating ramp from room temperature up to 

650ºC in vacuum, to gauge any changes in the layers with temperature. The ellipsometry data Δ and 

ψ measured are shown in Figure 5.6 (a). 
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Figure 5.6 - (a) Ellipsometry data at selected temperatures of a-C:TiC sample deposited on Si (100). (b) Complex refractive 
index (n, k) obtained after modelling the ellipsometry data. 

The index of refraction (n) and extinction coefficient (k) were modelled following the 

optical models employed in chapter 3 for the other a-C:MeC nanocomposites. The fitting of the 

experimentally SE data includes a combination of Drude [29] and Tauc-Lorentz [30] dispersion 
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models. The calculated optical constants are shown in Figure 5.6 (b) at selected temperatures 

employed in the test. Both n and k decrease with the increment of temperature since the first 

heating step between RT and 100ºC. Afterward, the optical constants stabilize and no changes were 

observed at higher temperatures 

Although the optical constants of the films did change to some extent up to 650 °C in 

vacuum, no features appeared in the ellipsometric data that would indicate a change in crystallinity, 

as the employed models remains without variations. The resulting thickness on the modelling was 

slightly higher on the heated sample than their non-annealed one. This decrease in the optical 

constants and the increase on the modelled thickness were attributed to thermal expansion, which 

is difficult to minimize and may change the sample optical constants irreversibly. 

The variation of the ellipsometry parameters were evaluated as described in the 

methodology, between each heating step, as described in equations (5.1) and (5.2), obtaining the 

values indicated in Table 5.1. The changes in the defined ellipsometry parameters were below 5% 

for all the temperature under study.  

Table 5.1: Variation of ellipsometry parameters as defined in the proposed methodology. 

Temperature interval Δ(SE) (%) 

RT-100 ºC 2.4 
RT-200 ºC 3.0 
RT-300 ºC 3.4 
RT-650 ºC 3.7 

 

In summary, the results of the durability procedure reveal that the annealing in vacuum at 

650ºC leads an increase in the graphitization degree of the amorphous carbon matrix. This effect 

was coupled to the promotion of nucleation and 6-fold ring clusters growth. No changes in the 

composition, and slight decrease of the optical constants associated to the inevitable thermal 

expansion of the samples. The a-C:TiC sample passes the stability test when heating at 

temperatures up 650ºC in vacuum. This methodology will be employed for complete SSC, once 

atmospheric conditions can be introduced in the environmental chamber to simulate real operating 

conditions. 

5.5. Multichamber characterization at high temperature of 
the solar selective coatings based on AlTiON 

AlTi(OxN1-x) thin films were selected as candidate materials for SSC, as explained in 

chapter 4. Two different AlTi(OxN1-x)single layers deposited by CVA on inconel substrates will be 

analysed in this section in order to understand the influence of the oxygen concentration in the 

optical and microstructural properties at high temperatures. The selected samples were sample #1 
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and #5, as defined in chapter 4, i.e. AlTiN and AlTiON (20at.%O), respectively. The analysis was 

performed first in vacuum heating samples from RT to 800°C without sample exposure to 

undefined atmospheres. Then, annealing in air was performed to compare with the previous 

results.  

5.5.1 Thermal in-situ treatments in vacuum of individual AlTi(OxN1-x) layers  

The stability and microstructural evolution of the samples were in-situ tested first in 

vacuum in the different chambers of the cluster tool.  
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Figure 5.7 – Schematic representation of  the symmetric 

cycles employed in the cluster tool for in-situ analysis of  the 

AlTi(OxN1-x) samples, with a heating and cooling ramp of  

10ºC·min-1 and maximum temperatures of  600º, 675º and 

750ºV.  

Firstly, the two oxynitride samples were introduced in the IBA-C in order to examine their 

composition by RBS measurements. Both AlTiN and AlTiON samples were sample is heated up 

during three different heating cycles at 600, 675 and 750ºC (as schematized in Figure 5.7) and 

maintaining that temperature 2 hours. The heating and cooling ramp are controllable and a rate of 

10ºC min-1 was employed for both ramps. 
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Figure 5.8 – In-situ RBS test of samples at different temperature indicated in the graph of (a) AlTiN and (b) AlTiON (20at.% 
O) samples deposited on inconel Haynes@625 substrate.  

