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Abstract — The trace spacesH1/2 andH1/2
00 play a key role in the FETI and mortar families

of domain decomposition methods. However, a direct numerical evaluation of these norms is
usually avoided. On the other hand, and for stability issues, the subspaceof functions for which
their jumps across the interfaces of neighbouring subdomains belong to these trace spaces yields
a more suitable framework than the standard broken Sobolev space. Finally, the nullity of these
jumps is usually imposed via Lagrange multipliers and using the pairing of the trace spaces with
their duals. A direct computation of these pairings can be performed using the Riesz-canonical
isometry. In this work we consider all these ingredients and introduce a domain decomposition
method that falls into the FETI-DP mortar family. The application is to the incompressible
Stokes problem and we see that continuous bounds are replicated at the discrete level. As a
consequence, no stabilization is required. Some numerical tests are finally presented.

Keywords: FETI-DP methods, mortar methods, trace norms, freefem++

1. Introduction

Given a computational domainΩ (Ω ⊂ R
2 bounded polygonal to ease presen-

tation) we denote byH1
0(Ω) the closure in the standard Sobolev spaceH1(Ω)

of all the smooth functions with support insideΩ. As usual, we splitΩ into
open polygonal subdomainsΩ =

⋃S
s=1 Ωs with Ωs∩Ωt =∅ (s 6= t), denote by

∂Ωs the boundary of anyΩs and letΓs,t = ∂Ωs∩∂Ωt be either an edge (i.e., a
segment), a crosspoint or empty. Finally, considerE0 = {Γe}e=1,...,E the sorted
set of all edges insideΩ, also known as the skeleton of the decomposition. We
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162 E. Chaćon Vera and D. Franco Coronil

Figure 1. Example of domain decomposition where cross points are marked with big dots and
the skeleton is the set of all theΓi for i = 1,2, ...,10. In the case of Dirichlet Boundary conditions
we haveΓN =∅.

assume that eachΩs is of areaO(H2) and shape regular while eachΓe is of
lengthO(H) for some fixedH > 0 (see Fig. 1 for example).

Let us denote by[v]Γe the jump acrossΓe and consider the Hilbert space

X =
{

v∈ L2(Ω) : vs = v|Ωs ∈ H1(Ωs)∩H1
0(Ω) ∀s, [v]Γe ∈ H1/2

00 (Γe) ∀Γe ∈ E0
}

with the graph norm

‖v‖X =

{

S

∑
s=1

‖vs‖2
1,Ωs +

E

∑
e=1

‖[v]Γe‖
2
1/2,00,Γe

}1/2

.

Here‖ · ‖1/2,00,Γe
is the norm induced by the scalar product(·, ·)1/2,00,Γe

on

H1/2
00 (Γe):

(w,v)1/2,00,Γe
= (w,v)1/2,Γe

+
∫

Γe

w(x)v(x)
d(x,∂Γe)

dx

whered(x,∂Γe) is the distance ofx to the boundary ofΓe and

(w,v)1/2,Γe
=
∫

Γe

w(x)v(x) dx+
∫

Γe

∫

Γe

(w(x)−w(y))(v(x)−v(y))
|x−y|2

dx dy.
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A non-standard FETI-DP mortar method 163

To simplify notation, we write{w,v}Γe = (w,v)1/2,00,Γe
. Poincare’s inequality

and the control we have on the jumps, interconnecting all subdomains, allow
the use onX of the equivalent norm|v|2X = (v,v)X, where(·, ·)X is the scalar
product given by

(u,v)X =
S

∑
s=1

(∇us,∇vs)Ωs +
E

∑
e=1

{[u]Γe, [v]Γe}Γe ∀u,v∈ X.

Bernardi et al. in [3] and [7] used the spaceX and the (Riesz) identification of
the Hilbert spaceH−1/2

00 (Γe) with its dualH1/2
00 (Γe) in order to present a con-

tinuous framework for a domain decomposition method for elliptic equations.
Their method falls into the FETI-DP mortar family: FETI-DP alike because
only continuity at cross points is imposed and mortar alike because nonmatch-
ing meshes at interfaces are allowed, although a different scalar product for the
mortaring process is used. In this approach, the continuous analysis holds for
internal approximations even in the case of non conforming meshes and makes
theory remarkably simple. Another interesting property is that the stability of
the discretization is independent of the varying mesh sizes, i.e., it does not
matter which side is the mortar. On the other hand, and only in the presence
of crosspoints, we recover the standard mesh dependency bounds in terms of
log(H/h) that appear in FETI-DP methods (see [9, 15]). A similar approach
was introduced by Braess et al. in [5]; although they used a mesh dependent
L2(Γe) norm to approximate theH1/2

00 (Γe) norm. See also the works by Farhat
et al. [9] and Dryja and Widlund [8] for the origin of the FETI-DP mortar
method.

