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A non-standard FETI-DP mortar method
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Abstract — The trace spacdsll/2 and H&éz play a key role in the FETI and mortar families

of domain decomposition methods. However, a direct numerical ai@uaf these norms is
usually avoided. On the other hand, and for stability issues, the subsplacetions for which
their jumps across the interfaces of neighbouring subdomains beloreswmtilace spaces yields
a more suitable framework than the standard broken Sobolev spaaby,Rire nullity of these
jumps is usually imposed via Lagrange multipliers and using the pairing ofgbe spaces with
their duals. A direct computation of these pairings can be performed tignRiesz-canonical
isometry. In this work we consider all these ingredients and introducenaitiadecomposition
method that falls into the FETI-DP mortar family. The application is to the incesgible
Stokes problem and we see that continuous bounds are replicated asdretedlevel. As a
consequence, no stabilization is required. Some numerical tests diyegheaented.

Keywords: FETI-DP methods, mortar methods, trace norms, freefem++

1. Introduction

Given a computational domaid (Q c R? bounded polygonal to ease presen-
tation) we denote byid(Q) the closure in the standard Sobolev specéQ)

of all the smooth functions with support insi@e As usual, we spliQ into
open polygonal subdomaiis= |JS_; QS with QN Q' = & (s#t), denote by
0Q° the boundary of an2® and letl's; = dQ°N JQ" be either an edge (i.e., a
segment), a crosspoint or empty. Finally, consiéier= {le}e-1.... £ the sorted
set of all edges insid@, also known as the skeleton of the decomposition. We

*Dpto. Matenaticas, Facultad de Mateaticas, Universidad de Murcia, Campus Espinardo,
30100 Murcia, SPAIN. Email; eliseo@um.es

TDpto. Ecuaciones Diferenciales y Alisis Nunérico, Facultad de Mateaticas, Universi-
dad de Sevilla, Tarfia sn. 41012 Sevilla, SPAIN. Email: franco@us.es
Research partially funded by Spanish government MEC Resear¢gacPMTM2009-
07719.

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated
Download Date | 10/14/16 12:45 PM



162 E.Cha®n Vera and D. Franco Coronil

Domain Q

p=0Q-Ty

Figure 1. Example of domain decomposition where cross points are marked witrotsgdd
the skeleton is the set of all thefori = 1,2, ..., 10. In the case of Dirichlet Boundary conditions
we havel 'y = @.

assume that ead is of area¢’(H?) and shape regular while eaEh is of
length&'(H) for some fixedH > 0 (see Fig. 1 for example).
Let us denote byv]r, the jump acros§e and consider the Hilbert space

X ={vel?(Q):v*=v_, e H{(Q%) NH(Q) Vs, [Vr, € Hop*(Te) VTe € &0}

with the graph norm

s - 1/2
[Vi[x = { Zl||VS”iQS+ > ”[V]reH%/z,oo,re} :
S— e=1

Here|| - ||1/2,00r, is the norm induced by the scalar proddct); /> 0qr, ON
12,0\, '
Hop (Te):

W(X) V()
(W,V)1/2.00re = (WV)1/2, + /Fe dx.rs) dx

whered(x,dl"e) is the distance af to the boundary of ¢ and

W, = [ woov o [ [ (W00 W) (V) ~VY))

x—y|?
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A non-standard FETI-DP mortar method 163

To simplify notation, we write{w,v}r, = (W,V)1/200r,. POiNcare’s inequality

and the control we have on the jumps, interconnecting all subdomains, allow
the use orX of the equivalent norniv|% = (v, v)x, where(-,-)x is the scalar
product given by

S E
(U,V)x = Z(DUS, DVS)QS+ Z{[U]re,[V]re}re Yu,v e X.

Bernardi et al. in [3] and [7] used the spaXeand the (Riesz) identification of

the Hilbert space-lgol/z(re) with its dual Hééz(re) in order to present a con-
tinuous framework for a domain decomposition method for elliptic equations.
Their method falls into the FETI-DP mortar family: FETI-DP alike because
only continuity at cross points is imposed and mortar alike because nonmatch-
ing meshes at interfaces are allowed, although a different scalarqifodthe
mortaring process is used. In this approach, the continuous analysssfoold
internal approximations even in the case of non conforming meshes and make
theory remarkably simple. Another interesting property is that the stability of
the discretization is independent of the varying mesh sizes, i.e., it does not
matter which side is the mortar. On the other hand, and only in the presence
of crosspoints, we recover the standard mesh dependency boundsnsnote
log(H/h) that appear in FETI-DP methods (see [9, 15]). A similar approach
was introduced by Braess et al. in [5]; although they used a mesh dapend
L?(I"e) norm to approximate thblééz(re) norm. See also the works by Farhat

et al. [9] and Dryja and Widlund [8] for the origin of the FETI-DP mortar
method.

