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Abstract
This paper is devoted to the construction of fast solvers for penalty domain decomposition techniques,

based upon a posteriori error analysis. We introduce a penalty non-overlapping domain decomposition
method (ddm) motivated by the a posteriori error analysis of the method proposed by Chacón and Chacón
in [6]. In the new method a H

1/2
00 (Γ) penalty term replaces the L2(Γ) one in the original method. The

number of iterations needed by the new ddm to yield a solution with an error of the same order as
the discretization error is remarkably reduced. We develop an a posteriori error analysis that we use to
determine an optimal value of the penalty parameter for a given grid, and also to jointly determine an
optimal grid and a penalty parameter to reduce the error below a targeted value. Several numerical tests
for model problems exhibit the good performances of our approach and provide to a numerical comparison
of the two penalty methods.

Résumé
Cet article a pour but la construction de solveurs rapides pour les techniques de décomposition de

domaine avec pénalisation et repose sur une analyse a posteriori. Nous introduisons une méthode de
décomposition de domaine sans recouvrement, issue de l’analyse a posteriori de la méthode proposée
par Chacón et Chacón [6], où une pénalisation de type H

1/2
00 (Γ) remplace celle de type L2(Γ) dans la

première méthode. Le nombre d’itérations pour une erreur du même ordre que l’erreur de discrétisation est
considérablement réduit. Nous prouvons des estimations d’erreur a posteriori qui permettent d’optimiser
le choix du paramètre de pénalisation pour une grille donnée, et aussi lors de l’adaptation de maillage.
Plusieurs expériences numériques sur des problèmes académiques montrent les bonnes performances de
notre approche et permettent une comparaison numérique des deux méthodes.
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1 Introduction

This paper is devoted to the construction of fast solvers for penalty domain decomposition
techniques, based upon a posteriori error analysis. We introduce a penalty non-overlapping
domain decomposition method motivated by the a posteriori error analysis of the method
studied by Chacón and Chacón in [6] and [7].

The domain decomposition method (ddm) proposed in [7] enforces the continuity of the
variables across the interface between adjacent subdomains through a penalty technique.
If we denote this interface by Γ, a L2(Γ) penalty term is added to a convenient variational
formulation, with a structure that ensures the continuity of the fluxes across the interface.
This method provides fair accurate solutions. In fact, it is proved to be equivalent to a
penalty ddm with arbitrarily large overlapping region, analyzed by Lions [11] and Lions
and Pironneau [13]. However, it has a rather slow convergence rate. In [7] some solutions
to this problem were proposed, particularly the use of general acceleration techniques for
sequences, such as Aitken or the Minimal Polynomial Extrapolation methods.

In the present paper we address the problem of finding more specific techniques to
improve the convergence rate of the method. At first, we introduce a version of the
method in which a H

1/2
00 (Γ) penalty term replaces the L2(Γ) one in the original method

of [7]. In this way we force the jump of the unknown to vanish along the interface Γ in a
stronger sense.

The choice of this new penalty term is suggested by the a posteriori error analysis
of the ddm introduced in [7] that we perform in the paper at hand. An improvement is
deduced from the a priori error analysis that we develop: If the L2(Γ) penalty is replaced

by the H
1/2
00 (Γ) penalty, the number of iterations needed by the ddm to yield a solution

with an error of the same order as the discretization error is remarkably reduced. If the
discretization error is of order O(hk), the L2(Γ) penalty requires O(| log h|h−2k) iterations

in order to attain this error, while the H
1/2
00 (Γ) penalty requires O(| log h|h−k) iterations.

This improvement may be explained in an abstract framework: When H
1/2
00 (Γ) penalty

is used, the new ddm may be cast as the penalty of a stable mixed formulation of the
Poisson problem. This penalty procedure fits into a general framework studied by Girault
and Raviart in [9]. When L2(Γ) penalty is used, this mixed formulation is not uniformly
stable, due to the lack of an inf-sup condition.