No changes in the composition were appreciated thorough the different temperatures, or 

diffusion of the substrate to the surface in both tested samples, as shown in Figure 5.8. An 

additional RBS spectrum was recorded after the three heating/cooling cycles, obtaining the same 

composition when the sample was at high temperature, and when the test started. 
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The main challenge of this experiment is related to the blinding of the Si diode detector 

by the infrared radiation that samples emit when exposed to high temperature. In order to avoid 

this, the sample holder was covered with a Mo radiation shield (Figure 5.9) to reduce the infrared 

radiation incident on the semiconducting detector. The AlTi(OxN1-x) samples measured during the 

test shows low thermal emittance, which implies they resulted ideal candidates to perform this RBS 

measurement at high temperature. Owing to the aforementioned, it was possible to perform a RBS 

measurement at 840ºC. After a literature review, it is possible to assure that this is the first time that 

an in-situ RBS has been performed at this high temperature [31,32]. 

 

Figure 5.9 – Image of  the heated sample inside the ion beam analysis 

chamber at 840ºC. A cover shield was emplaced around the substrate 

holder in order to avoid undesired IR emittance from the substrate 

holder 

After each heating cycle, the sample is transferred to the A-C, to measure with Raman 

spectroscopy to obtain microstructural information of the films at different temperatures. AlTiN 

and AlTiON were fcc-cubic crystalline samples (as shown with GIXRD patterns in chapter 4). In 

perfect crytal structures, every ion is at a site of inversion symmetry and consequently first-order 

allowed Raman active phonon vibrations are forbidden. 

The spectra of the as-deposited AlTiN and AlTiON films show two broad bands centred 

at 302 and 630 cm−1, as observed in Figure 5.10 (a) and (b). These bands are originated due to 

acoustic transitions in the 200–350 cm−1 region (LA and TA) by o vibration of Ti and Al ions, and 

optic modes in the 600–750 cm−1 region (LO and TO) of N or O ions vibration. 
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Figure 5.10 – In-situ Raman spectroscopy analysis of samples at different temperatures indicated in the graph of (a) AlTiN 
and (b) AlTiON (20at.% O) deposited on inconel Haynes@626 substrate.  
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As observed in the HR-TEM images, the samples were not pure crystalline and defects 

and discontinuities between crystal columns appear, and hence, the effective symmetry is reduced.  

The Raman spectrum of a perturbed crystal, thus, reflects the presence of impurities/defects in the 

crystal. In the case of sputter deposited TiAlN or TiAlON coatings, both metal (Ti and Al) ion 

vacancies and light element (N and O) ion vacancies are present. The Raman spectrum did not 

change even after heating the sample up to a temperature of 750 °C in vacuum, confirming the 

stability of the microstructure under vacuum conditions. 

The last step includes the determination of the optical constants with temperature. The 

SE parameters of the samples were recorded at every increment of 100ºC during the three heating 

and cooling cycles. Figure 5.11 shows the variations in Psi (ψ) and Delta (Δ) with the temperature 

for an AlTiN thin film deposited on inconel substrate.  
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Figure 5.11 - In-situ ellipsometry measuremtens of AlTiN sample on inconel Haynes@626 substrate. (a) and (b) represent 
the ellipsometric parameters ψ and Δ during the first heating cycle from RT – 600 °C ; (c) from RT – 675°C in the second 

heating cycle and (e) and (f) SE parameters during the third cycle, from RT – 750 °C,  

As it can be seen in Figure 5.11, the ellipsometry value ψ changes more than a 10% in the 

first heating cycle from the initial value. However, in the other cycles, the changes are less than 2% 
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at it recovers its original values after the heating. Delta value angle conserved their value in almost 

all the measured wavelength range.  

The optical constants of the AlTiN sample were modeled as described in chapter 4, for an 

equivalent sample. The result of n and k at different temperatures are represented in Figure 5.12. 

The optical constants change upon heating in almost the whole measured spectral range the 

refractive index increases by less than 5% of its original value at room temperature. In the near IR 

this difference gets smaller. On the other hand the extinction coefficient is constant in the region 

above 3.0 eV but decreases at higher wavelengths about 5% as well during heating up to 800°C.  