In this paper we extend the ideas in [3] and [7] to the case of the incom-
pressible Stokes equations showing that the same properties hold. Gusisana
will be presented in the two dimensional setting to simplify the presentation.
These main ideas extend easily to the three dimensional situation although a
detailed study is required. Finally some numerical tests are shown as a-conclu
sion.

2. Incompressible Stokes equations

The zero average of the pressure imposes a global condition on trsaigres
space and, as a consequence, the splitting of the computational subdomain
for the pressure is more difficult. We introduce a new variable in the Stokes
equations that sets free the pressure space from this restriction.

Incompressible Stokes equations with homogeneous boundary conditions
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164 E. Cha®n Vera and D. Franco Coronil
amount to findi € H}(Q) = (H(Q))? andp € L?(Q) such that

(Ou,0v)g — (p, div(v))q = (f,v)a WeHHQ)
—(qg,div(u))o = 0 Vg€ L3(Q)

/p:O.
Q

We better accommodate the restriction on the pressure by adding a new scalar
unknown as follows: we look for a pair of valués, 1) € H}(Q) x R and
p € L2(Q) such that

(Ou,Ov)q — (p, div(v))q +t <T/Qp> = (f,v)a VY(vt) e H}(Q) xR
~(@dvWa—7 [ g =0 vge L2(Q).

A saddle point problem emerges with the incorporation of this new variable
when the first equation is written as

(Ou,Ov)g + 1t — (p, div(Vv) —t/p_ (f,v)a

SetW = H}(Q) x R and letv = (v;t) € W any element ofV. We normW by
using

2 2 2 .2
IVIly = [I(w )l = 1EV][g.q +t

and let(-, - )w : W x W — R be the scalar product &f, i.e.,
(gay)W = ((U, T)7 (Vat))W = (DU, DV)Q + Tt.

Finally, we take our restriction ds: W x L?(Q) — R given by
b(a.v) = b(@, (WD) = — (&, div(v))o—t [ &

Then, we look fou = (u, 7) € W andp € L?(Q) such that for alv = (v,t) €W
andg € L?(Q)

v) = (f,v)a (2.1)
b(q,u) = 0. (2.2)

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated
Download Date | 10/14/16 12:45 PM



A non-standard FETI-DP mortar method 165

Lemma2.1. There exists a positive constght> 0 such that for all pe
L*(Q)

qup DR (o b(p (D)

> > Bllpllog.  (2.3)
B T 7 s (TDvIEg + 2372 = PPl

As a consequence, the saddle point prob{@ri)—(2.2)is well posed and its
unique solution is the one for the original Stokes problem with Dirichlet ho-
mogeneous boundary conditions.

Proof. Takepq =|Q|~ [, pdx, thenp— pg € L3(Q) and there existg’ €
H3(Q) that gives the inf-sup condition fqu— pg; take alsat* = —pg, then
the result follows in a standard way. O

2.1. Multidomain formulation to the Stokes problem

Let us define the spaces for our formulation. For the elliptic pa'seiX x R,
whereX = X x X, and represent by = (v,t) any element oW/ wherev € X
andt € R. Obviously,V is Hilbert space with nornijv||Z = |v|% +t2. For the

pressure variables we considér=[13_; L?(Q®) (=~ L?(Q)). For each ¢ € &

we takeHééz(re) = (Hééz(re))2 and handle the Lagrange multipliers for the

jumpsinN = nilHégz(re) with scalar product

E
AN = > {Ae,Helre VA,HEN. (2.4)
e=1

In our new multidomain formulation at the continuous level we add, only in the
presence of crosspoints, the jumps to the elliptic terms and replace the pairings
H(;Ol/z(r) - H(%Z(r) for the normal fluxes on the edges by the scalar product
in Ho_ol/z(r). As a consequence, all terms are suitable to compute in a Galerkin
approach and without changing the regularity on the edge terms.
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166 E.Cha®n Vera and D. Franco Coronil