In addition, we develop an a posteriori error analysis that provides independent error
indicators for both penalty and discretization errors, and allows to develop strategies to
provide further error reductions:

• On one hand, we determine an optimal value for the penalty parameter for a fixed
grid that yields a penalty error of the same size as the discretization error, with a
minimal computational effort.

• On another hand, we determine both optimal values for the penalty parameter and
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optimal grids that allow to reduce the error below a targeted value, also with a
minimal computational effort.

Our results show at first that, indeed, the H
1/2
00 (Γ) penalty is faster than the L2(Γ) one

for a fixed grid and a fixed penalty parameter, in good agreement with the a priori error
analysis mentioned above. However, surprisingly, a large computational gain is obtained
with L2(Γ) penalty when an adaptive computation strategy is used. This technique turns
out to be more flexible and to need much less computational time per iteration, as it does
not require the computation of H

1/2
00 (Γ) (or even a discrete equivalent) norm.

We refer to [14] for a similar approach (see also [8]). Other types of ddm and the
corresponding algorithms are described in [15] and the references therein.

The paper is organized as follows: Section 2 introduces the continuous version of the
new ddm. Section 3 performs a joint error analysis of this and the method introduced
in [6]. Section 4 characterizes the new ddm as the penalty of a stable mixed method

when H
1/2
00 (Γ) penalty is used. Section 5 is devoted to the discretization by Lagrange

finite element spaces of the two methods considered. In Section 6 the a posteriori error
analysis of both methods is performed. In Section 7 the improvement of the convergence
rate due to the use of H

1/2
00 (Γ) penalty is analyzed, as an a priori error analysis. Section

8 describes practical strategies for the computation of optimal penalty parameters and
grids. In Section 9 we report some numerical tests for the Poisson problem as a model
problem in significative geometries, that exhibit the good performances of our approaches.
Finally, an Appendix contains the proof of some technical results.

2



2 The penalty problem

Let Ω ⊂ Rd (d = 2, 3) be a simply connected and bounded domain with a Lipschitz-
continuous boundary ∂Ω. We consider a simple decomposition of Ω into two non-overlapping
subdomains Ω1 and Ω2 and set Γ = ∂Ω1∩∂Ω2, Γi = ∂Ωi∩∂Ω. We assume that all of these
boundaries are Lipschitz-continuous (d − 1)-dimensional manifolds with positive (d − 1)-
dimensional measure. Observe that under these hypotheses, Γ may or may not intersect
∂Ω. However, in this case Ω cannot have a connected boundary, see Figures 1 and 2.

Ω2

Ω1

Γ1

Γ2

Γ

Figure 1: Subdivision of domain Ω when Γ intersects ∂Ω.

Ω1

Ω2

Γ2

Γ1

Γ

Figure 2: Subdivision of domain Ω when Γ does not intersect ∂Ω.

We denote by nij the outward normal vector on Γ pointing from Ωi into Ωj, ∂nij
the

partial derivative with respect to nij and set n = n12. For a measurable subset D of Rn

and two functions f , g such that fg ∈ L1(D), we denote

(f, g)D =

∫
D

f(x) g(x) dx.

We consider the Sobolev spaces

Xi = H1(Ωi; Γi) = {v ∈ H1(Ωi) such that v|Γi
= 0}, i = 1, 2; X = X1 ×X2.
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We define for u = (u1, u2),v = (v1, v2) ∈ X the scalar product and norm on X

((u,v))X =
2∑
i=1

(∇ui,∇vi)Ωi
, ‖u‖2

X = ((u,u))X ,

Let us consider the Poisson problem in Ω:
Given f ∈ L2(Ω), find u ∈ H1

0 (Ω) such that

(∇u,∇v)Ω = (f, v)Ω (1)

for all v ∈ H1
0 (Ω). This is a model problem that in despite of its simplicity contains the

main difficulties set by the analysis of the ddms that we consider in this paper.
We recall that H

1/2
00 (Γ) is the subspace of H1/2(Γ) whose extension by zero to ∂Ω1 (for

instance, it could be also to ∂Ω2) belongs to H1/2(∂Ω1). An intrinsic scalar product on

