
ON A DETERMINANTAL FORMULA OF TADIĆ

EREZ LAPID AND ALBERTO MÍNGUEZ

Abstract. We study a special class of irreducible representations of GLn over a local
non-Archimedean field which we call ladder representations. This is a natural class in
the admissible dual which contains the Speh representations. We show that the Tadić
determinantal formula is valid for this class and analyze the standard modules pertaining
to these representations.

1. Introduction

Let F be a non-Archimedean locally compact field and, for every integer n ≥ 0, set
Gn = GLn(F ). (with the convention that G0 is the trivial group). Denote by Rn the
Grothendieck group of the category of smooth representations of Gn of finite length, and
let R = ⊕n≥0Rn with the product structure defined by normalized parabolic induction.
The commutative ring R (with the one-dimensional representation of G0 as the identity
element) was introduced by Zelevinsky, who showed that it is freely generated by the
essentially square-integrable representations (of any Gn) [Zel80]. Hence, the monomials in
these generators (the so-called standard modules) form a basis for R. Another natural
basis for R is given by the irreducible representations. The change of basis matrix is
unitriangular (in an appropriate sense) and the coefficients can be expressed in terms of
the Kazhdan-Lusztig polynomials. This fact was conjectured by Zelevinsky [Zel81] (and
in a more precise form in [Zel85]) and proved in [CG97]. While in principle this solves
the problem of decomposing a standard module into irreducible constituents, in practice
the coefficients are very complicated. Nevertheless, in the case of a Speh representation,
Tadić obtained a remarkable formula expressing its character as a linear combination of
characters of standard modules with coefficients ±1 [Tad95]. Tadić’s ingenious argument
transfers the problem to a question about complex groups. Later on, the argument was
simplified by Chenevier and Renard [CR08] by a clever use of the Desnanot-Jacobi identity
of determinants (also known as Dodgson’s rule of determinants). Both proofs rely on the
determination of the composition series at the edge of a complementary series, and thus
they heavily rely on unitarity.

Our purpose in this note is to provide a different proof of Tadić’s formula which yields
additional information on the structure of the Langlands quotient, and at the same time
extends to a wide class of representations which we call ladder representations. (We caution
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that in the literature there is an unrelated, older notion of ladder representations for unitary
groups.) The extra piece of information (part 1 of Theorem 1 below) is used in [FLO]
to prove for this class of representations a conjecture of Jacquet about the existence of
functionals invariant under a unitary group.

Except for the Speh representations, ladder representations are not unitary. Instead of
unitarity, we use Jacquet module technique. Unlike in other scenarios, it is necessary to
study not only the semisimplification of the Jacquet module, but the finer structure of its
submodules.

Curiously, using our result one can turn the table and use the Desnanot-Jacobi determi-
nantal identity to obtain the decomposition of certain induced spaces (including the ends
of complementary series) as a corollary.

To state our results, let us introduce some more notation. Denote by ν the character
|det| on any Gn. (The n will be implicit and hopefully clear from the context.) For any
smooth representation π of Gn and a ∈ R denote by πνa the representation obtained from π
by twisting it by the character νa. If π1, . . . , πr are smooth representations of Gn1 , . . . , Gnr

respectively, we will denote as usual by

π1 × π2 × · · · × πr
the representation of Gn1+n2+···+nr parabolically induced (normalized induction) from the
representation π1 ⊗ π2 ⊗ · · · ⊗ πr of the standard parabolic subgroup of Gn1+n2+···+nr of
type (n1, . . . , nr) (with Levi subgroup Gn1 × · · · ×Gnr).

Throughout we fix a positive integer d and an irreducible cuspidal (not necessarily uni-
tary) representation σ of Gd. By a segment [a, b] we mean a set of elements {a, a+1, . . . , b}
where b ≥ a are integers. For any segment [a, b] we denote by ∆([a, b]) the unique irre-
ducible quotient of σνa × · · · × σνb. It is an essentially square-integrable representation of
GLd(b−a+1). The map [a, b] 7→ ∆([a, b]) is a bijection between the segments and the essen-
tially square-integrable representations whose cuspidal support is contained {σνi : i ∈ Z}
[Zel80, §9.3]. We also write ∆([a, a− 1]) = 1 (the one-dimensional representation of GL0)
for any a ∈ Z and ∆([a, b]) = 0 if b < a− 1.

Let [a1, b1], . . . , [at, bt] be segments and let ∆i = ∆([ai, bi]). Assume that ∆i does not
precede ∆j for any i < j, i.e., we do not have ai < aj ≤ bi + 1 < bj + 1 for i < j. Then the
representation ∆1× · · ·×∆t admits a unique irreducible quotient, the Langlands quotient,
which we denote by L(∆1, . . . ,∆t) (see for example [Rod82, Théorème 3]).

Assume now that a1 > · · · > at and b1 > · · · > bt. In this case we say that ∆1, . . . ,∆t is
a ladder and call L(∆1, . . . ,∆t) a ladder representation. A particularly important subclass
is the Speh representations where for every i = 1, . . . , t− 1, ai+1 = ai− 1 and bi+1 = bi− 1.
These representations comprise the building blocks for the unitary dual of Gn ([Tad86]).

Let St be the symmetric group on {1, . . . , t}. For any w ∈ St let Iw = ∆([aw(1), b1]) ×
· · ·×∆([aw(t), bt]). (This is 0 unless aw(i) ≤ bi+1 for all i.) In particular, for k = 1, . . . , t−1
let Kk = Isk ⊆ IId where sk is the transposition (k, k + 1).

Theorem 1. Assume that ∆1, . . . ,∆t is a ladder and let π = L(∆1, . . . ,∆t). Then

(i) The maximal proper submodule of ∆1 × · · · ×∆t is
∑t−1

k=1 Kk.
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(ii) π satisfies Tadić’s determinantal formula

(1.1) π =
∑
w∈St

sgnw Iw

in R.

As mentioned before, the formula (1.1) was proved by Tadić in the case of Speh repre-
sentations [Tad95] and his proof was simplified in [CR08].

In the course of proving Theorem 1 we will analyze the Jacquet functor J(π) of π with
respect to the parabolic subgroup of type (d, . . . , d) and obtain a formula for its character.
Remarkably, J(π) is the quotient of J(∆1×· · ·×∆t) by the sum of generalized eigenspaces
(with respect to the torus action). We will introduce a certain directed graph E (π) whose
vertex set consists of the segments ∆1, . . . ,∆t drawn sequentially in the plane, and the
edges are horizontal and diagonal arrows. The character of J(π) will be expressed in terms
of the possible vertex labellings of E (π) which are increasing with respect to the arrows.
See Theorem 7 for the precise statement. In particular, the length of J(π) is equal, in
the terminology of [Sta99, §7.10], to the number of standard Young Tableaux of the skew
Young diagram (a1 + 1, . . . , at + t)/(b1 + 1, . . . , bt + t). Incidently, this can be computed by
a well-known determinantal formula which is a consequence of the Jacobi-Trudi identity
(cf. [Sta99, Corollary 7.16.3]). We may regard (1.1) as a p-adic analogue of the Jacobi-Trudi
identity.

We remark that for general irreducible representations of GLn there is no known or
conjectural simple description of their Jacquet modules in terms of the Langlands (or
Zelevinsky) data.

Theorem 1 has an interesting application which was pointed out to us by Marko Tadić
and which is incorporated here with his kind permission. Namely, one can compute the
full derivative (in the sense of Bernstein-Zelevinsky) of a ladder representation in terms
of subordinate (in the sense of Zelevinsky) ladder representations. This expression had
been conjectured by Tadić some time ago in the case of Speh representations [Tad87].
Interestingly enough, already in this case one has to use non-unitary ladder representations.

In the last section we make some further comments about ladder representations and
beyond. We first conjecture that roughly speaking, in the ladder case, the decomposition of
∆1×· · ·×∆t is quite uniform and does not depend in an essential way on the segments (ex-
cept that some constituents may disappear, depending on the ordering of a1, b1, . . . , at, bt).
Our second conjecture is a generalization of Theorem 1 part 1 to an arbitrary irreducible
representation. This conjecture seems to be the first one addressing the fine structure of
the Langlands quotient in the corresponding standard module. (Incidently, this conjecture,
as well as the class of ladder representations, was inspired by analyzing functionals invari-
ant under unitary groups – cf. [FLO].) We also provide a simple example of non-ladder
irreducible representations which are not (fully) parabolically induced from representations
of smaller GLn’s.

To summarize, it seems that many results about Speh representations can be extended
to ladder representations. Thus, the latter provide a suitable algebraic envelope for the
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former which avoids unitarity. We view the family of ladder representations as broad
enough to include many interesting representations on the one hand and on the other
hand sufficiently restricted so that one can approach their structure. Thus it provides a
“litmus paper” for testing conjectures about representations of Gn (for instance Conjecture
2 alluded to above). See [BLM] for a follow-up about irreducibility questions.

Finally, we remark that all the results and the proofs in this paper except for §5.5 carry
over to inner forms of GLn with minor changes.

Acknowledgement. The authors would like to thank Shaun Stevens and the University
of East Anglia for their hospitality. Also, the second named author wishes to thank the
Hebrew University of Jerusalem for its hospitality. We also thank Ioan Badulescu and
Laurent Clozel for useful discussions and Marko Tadić for his contribution in §5.5. Finally,
we thank Ira Gessel for correspondence related to Proposition 10.

2. Notation and preliminaries

2.1. Throughout this article, we fix a non-Archimedean locally compact field F . Let G
be the group of F -points of a connected reductive group defined over F , with the usual
topology. We will only consider smooth representations of G, that is, representations such
that the stabilizer of every vector is an open subgroup of G.