In this paper we extend the ideas in [3] and [7] to the case of the incom-
pressible Stokes equations showing that the same properties hold. Our analysis
will be presented in the two dimensional setting to simplify the presentation.
These main ideas extend easily to the three dimensional situation although a
detailed study is required. Finally some numerical tests are shown as a conclu-
sion.

2. Incompressible Stokes equations

The zero average of the pressure imposes a global condition on the pressure
space and, as a consequence, the splitting of the computational subdomain
for the pressure is more difficult. We introduce a new variable in the Stokes
equations that sets free the pressure space from this restriction.

Incompressible Stokes equations with homogeneous boundary conditions
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164 E. Chaćon Vera and D. Franco Coronil

amount to findu∈ H1
0(Ω) = (H1

0(Ω))2 andp∈ L2(Ω) such that

(∇u,∇v)Ω − (p, div(v))Ω = ( f ,v)Ω ∀v∈ H1
0(Ω)

−(q, div(u))Ω = 0 ∀q∈ L2(Ω)
∫

Ω
p = 0.

We better accommodate the restriction on the pressure by adding a new scalar
unknown as follows: we look for a pair of values(u,τ) ∈ H1

0(Ω)×R and
p∈ L2(Ω) such that

(∇u,∇v)Ω − (p, div(v))Ω + t

(

τ −
∫

Ω
p

)

= ( f ,v)Ω ∀(v, t) ∈ H1
0(Ω)×R

−(q, div(u))Ω − τ
∫

Ω
q = 0 ∀q∈ L2(Ω).

A saddle point problem emerges with the incorporation of this new variableτ
when the first equation is written as

(∇u,∇v)Ω + τ t − (p, div(v))Ω − t
∫

Ω
p = ( f ,v)Ω.

SetW = H1
0(Ω)×R and letv= (v, t) ∈W any element ofW. We normW by

using
‖v‖2

W = ‖(v, t)‖2
W = ‖∇v‖2

0,Ω + t2

and let(·, ·)W : W×W 7→ R be the scalar product onW, i.e.,

(u,v)W = ((u,τ),(v, t))W = (∇u,∇v)Ω + τ t.

Finally, we take our restriction asb : W×L2(Ω) 7→ R given by

b(q,v) = b(q,(v, t)) =−(q, div(v))Ω − t
∫

Ω
q.

Then, we look foru= (u,τ)∈W andp∈ L2(Ω) such that for allv= (v, t)∈W
andq∈ L2(Ω)

(u,v)W +b(p,v) = ( f ,v)Ω (2.1)
b(q,u) = 0. (2.2)
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A non-standard FETI-DP mortar method 165

Lemma 2.1. There exists a positive constantβ > 0 such that for all p∈
L2(Ω)

sup
(v,t)∈W

b(p,(v, t))
‖(v, t)‖W

> sup
v∈H1

0(Ω), t∈R

b(p,(v, t))

(‖∇v‖2
0,Ω + t2)1/2

> β‖p‖0,Ω. (2.3)

As a consequence, the saddle point problem(2.1)–(2.2)is well posed and its
unique solution is the one for the original Stokes problem with Dirichlet ho-
mogeneous boundary conditions.

Proof. TakepΩ = |Ω|−1∫

Ω p dx, thenp− pΩ ∈ L2
0(Ω) and there existsv∗ ∈

H1
0(Ω) that gives the inf-sup condition forp− pΩ; take alsot∗ = −pΩ, then

the result follows in a standard way. �

2.1. Multidomain formulation to the Stokes problem

Let us define the spaces for our formulation. For the elliptic part setV=X×R,
whereX = X ×X, and represent byv = (v, t) any element ofV wherev ∈ X
andt ∈ R. Obviously,V is Hilbert space with norm‖v‖2

V = |v|2X + t2. For the
pressure variables we considerM = ∏S

s=1L2(Ωs) (≈ L2(Ω)). For eachΓe∈ E0

we takeH1/2
00 (Γe) = (H1/2

00 (Γe))
2 and handle the Lagrange multipliers for the

jumps inN = ∏E
e=1 H1/2

00 (Γe) with scalar product

(λ ,µ)N =
E

∑
e=1

{λe,µe}Γe ∀λ ,µ ∈ N. (2.4)