Similar trend in the optical constant behavior were observed when repeating this 

asymmetric thermal treatment of AlTiON (20at.%) sample (results not shown here). 
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Figure 5.12 – In-situ optical constant’s measured at different temperatures after modeling the ellipsometry parameters of 
AlTiN sample on inconel Haynes@626 substrate. (a) Refractive index (n)and (b) extinction coefficient (k). 

Essentially, two major effects of temperature on the optical constants need to be 

considered. They arise, respectively, from the scattering of electrons from thermally induced 

disorder, and the changes in the electronic energy levels due to disorder. The phonon contribution 

to the optical properties has temperature dependence due to multiphonon processes, and 

frequently extends into the relevant wavelength range at high temperatures. This may be important 

in connection with composite materials or in multilayer films in which absorbing layers are placed 

on infrared reflectors [6]. 

The increase in emittance with rising temperature is very important for the behaviour of 

selective surfaces. The decrease in performance due to a rise in temperature is necessary for a 

Drude-type reflector. The optical properties are determined by the plasma frequency, the optical 

frequency, and the relaxation time of the electrons, which are in turn determined by the electron-

phonon collision frequency, suitably averaged over the electron distribution in k space.  

No significant changes in compositionand microstructure were found in the films when 

heating in vacuum, showing excellent high temperature stability. 
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5.5.2 Thermal ex-situ treatments in air of individual AlTi(OxN1-x) layers 

Annealing in air was also performed to compare with the previous results observed in 

vacuum annealing. The AlTiN and AlTiON (20 at.% O) single layers were heated at 800ºC in air 

for two hours and their microstructure and elemental composition, chemical bonding and optical 

properties were analyzed before and after the annealing. In this study, HR-TEM images of the 

samples were obtained before and after heating. 

The atmospheric heating tests were asymmetric as only the heating ramp could be 

controlled in the furnace. Figure 5.13 and Figure 5.14 show the ERD ion beam analysis results of 

the samples as deposited and after heated at 450, 650 and 800ºC. HR-TEM images are also 

included in the figures. 
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Figure 5.13 - ERD ion beam analysis of AlTiN sample deposited on inconel substrate at (a) RT, (c) after 2h heating in air at 
450ºC, (d) after 2h heating in air at 650ºC,and (e) after 2h heating in air at 800ºC. (b) HR-TEM image of AlTiN sample as 

deposited and (f) HR-TEM image after annealing at 800ºC for two hours. (g) and (h) are high resolution images of the upper 
oxidized region of the AlTiN films 

ERD analysis and HR-TEM images reveal a homogeneous AlTiN layer along the 

thickness of the sample before the film was subjected to high temperature (Figure 5.13 (a) and (b)). 

The effect of the temperature is clearly observed when comparing ERD spectra. No changes in the 

composition are detected at 450ºC (Figure 5.13 (c)) and oxygen appears at 650ºC, as observed in 

Figure 5.13 (d). After 800ºC annealing the spectrum exhibits a top layer of Al2O3 followed by a 

mixed Al2O3 /TiO2 layer. This oxide scale is shown as a~ 80 nm thick layer grown in the surface in 

HR-TEM images (Figure 5.13 (f), (g) and (h)).  

As deposited ERD spectrum of AlTiON (Figure 5.14 (a)) exhibits a first region with 

higher amount of oxygen, and then, it shows a constant 20% at. of oxygen. This first region was 

attributed to roughness in the ERD modeled, and as observed in the HR-TEM image in Figure 

5.14 (b), there in not appreciated any oxidized layer on the top. No changes are observed after 

heating the sample at 450ºC and 650ºC (Figure 5.14 (c) and (d)). The scenario changes after 

annealing at 800ºC, where three different zones can be clearly distinguished in the ERD spectrum 

and TEM image (Figure 5.14 (e) and (f)). In the surface (zone 1) a mixed oxide, probably (Al,Ti)2O3 

is formed according to ERD spectrum. This zone is followed by a transition interlayer formed by 

the mixed aluminum and titanium oxide and oxynitride. Oxygen and nitrogen content are gradually 

changing along this zone until they reach zone 3, with the previous AlTiON composition before 

heating. Zones 1 and 2 show a thickness of 300 nm. Higher resolution HR-TEM images of the 

regions labeled as zone 1, 2 and 3 are presented in Figure 5.14 (h), (i) and (j), respectively 