We look foru= (u,7) € V, p={p°}s € M andA = {A¢}e € N such that

s
Z (Ou®, Ov%) s + Z{ Fes [Vre}re + Tt
=

Z(p div( Qs—t;/ ‘”Zl“e’ re}re—;< Vo
iq div(u Qs—r; qu =0

Zl{th [u]re}re =0

forallv=(vt) e V,q={0°}s € M andu = {lle}e € N. In @ more compact
form, takingF (v) = 35, (f,V®)gs, the problem is

Find (u,p,A) € V x M x N such that

(U V)v +b(p,v) +¢(A,v) = F(v)
b(g,u) = 0 (2.5)
c(u,u) =0

forall (v,q,pu) €V xM xN.

where

s
(UY)y = 3 (Ou,0v%)gs + Z{ rerMretre + Tt
=]

b(p,v) = —Z p®, div(v® Qs—tZ/ p°
c(p,u) = o(p,u) Z{ue, Jredre:

Inf-sup conditions fotb andc are easily checked. Moreover, the inf-sup
for the bilinear formb is reached with a functiom € V with zero jumps while
the inf-sup for bilinear formc is reached with a functior € V with non-
zero jumps, see Lemma 2.9 of [2] for instance. These facts give unigsiene
of solution and make the formulation equivalent to that of the incompressible
Stokes problem on the global domdin

Next, if we call dual variables the Lagrange multipliers and the rest pri-
mal variables we eliminate the primal variables in terms of the dual variables.
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A non-standard FETI-DP mortar method 167

That is to say, we obtain a dual problem that once solved will give thecrr
boundary data for the primal variables. Using standard operator nqté2iéh

is
Find (u,p,A) € V x M x N such that

Au+B*p+C*A =F inV* (2.6)
Bu=0 inM* '
Cu=0 inN

and the dual problem fok is an equation o in the formSA = ¢, whereS
and/ are given by

S= (CAlcY) - (cAalB")(BA 1B ) (BA ICY)
¢ = (CAF)—(cA1B")(BA1B") " L(BAIF).
Theorem 2.1. Let be S N — N defined as above. Then S is a self-adjoint

positive definite operator and there exists a constant 0 that only depends
on the inf-sup conditions for bilinear forms b and ¢ such that

a?|A 1% < (SAANSAIZ YA EN, A #0. (2.7)
As a consequence, our dual problem is well posed and has a unitjueso
that gives the correct Lagrange multipliers f(&.5).
Proof. By the construction o§it is clear that it is self-adjoint.
Let us prove tha§is positive definite. For an¥ € N, A # 0 we have
SA = (CAIcY) A — (cA B (BA 1B ) L(BAICH) A
= (CAIC")A + (CA'B")p) = —Cu,
where
pp = —(BA 1B Y(BAIC)A, uy=-AC"'A-A1Bp,.

As a consequence, €V andp, € M satisfy

Au, +B'py+C'A =0 inV*
Bu, =0 inM*
CLJ)\ = —S)\ in N

Thanks to the uniqueness of soluti@h, # 0, becaus&A = 0 would imply
u, =0, pp =0andA =0 while we assum@ # 0. Then,

(SAA)N=(-Cu,A)n = —(C"A,uy)v
= (Au, +B py, Uy )v = [|uy |15
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168 E.Cha®n Vera and D. Franco Coronil

We will lower bound||u, || in terms of||A ||%. Using the inf-sup condition for
bilinear formc, there exists a constapt> 0 such that:

/\ —(A B*
ylAlN < sup( V) _ up— AW BTV

IVlv vev 1Vilv
< ||Q)\||V+||p)\||l\/|

then, if we controIH Px |Im in terms of||u, |y we obtain our bound. Next, &4
is simply L?(Q), and for our bilinear fornb the inf-sup condition is achieved
on functions with zero jumps, there exists a consfant 0 such that:

(B"'px,V)
Blprlloo < sup
' veHl( teR (HDVHOQ +t2)l/2

_ sup <AUA7 >
veri@)ter (| Ov[§q +12)

1/2 Hg)\ HV

Then,y [A[n < [luyllv + [IPalim < (14 B7Y)[urllv and [luy [lv = yB(1+
B)~L||A||n. Finally,

P2
(1+pB)2

On the other han@®\ = —Cu, implies||SA ||n < ||uy[lv and[|uy[|Z = (SA, A ),
then|u, ||v < ||A|In- As a conclusion