In our new multidomain formulation at the continuous level we add, only in the
presence of crosspoints, the jumps to the elliptic terms and replace the pairings
H−1/2

00 (Γ)−H1/2
00 (Γ) for the normal fluxes on the edges by the scalar product

in H−1/2
00 (Γ). As a consequence, all terms are suitable to compute in a Galerkin

approach and without changing the regularity on the edge terms.
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166 E. Chaćon Vera and D. Franco Coronil

We look foru= (u,τ) ∈ V, p= {ps}s ∈ M andλ = {λe}e ∈ N such that

S

∑
s=1

(∇us,∇vs)Ωs +
E

∑
e=1

{[u]Γe, [v]Γe}Γe + τ t

−
S

∑
s=1

(ps, div(vs))Ωs − t
S

∑
s=1

∫

Ωs
ps+

E

∑
e=1

{λe, [v]Γe}Γe =
S

∑
s=1

( f ,vs)Ωs

−
S

∑
s=1

(qs, div(us))Ωs − τ
S

∑
s=1

∫

Ωs
qs = 0

E

∑
e=1

{µe, [u]Γe}Γe = 0

for all v= (v, t) ∈ V, q= {qs}s ∈ M andµ = {µe}e ∈ N. In a more compact
form, takingF(v) = ∑S

s=1( f ,vs)Ωs, the problem is


























Find (u, p,λ ) ∈ V×M×N such that

(u,v)V +b(p,v)+c(λ ,v) = F(v)
b(q,u) = 0
c(µ ,u) = 0

for all (v,q,µ) ∈ V×M×N.

(2.5)

where

(u,v)V =
S

∑
s=1

(∇us,∇vs)Ωs +
E

∑
e=1

{[u]Γe, [v]Γe}Γe + τ t

b(p,v) = −
S

∑
s=1

(ps, div(vs))Ωs − t
S

∑
s=1

∫

Ωs
ps

c(µ ,u) = c(µ ,u) =
E

∑
e=1

{µe, [u]Γe}Γe.

Inf-sup conditions forb andc are easily checked. Moreover, the inf-sup
for the bilinear formb is reached with a functionv∈ V with zero jumps while
the inf-sup for bilinear formc is reached with a functionv ∈ V with non-
zero jumps, see Lemma 2.9 of [2] for instance. These facts give uniqueness
of solution and make the formulation equivalent to that of the incompressible
Stokes problem on the global domainΩ.

Next, if we call dual variables the Lagrange multipliers and the rest pri-
mal variables we eliminate the primal variables in terms of the dual variables.
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A non-standard FETI-DP mortar method 167

That is to say, we obtain a dual problem that once solved will give the correct
boundary data for the primal variables. Using standard operator notation, (2.5)
is















Find (u, p,λ ) ∈ V×M×N such that

Au+B∗p+C∗ λ = F in V∗

Bu = 0 in M∗

Cu = 0 in N

(2.6)

and the dual problem forλ is an equation onN in the formSλ = ℓ, whereS
andℓ are given by

S = (CA−1C∗)− (CA−1B∗)(BA−1B∗)−1(BA−1C∗)

ℓ = (CA−1F)− (CA−1B∗)(BA−1B∗)−1(BA−1F).

Theorem 2.1. Let be S: N → N defined as above. Then S is a self-adjoint
positive definite operator and there exists a constantσ > 0 that only depends
on the inf-sup conditions for bilinear forms b and c such that

σ2‖λ‖2
N 6 (Sλ ,λ )N 6 ‖λ‖2

N ∀λ ∈ N, λ 6= 0. (2.7)

As a consequence, our dual problem is well posed and has a unique solution
that gives the correct Lagrange multipliers for(2.5).

Proof. By the construction ofS it is clear that it is self-adjoint.
Let us prove thatS is positive definite. For anyλ ∈ N, λ 6= 0 we have

Sλ = (CA−1C∗) λ − (CA−1B∗)(BA−1B∗)−1(BA−1C∗)λ
= (CA−1C∗)λ +(CA−1B∗)pλ =−Cuλ

where

pλ =−(BA−1B∗)−1(BA−1C∗) λ , uλ =−A−1C∗ λ −A−1B∗pλ .

As a consequence,uλ ∈ V andpλ ∈ M satisfy

Auλ +B∗pλ +C∗ λ = 0 in V∗

Buλ = 0 in M∗

Cuλ = −Sλ in N.