(g) (h) 
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Figure 5.14 - ERD ion beam analysis of AlTiON (20at.% O) sample deposited on inconel substrate at (a) RT, (c) after 2h 
heating in air at 450ºC, (d) after 2h heating in air at 650ºC and (e) after 2h heating in air at 800ºC. (b) HR-TEM image of 
AlTiN sample as deposited and (f) HR-TEM image after annealing at 800ºC for two hours and (g) Amplified HR-TEM 

image of the oxidized region, were three different regions are differentiated. (h), (i) and (j) are high resolution images 
corresponding to region 1, 2 and 3, respectively. 

   

Raman measurements of AlTiN and AlTiNO samples heated in air are shown in Figure 

5.15. As indicated for the previous tests of equivalent samples annealed in vacuum, the Raman 

spectrum of the as-deposited samples shows two main brad bands originated due to vibration of Ti 

and Al ions and N or O ions in the second.  

(b) 

(f) (g) 

(h) (i) (j) 
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Figure 5.15 - Raman spectroscopy analysis of samples heated 2hours in air at 450, 650 and 800ºC of (a) AlTiN and (b) 
AlTiON (20at.% O) deposited on inconel Haynes@626 substrate  

The Raman spectra of AlTiN and AlTiON samples show no variation in the chemical 

bonding at 450ºC and 650ºC. However, and in concordance with the ERD and HR-TEM analysis, 

both samples show peaks centered at 148, 445 and 640cm-1 after heating 2 hours in at 800ºC. The 

well-defined narrow peak at 1458cm-1 is characteristic for anatase TiO2 while 445cm-1 peak us due 

to the formation of rutile TiO2 [33]. 
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Figure 5.16 – Ellipsometry parameters of samples heated 2 hours in air at 450, 650 and 800ºC of (a) ψ and (b) Δ of AlTiN. 
(c) ψ and (d) Δ of AlTiON (20at.% O) samples deposited on inconel Haynes@626 substrate. 

To complete the thermal treatment in air, the optical response of AlTiN and AlTiON 

samples were measured by spectroscopic ellipsometry. The ellipsometric parameters ψ and Δ of the 

films were measured before and after each heating asymmetric cycle at 450, 650 and 800ºC (Figure 

5.16). As observed from the previous analysis, no main changes were observed in the samples 
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heating up to 650ºC. If the temperature was increased up to 800ºC, an oxide layer appears on the 

top of the coating, with a drastic change in the ellipsometry parameters, and therefore in the optical 

properties. 

5.6. Discussion and conclusions 

A novel in-situ thermal measurement characterization methodology for thin films has been 

presented to investigate the compositional, optical and structural changes in a wide range of 

temperatures and environments. The durability of SSC can be investigated following the presented 

methodology. The main advantage of the proposed methodology is the possibility of doing 

different measurements sequentially in the same multi-chamber cluster tool, without breaking the 

vacuum and the possibility of combining optical and structural characterization analysis. The 

presence of a heatable sample holder in all the chambers, allows characterization of the samples at 

different temperatures and environments. With all this capabilities, it is possible to have a better 

understanding of the failure mechanisms at high temperatures in a wide variety of thin films or 

coatings. 

A new procedure for the qualification of SSC at high temperature was proposed, which 

combines a sequence of analytical techniques in the multi-chamber cluster tool at different 

environments and temperatures. As an example of the versatility and the great potential of the 

system, the methodology was applied to a a-C:TiC thin film. Changes in both chemical bonding 

and optical constants with increasing temperature were recorded in a single experiment. 

The thermal stability of single layers of AlTi(OxN1-x) materials was analysed heating the 

samples in the multi characterization cluster tool, and in air. The low emittance properties of 

AlTi(OxN1-x) samples, allowed to perform in-situ RBS analysis at temperature above 800ºC. No 

significant changes in optical properties and composition were found when heating in vacuum 

atmosphere the films, showing excellent high temperature stability.  