Fix a minimal F -parabolic subgroup P0 of G and let M0 be a Levi factor of P0 defined
over F . We denote by WG the spherical Weyl group, defined by

WG = NG(M0)/M0,

where NG(M0) is the normalizer of M0 in G. A parabolic subgroup P of G will be called
standard if it contains P0. Henceforth, the letter P will always denote a standard parabolic
subgroup of G with an implicit standard Levi decomposition P = MU .

Let (τ,V) be a representation of M , regarded as a representation of P on which U acts
trivially. We denote by IM(τ) = IGM(τ) = IndGP τ , the representation of G induced from τ .
(We will always mean normalized induction.) We view IGM as a functor. Its left adjoint,
the Jacquet functor with respect to P , will be denoted by JM . For any representation π
of G, we let jM = jM,π : π → JM(π) be the canonical projection.

An irreducible representation π of G is called cuspidal if it is not a composition factor
of any representation of the form IGM(τ) with P a proper parabolic subgroup of G and τ a
representation of M .

We denote by IrrG (resp. IrrcG) the set of equivalence classes of (resp. cuspidal) irre-
ducible representations of G. For any π ∈ IrrG there exists, up to conjugacy, a unique pair
(M,ρ) consisting of a Levi subgroup M of G and ρ ∈ IrrcM such that π is a composition
factor of IGM(ρ). We call it the cuspidal support of π and write it supp(π).

Let R(G) denote the Grothendieck group of the category of smooth representations of
G of finite length. The image of a representation π of G finite length in R(G) will be
denoted by [π]. The Jacquet functor JM induces a homomorphism JM : R(G) → R(M).
Thus JM(π) is the semisimplification [JM(π)] of JM(π).
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2.2. For any integer n ≥ 0, set Gn = GLn(F ). Let P0 be the Borel subgroup of upper
triangular matrices and let U0 be its unipotent radical consisting of upper unitriangular
matrices. The standard parabolic subgroups of G are in bijection with compositions n =
n1 + · · · + nt. The corresponding standard Levi subgroup is the group of block diagonal
invertible matrices with block sizes n1, . . . , nt. It is isomorphic to Gn1 × · · · ×Gnr .

As in the introduction, if ρ1, . . . , ρr are representations of Gn1 , . . . , Gnr respectively, we
will denote by

(2.1) ρ1 × ρ2 × · · · × ρr = IGnM (ρ)

the corresponding induced representation where ρ is the representation ρ1⊗ρ2⊗· · ·⊗ρr of
M . Here P = MU is the standard parabolic subgroup corresponding to the composition
n = n1 + · · ·+ nr.

Given π ∈ IrrGn, we can view the cuspidal support of π as the unique multi-set (i.e., set
with multiplicities) (ρ1, . . . , ρr), ρi ∈ IrrcGni , n = n1 + · · ·+nr such that π is a composition
factor of ρ1 × ρ2 × · · · × ρr.

2.3. Let Rn = R(Gn) and R = ⊕n≥0Rn. Then R is a graded commutative ring with the
product defined by (2.1). The identity element is the one-dimensional representation of
G0. The natural ordering on R will be denoted by ≤. With respect to the addition R
forms a lattice ordered group. We say that two non-negative elements of R are disjoint if
their meet is 0.

We also write Irr =
∐

n≥0 IrrGn.

2.4. Throughout the article, we fix a positive integer d and σ ∈ IrrcGd (not necessarily
unitary). Write n = md. Let PP = MPUP be the parabolic subgroup of type (d, . . . , d)
in Gn with MP ' Gd × · · · × Gd. For simplicity we write J = JP, j = jP and J = JP :
R(Gn)→ R(Gd × · · · ×Gd) = R(Gd)⊗ · · · ⊗R(Gd) (m times). Henceforth, we will only
consider standard parabolic and Levi subgroups containing MP. Note that then M is of
type n1, . . . , nt where d divides all ni’s. We write ni = dmi.

2.5. Denote by Zσ the set of cuspidal representations of the form σνi, for i ∈ Z. We
denote by Irrσ ⊆ Irr the set of equivalence classes of irreducible representations of Gn (any
n) whose cuspidal support is contained in Zσ. We denote by C = C Gn

σ the category of the
finite length representations of Gn with the property that all their irreducible subquotients
belong to Irrσ. More generally, for any standard Levi M (containing MP) let CM = CM

σ be
the category of finite length representations (of M) with a similar property. We continue
to write J (or JM) for the Jacquet functor with respect to PP ∩M .

2.6. Let W be the Weyl group of Gn, identified with Sn by

Sn → W

w 7→
(
δi,w(j)

)
and let WM be the Weyl group of M . We identify WM\W with the set Ω̃M of left-WM -
reduced elements of W , i.e. the elements of W of minimal length in their left WM -coset.
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Of particular importance will be the subset ΩM of Ω̃M defined as follows. Let W0 be the
Weyl group of Gd × · · · × Gd and let W 0 be the set of reduced elements in W/W0 which
normalize MP. Note that W 0 is a subgroup of W which we identify with Sm. We define

ΩM = (W 0 ∩WM)\W 0 identified with a subset of Ω̃M , i.e., ΩM is the set of elements of
W 0 which are of minimal length in their left WM -coset. Explicitly,

ΩM = {w ∈ Sm : w−1(i) < w−1(i+ 1) ∀i 6= m1,m1 +m2, . . . ,m1 + · · ·+mt−1}.

In particular, |ΩM | =
(

m
m1 m2 ... mt

)
.

We note that for any w ∈ ΩM we have

wUPw
−1 ∩M = UP ∩M

and

(2.2) wUPw
−1 ∩ P = (UP ∩M)(wUPw

−1 ∩ U).

Remark 1. ΩM is the set denoted by WM,MP in [BZ77, §2.11]. Note that ΩM normalizes
MP.

Recall the Bruhat decomposition G = ∪w∈WP0wU0 and the relative Bruhat decomposi-
tion

G = ∪w∈Ω̃M
PwU0.

We denote the Bruhat order on W by ≤. Recall that w1 ≤ w2 if and only if P0w1U0 ⊆
P0w2U0 in the p-adic topology of Gn. We refer to [BB05] for standard facts about the
Bruhat order. The Bruhat order induces a partial order on Ω̃M and on ΩM . Once again,
for w1, w2 ∈ Ω̃M we have w1 ≤ w2 if and only if Pw1U0 ⊆ Pw2U0.

The Bruhat order gives rise to a topology on W . Namely, A ⊆ W is open if and only
if whenever w,w′ ∈ W and w ≥ w′ ∈ A, we have w ∈ A. Equivalently, a subset A ⊆ W
is open if and only if P0AU0 is open in Gn. For instance, for any w ∈ W the subsets
W≥w = {w′ ∈ W : w′ ≥ w} and W>w = {w′ ∈ W : w′ > w} are open. Similarly for

Ω̃M,≥w in Ω̃M , etc.. (We topologize subsets of W by the relative topology.) Note that

W≥w = WM Ω̃M,≥w for any w ∈ Ω̃M .

2.7. Let τ ∈ CM and let Π = IM(τ). For any open subset ω in Ω̃M consider the PP-
invariant subspace

Πω = ΠM,ω := {ϕ ∈ IM(τ) : supp(ϕ) ⊆ PωU0} = {ϕ ∈ IM(τ) : ϕ
∣∣
Gn\PωU0

≡ 0}.

Let J(Π)M,ω be its image under j, which is a subrepresentation of J(Π). (We often omit

M if it’s clear from the context.) In particular for any w ∈ Ω̃M , we can consider Π≥w,
Π>w, J(Π)≥w and J(Π)>w. By [BZ77, §2.12], fixing a choice of Haar measures, the map

p̃w : ϕ 7→
∫

(UP∩w−1UPw)\UP

jτ (ϕ(wu)) du ∈ J(τ), ϕ ∈ Π≥w
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induces a surjective homomorphism

pM,τ,w = pw : J(Π)≥w →

{
J(τ)w if w ∈ ΩM ,

0 otherwise,

whose kernel is J(Π)>w. (Note that p̃w is well-defined because PwU0 is closed in PW≥wU0.)
Here J(τ)w is the vector space J(τ) with the twisted action of MP by w.

Note that if β ⊆ τ then J(IM(β)) ⊆ J(IM(τ)) and pM,β,w is the restriction of pM,τ,w.

2.8. Now let L be a standard Levi subgroup of M . Set Ω̃M
L = Ω̃L ∩ WM and ΩM

L =

ΩL ∩WM . Recall that the map (w1, w2) 7→ w1w2 defines bijections Ω̃M
L × Ω̃M → Ω̃L and

ΩM
L × ΩM → ΩL. Let % ∈ C L and τ = IML (%), so that Π = IM(τ) ' Π̃ := IL(%). Let

ιML the equivalence of representations ιML : Π̃ → Π defined by ιML ϕ(g) = (h 7→ ϕ(hg)).

Correspondingly we have J(ιML ) : J(Π̃) → J(Π). For any w ∈ ΩM
L we may consider τ≥w

and J(τ)L,≥w. The following result is probably well known. For convenience we include a
proof.

Proposition 2 (Compatibility with induction in stages). Under the above assumptions
suppose that w = w1w2 ∈ ΩL where w1 ∈ ΩM

L , w2 ∈ ΩM . Then

ιML (Π̃L,≥w) ⊆ ΠM,≥w2(2.3)

p−1
M,τ,w2

(J(τ)w2
≥w1

) = J(ιML )(J(Π̃)≥w)(2.4)

pML,%,w1
◦ pM,τ,w2 ◦ J(ιML ) = pL,%,w on J(Π̃)L,≥w.(2.5)

Proof. Let Q be the standard parabolic with Levi L. The relation (2.3) follows from the
fact that QW≥wU0 ⊆ PW≥w2U0. The inclusion ⊇ of (2.4) follows from the relation

(2.6) {m ∈M : mw2U0 ∩QW≥wU0 6= ∅} = (M ∩Q)WM
≥w1

(U0 ∩M).