(SA M= w G > AT

AR < (SA M < AR
foro=yB(1+B) a

3. Finitedimensional approach: discretedual and primal problems

Now we introduce a discrete framework that will allow to obtain the dual prob-
lem in a finite dimensional setting and with the same properties. We pose prob-
lem (2.5) in discrete spac®,, My, andN;, and obtain inf-sup conditions fdr

andc uniformly with respect to the discretization paramétiefo further sim-

plify we consider a conforming triangulatia#, of Q that contains the skeleton

&p as union of edges of triangles and so that on each edge only one patrtition is
inherited from both sides. As usudljs the mesh size, i.eh,= maxh,,, where

» is a generic element of the mesh amdis the longest side of.. As 7 is

also compatible with the subdivision €, its restriction to eaclf)s gives a
mesh.7 on Q.
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A non-standard FETI-DP mortar method 169

To fix ideas will use the Taylor—Hood finite element for the velocity and
pressure pair on each subdomain. Define the family of subspgaés C
H3(Q) and{Qn}n € HY(Q) given by

Yo = {VEHG(Q): v, €Pa(5) Ve T}
Qh = {peHYQ): p, €Pi(x) Ve T}

wherePP; () is the space of polynomials of degree less or equalindhe two
variablesx andy. On each subdomain, we take also

Ya(Q%) =YanHY(Q®),  Qn(Q% =QnnHYQ%, 1<s<S
Consider nowXp = X X X, whereX;, is the broken version of, given by

Xp = {vel?(Q): VVeY(Q®) Vs=12..S
andyv is continuous at every cross paint X

defineVy =Xy xR, My, = |‘|§’:1 Qn(Q%) and finallyNy, C N given by the re-
striction of functions inX, to the skeleto#y. Then, we just plach everywhere
and computel, = (U, T) € Vi, ph= {P;}s € Mp andAn = {Ane}e € Np.

This problem can be written in terms of operators as we did before and
proceed in the same manner to obtain the dual problem for the discrete La-
grange multipliers and with the same properties. The discrete uniform inf-sup
condition forc on the paitVy andNy, is a well known result (see for instance
Theorem 4 in [3]), that can be obtained using the standard finite element ex
tension theorems or the extra regularity of solutions for elliptic problems in
polygonal domains; it is also obtained on discrete functions with jumps.

Lemma3.1. There exists a positive constapt> 0 independent of the
mesh size such that for gli, € Nj,:

C Vh,t C V|
sup (Nm( hs )) > su (Uh, h) >
wnteve DIV~ wexy [[Villx

Second, we check the inf-sup condition foand see that can be achieved
with discrete continuous functions. This is more delicate and the idea is to use
the stability of the paif®, — IP; locally on each subdomai® and that of the
pair P, — Py globally onQ.

Lemma 3.2. Assume that every triangle € .7;° has at most one edge on
0QS. Then, there exists a positive constfnt 0 independent of the mesh size
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170 E.Cha®n Vera and D. Franco Coronil

such that

b(pn, v
sup 2PeY0)  gyo i Vpn € My
vieVn  [IVhllv

and the function y< Vj, that gives the maximum satisfiqse/CO(ﬁ), i.e., its
jumps across all interfaces are zero.

Proof. The pair(Yh(Q%) NHA(Q%))? andQn(Q°) N L3(QS) satisfies a uni-
form inf-sup condition onQ® because every triangle has at most one edge
on dQ° (see Proposition 6.1 pp. 252 in the book by Brezzi—Fortin [6]). On
the other handXy contains théP, continuous finite element functions which
are enough to construct the Fortin operator (Lemma 1.1, page 117 in Girault—
Raviart [11]), that allows to control pressures with vanishing aveeagkthat
are constant on each subdomain. As a consequence (according @lseoto
rem 1.12 in Girault—Raviart [11]), there exists a functigjre Xj, NCY%Q) such
that

—(div(v),Ph)a = lIPalGe:  IBVilloos < c2llPhlloa VPR € MRNLE(Q).

Now, givenp, € My, takepf, = pr— pa € MhNL3(Q), where

P = |Q\*1/ P dX.
Q

Then, usingv;, = (Vj,,t*) with t* = —pg, and thatvj; = 0 on dQ the result
follows as in Lemma 2.1. O

4. Dual and primal problems

We cast the problem in terms of solving an equation for the discrete dual var
ableAy, set on the Lagrange multiplier spagg. Thanks to the discrete uniform
inf-sup conditions, (2.7) is replicated My. As a consequence, we solve our
dual problem inNp, via conjugate gradient method without preconditioner.