The samples ex-situ annealed in air showed the good stability of AlTi(OxN1-x) films at 

temperatures up to 650ºC. After the asymmetric heating test in air at 800ºC, an oxide layer starts to 

growth in both tested samples. The composition, chemical bonding and optical properties of the 

oxide layer was comprehensively characterized. This complete analysis improves the understanding 

of the failure mechanism in SSC based on AlTi(OxN1-x) thin films at high temperatures. 
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CHAPTER 6: CONCLUSIONS AND OUTLOOK 

The present thesis addresses the design of new solar selective coatings (SSC) for high 

temperature applications in order to improve the performance of concentrating solar power (CSP) 

plants. In particular, two new PVD candidate materials are selected as promising materials for SSC 

and a systematic methodology to design, deposit and characterize this type of coatings is proposed.  

The first approach consists on SSC based on interstitial metal carbide nanoparticles 

embedded in an amorphous carbon matrix (a-C:MeC). These nanocomposite materials were 

selected as their combination of optical and thermo-mechanical properties, with adjustable solar 

selective properties and high-temperature resistance make them very attractive candidates as 

absorber layer of SSC. Optical simulations with CODE resulted in a good approach to facilitate the 

selection of materials to employ for each layer forming the SSC stack (AR layer/ a-C:MeC/IR 

layer). Particularly challenging was the simulation of optical constants of non-homogeneous 

materials such as nanocomposites. In a first step, Bruggeman EMA theory was employed to 

simulate the optical properties of the composite material, based on optical constants reported in the 

literature for carbon and metal carbides. Using also optical constants from the literature for the IR 

and AR layers, the reflectance of several complete stacks was simulated. Based on these simulations 

the best candidates were a-C:VC, a-C:ZrC and a-C:MoC nanocomposites for the absorber layer, 

SiO2 and Al2O3 films as antireflective (AR) layer and TiN and ZrN as infrared reflective (IR) layer,. 

In order to maximize the solar absorptance (α) and minimize the thermal emittance (ε), thicknesses 

of the different layers and volume fraction of the nanocomposites were optimized obtaining 

promising values of α = 94.9% and εRT = 12.5% for a stack composed by Al2O3 (60 nm)/ a-C:VC 

(107 nm and 37%VF of VC)/TiN(400 nm). 

The different pre-selected layers based on simulation results were deposited by pulsed 

filtered vacuum cathodic arc (PFCVA) and a thoughtful characterization was carried out 
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afterwards. This characterization included composition analysis by ion beam analysis techniques 

(RBS and NRA), that demonstrated how the metal content in the nanocomposite can be tuned 

varying the intensity ration between the two arc sources available in the deposition chamber. 

Microstructural and morphological characterization by Raman spectroscopy, XRD and HR-TEM 

confirmed the formation of nanocomposites of metal carbides particles embedded in an 

amorphous carbon matrix for samples deposited with the highest metal content. The presence of 

metal was found to increase the chemical ordering of the carbon in the samples. A spontaneous 

formation of ordered multilayers for the cases of the a-C:VC (20.5 at.% V), a-C:ZrC (38 at.% V) 

and a-C:MoC (3.5 at.% V) thin films was observed. The diffusivity of the adatoms on the substrate 

surface during the film growth, enhanced by the energetic deposition of the PFCVA deposition 

technique, is proposed as the best explanation behind this phenomenon. However, further research 

is needed to reach a conclusive assessment about the origin of the self-forming multilayer growth.  

Optical constants of the single layers were obtained from spectroscopic ellipsometry 

measurements. The validity of the optical model was confirmed by spectrophotometry 

measurements. As expected, the initial optical constants obtained from literature differed from the 

real one form the deposited materials.  This is due to the broad variations in the optical constants 

depending on the parameters and technique employed during the thin film deposition. Therefore, it 

is concluded that employing optical constants obtained experimentally (i.e. from SE measurements) 

from the deposited material is critical in order to get a proper simulation of the optical properties. 

The limited wavelength range of the experimental SE measurements implies an extrapolation of the 

results in the IR range. The most common approach, used for example by CODE software, is to 

keep constant the last SE experimental value as a constant for the rest of wavelength range of 

interest (2 – 25 µm). However, this extrapolation was not satisfactory for the thermal emittance 

calculations of the SSC based on a-C:MeC and an alternative approach was needed. The exhaustive 

microstructural characterization carried out in the samples opened the possibility of using other 

optical models in addition to Bruggeman to simulate the reflectance of nanocomposite films. 