To prove (2.5) we first observe that w−1
1 UPw1 = (w−1

1 UPw1∩M)U and UP = (UP∩M)U ,
and hence by (2.2) (applied to w2) we have

(2.7) w2UPw
−1
2 ∩ w−1

1 UPw1 = (w2UPw
−1
2 ∩ U)(UP ∩ w−1

1 UPw1 ∩M)

and

(2.8) w2UPw
−1
2 ∩ UP = (w2UPw

−1
2 ∩ U)(UP ∩M).

Let ϕ ∈ Π̃≥w and ϕ′ = ιML ϕ. Then

p̃L,w(ϕ) =

∫
(UP∩w−1UPw)\UP

j%(ϕ(wu)) du

=

∫
(UP∩w−1

2 UPw2)\UP

∫
(UP∩w−1UPw)\(UP∩w−1

2 UPw2)

j%(ϕ(w1w2u1u2)) du1 du2

=

∫
(UP∩w−1

2 UPw2)\UP

∫
(w2UPw

−1
2 ∩w

−1
1 UPw1)\(w2UPw

−1
2 ∩UP)

j%(ϕ(w1u1w2u2)) du1 du2.



8 EREZ LAPID AND ALBERTO MÍNGUEZ

Using (2.7) and (2.8) this equals∫
(UP∩w−1

2 UPw2)\UP

∫
(UP∩M∩w−1

1 UPw1)\(UP∩M)

j%(ϕ(w1u1w2u2)) du1 du2

=

∫
(UP∩w−1

2 UPw2)\UP

∫
(UP∩M∩w−1

1 UPw1)\(UP∩M)

j%(ϕ
′(w2u2)(w1u1)) du1 du2.

Note that by (2.6) for any u2 ∈ U0 we have ϕ′(w2u2) ∈ τ≥w1 . Hence we get∫
(UP∩w−1

2 UPw2)\UP

p̃ML,w1
(ϕ′(w2u)) du =

∫
(UP∩w−1

2 UPw2)\UP

pML,w1
(jτ (ϕ

′(w2u))) du

= pML,w1
◦ p̃M,w2(ϕ

′).

We conclude (2.5).
Finally, we prove (2.4). We already know the inclusion ⊇. First note that P Ω̃M,>w2U0 =

QΩ̃M
L Ω̃M,>w2U0 and hence

ΠM,>w2 = ιML (Π̃L,Ω̃ML Ω̃M,>w2
).

Thus,

Ker pM,τ,w2 = J(Π)M,>w2 = J(ιML )(J(Π̃)L,Ω̃ML (Ω̃M )>w2
) ⊆ J(ιML )(J(Π̃)L,≥w).

Hence, to prove (2.4) it remains to show that

(2.9) pM,τ,w2 ◦ J(ιML )(J(Π̃)≥w) = J(τ)w2
≥w1

.

We show this for all w1 ∈ Ω̃M
L by descending induction on `(w1). (Note that (2.5) holds

trivially if w1 ∈ Ω̃M
L \ΩM

L .) For the longest element in Ω̃M
L , the equality (2.9) follows from

(2.5). For the induction step, (2.5) gives

pM,τ,w2 ◦ J(ιML )(J(Π̃)≥w) + J(τ)w2
>w1

= J(τ)w2
≥w1

.

On the other hand, by induction hypothesis we have

pM,τ,w2 ◦ J(ιML )(J(Π̃)>w) = J(τ)w2
>w1

.

The relation (2.9) follows. �

Corollary 3. Under the same assumptions and notation suppose further that β ∈ CM is
a subrepresentation of τ . Identify IM(β) (resp. J(IM(β))) with a subrepresentation of Π̃
(resp. J(Π̃)) via (ιML )−1 (resp. J(ιML )−1). Let w = w1w2 ∈ ΩL where w1 ∈ ΩM

L , w2 ∈ ΩM .
Then the image of

J(IM(β)) ∩ J(Π̃)L,≥w → J(Π̃)L,≥w/J(Π̃)L,>w

is isomorphic to the w2-twist of the image of

J(β) ∩ J(τ)L,≥w1 → J(τ)L,≥w1/J(τ)L,>w1 .

In particular if
J(β) + J(τ)L,>w1 ⊇ J(τ)L,≥w1
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then

J(IM(β)) + J(Π̃)L,>w1w2 ⊇ J(Π̃)L,≥w1w2 .

Indeed, the Corollary follows from the relation

pL,w(J(ιML )−1(J(IM(β))) ∩ J(Π̃)L,≥w)
(2.5)
= pML,w1

◦ pM,w2(J(IM(β)) ∩ J(ιML )(J(Π̃)L,≥w))

(2.4)
= pML,w1

◦ pM,w2(J(IM(β)) ∩ p−1
M,w2

(J(τ)w2
≥w1

)) = pML,w1
(J(β)w2 ∩ J(τ)w2

≥w1
).

3. The graph E (π)

3.1. Ladder representations. As before, we fix a positive integer d and a cuspidal
representation σ of Gd.

3.1.1. By a segment [a, b] we mean a set of the form {a, a + 1, . . . , b} for some integers
a ≤ b. For any segment [a, b] we denote by ∆([a, b]) the unique irreducible quotient of
σνa × · · · × σνb : it is an essentially square-integrable representation of Gd(b−a+1). The
map [a, b] 7→ ∆([a, b]) is a bijection between the set of segments and the set of essentially
square-integrable representations in Irrσ [Zel80, §9.3]. By definition, the length l(∆([a, b]))
of ∆([a, b]) is b−a+1. For convenience, by a slight abuse of notation, we set ∆([a, a−1]) = 1
(the one-dimensional representation of G0) for any a ∈ Z and ∆([a, b]) = 0 (in R) for
b < a− 1.

Let [a1, b1], . . . , [at, bt] be segments and let ∆i = ∆([ai, bi]) and m =
∑
i

l(∆i). Assume

that for all i < j, ∆i does not precede ∆j, i.e. we do not have ai < aj ≤ bi + 1 < bj + 1
for i < j. Then the representation

I(∆1, . . . ,∆t) := ∆1 × · · · ×∆t

admits a unique irreducible quotient, the Langlands quotient, which we denote by

L(∆1, . . . ,∆t)

(see for example [Rod82, Théorème 3]). Any element of Irrσ is of this form, for uniquely
determined ∆1, . . . ,∆t (up to permutation). More generally, by reordering ∆1, . . . ,∆t if
necessary, we define L(∆1, . . . ,∆t) for any t-tuple.

3.1.2. Let [a1, b1], . . . , [at, bt] be segments and let ∆i = ∆([ai, bi]). We say that ∆1, . . . ,∆t

form a ladder if a1 > · · · > at and b1 > · · · > bt. In this case we term L(∆1, . . . ,∆t) a ladder
representation. A particularly important special case is the class of Speh representations
for which ai+1 = ai − 1 and bi+1 = bi − 1 for all i = 1, . . . , t − 1. These representations
comprise the building blocks for the unitary dual of Gn ([Tad86]).

3.2. Let [a1, b1], . . . , [at, bt] be segments, ∆i = ∆([ai, bi]) and m =
∑
i

l(∆i). Let π =

L(∆1, . . . ,∆t) ∈ IrrGmd. We order the segments so that for all i < j we have bi ≥ bj and
if bi = bj then ai ≥ aj. (In the sequel we only consider the case where b1 > · · · > bt.)
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(1) Define I (π) to be the directed graph whose vertex set is

S([a1, b1], . . . , [at, bt]) = {(j, i) : i = 1, . . . , t, j ∈ [ai, bi]}

and the edges are given by the horizontal arrows

(j, i) ≺ (j − 1, i), i = 1, . . . , t, j ∈ [ai + 1, bi].

(2) Suppose moreover that π is a ladder representation. Denote by E (π) the directed
graph obtained from I (π) by inserting the additional edges (diagonal arrows)

(j, i+ 1) ≺ (j + 1, i), i = 1, . . . , t− 1, j ∈ [ai − 1, bi+1].