Conjugate Gradient Method (CG). For Ag € N, compute the residual

rOZdOZZ—S/\()GNh
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A non-standard FETI-DP mortar method 171

and fordy, = Sdy with m > 0 repeat

~ (rmyfm)N
B (dma 5m)N
Amil = Am+ Om dm
M+l = Fm— Omdm
B — (Fm1,Fme1)N
(rm,rm)N
Omi1 = my1+ BmOm
until the residual, = £ — SAn, is small enough. Starting off withg = 0 the
computation of the residuad, is given byron = fh = Cly, where
Uph = A7F — A 1B*(BA 1B*) "1(BAIF) e Vi

In terms of the primal problem, if we se@gn = (BA"1B*) 1(BA1F) this
means soIvianQh, Pon) € Vi X My, such that
(AUop, Vi) + (B"Pon, Vi) = (F,Vh) YV € Vp
(BUyn,0h) = 0 Y0h € Mp.
Next, in the general step for the CG method, wedsgt= ron = Cly, (drop
some of the's for simplicity), and form > 0, onced,, is obtained, we compute
O0m = Sdn=Cw,, where
W, = A 1C* dy— A"1B*(BA1B*) "1(BAIC*)dm € V.
Again, in terms of the primal problem, if we sgt = (BA~1B*)~}(BA~C*) dp,
then we solvéw,,,, m) € Vh x My, such that
(AW, Vi) + (B"Om, Vi) = (C"dm, Vi) V¥, € Vi
(BWy, 0h) = 0 Vh € M.
As a consequence, we have:
1. an external computational cycle, the CG fwith a fixed number of
iterations independent of the discretization paramietard

2. at each iteration of this external cycle, the resolution of a primal Stokes-
like problem of the form: Findw;,,gn) € Vi x My such that
(AW, Vi) + (B*0h, Vi) = (&,Vn) VW € Vi
(BWh,0n) = 0 Vah € M

where for the initial residual we haveé = F and for the iteratiom > 0
we haveé = C*dn.
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172 E.Cha®n Vera and D. Franco Coronil

4.1. Linear systemsgenerated by the primal problem

A closer look to the general form of this saddle point problem for the primal
variables will show that the solution can be obtained mainly by means of inde-
pendent block solves per subdomain. This is a similar computation process as
in FETI-DP methods, but in this case each block will contain the standard stiff
ness matrix and the contributions from the boundary integrals. We order an
split the unknownsw, = (wy,, T) and g, according to subdomains and cross
points o

(x5, .. x5 T

Herex® = (WS, g°)' are the dof's on each subdomain except those corresponding
to the velocity field at the cross points axfdare the dof’s at the cross points

of the velocity field. As a consequence, in the linear system for the primal
variablesM x = b the matrixM has the following general block structure

M11 M1’2 |V|175 Ml,C D, xt bt
M>1 Mzﬁz M2’3 |V|275 |V|2_’C D, X2 b2
Mz1 M3z M3z M3zs ... Mas Mzc D3 x3 b3
MS]_ MSZ Msgl MSS MSC Ds xS bS
M%L,C Mt27C MEer’C MtS,C Mcc O N b®
Dtl th Dt&l Dts o 1 T 0

where the different blocks are of the form

Ass Bss) <Ass’ O> <Asc>
Mss= ( =° C Mes= (7250, Mse=( =€), Mcc=
ss <BtS . 0 sg 0 0 sC Bts,C cc=Acc

here each blocKss is similar to a standard Stokes matrix on the subdomain
QS, but with our interface contributions, each blobky (s# S') is sparse
and contains the interaction through interfaces of the doféaiwith Qs , the
rectangular block#sc contains the interaction with the crosspoints g
contains the interaction of the crosspoints with themselves. Finally, the right
hand sides are of the form

bS:({<E7¢jS>}j>O)t7 bC:({<EauIJC>}J)t
(observe thab® = 0 whené = C*dy,) and the vector blockB® = (0, {df}j)t

are formed by
df = — /Q o:.
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A non-standard FETI-DP mortar method 173

This linear system couples all the subdomains but can be solved by means of
the Preconditioned Conjugate Gradient Method using as a preconditioner.