Different models were compared and the best agreement between simulated and measured 

reflectance was obtained with Bergman approach.  

The simulation of a complete SSC leads to α> 96% with a εRT< 5% and ε600ºC = 14%, 

showing the potential of a-C:MeC as an absorber layer material. Severe degradation was observed 

in a multilayer stack formed of Al2O3 / a-C:ZrC (38at.% Zr) / TiN after a thermal treatment of 2 

hours in air at 600ºC.  

The second candidate materials for SSC consists on a graded AlTi(OxN1-x) multilayer 

stack. Metal oxynitride are refractory materials that have a transition of the properties of nitride 

and oxide based coatings, and hence, the overall set of properties can be tuned by a meticulous 

control of the O-to-N ratio in the non-metal sublattice. Based on lessons learned during the design 
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of a-C:MeC coatings, the methodology followed for a complete design of solar selective coatings 

was reviewed and improved.  

A preliminary annealing test was performed on oxynitrides single films to confirm the 

potential of this material as SSC. After verifying the stability of optical properties after 2 hours 

annealing in air at temperatures up to 650ºC, a complete batch of AlTi(OxN1-x) single layers with 

different oxygen content were deposited by CVA and then, fully characterized. The accurate 

composition was determined by ERD ion beam analysis. For samples deposited with same working 

pressure, the concentration of O (N) in the films increases (decreases) linearly with the 

%O2/(O2+N2) ratio of reactive gases. AlTiN films exhibit a dense and columnar structure with 

diameters in the order of 30 nm extended throughout the whole coating thickness. The 

incorporation of O2 as reactive gas resulted in a monotouos width and length shrink of the 

columns, with smaller cristallites embedded on amorphous matrix, as confirmed by XRD, SEM 

and HR-TEM analysis. The films with higher oxygen content show amorphous (Al,Ti)2O3, Al2TiO5 

and TiO2 phases between the grain boundaries of the AlTiN crystals. Almost XRD amorphous 

phases in the coating were identified in pure oxide samples were practically XRD amorphous with 

tiny peaks associated to metastable cubic γ-Al2O3 phase. 

Optical constants obtained experimentally from deposited samples were employed in the 

simulations. Excellent fitting of the measured spectroscopic ellipsometry data was accomplished 

and a method to extrapolate n and k in the IR based on measured IR reflectance spectra with FTIR 

spectrometer was proposed. The validity of the employed optical models was verified by 

comparing the simulated and the measured reflectance of individual layers, obtaining an excellent 

agreement in the complete wavelength range of interest. The possibility of controlling the optical 

properties of AlTi(OxN1-x) films from metallic to dielectric character by changing the oxygen 

concentration is proved. Once the optical properties of the oxynitride layers were accurately 

described, an exhaustive simulation work was performed in order to design the SSC with the best 

optical performance. An optimized SSC composed of AlTiO / AlTiON(20at.%) / 

AlTiON(14at.%) / AlTiN / TiN that exhibits an optical performance of α = 94.7% and εRT=5.6% 

was obtained. Two alternative multilayers were designed to be deposited by CVA. The fitting of the 

simulated reflectance of one of the tandem SSC was not completely satisfactory, as the interface 

between layers was not well-defined and the optical constants act as if there is a gradient. Hence, a 

new simulation was performed in multilayer 2 introducing a Bergman EMA interlayer between 

AlTiN and AlTiO, with 33% VF of AlTiN embedded into AlTiO matrix, with percolation degree 

of 0.66 and a fitted spectral density plot. The fitting was significantly improved in multilayer with 

the incorporation of a Bergman EMA interlayer. This interlayer can be effectively deposited 

employing a smooth transition between the nitride and the oxide top layer, and avoids further 

inaccuracies in the design with optical simulation.  
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Optical properties of the coatings remained stable after 750 hours of thermal cycling in air 

at 600 ºC. Good stability was also found after asymmetric testing of 12h at 650ºC. Therefore the 

designed AlTi(OxN1-x) multilayer films represent a promising option as solar selective coating for 

high temperature applications. However, noticeable oxidation was identified at temperatures as 

high as 800ºC (probably for the TiN interlayer) which leads to the degradation of the optical 

properties of the films. 