Thanks to the uniqueness of solution,Sλ 6= 0, becauseSλ = 0 would imply
uλ = 0, pλ = 0 andλ = 0 while we assumeλ 6= 0. Then,

(Sλ ,λ )N = (−Cuλ ,λ )N = −〈C∗λ ,uλ 〉V

= 〈Auλ +B∗ pλ ,uλ 〉V = ‖uλ‖
2
V.
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168 E. Chaćon Vera and D. Franco Coronil

We will lower bound‖uλ‖
2
V in terms of‖λ‖2

N. Using the inf-sup condition for
bilinear formc, there exists a constantγ > 0 such that:

γ ‖λ‖N 6 sup
v∈V

c(λ ,v)
‖v‖V

= sup
v∈V

−〈Auλ +B∗pλ ,v〉V

‖v‖V

6 ‖uλ‖V +‖pλ‖M

then, if we control‖pλ‖M in terms of‖uλ‖V we obtain our bound. Next, asM
is simplyL2(Ω), and for our bilinear formb the inf-sup condition is achieved
on functions with zero jumps, there exists a constantβ > 0 such that:

β ‖pλ‖0,Ω 6 sup
v∈H1

0(Ω),t∈R

〈B∗pλ ,v〉

(‖∇v‖2
0,Ω + t2)1/2

= sup
v∈H1

0(Ω),t∈R

−〈Auλ ,v〉

(‖∇v‖2
0,Ω + t2)1/2

6 ‖uλ‖V.

Then, γ ‖λ‖N 6 ‖uλ‖V + ‖pλ‖M 6 (1+ β−1)‖uλ‖V and ‖uλ‖V > γ β (1+
β )−1 ‖λ‖N. Finally,

(Sλ ,λ )N = ‖uλ‖
2
V >

γ2 β 2

(1+β )2‖λ‖2
N.

On the other hand,Sλ =−Cuλ implies‖Sλ‖N 6 ‖uλ‖V and‖uλ‖
2
V =(Sλ ,λ )N,

then‖uλ‖V 6 ‖λ‖N. As a conclusion

σ2‖λ‖2
N 6 (Sλ ,λ )N 6 ‖λ‖2

N

for σ = γ β (1+β )−1. �

3. Finite dimensional approach: discrete dual and primal problems

Now we introduce a discrete framework that will allow to obtain the dual prob-
lem in a finite dimensional setting and with the same properties. We pose prob-
lem (2.5) in discrete spacesVh, Mh, andNh and obtain inf-sup conditions forb
andc uniformly with respect to the discretization parameterh. To further sim-
plify we consider a conforming triangulationTh of Ω that contains the skeleton
E0 as union of edges of triangles and so that on each edge only one partition is
inherited from both sides. As usual,h is the mesh size, i.e.,h= maxhκ, where
κ is a generic element of the mesh andhκ is the longest side ofκ. As Th is
also compatible with the subdivision ofΩ, its restriction to eachΩs gives a
meshT s

h on Ωs.
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A non-standard FETI-DP mortar method 169

To fix ideas will use the Taylor–Hood finite element for the velocity and
pressure pair on each subdomain. Define the family of subspaces{Yh}h ⊂
H1

0(Ω) and{Qh}h ⊂ H1(Ω) given by

Yh = {v∈ H1
0(Ω) : v|κ ∈ P2(κ) ∀κ ∈ Th}

Qh = {p∈ H1(Ω) : p|κ ∈ P1(κ) ∀κ ∈ Th}

wherePr(κ) is the space of polynomials of degree less or equal tor in the two
variablesx andy. On each subdomain, we take also

Yh(Ωs) =Yh∩H1(Ωs), Qh(Ωs) = Qh∩H1(Ωs), 16 s6 S.

Consider nowXh = Xh×Xh, whereXh is the broken version ofYh given by

Xh = {v∈ L2(Ω) : vs ∈Yh(Ωs) ∀s= 1,2, ...,S
andv is continuous at every cross point} ⊂ X

defineVh = Xh×R, Mh = ∏S
s=1Qh(Ωs) and finallyNh ⊂ N given by the re-

striction of functions inXh to the skeletonE0. Then, we just placeh everywhere
and computeuh = (uh,τ) ∈ Vh, ph = {ps

h}s ∈ Mh andλh = {λh,e}e ∈ Nh.
This problem can be written in terms of operators as we did before and

proceed in the same manner to obtain the dual problem for the discrete La-
grange multipliers and with the same properties. The discrete uniform inf-sup
condition forc on the pairVh andNh is a well known result (see for instance
Theorem 4 in [3]), that can be obtained using the standard finite element ex-
tension theorems or the extra regularity of solutions for elliptic problems in
polygonal domains; it is also obtained on discrete functions with jumps.