Example 1. Suppose that ∆1 = ∆([2, 6]),∆2 = ∆([0, 5]),∆3 = ∆([−3, 0]). Then the
graph I (L(∆1,∆2,∆3)) is

◦ ◦oo ◦oo ◦oo ◦oo

◦ ◦oo ◦oo ◦oo ◦oo ◦oo

◦ ◦oo ◦oo ◦oo

and the graph E (L(∆1,∆2,∆3)) is

◦ ◦oo ◦oo ◦oo ◦oo

◦ ◦oo

??~~~~~~~
◦oo

??~~~~~~~
◦oo

??~~~~~~~
◦oo

??~~~~~~~
◦oo

??~~~~~~~

◦ ◦oo ◦oo

??~~~~~~~
◦oo

??~~~~~~~

The graph E (π) will play a role in the next section where we will relate it to J(π). It is
motivated by the combinatorial description of the Zelevinsky involution π† [Zel80, §9] à la
Mœglin-Waldspurger [MW86] which takes a particularly simple form in the case of ladder
representations. Indeed, in terms of the graph I (π), the segments pertaining to π† are
formed by intersecting with the diagonals i + j = const. In other words, we can think of
the diagonal arrows in E (π) as the horizontal arrows of the segments of π†. In particular, it
is easy to see that the class of ladder representations (as well as the Speh representations)
is closed under the Zelevinsky involution.
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Example 2. Suppose again that ∆1 = ∆([2, 6]),∆2 = ∆([0, 5]),∆3 = ∆([−3, 0]). We
write the segments