There is a lack of a specific durability procedure for solar selective coatings at high 

temperature. In this thesis, a new in-situ methodology for coatings characterization at similar 

conditions than the ones they will be exposed in their lifetime. This methodology can be performed 

sequentially in a multi chamber cluster tool situated in Helmholtz Zentrum Dresden – Rossendorf 

(Germany). It includes compositional, optical and structural characterization for a better 

understanding of the failure mechanism at high temperatures. This procedure was satisfactory 

exemplified within an a-C:TiC thin film. This good assessment of the failure mechanism shows that 

the proposed methodology can be a routine procedure to evaluate new candidate materials for CSP 

applications at high temperature. The thermal stability of single layers of AlTi(OxN1-x) materials was 

analysed in the cluster tool, and in air. No significant changes were found when heating the samples 

in vacuum. The ex-situ annealing test shows the good stability of the films at temperatures up to 

650ºC. However, at temperatures up to 800ºC, an oxide layer starts to growth in both tested 

samples, as observed for the thermal treated SSC based on AlTi(OxN1-x) thin films. A complete 

analysis of this oxide formation helps understanding the failure mechanism in SSC at high 

temperatures. It is worth noting than a worldwide record of in-situ RBS measurement at 840ºC was 

performed in the framework of this thesis due to the low thermal emittance of the AlTiON films. 

In summary, in this work, successful solar selective coating as alternative to the absorber 

paints currently employed in CSP plants has been designed and tested. Moreover, a detailed and 

proved methodology for the design of optical coatings for high temperature applications is 

described. This methodology include a novel method to in-situ analyse the mechanisms which lead 

to failure of materials at high temperatures. 

Finally, a list of recommendations for future actions for the optimization of the SSC 

described in this thesis is given: 

 In order to find a balance between the stability and the selective absorption in a-C:MeC, 

further experimental studies should be carried out, as the optical simulations has 

demonstrated they exhibit excellent optical performance as absorber layer for SSC. 

 More detailed analysis needs to be done to understand the spontaneous formation of 

ordered multilayers for the a-C:MeC thin films. Some theories have been proposed for 
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this phenomenon; however, further research is needed to reach a conclusive assessment 

about the origin of the self-forming multilayer growth. 

 a-C:TiC films passes the stability test when heating at temperatures up 650ºC in vacuum. 

Although this candidate materials shows failure when heating in air, a-C:MeC films could 

result excellent candidates as absorber layers in SSC for evacuated tubes of parabolic 

trough in CSP applications.  

 The growth of the TiN IR layer has generated several problems that include the diffusion 

of Ti to the surface forming TiO2 porous layer and difficulties implicit in the manufacture 

of SSC at large scales with different cathodes. Therefore, for future SSC multilayer 

designs, the TiN IR layer should be replaced, although it may imply an increment in the 

thermal emittance.  

 The optimized SSC based on AlTi(OxN1-x) films was not deposit in this study due to 

technical difficulties associated to an accurate adjustment of the individual layer thickness. 

The deposition of the films with filtered cathodic vacuum arc reduces the growth rate, 

and the specific thickness for each layer can be adjusted and avoid macroparticle 

incorporation. Future depositions of the optimized multilayer could be carried out with 

this FCVA. 

 Al2O3 layer employed with the a-C:MeC films yielded good stability and optical behaviour 

as AR layer. New designs of SSC based on AlTi(OxN1-x) layers with Al2O3 as AR could be 

tested to improve the solar absorptance.  

 More experimental work is needed to elucidate the possible failure mechanism in the 

designed multilayer SSC that would include SEM and HR-TEM analysis of the heat 

treated coatings and in-situ evaluation of their microstructure and optical constants in the 

cluster tool. 

 In this work, the multi-chamber cluster tool was employed only to test SSC under 

evacuated conditions. However, it is possible to evaluate the stability in-situ of the SSC in 

other environments following the qualification test procedure for SSC durability. New 

complete tests will be carried out to validate the new designs of complete SSC. 
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