Lemma 3.1. There exists a positive constantγ > 0 independent of the
mesh size such that for allµh ∈ Nh:

sup
(vh,t)∈Vh

c(µh,(vh, t))
‖(vh, t)‖V

> sup
vh∈Xh

c(µh,vh)

‖vh‖X
> γ‖µh‖N.

Second, we check the inf-sup condition forb and see that can be achieved
with discrete continuous functions. This is more delicate and the idea is to use
the stability of the pairP2−P1 locally on each subdomainΩs and that of the
pairP2−P0 globally onΩ.

Lemma 3.2. Assume that every triangleκ ∈ T s
h has at most one edge on

∂Ωs. Then, there exists a positive constantβ > 0 independent of the mesh size
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170 E. Chaćon Vera and D. Franco Coronil

such that

sup
vh∈Vh

b(ph,vh)

‖vh‖V
> β‖ph‖M ∀ph ∈ Mh

and the function vh ∈ Vh that gives the maximum satisfies vh ∈C0(Ω), i.e., its
jumps across all interfaces are zero.

Proof. The pair(Yh(Ωs)∩H1
0(Ωs))2 andQh(Ωs)∩L2

0(Ωs) satisfies a uni-
form inf-sup condition onΩs because every triangle has at most one edge
on ∂Ωs (see Proposition 6.1 pp. 252 in the book by Brezzi–Fortin [6]). On
the other hand,Xh contains theP2 continuous finite element functions which
are enough to construct the Fortin operator (Lemma 1.1, page 117 in Girault–
Raviart [11]), that allows to control pressures with vanishing averageand that
are constant on each subdomain. As a consequence (according also toTheo-
rem 1.12 in Girault–Raviart [11]), there exists a functionv∗h ∈ Xh∩C0(Ω) such
that

−(div(v∗h), p
′
h)Ω = ‖p′h‖

2
0,Ω, ‖∇v∗h‖0,Ωs 6 c2‖p′h‖0,Ω ∀p′h ∈ Mh∩L2

0(Ω).

Now, givenph ∈ Mh takep′h = ph− pΩ ∈ Mh∩L2
0(Ω), where

pΩ = |Ω|−1
∫

Ω
ph dx.

Then, usingv∗h = (v∗h, t
∗) with t∗ = −pΩ, and thatv∗h = 0 on ∂Ω the result

follows as in Lemma 2.1. �

4. Dual and primal problems

We cast the problem in terms of solving an equation for the discrete dual vari-
ableλh set on the Lagrange multiplier spaceNh. Thanks to the discrete uniform
inf-sup conditions, (2.7) is replicated inNh. As a consequence, we solve our
dual problem inNh via conjugate gradient method without preconditioner.

Conjugate Gradient Method (CG). For λ0 ∈ Nh compute the residual

r0 = d0 = ℓ−Sλ0 ∈ Nh
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A non-standard FETI-DP mortar method 171

and forδm = Sdm with m> 0 repeat

αm =
(rm, rm)N

(dm,δm)N

λm+1 = λm+αm dm

rm+1 = rm−αmδm

βm =
(rm+1, rm+1)N

(rm, rm)N

dm+1 = rm+1+βm dm

until the residualrm = ℓ−Sλm is small enough. Starting off withλ0 = 0 the
computation of the residualr0,h is given byr0,h = ℓh =Cu0,h where

u0,h = A−1F −A−1B∗(BA−1B∗)−1(BA−1F) ∈ Vh.

In terms of the primal problem, if we setp0,h = (BA−1B∗)−1(BA−1F) this
means solving(u0,h, p0,h) ∈ Vh×Mh such that

〈Au0,h,vh〉+ 〈B∗p0,h,vh〉 = 〈F,vh〉 ∀vh ∈ Vh

〈Bu0,h,qh〉 = 0 ∀qh ∈ Mh.

Next, in the general step for the CG method, we setd0,h = r0,h =Cu0,h (drop
some of theh’s for simplicity), and form> 0, oncedm is obtained, we compute
δm = Sdm =Cwm where

wm = A−1C∗dm−A−1B∗(BA−1B∗)−1(BA−1C∗)dm ∈ Vh.