Ma O ... ... 0 McD;
0 My O ... 0 My Dy
0 0 |V|373 0 M3,C D3

P=| : (4.1)
0 Mss MSC Ds
Mic Mbe ... ME o Mic Mcc O
Di D, .. DY, DY o 1

As a consequenc® = M — P is a sparse matrix that just contains the sparse
blocksMs¢ and does not need to be explicitly constructed. The main task here
is the resolution of a linear system of the fofrx = b which is done via a
Schur complement process in terms of basic equation§fandr as follows:

S S S
(I\/Ic,c — ZM;CM&S}MSC> xXC— ZM;CM;SloSr = b°— ZM;CMgng (4.2)
S= S= S=

S S S
S;DL.M;QMS,CXC -+ (S; DiMg ¢ Ds — 1) T = S;Dglvlsjslb? (4.3)

Equations (4.2)—(4.3) constitute the coarse problem for this method. The main
task is performed with independent solves of the matriMdgs i.e., computa-
tions of the form

Meab®, MgdMsc, MgdDs

and all of these can be performed independently. This Schur processlasr
to that in FETI-DP methods.
4.2. Condition number for the preconditioned conjugate gradient method

When bothM andP are symmetric positive definite and we soM = b via
a preconditioningP~1M)x = P~ bt is well known that

ki (Pww) < (Mw,w) < kp(Pww) Ywe R"
implies that the spectral condition numberRf! M is bounded by, /K, i.e.,

2(P7IM) < ko
Ky
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174 E.Cha®n Vera and D. Franco Coronil

As a consequence, when the partition(®fdoes not includes cross points,
all jumps are controlled in terms of the gradients and the couplingy$ @an
be removed safely. Thetk; andk, are independent df and we recover a
condition number for the primal problem independeni.of

On the other hand, when cross points are present in the partition, we need
to use the classical result by Mandel and Brezina [15] that allows todthm
internal jumps in terms of the gradient norm but using g tbg) dependent
norm. In this case we recover the standard condition number for the primal
problem of the form

2(P~IM) < C(1+log(H/h))2.

5. Some numerical examples

All the numerical tests that we present have been performed with freefem+
[10]. With the available tools we are able to compute the mass matrices for the

HY2 and Hé(/)z scalar products for any edge and place them in the correct en-
tries of the global stiffness matrix for any subdomain. Any traces of aitgfin
element function can be used and, when it comes to compute these unusual
scalar products on an edge, the same code handles conforming arwhnhonc
forming triangulations by simply assigning different discretization points on
each side of the edge. The method has not been implemented in parallel just
for simplicity, although freefem++ can also do it.

5.1. Conforming triangulations

ForL =1,2,... integer we consider a test defined @n= (O,L) x (0,1) with
exact solution

B —sin’(rix L) sir?(my) cog ry) X ¥
HoY) = —Ltsir?(mmx L~ 1) sim(my) cogmx 1) ) Py =2 -

and consider a partition @1 into L subdomains given b°%=(s—1,s) x (0,1)
fors=1,2,...,L. For the dual problem we always start witfe = O on each
interfacel . In this example there is no need to add the jumps in the elliptic
parts because there are no cross points. As a consequence, tteeneéedrfor
a PCG in the internal cycle because the blolks are null fors # t. Table 1
shows that the iteration count for the dual problem is mesh independent on
different configurations

Table 2 shows the relative errors with respect to the true solutimd p
compared witruP®™ and pPPM, the approximation obtained d@ using our
method.
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Table 1.
Mesh independent iteration counts in the dual prob-
lem for first test.

L h=1/24 h=1/48 h=1/96

4 17 17 17

8 23 24 24
16 37 39 39

Table 2.
Relative errors in velocity field and pressure for first test.

euh) h=1/24 h=1/48 h=1/96 eph) h=1/24 h=1/48 h=1/96

L=4 2.1e-04  2.6e-05 35e6 L=4 6.7e-04  1.6e-04 4.0e-5
L=8 1.8e-04 2.3e-05 3.0e-6 L=8 6.8e-04 1.6e-04 4.2e-5
L=16 1.7e-04 2.2e-05 29e-6 L=16 6.8e-04 1.7e-04 4.3e-5

As a second test, we take @h= (0,1)? the exact solution given by the
same velocity fieldi(x,y) as before with. = 1, pressure given by

p(x,y) = (x—0.25)%(y — 0.25)?

and partitionQ into four equal subdomains with a cross point(@,0.5).
Table 3 shows the results and how the number of iterations is also independen
of the mesh size.