H
1/2
00 (Γ) is defined as

[[w, v]]Γ =

∫
Γ

w(x) v(x) dx +

∫
Γ

∫
Γ

(w(x)− w(y)) (v(x)− v(y))

|x− y|d
dx dy (2)

+

∫
Γ

w(x) v(x)

d(x, ∂Γ)
dx ,

where the first two summands define the H1/2(Γ) scalar product (see Adams [1], Theorem
7.48). Its expression involves the distance d(x, ∂Γ) to the boundary of Γ. It comes from

the restriction to H
1/2
00 (Γ) of the scalar product in H1/2(∂Ω1) for instance. It is given by

Lions and Magenes in [12], Chapitre 1, Théorème 11.7.
For brevity, we also denote by [[·, ·]]Γ the L2(Γ) scalar product, and study both the L2(Γ)

and the H
1/2
00 (Γ) penalties at the same time with the same notation. We shall distinguish

the two cases when this is necessary.
We may now introduce our penalty problem as

(Pε)

{
Find uε ∈ X such that

((uε,v))X +
1

ε
[[uε1 − uε2, v1 − v2]]Γ = F (v) for all v ∈ X.

where F is the ‖ · ‖X–continuous linear form on X given by

F (v) =
2∑
i=1

(f, vi)Ωi
,

and ε > 0 is a parameter destinated to tend to zero.
This problem has a unique solution for any ε > 0 due to Lax–Milgram Lemma. This is
also true when the (d − 1)-dimensional measure of some of the Γi is zero, but we have
excluded this case for simplicity.
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When Γ does not intersect ∂Ω, then the H
1/2
00 (Γ) penalty coincides with the H1/2(Γ)

penalty: If Γ is a manifold with no boundary, then H
1/2
00 (Γ)= H1/2(Γ). However, for

brevity we assume that Γ intersects ∂Ω and use H
1/2
00 (Γ) penalty (or L2(Γ) penalty). All

our results are also true if Γ does not intersect ∂Ω and H1/2(Γ) penalty is used.

Remark 1 The original method introduced in [7] only considers a L2(Γ) penalty term to

enhance the continuity of uε = (uε1, u
ε
2) across Γ. We also consider here a H

1/2
00 (Γ) penalty

term to enhance this continuity in a stronger sense. In both cases, the method may be
interpreted as the variational formulation of a coupled system of PDEs with the structure

−∆u1 = f in Ω1,
u1 = 0 on Γ1,

∂n12u1 =
1

ε
b(u1 − u2) on Γ,


−∆u2 = f in Ω2,
u2 = 0 on Γ2,

∂n21u2 =
1

ε
b(u2 − u1) on Γ,

where b is an injective linear bounded boundary operator on Γ, which reduces to the identity
for L2(Γ) penalty. So, the method ensures the continuity of the normal fluxes through Γ

and forces by penalty the continuity of uε. Note that, in the case of H
1/2
00 (Γ) penalty, this

is rather different from a Dirichlet to Neumann or Neumann to Neumann algorithm.
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3 Penalty error analysis

Our first result is a generalization of the penalty error estimates of [7]. To state it we
denote by ‖ · ‖Γ the norm associated with the [[·, ·]]Γ scalar product, and by ‖ · ‖∗,Γ its dual
norm.
We use the notation

((u,v))ε = ((u,v))X +
1

ε
[[u1 − u2, v1 − v2]]Γ, ∀u, v ∈ X.

Theorem 1 Assume that one of the following assumptions hold:

• Either the solution u of (1) satisfies ∂nu ∈ L2(Γ) when L2(Γ) penalty is used,

• Or f belongs to L2(Ω) when H
1/2
00 (Γ) penalty is used.