Again, in terms of the primal problem, if we setqm= (BA−1B∗)−1(BA−1C∗)dm
then we solve(wm,qm) ∈ Vh×Mh such that

〈Awm,vh〉+ 〈B∗qm,vh〉 = 〈C∗dm,vh〉 ∀vh ∈ Vh

〈Bwm,qh〉 = 0 ∀qh ∈ Mh.

As a consequence, we have:

1. an external computational cycle, the CG forS with a fixed number of
iterations independent of the discretization parameterh and

2. at each iteration of this external cycle, the resolution of a primal Stokes-
like problem of the form: Find(wh,qh) ∈ Vh×Mh such that

〈Awh,vh〉+ 〈B∗qh,vh〉 = 〈ξ ,vh〉 ∀vh ∈ Vh

〈Bwh,qh〉 = 0 ∀qh ∈ Mh

where for the initial residualr0 we haveξ =F and for the iterationm> 0
we haveξ =C∗dm.
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172 E. Chaćon Vera and D. Franco Coronil

4.1. Linear systems generated by the primal problem

A closer look to the general form of this saddle point problem for the primal
variables will show that the solution can be obtained mainly by means of inde-
pendent block solves per subdomain. This is a similar computation process as
in FETI-DP methods, but in this case each block will contain the standard stiff-
ness matrix and the contributions from the boundary integrals. We order and
split the unknownswh = (wh,τ) andqh according to subdomains and cross
points

(x1,x2, ...,xS,xC,τ)t .
Herexs=(w̃s,qs)t are the dof’s on each subdomain except those corresponding
to the velocity field at the cross points andxC are the dof’s at the cross points
of the velocity field. As a consequence, in the linear system for the primal
variablesM x= b the matrixM has the following general block structure




























M11 M1,2 . . . . . . . . . M1,S M1,C D1

M21 M2,2 M2,3 . . . . . . M2,S M2,C D2

M31 M3,2 M3,3 M3,4 . . . M3,S M3,C D3
...

. . . . . . .. . .. .
...

...
...

...
. . . . . . .. . .. .

...
...

...
MS,1 MS,2 . . . . . . MS,S−1 MS,S MS,C DS

Mt
1,C Mt

2,C . . . . . . Mt
S−1,C Mt

S,C MC,C 0
Dt

1 Dt
2 . . . . . . Dt

S−1 Dt
S 0t 1

























































x1

x2

x3

...

...
xS

xC

τ





























=





























b1

b2

b3

...

...
bS

bC

0





























where the different blocks are of the form

Ms,s =

(

As,s Bs,s
Bt

s,s 0

)

, Ms,s′ =

(

As,s′ 0
0 0

)

, Ms,C =

(

As,C
Bt

s,C

)

, MC,C = AC,C

here each blockMs,s is similar to a standard Stokes matrix on the subdomain
Ωs, but with our interface contributions, each blockMs,s′ (s 6= s′) is sparse
and contains the interaction through interfaces of the domainΩs with Ωs′ , the
rectangular blocksMs,C contains the interaction with the crosspoints andMC,C
contains the interaction of the crosspoints with themselves. Finally, the right
hand sides are of the form

bs = ({〈ξ ,ϕs
j 〉} j ,0)

t , bC = ({〈ξ ,ψC
j 〉} j)

t

(observe thatbC = 0 whenξ = C∗dm) and the vector blocksDs = (0,{ds
j} j)

t

are formed by

ds
j =−

∫

Ω
ϕs

j .
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This linear system couples all the subdomains but can be solved by means of
the Preconditioned Conjugate Gradient Method using as a preconditioner.

P=























M11 0 . . . . . . 0 M1,C D1

0 M2,2 0 . . . 0 M2,C D2

0 0 M3,3 0
... M3,C D3

...
.. . .. . . . . . . .

...
...

. . . . . . . . . 0 MS,S MS,C DS

Mt
1,C Mt

2,C . . . Mt
S−1,C Mt

S,C MC,C 0
Dt

1 Dt
2 ... Dt

S−1 Dt
S 0t 1























. (4.1)

As a consequence,N = M−P is a sparse matrix that just contains the sparse
blocksMs,s′ and does not need to be explicitly constructed. The main task here
is the resolution of a linear system of the formPx= b which is done via a
Schur complement process in terms of basic equations forxC andτ as follows:

(

MC,C−
S

∑
s=1

Mt
s,CM−1

s,s Ms,C

)

xC−
S

∑
s=1

Mt
s,CM−1

s,s Dsτ = bC−
S

∑
s=1

Mt
s,CM−1

s,s bs (4.2)

S

∑
s=1

Dt
sM

−1
s,s Ms,C xC+

(

S

∑
s=1

Dt
sM

−1
s,s Ds−1

)

τ =
S

∑
s=1

Dt
sM

−1
s,s bs. (4.3)

Equations (4.2)–(4.3) constitute the coarse problem for this method. The main
task is performed with independent solves of the matricesMs,s, i.e., computa-
tions of the form

M−1
s,s bs, M−1

s,s Ms,C, M−1
s,s Ds

and all of these can be performed independently. This Schur process issimilar
to that in FETI-DP methods.