−3 −2 −1 0 1 2 3 4 5 6

◦ ◦ ◦ ◦ ◦ ∆1

◦ ◦ ◦ ◦ ◦ ◦ ∆2

◦ ◦ ◦ ◦ ∆3

and, by intersecting with diagonals, we get

◦ ◦ ◦ ◦ ◦

◦ ◦

~~~~~~~
◦

~~~~~~~
◦

~~~~~~~
◦

~~~~~~~
◦

~~~~~~~

◦ ◦ ◦

~~~~~~~
◦

~~~~~~~

that is, the Zelevinsky dual multisegment

([5, 6], [4, 5], [3, 4], [2, 3], [0, 2], [−1, 0], [−2,−2], [−3,−3]).

3.3. Let G = (V ,≺) be a finite directed graph with |V | = m. A labelling of V (or of G )
is a bijection φ : V → {1, . . . ,m}. We denote by N (G ) the set of all labellings of G . Thus,
|N (G )| = m!. We say that a labelling φ is increasing if φ(v1) < φ(v2) whenever v1 ≺ v2.
Let M(G ) be the set of increasing labellings of G .

When V ⊆ R2, for any φ ∈ N (G ) we write λφ = p1 ◦ φ−1 : {1, . . . ,m} → R where
p1 : R2 → R is the projection in the first coordinate. We call λφ the weight of φ.

Example 3. Let [a1, b1], . . . , [at, bt] be segments, ∆i = ∆([ai, bi]), M the Levi subgroup of
type m1d, . . . ,mtd where mi = l(∆i) and π = L(∆1, . . . ,∆t) ∈ IrrGmd where m =

∑
mi.

Assume that a1 > · · · > at. We define the “standard labelling” φstd = φstd,π ∈ M(I (π))
to be the one given by

φstd(b1, 1) = 1 < · · · < φstd(a1, 1) < φstd(b2, 2) < · · · < φstd(a2, 2) <

· · · < φstd(bt, t) < · · · < φstd(at, t) = m.
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For instance, in the previous examples φstd is the labelling

5◦ 4◦oo 3◦oo 2◦oo 1◦oo

11◦ 10◦oo 9◦oo 8◦oo 7◦oo 6◦oo

15◦ 14◦oo 13◦oo 12◦oo

By §2.6, there is a bijection

ψπ : ΩM −→ M(I (π))(3.1)

w 7→ w−1 ◦ φstd.

In particular, |M(I (π))| = |ΩM | =
(

m
m1 m2 ... mt

)
.

Remark 2. Combinatorially, ψ−1
π (φ1) ≤ ψ−1

π (φ2) in the Bruhat order if and only for any
k = 1, . . . , t − 1 if we write {φ1(j, i) : j ∈ [ai, bi], i ≤ k} = {x1, . . . , xl} with x1 < · · · < xl
and {φ2(j, i) : j ∈ [ai, bi], i ≤ k} = {y1, . . . , yl} with y1 < · · · < yl then xi ≤ yi for all
i = 1, . . . , l. (Cf. [BB05, Theorem 2.1.5].)

Remark 3. In the ladder case, with the terminology of [Sta99], M(E (π)) is in bijection
with the standard Young Tableaux of the skew Young diagram (a1 + 1, . . . , at + t)/(b1 +
1, . . . , bt + t). In particular, as a consequence of the Jacobi-Trudi identity we have

|M(E (π))| = m! det

(
1

(bi − aj + 1)!

)
i,j=1,...,t

where we set k! =∞ for k < 0 (cf. [Sta99, Corollary 7.16.3]).

3.4. Suppose π is a ladder representation. We evidently have M(E (π)) ⊆ M(I (π)).
Define Ωπ ⊆ ΩM to be the inverse image of M(E (π)) under ψπ.

Next, we will characterize the increasing labellings inM(E (π)) in terms of their weight.

Definition 1. We say that φ ∈M(I (π)) is a G-T pattern if λ = λφ satisfies the following
two conditions:

(1) Whenever λ(x) = λ(y) with x < y, there exists x < z < y such that λ(z) = λ(x)−1
(2) for any i = 2, . . . , t the smallest x such that λ(x) ∈ {bi, bi + 1} satisfies λ(x) = bi.

Of course this definition is closely related to Gelfand-Tsetlin patterns (e.g., [Bum04,
p. 359]). For t = 2 we can rephrase the condition by saying that there does not exist
l ∈ [a1, b2 + 1] such that λ(i) = λ(j) + 1 = l implies i < j.

Lemma 4. Let φ ∈M(I (π)). Then φ ∈M(E (π)) if and only if φ is a G-T pattern.

Proof.
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Suppose first that φ ∈ M(E (π)). Fix c ∈ [at, b1] and
let i1 (resp. i2) be the minimal (resp. maximal) index
i such that c ∈ [ai, bi]. If i1 < i2, then φ(c, i2) < φ(c −
1, i2) < φ(c, i2−1) < φ(c−1, i2−1) < · · · < φ(c, i1). This
shows the first condition. The second condition follows
by noting that x = φ(bi, i) since the minimal y such that
χ(y) = bi+ 1 is φ(bi+ 1, i−1). Thus, φ is a G-T pattern.
Conversely, suppose that φ ∈ M(I (π)) \M(E (π)) and
let (j0, i0) be the maximal pair (j, i), i = 1, . . . , t − 1,
j ∈ [ai − 1, bi+1] with respect to the lexicographic order
(from left to right) such that φ(j + 1, i) < φ(j, i + 1).
There are two possibilities: either j0 < bi0+1 or j0 = bi0+1.

c− 1 c

◦ ◦oo i1

◦

<<zzzzzzzzz ◦oo

◦

<<xxxxxxxxx ◦oo

◦

<<zzzzzzzzz ◦oo i2

In the first case let x = φ(j0 + 1, i0 + 1), and y = φ(j0 + 1, i0) and observe that by the
maximality of j0 we have

y > φ(j0 + 2, i0) > x.

Suppose that i is such that j0 ∈ [ai, bi]. If i > i0 + 1 then by maximality of (j0, i0) we have

φ(j0, i) < φ(j0 + 1, i− 1) ≤ φ(j0 + i− i0 − 1, i0 + 1) ≤ φ(j0 + 1, i0 + 1) = x.

Similarly, if i ≤ i0 then

y = φ(j0 + 1, i0) ≤ φ(j0 + i0 + 1− i, i) < φ(j0, i).

Also y < φ(j0, i0 + 1) by the defining property of (j0, i0). Thus the first condition of G-T
pattern is violated.

On the other hand, in the case where j0 = bi0+1 we have φ(j0, i0 + 1) > φ(j0 + 1, i0) and
φ(j0, i) > φ(j0 + 1, i) for all i ≤ i0 such that j0 ∈ [ai, bi]. Therefore the second condition of
G-T pattern is violated for i0 + 1. �

3.5. For any function λ : {1, . . . ,m} → R let

σ[λ] = σνλ(1) ⊗ · · · ⊗ σνλ(m) ∈ IrrMP.

For any finite directed graph G = (V ,≺) with m vertices contained in R2 and any subset
A ⊆ N (G ) let

XA =
∑
φ∈A

σ[λφ] ∈ R(MP)

where we recall that λφ is the weight of φ. For example, by the geometric Lemma of
Bernstein-Zelevinsky [Zel80, §1.2], with the notations of the previous paragraph, we have

(3.2) J(∆1 × · · · ×∆t) = XM(I (π)).
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3.6. Let π be a ladder representation. Since

M(E (π)) ⊆M(I (π))

we get

XM(E (π)) ≤ XM(I (π)).

The following is an immediate consequence of Lemma 4 and the definition of XM(G ).

Corollary 5. XM(E (π)) and XM(I (π)) −XM(E (π)) are disjoint.

4. The main theorem

Throughout this section we fix segments [a1, b1], . . . , [at, bt] and set ∆i = ∆([ai, bi]),
i = 1, . . . , t. We assume that ∆1, . . . ,∆t form a ladder and let δ = ∆1 ⊗ · · · ⊗ ∆t and
π = L(∆1, . . . ,∆t). Let M be the Levi subgroup of type d(b1 − a1 + 1), . . . , d(bt − at + 1)
so that δ is a representation of M . Denote by L the (unique) maximal submodule of
∆1 × · · · × ∆t = IM(δ) so that π = IM(δ)/L . We write J = J(IM(δ)), so that [J ] =
J(IM(δ)) is equal by (3.2) to XM(I (π)). (Recall that J denotes Jacquet functor with respect
to the parabolic of type (d, . . . , d).)

4.1. For any subset A ⊆M(I (π)) (cf. §3.3) let J A denote the maximal quotient of J
such that all its composition factors are equivalent to σ[λφ] for some φ ∈ A. Let JA be
the submodule so that J A = J /JA. Since J is cuspidal and [J ] = XM(I (π)), we have
the following properties.

Lemma 6. (1) J A is the quotient of J characterized by [J A] = XA.
(2) JA is the maximal submodule of J such that none of its composition factors is

equivalent to σ[λφ] for any φ ∈ A.
(3) JA is the submodule of J characterized by [JA] = XM(I (π))\A(= XM(I (π))−XA).
(4) J A and JA are disjoint.
(5) We have a direct sum decomposition J = JA + JM(I (π))\A. Hence J A '

JM(I (π))\A.
(6) More generally for any submodule M of J we have M = (M ∩JA) + (M ∩

JM(I (π))\A).
(7) For any submodules M1,M2 of J we have

(4.1) (M1 +M2) ∩JA = (M1 ∩JA) + (M2 ∩JA)

(8) Suppose that M1 ⊆ M2 ⊆J and M2/M1 ' σ[λ] where λ /∈ A. Then M1 + JA ⊇
M2.
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4.2. For any w ∈ St let Iw = ∆([aw(1), b1])× · · · ×∆([aw(t), bt]). (Note that this is 0 unless
aw(i) ≤ bi + 1 for all i.) In particular, let Kk = Isk where sk is the transposition (k, k+ 1).
We can identify Kk with a submodule of ∆1 × · · · ×∆t. Let

K :=
t−1∑
k=1

Kk ⊆ ∆1 × · · · ×∆t.

Note that if w1 ≤ w2 in the Bruhat order then [Iw2 ] ≤ [Iw1 ]. In particular, for any w 6= Id
there exists k such that [Iw] ≤ [Kk] and hence

(4.2) [Iw] ≤ [K ].

Theorem 7. Assume that ∆1, . . . ,∆t is a ladder and let π = L(∆1, . . . ,∆t). Then

(1) J(K ) = JM(E (π)).

(2) J(π) = JM(E (π)). Equivalently (by Lemma 6 and Corollary 5),

J(π) = XM(E (π)) =
∑

φ∈M(E (π))

σνλφ(1) ⊗ · · · ⊗ σνλφ(m).

(3) K = L .

In particular, J(π) and J(K ) are disjoint.

Before proving the theorem we note that any two parts of it imply the third.

4.3. The maximal case. Consider first the case t = 2. Recall that in this case

∆1 ×∆2 = π + K

in R and K = L = ∆′1 ×∆′2 where ∆′1 = ∆([a2, b1]) and ∆′2 = ∆([a1, b2]). If a1 > b2 + 1
then π = IM(δ), K = L = 0 and Theorem 7 is trivial in that case. Suppose from now on
that a1 ≤ b2 + 1 and let G1 = I (L ) and G = I (π).

We will introduce a weight preserving injective map ι1 :M(G1) →M(G ) whose image
is the complement of M(E (π)).

To define it, let φ ∈ M(G1). For convenience we set φ(a1 − 1, 2) = ∞. Let j0 be the
largest j ∈ [a1, b2 + 1] such that φ(j, 1) < φ(j − 1, 2). Clearly, the map

κj0(j, i) =

{
(j, 3− i) if j < j0,

(j, i) otherwise,

defines a bijection between the vertices of G and G1.
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j0

��

◦ ◦ ◦ ◦ ◦ ◦

��

G

κj0

��

��

◦ ◦ ◦ ◦ ◦

��

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

G1 ◦ ◦ ◦

We define φ′ = ι1(φ) : G → {1, . . . ,m} by φ′ = φ ◦ κj0 . Evidently λφ′ = λφ. To check
that φ′ ∈M(G ) we observe that by assumption on j0

φ′(j0, 1) = φ(j0, 1) < φ(j0 − 1, 2) = φ′(j0 − 1, 1)

and (if j0 ≤ b2)

φ′(j0, 2) = φ(j0, 2) < φ(j0 + 1, 1) < φ(j0, 1) < φ(j0 − 1, 1) = φ′(j0 − 1, 2)

where the first inequality follows from the maximality of j0. The other inequalities