5.2. Nonconfor ming triangulations

We first conside = (0,2) x (0,1) and split it into two subdomains through
a curved interface and then consider (0,2) x (0,2) with a floating subdo-
main, the disk centered at the poii®75,1) with radiusr = 0.5. In this last

Table 3.
A cross point test. Number of iterations for dual problem, primal
problems and relative errors on velocity and pressure.

Dual initial PCG final PCG
h  #lters # Iters #lters  euh) eph)
1/12 7 22 20 6.9e-4 4.2e-3
1/24 7 21 20 8.8e-5 1.0e-3
1/48 7 23 21 1.2e-5 2.5e-4
1/96 7 23 23 1l.4e-6 8.3e-5
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Pressure, iter=0 Pressure, iter=1

! /-

Pressure, iter=2 Pressure, iter=6

A~

Figure 2. Evolution of the pressure field in the case of four subdomains with a Qaiss
(h=1/48).

configuration there are no cross points and we just work wittHHé scalar
product on the disk boundary. We compute the solution for the right hded s
given by

f1(x,y) = (x—0.4)%(y—0.8)3,  fa(x,y) = —(x—0.4)%(y—0.5)%.

We use first a conforming mesh and next a nonconforming mesh for the dis-
cretization and approximate the disk border accordingly. Figure 3 andw sh
the different triangulations d2 used while the results are in Figs 5—7.

6. Conclusions

The purpose of this paper has been to present an abstract settingafateon

of FETI-DP mortar method for Incompressible Stokes problem that has a ma-
trix iteration for the dual problem symmetric positive definite with a mesh in-
dependent condition number. When solving this dual problem with Conjugate
Gradient we face a primal problem that it is solved with the preconditioning
conjugate gradient and using independent block computations. Whearthe p
tition has cross points, this preconditioning brings back the well known slight
dependency on Igdi /h) for the condition number in the standard FETI-DP
mortar methods.
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Figure 3. Triangulation for the two subdomain test with nonconforming meshes aneéd

interface.

Noncomforming tiangulations
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Figure 4. Triangulations for the floating subdomain test: from left to right, confogniresh
with 20 grid points to discretize the disk boundary and nonconforming tatigns with 22

and 15 grid points to discretize the disk boundary from outside and insgectvely.
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Soles Stokes ooty U er 0 Stokes ooty U, for= 7

Sokes: Stokes prssure Pter 0 Stkes presure P fer=T

Figure 5. Two subdomain test with nonconforming meshes and curved inteifface;left to
right: fine mesh computation, first iteration and last iteration for veloditids, and pressurb.
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P27 Stoes Galk oty Ut st Sioes oty Uter 0 P2P1 ke Thsis oty U, fr=5.

P2P1 Skes Galrk oty Vo ot e Sies ey Vier0 P91 Sckes: Thsis ey . tr= 5.

P21 Skes Galkinprssre P oot e mest Sies pessue P er P291 Sckes: Tisis ey P, tr=

Figure 6. Floating subdomain test with conforming meshes; from left to right: finghmoem-
putation, first iteration and last iteration for velocitldsV, and pressur®.
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P21 Skes Galkinprssre P oot e mest Sies pessue P er P91 Sckes: Tisis ey P, tr=2

Figure 7. Floating subdomain test with non conforming meshes; from left to righe: fiesh
computation, first iteration and last iteration for velocitiesv, and pressurp.
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The advantage of the continuous framework introduced is the clear sight o
the effect of condensing all information on subdomains and interfadesebe
the discrete work starts and the use of the most appropriated norms a» subd
mains and interfaces that make no necessary the use of mesh depemdent n
for obtaining stability. The clear disadvantage is the need for computing these
HY/2 norms, although we have shown it is feasible.

Many other alternatives are present in the literature, see the works by
Li [14], Kim et al. [13], Achdou et al. [1], etc., and, as far as we knour
approach is original. In future work we would like to compare our method with
standard mortar and FETI-DP methods and extract conclusions. Anotier
esting research could be the design of numerical tests with moderate to large
coarse problems and, therefore, study the large scale computatiopattes
(i.e. numerical scalability) of our approach.
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