Then, for all ε > 0 the following estimates hold

‖uε1 − uε2‖Γ ≤ ‖∂nu‖∗,Γ ε,
2∑
i=1

|u− uεi |1,Ωi
≤ ‖∂nu‖∗,Γ

√
ε. (3)

Proof: The case of L2(Γ) penalty has been proved in [7] (Theorem 1), we include it in the

statement of the present theorem for completeness. We prove (3) in the case of H
1/2
00 (Γ)

penalty.
For the solution u of problem (1) we write u = (u|Ω1

, u|Ω2
) ∈ X. Consider the consis-

tency error C ∈ X′ defined by

〈C,v〉 = ((u,v))ε − F (v), ∀v = (v1, v2) ∈ X. (4)

Then the following property holds

((u− uε,v))ε = 〈C,v〉 , ∀ v = (v1, v2) ∈ X. (5)

To estimate the consistency error, observe that as ∆u ∈ L2(Ωi), then ∂n12u ∈ (H
1/2
00 (Γ))′

due to the relation

< ∂nij
u, vi >Γ= (∇u, ∇vi)Ωi

+ (∆u, vi)Ωi
, ∀vi ∈ Xi.

Thus, we may integrate by parts in the expression of C to obtain

〈C,v〉 =< ∂nu, v1 − v2 >Γ .

We may now use the error equation (5) with v = u− uε to obtain

2∑
i=1

|u−uεi |21,Ωi
+

1

ε
‖uε1−uε2‖2

H
1/2
00 (Γ)

=< ∂nu, u
ε
2−uε1 >Γ≤ ‖∂nu‖(H

1/2
00 (Γ))′

‖uε1−uε2‖H1/2
00 (Γ)

. (6)
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By Young’s inequality,

2∑
i=1

|u− uεi |21,Ωi
+

1

ε
‖uε1 − uε2‖2

H
1/2
00 (Γ)

≤ ε

2
‖∂nu‖2

(H
1/2
00 (Γ))′

+
1

2ε
‖uε1 − uε2‖2

H
1/2
00 (Γ)

.

This yields estimates (3).
Q.E.D.

We next introduce a continuous penalty error indicator (and refer to [14], Thm 3.1, for
a similar indicator):

ηP = ‖uε1 − uε2‖H1/2
00 (Γ)

. (7)

This is an optimal indicator, as it satisfies

Theorem 2 There exist two constants C > 0 and C ′ > 0 independent of ε such that

C ηP ≤
2∑
i=1

|u− uεi |1,Ωi
≤ C ′ ηP , i = 1, 2. (8)

Proof: The first estimate in (8) is obtained by

‖uε1 − uε2‖H1/2
00 (Γ)

≤
2∑
i=1

‖u− uεi‖H1/2
00 (Γ)

≤ C1

2∑
i=1

‖u− uεi‖H1/2(∂Ωi),

whence

‖uε1 − uε2‖H1/2
00 (Γ)

≤ C2

2∑
i=1

‖u− uεi‖1,Ωi
.

This inequality stems from the usual characterization of the H
1/2
00 (Γ) norm (equivalent to

the intrinsic one given by (2), Cf. Adams [1], Theorem 7.53) defined as

inf
w∈Xi,w|Γ=ϕ

‖w‖1,Ωi
.

To prove the second estimate in (8), let us introduce the subspace of X,

X̃ = {ṽ = (ṽ1, ṽ2) ∈ X, such that ṽ1|Γ
= ṽ2|Γ

};

which is algebraically isomorphic to H1
0 (Ω). Observe that

((u− uε, ṽ))X = 0, ∀ṽ ∈ X̃. (9)
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There exists a lifting wε1 ∈ X1 of (uε1 − uε2)|Γ satisfying

|wε1|1,Ω1 ≤ C3 ‖uε1 − uε2‖H1/2
00 (Γ)

.

for some constant C3 independent of ε. For instance, this lifting is obtained as the solution
of the boundary value problem

−∆wε1 = 0 in Ω1, wε1 = 0 on Γ1, wε1 = uε1 − uε2 on Γ.