φ′(j, i) < φ′(j − 1, i) j0 6= j ∈ [ai + 1, bi]

follow directly from the corresponding inequalities for φ.
Finally, the inverse mapM(G )\M(E (π))→M(G1) is defined in exactly the same way.

(The index j0 is well-defined for φ ∈M(G ) \M(E (π)).) We infer that

J(K ) = XM(G1) = XM(G )\M(E (π)) = XM(G ) −XM(E (π))

and
J(π) = XM(E (π)).

As was pointed out before, the first part of Theorem 7 in the case t = 2 now follows from
the disjointness of XM(E (π)) and XM(G ) −XM(E (π)).

For future record we say that φ′ as above is obtained from φ by a flip-flop along the
two rows. Of course, for this procedure we do not need to assume necessarily that φ takes
values in {1, . . . ,m}.

Recall the bijection ψπ : ΩM −→ M(G ) defined in (3.1). We further note that for any
w ∈ ΩM such that ψπ(w) ∈ ι1(M(G1)) we have

(4.3) J>w + K ⊇J≥w.

This follows from Lemma 6 because J≥w/J>w ' σ[λψπ(w)], ψπ(w) /∈ M(E (π)) and
K = JM(E (π)) by what we just proved.
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4.4. The general case. Let Pk, k = 1, . . . , t − 1 be the parabolic subgroup of type
(n1, . . . , nk−1, nk + nk+1, nk+2, . . . , nt). Recall that, by definition, Kk is isomorphic to
IMk

(%k) where

%k = ∆1 ⊗ · · · ⊗∆k−1 ⊗∆([ak+1, bk])×∆([ak, bk+1])⊗∆k+2 ⊗ · · · ⊗∆t.

Let
Gk = I (L(∆1, . . . ,∆k−1,∆([ak+1, bk]),∆([ak, bk+1]),∆k+2, . . . ,∆t)).

(If ak > bk+1 + 1 then we set Gk = ∅.) Using the map ι1 defined above in the case t = 2
we define an injective map ιk : M(Gk) → M(G ) by flip-flop along rows k, k + 1. More
precisely we define ιk(φ) = φ ◦ κk,j0 for φ ∈M(Gk) where j0 is the largest j ∈ [ak, bk+1 + 1]
such that φ(j, k) < φ(j − 1, k + 1) (with φ(ak − 1, k + 1) = ∞) and κk,j0 : G → Gk is the
bijection

κk,j0(j, i) =

{
(j, sk(i)) if j < j0,

(j, i) otherwise.

The map ιk is weight-preserving and therefore

J(Kk) = J(IMk
(%k)) = XM(Gk) = XMk(G )

where Mk(G ) is the image of ιk.
We can characterize Mk(G ) as the set of elements φ in M(G ) for which φ(j, k) <

φ(j − 1, k + 1) for some j ∈ [ak, bk+1 + 1]. It follows from the definition of M(E (π)) that
∪t−1
k=1Mk(G ) is the complement of M(E (π)) in M(G ).
We conclude from Lemma 4 that J(Kk) ⊆ JM(E (π)) for all k, and hence J(K ) =∑t
k=1 J(Kk) ⊆JM(E (π)).
To conclude the first part of Theorem 7 it remains to show the following

Lemma 8. J(K ) ⊇JM(E (π)).

Proof. First note that the condition ψπ(w) ∈Mk(G ) depends only on the right ΩMk
-coset

of w. Hence
ψ−1
π (Mk(G )) = ωkΩMk

where ωk = ΩMk
M ∩ψ−1

π (Mk(G )). Therefore, Ωπ (see §3.4) is the complement of ∪t−1
k=1ωkΩMk

in ΩM .
We will show by descending induction on `(w) that JM(E (π)) ∩J≥w ⊆ J(K ) for all

w ∈ ΩM . For the induction step (as well as for the base of the induction) we may assume
by (4.1) that JM(E (π)) ∩J>w ⊆ J(K ). Recall that J≥w/J>w ' σ[λψπ(w)]. Therefore, if
w ∈ Ωπ then JM(E (π)) ∩J>w = JM(E (π)) ∩J≥w and the induction step follows trivially.
On the other hand, if w /∈ Ωπ then there exists k such that w = w1w2 where w1 ∈ ωk and
w2 ∈ ΩMk

. By (4.3) and Corollary 3 applied with L = M , M = Mk, % = δ and β = %k we
infer that

J(Kk) + J>w = J(IMk
(%k)) + J>w ⊇J≥w.

Hence

J≥w ∩JM(E (π)) ⊆ J(Kk) ∩JM(E (π)) + J>w ∩JM(E (π)) ⊆ J(K ) + J>w ∩JM(E (π))
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and we can apply the induction hypothesis to conclude that J≥w ∩JM(E (π)) ⊆ J(K ) as
required. �

It remains to show the second part of Theorem 7.
Let M : ∆1 × · · · × ∆t → ∆t × · · · × ∆1 be the “longest” intertwining operator. It is

known that the image of M is π (or equivalently, KerM = L ). Since J is a functor we
have a map

J(M) : J → J(∆t × · · · ×∆1).

Lemma 9. J(M) factors through an injective map on JM(E (π)). Therefore J(π) '
JM(E (π)).

Proof. It is clear that for each k = 1, . . . , t−1, M factors through the intertwining operator
obtained by switching ∆k−1 and ∆k. Hence, KerM ⊇ Kk for all k and consequently
KerM ⊇ K . Thus, Ker J(M) ⊇ J(K ) and by the first part of the Theorem proved above
it follows that J(M) factors through JM(E (π)). It remains to show that J(M) is injective
on I = JM(G )\M(E (π)). Let si1 . . . sil be a reduced decomposition of the longest element in
St. Correspondingly we decompose

M = Ml ◦ · · · ◦M1

where Mj is the intertwining operator

Mj : ∆wj−1(1) × · · · ×∆wj−1(t) → ∆wj(1) × · · · ×∆wj(t)

where wj = si1 . . . sij . We will show that for all j = 1, . . . , l J(Mj) is injective on the image
of I under J(Mj−1 ◦ · · · ◦M1), i.e.

(4.4) Ker J(Mj) ∩ J(Mj−1 ◦ · · · ◦M1)(I) = 0.

Recall that wj−1(ij) < wj−1(ij + 1) = wj(ij) and KerMj is equivalent to

∆wj(1)×· · ·×∆wj(ij−1)×∆([awj−1(ij), bwj(ij)])×∆([awj(ij), bwj−1(ij)])×∆wj(ij+2)×· · ·×∆wj(t)

which is equal to I(wj−1(ij),wj(ij)) in R. It follows from (4.2) that [KerMj] ≤ [K ], and
hence [Ker J(Mj)] = J(KerMj) ≤ J(K ). Since [I] and J(K ) are disjoint, we deduce
(4.4). �

This concludes the proof of Theorem 7.

5. Application to Tadić’s formula

We continue to use the notation and assumptions of the previous section. Our goal
in this section is to prove the second part of Theorem 1, namely Tadić’s determinantal
formula (1.1)

π =
∑
w∈St

sgnw Iw.

Let

(5.1) S◦t := {w ∈ St : aw(i) ≤ bi + 1, i = 1, . . . , t}.
We note that only elements of S◦t contribute to the sum on the right-hand side of (1.1).
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Given w ∈ St we have w ∈ S◦t if and only if w(i) ≥ ri for all i where ri = min{j : aj ≤
bi + 1}) ≤ i. Thus |S◦t | =

∏t
i=1(i + 1 − ri). Indeed, r1 ≤ · · · ≤ rt; there are t + 1 − rt

possibilities for w(t), t− rt−1 possibilities for w(t− 1) given w(t), etc.

Remark 4. In light of Remark 3 we can view (1.1) as a p-adic analogue of the Jacobi-Trudi
identity.

5.1. To simplify notations, let E = E (L(∆1, . . . ,∆t)) and, for any w ∈ S0
t , let Iw =

I (L(∆([aw(1), b1]), . . . ,∆([aw(t), bt]))). Recall that M(E ) ⊆M(IId).
Set

M0 = {(φ,w) : w ∈ S◦t , φ ∈M(Iw)} \ {(φ, Id) : φ ∈M(E )}.
Proposition 10. There exists an involution ∗ on M0 such that if (φ,w)∗ = (φ∗, w∗) then
sgn(w∗) = − sgn(w) and λφ = λφ∗.

(In the case t = 2 this involution was used in section 4.3 above.)
Before proving the proposition, it will be convenient to introduce the following conven-

tion. Given a graph I and φ ∈M(I ) we extend φ to Z2 by setting

φ(j, i) =


∞ j < ai, i = 1, . . . , t,

−∞ j > bi, i = 1, . . . , t,

∞ i < 1,

−∞ i > t.

Example 4. In example 3, φstd extends to

∞ ∞ ∞ ∞ ∞ 5◦ 4◦oo 3◦oo 2◦oo 1◦oo −∞

∞ ∞ ∞ 11◦ 10◦oo 9◦oo 8◦oo 7◦oo 6◦oo −∞ −∞

15◦ 14◦oo 13◦oo 12◦oo −∞ −∞ −∞ −∞ −∞ −∞ −∞

Proof. The statement and the proof are closely related to the Gessel-Viennot Lemma
(cf. [Sta97, Theorem 2.7.1]). Let (φ,w) ∈M0. Define

Y = Y(φ,w) = {(j, i) ∈ Z2 : φ(j, i) < φ(j − 1, i+ 1)}.
Note that by our convention we have (aw(i+1), i) ∈ Y whenever w(i) > w(i+1). Thus, Y 6=
∅. Also, we have 1 ≤ i < t and j ∈ [aw(i), bi+1 + 1] for all (j, i) ∈ Y . Let (j0, i0) = (jφ0 , i

φ
0)

be the maximal element in Y with respect to the lexicographic order (from left to right).
Clearly j0 ∈ [amin(w(i0),w(i0+1)), bi0+1 + 1].

Let si0 be the transposition (i0, i0 + 1), set w∗ = wsi0 and define

φ∗(j, i) =

{
φ(j, si0(i)) j < j0,

φ(j, i) otherwise.
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By definition, it is clear that λφ∗ = λφ and sgn(w∗) = − sgn(w). Let us check that w∗ ∈ S0
t .

It is clear that aw∗(i) ≤ bi + 1 for i 6= i0, i0 + 1. Also

aw∗(i0) = aw(i0+1) ≤ j0 ≤ bi0+1 + 1 < bi0 + 1

and

aw∗(i0+1) = aw(i0) ≤ j0 ≤ bi0+1 + 1.

Thus, w∗ ∈ S0
t .

Next, we show that φ∗ ∈M(Iw∗). It is clear that for all 1 ≤ i ≤ t we have φ∗(j, i) =∞
if and only if j < aw∗(i) and φ∗(j, i) = −∞ if and only if j > bi. We also need to show that
for all 1 ≤ i ≤ t and j ∈ [aw∗(i) + 1, bi] we have φ∗(j− 1, i) > φ∗(j, i). This follows from the
similar property of φ if either i 6= i0, i0 + 1 or j 6= j0. For the remaining two cases we have

φ∗(j0 − 1, i0) = φ(j0 − 1, i0 + 1) > φ(j0, i0) = φ∗(j0, i0)

since (j0, i0) ∈ Y , and

φ∗(j0 − 1, i0 + 1) = φ(j0 − 1, i0) > φ(j0, i0) > φ(j0 + 1, i0) > φ(j0, i0 + 1) = φ∗(j0, i0 + 1)

where the last inequality follows from the maximality of (j0, i0).

Finally we verify that (φ∗, w∗)∗ = (φ,w). Let (j0, i0) = (jφ0 , i
φ
0), (j∗0 , i

∗
0) = (jφ

∗

0 , iφ
∗

0 ), Y =
Y(φ,w) and Y ∗ = Y(φ∗,w∗). Observe that φ∗(j0, i0) = φ(j0, i0) < φ(j0−1, i0) = φ∗(j0−1, i0+1),
so that (j0, i0) ∈ Y ∗. Suppose that (j, i) > (j0, i0) in the lexicographic order. Then
φ∗(j, i) = φ(j, i) (since j ≥ j0) and φ∗(j−1, i+1) = φ(j−1, i+1) (since j ≥ j0 and if j = j0

then i > i0). Thus, φ∗(j, i) > φ∗(j − 1, i+ 1) and (j, i) /∈ Y ∗. Thus, (j0, i0) is the maximal
element in Y ∗, so that (j∗0 , i

∗
0) = (j0, i0). It readily follows that (φ∗, w∗)∗ = (φ,w). �

Corollary 11. We have an equality in the Grothendieck group:

XM(E (L(∆1,...,∆t))) =
∑
w∈St

sgn(w) XM(Iw).

Equivalently (by (3.2)),

(5.2) J (L(∆1, . . . ,∆t)) =
∑
w∈St

sgn(w) J(Iw).

Proof. First note that only w ∈ S0
t contributes. With the notation as in the previous

proposition, we have∑
w∈S0

t

sgn(w) XM(Iw) =
∑
w∈S0

t

sgn(w)
∑

φ∈M(Iw)

σ[λφ]

= XM(E ) +
∑

(φ,w)∈M0

sgn(w)σ[λφ].

But, applying the involution, we have