4.2. Condition number for the preconditioned conjugate gradient method

When bothM andP are symmetric positive definite and we solveM x= b via
a preconditioning(P−1M)x= P−1b it is well known that

k1(Pw,w)6 (Mw,w)6 k2(Pw,w) ∀w∈ R
n

implies that the spectral condition number ofP−1M is bounded byk2/k1, i.e.,

κ2(P
−1M)6

k2

k1
.
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As a consequence, when the partition ofΩ does not includes cross points,
all jumps are controlled in terms of the gradients and the couplings inM can
be removed safely. Then,k1 and k2 are independent ofh and we recover a
condition number for the primal problem independent ofh.

On the other hand, when cross points are present in the partition, we need
to use the classical result by Mandel and Brezina [15] that allows to bound the
internal jumps in terms of the gradient norm but using a log(H/h) dependent
norm. In this case we recover the standard condition number for the primal
problem of the form

κ2(P
−1M)6C(1+ log(H/h))2.

5. Some numerical examples

All the numerical tests that we present have been performed with freefem++
[10]. With the available tools we are able to compute the mass matrices for the
H1/2 andH1/2

00 scalar products for any edge and place them in the correct en-
tries of the global stiffness matrix for any subdomain. Any traces of any finite
element function can be used and, when it comes to compute these unusual
scalar products on an edge, the same code handles conforming and noncon-
forming triangulations by simply assigning different discretization points on
each side of the edge. The method has not been implemented in parallel just
for simplicity, although freefem++ can also do it.

5.1. Conforming triangulations

For L = 1,2, ... integer we consider a test defined onΩ = (0,L)× (0,1) with
exact solution

u(x,y) =

(

−sin3(π xL−1)sin2(πy)cos(πy)

−L−1sin2(π xL−1)sin3(πy)cos(πxL−1)

)

, p(x,y) =
x2

L2 −y2

and consider a partition ofΩ intoL subdomains given byΩs=(s−1,s)×(0,1)
for s= 1,2, ...,L. For the dual problem we always start withλ0,e = 0 on each
interfaceΓe. In this example there is no need to add the jumps in the elliptic
parts because there are no cross points. As a consequence, there is no need for
a PCG in the internal cycle because the blocksMs,t are null fors 6= t. Table 1
shows that the iteration count for the dual problem is mesh independent on
different configurations

Table 2 shows the relative errors with respect to the true solutionu and p
compared withuDDM

h and pDDM
h , the approximation obtained onΩ using our

method.
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Table 1.
Mesh independent iteration counts in the dual prob-
lem for first test.

L h= 1/24 h= 1/48 h= 1/96

4 17 17 17
8 23 24 24

16 37 39 39

Table 2.
Relative errors in velocity field and pressure for first test.

eu(h) h= 1/24 h= 1/48 h= 1/96 ep(h) h= 1/24 h= 1/48 h= 1/96

L = 4 2.1e-04 2.6e-05 3.5e-6 L = 4 6.7e-04 1.6e-04 4.0e-5
L = 8 1.8e-04 2.3e-05 3.0e-6 L = 8 6.8e-04 1.6e-04 4.2e-5
L = 16 1.7e-04 2.2e-05 2.9e-6 L = 16 6.8e-04 1.7e-04 4.3e-5

As a second test, we take onΩ = (0,1)2 the exact solution given by the
same velocity fieldu(x,y) as before withL = 1, pressure given by

p(x,y) = (x−0.25)2(y−0.25)2

and partitionΩ into four equal subdomains with a cross point at(0.5,0.5).
Table 3 shows the results and how the number of iterations is also independent
of the mesh size.

5.2. Nonconforming triangulations

We first considerΩ = (0,2)× (0,1) and split it into two subdomains through
a curved interface and then considerΩ = (0,2)× (0,2) with a floating subdo-
main, the disk centered at the point(0.75,1) with radiusr = 0.5. In this last

Table 3.
A cross point test. Number of iterations for dual problem, primal
problems and relative errors on velocity and pressure.