∑

(φ,w)∈M0
sgn(w)σ[λφ] = 0. The corollary follows.

�
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5.2. Proof of (1.1). It is known that

L(∆1, . . . ,∆t) =
∑
w∈S◦t

cw Iw

for some integers cw. Applying J we obtain

J (L(∆1, . . . ,∆t)) =
∑
w∈S◦t

cw J(Iw).

Combined with (5.2), we infer that∑
w∈S◦t

sgn(w) J(Iw) =
∑
w∈S◦t

cw J(Iw).

On the other hand by [Zel80, §6.9], the elements J(Iw), w ∈ S◦t are free over Z in R. We
conclude that cw = sgn(w) for all w. This concludes the proof of Theorem 1.

5.3. Note that if we define the matrix (mi,j)i,j=1,...,t with coefficients in R by mi,j =
∆([ai, bj]) then the identity (1.1) reads

L(∆1, . . . ,∆t) = det (mi,j) .

Thus, by [CR08, Lemma 6.1], we immediately get the following result.

Corollary 12. Let ∆i = ∆([ai, bi]), i = 1, . . . , t be a ladder. Let

π = L(∆1, . . . ,∆t−1)× L(∆2, . . . ,∆t),

π1 = L(∆1, . . . ,∆t)× L(∆2, . . . ,∆t−1),

π2 = L(∆([a1, b2]), . . . ,∆([at−1, bt]))× L(∆([a2, b1]), . . . ,∆([at, bt−1])).

Then in the Grothendieck group we have π = π1 + π2.

For Speh representations see [Tad06].

Remark 5. Note that π2 = 0 if ai > bi+1 + 1 for some i = 1, . . . , t − 1. In a subsequent
paper [BLM] we show that π = π1 is irreducible in this case. Otherwise we show that π1

and π2 are irreducible, so that π has length 2, and π1 (resp. π2) is the unique irreducible
quotient (resp. subrepresentation) of π.

5.4. We can rephrase Theorem 1 in terms of Zelevinsky classification [Zel80]. For any
segment [a, b] we write Z([a, b]) = L(σνb, . . . , σνa). Thus Z([a, b]) is the unique irreducible
subrepresentation of σνa× · · · × σνb. As usual we write Z([a, a− 1]) = 1 and Z([a, b]) = 0
if b < a− 1. More generally, for a multisegment [a1, b1], . . . , [at, bt] such that for any i < j
[ai, bi] does not precede [aj, bj] we write Z([a1, b1], . . . , [at, bt]) for the unique irreducible
subrepresentation of Z([a1, b1])× · · · × Z([at, bt]).

The Zelevinsky involution takes L(∆([a1, b1]), . . . ,∆([at, bt])) to Z([a1, b1], . . . , [bt, at]).
Recall that the class of ladder representations is invariant under Zelevinsky involution.

Therefore, if a1 > · · · > at and b1 > · · · > bt then Z([a1, b1], . . . , [at, bt]) is a ladder
representation and conversely any ladder representation can be expressed this way.

By applying Zelevinsky involution on (1.1) we obtain
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Corollary 13. Suppose that a1 > · · · > at and b1 > · · · > bt. Then we have

Z([a1, b1])× · · · × Z([at, bt]) =
∑
w∈S◦t

sgnw Z([aw(1), b1])× · · · × Z([aw(t), bt])

= det(Z([ai, bj]))1≤i,j≤t

in R.

5.5. We conclude this section with another application, due to Marko Tadić, for the com-
putation of the (full) derivative of a ladder representation. This formula had been con-
jectured by Tadić for Speh representations [Tad87]. The interesting point is that even for
Speh representations one needs to use non-unitary ladder representations. We are grateful
to Marko Tadić for kindly allowing us to include this application here.

Recall that for any finite length representation π of Gn we can consider its full de-
rivative D(π) which is a sequence of finite length representations of Gi, i = 0, . . . , n
(see [BZ77, §4] for definition and basic properties). The functor D on ⊕∞n=0C

Gn induces
a ring homomorphism of the Grothendieck group (which is a subring of R). We have
D(Z([a, b])) = Z([a, b]) + Z([a, b− 1]) ([Zel80, Theorem 3.5]).

Theorem 14 (Tadić). Suppose that a1 > · · · > at and b1 > · · · > bt. Then the full
derivative D(Z([a1, b1], . . . , [at, bt])) of Z([a1, b1], . . . , [at, bt]) is given by the direct sum of

Z([a1, b
′
1], . . . , [at, b

′
t])

where (b′1, . . . , b
′
t) range over all sequences such that bi− b′i ∈ {0, 1} for all i and b′1 < · · · <

b′t. In other words,

(5.3) D(Z([a1, b1], . . . , [at, bt])) = ⊕m′Z(m′)

where the sum is over all multisegments m′ which are subordinate to [a1, b1], . . . , [an, bn] (in
the sense of [Zel80, §7.4]) and which form a ladder.

Proof. Using Corollary 13 and the fact that D is a ring homomorphism we have

D(Z([a1, b1], . . . , [at, bt])) = D(det(Z([ai, bj]))1≤i,j≤t) = det(D(Z([ai, bj])))1≤i,j≤t

= det(Z([ai, bj]) + Z([ai, bj − 1]))1≤i,j≤t

in R. By the multi-linearity of the determinant we get∑
ε1,...,εt∈{0,1}

det(Z([ai, bj − εj]))1≤i,j≤t.

Let b′j = bj − εj so that b′j ≥ b′j+1, j = 1, . . . , t − 1. If b′j = b′j+1 for some j then
the corresponding determinant in the sum above vanishes, since the matrix contains two
identical columns. Therefore we remain with∑

∀j bj−b′j∈{0,1},b′1<···<b′t

det(Z([ai, b
′
j]))1≤i,j≤t.
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Once again using Corollary 13 we obtain

D(Z([a1, b1], . . . , [at, bt])) =
∑

∀j bj−b′j∈{0,1},b′1<···<b′t

Z([a1, b
′
1], . . . , [at, b

′
t])

in R. Now observe that the cuspidal supports of all representations in the above sum are
different. Therefore, their infinitesimal characters (in the sense of Bernstein center) are all
different. Hence,

D(Z([a1, b1], . . . , [at, bt])) =
⊕

∀j bj−b′j∈{0,1},b′1<···<b′t

Z([a1, b
′
1], . . . , [at, b

′
t])

as an isomorphism of representations (of the various GLn’s). �

Note the similarity between this argument and the standard proof of branching laws for
the unitary group or the symmetric group (e.g., [Bum04, ch. 42, 44]).

We can rephrase Theorem 14 in terms of Langlands classification as follows. If ∆1, . . . ,∆t

form a ladder with ∆i = ∆([ai, bi]) then

D(L(∆1, . . . ,∆t)) =
∑

L(∆([a′1, b1]), . . . ,∆([a′t, bt]))

where the sum is over a′i ∈ [ai, ai−1 − 1], i = 1, . . . , t with the convention that a0 = ∞.
(In particular, a′1 > · · · > a′n.) This can be proved by applying the Mœglin-Waldspurger
algorithm to both sides of (5.3). Alternatively, we can follow the argument of Theorem 14
using the fact that D([a, b]) =

∑
a′≥a ∆([a′, b]) ([Zel80, Proposition 9.6]) – of course only

a′ ≤ b+ 1 contribute. We will obtain

(5.4) D(L(∆1, . . . ,∆t)) =
∑

a′i≥ai,i=1,...,t

det ∆([a′i, bj]).

If the a′j are not distinct then the corresponding summand vanishes. The summands
for which a′i ≥ ai−1 for some i > 1 cancel in pairs. Indeed, on this set we can define an
involution by switching a′i0 and a′i0−1 where i0 > 1 is the largest index such that a′i0 ≥ a′i0−1.
This involution negates the corresponding summand. We remain with the a′i such that
a′i < ai−1 as required.

6. Odds and ends

We will list several questions and conjectures arising from the results above.

6.1. Decomposition of standard modules. It is natural to ask whether in the case of
a ladder representations L(∆1, . . . ,∆t) the decomposition of ∆1 × · · · ×∆t in R, or more
generally of Mw := Iw for any w ∈ S◦t (see (5.1)), is any simpler than in the general case.

As was pointed out by Tadić, MId is not multiplicity free in general for t > 3 [Tad95,
§6]. Let Lw = L(∆([aw(1), b1]), . . . ,∆([aw(t), bt])). Recall that Lw 6= 0 if and only if w ∈ S◦t .
Note that for w,w′ ∈ S◦t we have w′ ≥ w if and only if(

[aw′(1), b1], . . . , [aw′(t), bt]
)
≤
(
[aw(1), b1], . . . , [aw(t), bt]

)
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in the partial order on multi-segments introduced by Zelevinsky in [Zel80, §7]. Therefore
we have

Mw =
∑
w′≥w

cw,w′Lw′

for some coefficients cw,w′ ∈ Z≥0. We have cw,w = 1 for all w ∈ S◦t .

Lemma 15. There exists a unique w′0 ∈ S◦t such that

(6.1) S◦t = {w ∈ St : w ≤ w′0}.

Moreover, w′0 avoids 312 pattern, i.e. there does not exist a triple i < j < k such that
w′0(k) < w′0(i) < w′0(j). Finally Lw′0 is generic.

Proof. We first note that the set S◦t is closed from below in St (i.e., it is closed in the
Bruhat order topology of St – see §2.6). Indeed, suppose that w ∈ S◦t and w(i) > w(j) for
some i < j. Let s be the transposition (i, j). We verify that w′ := ws ∈ S◦t . If k 6= i, j
then aw′(k) = aw(k) ≤ bk + 1. On the other hand, aw′(i) = aw(j) ≤ bj + 1 < bi + 1 and
aw′(j) = aw(i) < aw(j) ≤ bj + 1. Thus w′ ∈ S◦t and S◦t is closed from below as claimed.

It remains to show that S◦t has a unique maximal element w′0. We define w′0 by recursion
as follows. Suppose that w′0(t), . . . , w′0(i+ 1) were defined for some 1 ≤ i ≤ t. Then define
w′0(i) to be the minimal index j 6= w′0(t), . . . , w′0(i+ 1) such that aj ≤ bi + 1. (Such j exists
because ai, . . . , at ≤ bi + 1.) By definition, w′0 ∈ S◦t . To see that w′0 is the unique maximal
element of S◦t suppose that w ∈ S◦t with w 6= w′0. Then we claim that w is not maximal
in S◦t . Indeed, let i be the maximal index such that w(i) 6= w′0(i). Then by definition of
w′0 we necessarily have w(i) > w′0(i). Let s be the transposition (i, j) with j = w−1(w′0(i)).
Note that j < i since w(k) = w′(k) for all k > i by assumption. Also, w(j) = w′0(i) < w(i)
so that ws > w. On the other hand ws ∈ S◦t because aws(k) = aw(k) ≤ bk + 1 for all k 6= i, j
while aws(i) = aw(j) = aw′0(i) ≤ bi + 1 and aws(j) = aw(i) ≤ bi + 1 ≤ bj + 1.

We conclude (6.1).
Let us prove now that w′0 avoids the pattern 312. Assume on the contrary that it

does not. Then w′0(k) < w′0(i) < w′0(j) for some triple i < j < k. It follows that
aw′0(i) < aw′0(k) ≤ bk + 1 < bj + 1. However, by the choice of w′0(j) we would then have
w′0(j) ≤ w′0(i) in contradiction.

Finally, to show that Lw′0 is generic assume on the contrary that [aw′0(j), bj] precedes
[aw′0(i), bi] for some i < j. Then w′0(i) < w′0(j) and aw′0(i) ≤ bj + 1 in contradiction with the
minimality of w′0(j). �

Remark 6. One can show conversely that any w ∈ St which avoids 312 pattern can be
realized as w′0 for some ladder of rank t. These permutations are exactly the inverses of the
stack sortable permutations. Their number is known to be the Catalan number Ct ([Sta99,
p. 224]).

We conclude that cw,w′ > 0 for all w ≤ w′ ≤ w′0 and cw,w′0 = 1 for all w ∈ S◦t . Set
cw,w′ = 0 if w 6≤ w′. Let c′w,w′ be the inverse matrix of (cw,w′)w,w′∈S◦t . Then c′w,w′ has integer
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entries, c′w,w = 1 for all w ∈ S◦t and c′w,w′ = 0 if w 6≤ w′. We have

Lw =
∑
w′≥w

c′w,w′Mw′ .

Conjecture 1. We have cw,w′ = Pw,w′(1) where Pw,w′ are the Kazhdan-Lusztig polynomi-
als. Equivalently,

(6.2) c′w,w′ = (−1)l(w)−l(w′)Pw0w′,w0w(1).

In other words, the relation between the Mw’s and Lw’s is analogous to the relation be-
tween Verma modules and simple highest weight modules in the category O (cf. [Hum08]).

Note that the relation (1.1) is the case w = Id of (6.2). Also, note that Pw,w′0 ≡ 1 for
all w ≤ w′0 because w′0 avoids the pattern 312 [LS90]. This is consistent with the fact that
cw,w′0 = 1.

In principle, it should be possible to check whether Conjecture 1 is in accordance with
Zelevinsky’s conjectures [Zel85] proved in [CG97]. However, this is not straightforward
since the Kazhdan-Lusztig polynomials appearing in [Zel85] are pertaining to the much
bigger symmetric group Sm where we recall that m =

∑t
i=1(bi + 1 − ai). We will not

pursue this question any further here. At any rate, we checked that Conjecture 1 holds for
t = 3, in which case cw,w′ = 1 for all w ≤ w′, and t = 4, in which case

cw,w′ =


0 w′ 6≥ w,

2 w′ = (1, 3)(2, 4) and w ≤ (2, 3),

2 w′ = (1, 4) and w ≤ (1, 2)(3, 4),

1 otherwise.

(See [Tad95, §6] for a special case.)
Another interesting problem in connection with ladder representations would be to de-

termine (the semisimplification of) all Jacquet modules, not only the minimal one. This
seems to be unknown even for Speh representations. As was pointed out to us by Arno
Kret, knowing it in this case would already have interesting consequences.

6.2. Imprimitive representations. We say that π ∈ IrrGn is (parabolically) imprim-
itive if it is not (fully) induced from a proper parabolic subgroup. It is known that any
π ∈ Irr can be expressed as the product of imprimitive representations in a unique way, up
to reordering. In other words, the imprimitive representations are, roughly speaking, the
prime elements of Irr. Thus, it is desirable to characterize imprimitive representations in
terms of their Zelevinsky (or Langlands) data.

In general, by [Zel80, Proposition 8.4], if L(∆1, . . . ,∆t) is not imprimitive then there
exists a non-trivial partition {i1, . . . , ir} t {j1, . . . , jt−r} = {1, . . . , t}, such that

(6.3) L(∆1, . . . ,∆t) ' L(∆i1 , . . . ,∆ir)× L(∆j1 , . . . ,∆jt−r).

In the case of ladder representations we can easily describe the imprimitive ones. More
precisely, we say that a ladder is proper if ai ≤ bi+1 + 1 (i.e., ∆i+1 precedes ∆i) for all
i = 1, . . . , t− 1. Then we have
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Theorem 16. A ladder is proper if and only if L(∆1, . . . ,∆t) is imprimitive.

Proof. Suppose that ai > bi+1 + 1 for some i. Then it follows from [Zel80, Proposition 8.5]
that

L(∆1, . . . ,∆t) ' L(∆1, . . . ,∆i)× L(∆i+1, . . . ,∆t).

Hence L(∆1, . . . ,∆t) is not imprimitive.
Conversely, assume on the contrary that ∆1, . . . ,∆t is a proper ladder but L(∆1, . . . ,∆t)

is not imprimitive. Then we have (6.3) for some non-trivial partition. By (1.1) (applied
to the ladders (∆1, . . . ,∆t), (∆i1 , . . . ,∆ir) and (∆j1 , . . . ,∆jt−r)) and the geometric Lemma
we would obtain ∑

w∈S◦t

sgnw Iw =
∑
w∈B

sgnw Iw

where
B = {w ∈ S◦t : {w(i1), . . . , w(ir)} = {i1, . . . , ir}}.

Since Iw, w ∈ S◦t are free over Z in R this would mean that B = S◦t . However, since
∆1, . . . ,∆t is a proper ladder, the transpositions si, i = 1, . . . , t − 1 are in S◦t . This leads
to a contradiction. �

We remark that one can easily give examples of non-ladder imprimitive representations.
For instance, consider t = 3 and a ladder [a1, b1], [a2, b2], [a3, b3] such that a1 ≤ b3 + 1
(i.e., w′0 = (1, 3) is the longest element of S3). (The smallest such example is [2, 3],
[1, 2], [0, 1].) We claim that in the notation of the previous section, the representation
L(2,3) (the Langlands quotient L(∆([a1, b1]),∆([a3, b2]),∆([a2, b3]))) is imprimitive. Indeed,
otherwise it would equal to one of the representations ∆([a1, b1])×L(∆([a3, b2]),∆([a2, b3])),
∆([a3, b2]) × L(∆([a1, b1]),∆([a2, b3])) or ∆([a2, b3]) × L(∆([a1, b1]),∆([a3, b2])). However,
these representations are M(2,3), M(2,3) − M(1,2,3) and M(2,3) − M(1,3,2) respectively and
none of them is irreducible since L(2,3) + L(1,3,2) ≤ M(2,3) −M(1,2,3) and L(2,3) + L(1,2,3) ≤
M(2,3)−M(1,3,2). (This is because (1, 3, 2), (1, 2, 3) ≥ (2, 3) but (1, 3, 2) and (1, 2, 3) are not
comparable in the Bruhat order.)

6.3. For τ ∈ IrrGn (not necessarily ladder) let m(τ) denote the multi-segment corre-
sponding to τ . There is an obvious operation of sum of multi-segments. We also have the
Mœglin-Waldspurger involution † on multi-segments ([MW86]) which is the combinatorial
counterpart of the Zelevinsky involution (cf. example 2). Thus, m(τ †) = m(τ)† for any τ .

Suppose that τi ∈ IrrGni , i = 1, 2 and that π = τ1 × τ2 is irreducible. Then π† = τ †1 × τ
†
2

is also irreducible and we have

(m(τ1) + m(τ2))† = m(π)† = m(π†) = m(τ †1 × τ
†
2) = m(τ †1) + m(τ †2) = m(τ1)† + m(τ2)†.

However, the condition
m(τ †1) + m(τ †2) = (m(τ1) + m(τ2))†

is not sufficient for the irreducibility of τ1×τ2 in general. To wit, let τ1 = L(∆([2, 2]),∆([0, 1]))
and τ2 = ∆([1, 1]). Then by the algorithm of [MW86] we have (m(τ1) + m(τ2))† =
∆([1, 2]) + ∆([1, 1]) + ∆([0, 0]) = m(τ1)† + m(τ2)†. However, τ1 × τ2 is reducible. (It
decomposes as L(∆([1, 2]),∆([0, 1])) + L(∆([2, 2]),∆([1, 1]))×∆([0, 1]).)
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Needless to say, it would be very interesting to have a combinatorial (or algebraic)
description for the irreducibility of parabolic induction in terms of the multisegments of
the inducing data. At the moment we are not aware of any such possible characterization
(even conjecturally).

6.4. We end up with a conjecture about the general case. Suppose that π = L(∆1, . . . ,∆t)
and ∆i does not precede ∆j for any i < j. As before, let L be the unique maximal
submodule of Π := ∆1 × · · · ×∆t so that π = Π/L . For any w ∈ St let Πw = ∆w−1(1) ×
· · · ×∆w−1(t). We will consider the normalized intertwining operators Nw : Π→ Πw which
are well-defined and non-zero.

For any i = 1, . . . , t let pi be the minimal index j (necessarily bigger than i) such that
∆j precedes ∆i. If such j does not exist set pi = t + 1. (This case will not play a role in
what follows.) Similarly, let qi be the maximal index j (necessarily smaller than i) such
that ∆i precedes ∆j. If j does not exist set qi = 0. (Again, this case is immaterial.) Let
T be the set of pairs (i, j) (necessarily with i < j) such that ∆j precedes ∆i and pi > qj.
(Note that pi ≤ j and qj ≥ i if (i, j) ∈ T .) For any (i, j) ∈ T let s be the transposition
(pi, qj) and let w be the permutation

w(k) =



k k < i,

pi k = i,

k − 1 i < k ≤ qj,

k qj < k < pi,

k + 1 pi ≤ k < j,

qj k = j,

k k > j.

◦ ◦ ◦ ◦ ◦ ∆i

��

◦ ◦ ◦ ◦ ∆i+1

OO

◦ ◦ ◦ ∆qj

OO

◦

◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ∆pi

��
◦ ◦ ◦ ◦ ◦ ∆j−1

��
◦ ◦ ◦ ◦ ∆j

HH

We have `(w) = `(s) + `(sw) and we write correspondingly Nw = N ′s ◦ Nsw where
N ′s : Πsw → Πw. Since pi > qj the intertwining operator Nsw is an isomorphism: it
“moves” ∆i across ∆i+1, . . . ,∆qj and ∆j across ∆j−1, . . . ,∆pi . The intertwining operator
N ′s interchanges ∆i and ∆j (in their new position). We may decompose N ′s into a product
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of rank-one intertwining operators (switching consecutive segments) by choosing a reduced
decomposition of s. All these operators will be isomorphisms except the one induced from
∆i ×∆j → ∆j ×∆i. Let K(i,j) = KerNw = N−1

sw (KerN ′s). Finally, set

K =
∑

(i,j)∈T

K(i,j).

(This is consistent with the K defined in (4.2) for the case of ladder representations.)
Clearly K ⊆ L .

Conjecture 2. We have K = L .

This conjecture seems to be the first general conjecture about the fine structure of the
Langlands quotient in its standard module. It would have applications, among other things,
to questions about existence of functionals with certain invariance properties.
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Boston Inc., Boston, MA, 1997. MR 1433132 (98i:22021)
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