Dual initial PCG final PCG
h # Iters # Iters # Iters eu(h) ep(h)

1/12 7 22 20 6.9e-4 4.2e-3
1/24 7 21 20 8.8e-5 1.0e-3
1/48 7 23 21 1.2e-5 2.5e-4
1/96 7 23 23 1.4e-6 8.3e-5
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176 E. Chaćon Vera and D. Franco Coronil

Figure 2. Evolution of the pressure field in the case of four subdomains with a crosspoint
(h= 1/48).

configuration there are no cross points and we just work with theH1/2 scalar
product on the disk boundary. We compute the solution for the right hand side
given by

f1(x,y) = (x−0.4)2(y−0.8)3, f2(x,y) =−(x−0.4)2(y−0.5)3.

We use first a conforming mesh and next a nonconforming mesh for the dis-
cretization and approximate the disk border accordingly. Figure 3 and 4 show
the different triangulations ofΩ used while the results are in Figs 5–7.

6. Conclusions

The purpose of this paper has been to present an abstract setting for avariation
of FETI-DP mortar method for Incompressible Stokes problem that has a ma-
trix iteration for the dual problem symmetric positive definite with a mesh in-
dependent condition number. When solving this dual problem with Conjugate
Gradient we face a primal problem that it is solved with the preconditioning
conjugate gradient and using independent block computations. When the par-
tition has cross points, this preconditioning brings back the well known slight
dependency on log(H/h) for the condition number in the standard FETI-DP
mortar methods.
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A non-standard FETI-DP mortar method 177

Figure 3. Triangulation for the two subdomain test with nonconforming meshes and curved
interface.

Comforming triangulations Noncomforming triangulations 

Figure 4. Triangulations for the floating subdomain test: from left to right, conforming mesh
with 20 grid points to discretize the disk boundary and nonconforming triangulations with 22
and 15 grid points to discretize the disk boundary from outside and inside respectively.
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178 E. Chaćon Vera and D. Franco Coronil

Stokes U:  Stokes velocity U iter 0 Stokes velocity U, iter= 7

Stokes V:  Stokes velocity V iter 0 Stokes velocity V, iter= 7

Stokes P:  Stokes pressure P iter 0 Stokes pressure P, iter= 7

Figure 5. Two subdomain test with nonconforming meshes and curved interface;from left to
right: fine mesh computation, first iteration and last iteration for velocitiesU,V, and pressureP.
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A non-standard FETI-DP mortar method 179

P2-P1 Stokes. Galerkin velocity U on extra fine mesh:  Stokes velocity U iter 0 P2-P1  Stokes: This is velocity U, iter= 6

P2-P1 Stokes. Galerkin velocity V on extra fine mesh:  Stokes velocity V iter 0 P2-P1  Stokes: This is velocity V, iter= 6

P2-P1 Stokes. Galerkin pressure P on extra fine mesh:  Stokes pressure P iter 0 P2-P1  Stokes: This is velocity P, iter= 6

Figure 6. Floating subdomain test with conforming meshes; from left to right: fine mesh com-
putation, first iteration and last iteration for velocitiesU , V, and pressureP.
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P2-P1 Stokes. Galerkin velocity U on extra fine mesh:  Stokes velocity U iter 0 P2-P1  Stokes: This is velocity U, iter= 2

P2-P1 Stokes. Galerkin velocity V on extra fine mesh:  Stokes velocity V iter 0 P2-P1  Stokes: This is velocity V, iter= 2

P2-P1 Stokes. Galerkin pressure P on extra fine mesh:  Stokes pressure P iter 0 P2-P1  Stokes: This is velocity P, iter= 2

Figure 7. Floating subdomain test with non conforming meshes; from left to right: fine mesh
computation, first iteration and last iteration for velocitiesU , V, and pressureP.
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The advantage of the continuous framework introduced is the clear sight of
the effect of condensing all information on subdomains and interfaces before
the discrete work starts and the use of the most appropriated norms on subdo-
mains and interfaces that make no necessary the use of mesh dependent norms
for obtaining stability. The clear disadvantage is the need for computing these
H1/2 norms, although we have shown it is feasible.

Many other alternatives are present in the literature, see the works by
Li [14], Kim et al. [13], Achdou et al. [1], etc., and, as far as we know, our
approach is original. In future work we would like to compare our method with
standard mortar and FETI-DP methods and extract conclusions. Anotherinter-
esting research could be the design of numerical tests with moderate to large
coarse problems and, therefore, study the large scale computational properties
(i.e. numerical scalability) of our approach.
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