Define the function wε = (wε1, 0) ∈ X. Then, taking ṽ = u− uε + wε ∈ X̃ in (9), we have

‖u− uε‖X ≤ ‖wε‖X , and so
2∑
i=1

|u− uεi |1,Ωi
≤
√

2 |wε1|1,Ωi
≤ C4 η

P .

Q.E.D.
Observe that the a posteriori error estimator ηP coincides with the H

1/2
00 (Γ) penalty

term. In this case, the error estimate for |u− uεi |1,Ωi
stated in Theorem 1 is improved by

combining the second estimate in (8) with the first estimate in (3) :

Corollary 3 Assume that H
1/2
00 (Γ) penalty is used and that f belongs to L2(Ω).

Then, for all ε > 0 the following estimate holds

2∑
i=1

|u− uεi |1,Ωi
≤ C ‖∂nu‖H1/2

00 (Γ)′
ε, (10)

for some constant C independent of ε.

This suggests to replace the L2(Γ) penalty term by the H
1/2
00 (Γ) penalty term to improve

the accuracy of our ddm. From the practical point of view this sets the problem of the
computation of the non-local H

1/2
00 (Γ) norm and scalar products. However, these can be

approximated numerically with low cost. We show the good performances of such an
approach in our numerical results.

8



4 Casting as a penalty mixed problem

In the case of H
1/2
00 (Γ) penalty, Problem (Pε) may be cast as a penalty mixed problem, that

fits into the general framework of approximation of mixed problems by penalty analysed in
Chapter I, Section 4.3 of Girault and Raviart [9]. We also refer to [2] for the introduction
of a Lagrangian multiplier to handle the matching conditions in the ddm. To do this, let
us denote by M the space H

1/2
00 (Γ), and define the bilinear bounded form

b(·, ·) : X×M 7→ R by b(v, λ) = [[v1 − v2, λ]]Γ.

We re-formulate the Poisson problem (1) as the following mixed problem:

Find a pair (ũ = (ũ1, ũ2), λ) ∈ X×M such that

(PM)

{
((ũ,v))X + b(v, λ) = F (v), ∀ v ∈ X,

b(ũ, µ) = 0, ∀ µ ∈M.
(11)

It can be readily checked that the form b(·, ·) satisfies an inf-sup condition: There exists a
constant β > 0 such that

β ‖µ‖M ≤ sup
v∈X

b(v, µ)

‖v‖X
, ∀µ ∈M. (12)

Thus, problem (PM) admits a unique solution (ũ, λ). From the second equation in (11),
ũ1 = ũ2 on Γ. Then, the solution of the Poisson problem is recovered from that of (PM)
by

u(x) =

{
ũ1(x) if x ∈ Ω1,
ũ2(x) if x ∈ Ω2.

Conversely, if we define ũi = u|Ωi
, then the second equation in (11) holds and the multiplier

λ is obtained from the first equation in (11) thanks to the inf-sup condition (12).

Let us now consider the scalar product in H
1/2
00 (Γ),

c(λ, µ) = [[λ, µ]]Γ,

and the penalty problem

Find a pair (ũε, λε) ∈ X×M such that

(P ε
M)

{
((ũε,v))X + b(v, λε) = F (v), ∀ v ∈ X.
−ε c(λε, µ) + b(ũε, µ) = 0, ∀ µ ∈M.

(13)

This problem is equivalent to (Pε). Indeed, from the second equation in (13) we obtain

λε =
1

ε
(ũε1 − ũε2).
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Inserting this equality in the first equation of (13), ũε turns out to verify exactly (Pε).
Problem (13) is studied in an abstract framework in Chapter I, Section 4.3 of [9]. Its

well-posedness is proved, so as the error estimate

‖ũε − ũ‖X + ‖λε − λ‖M ≤ K ε ‖F‖X′ ,

where K is a constant depending on Ω, Γ, d and β. This estimate is similar to the ones
that we have obtained in Theorem 1 and Corollary 3.

Observe that the L2(Γ) penalty does not fit into this framework, as an inf-sup condition
(12) does not hold. Indeed, in this case, the quantity

sup
v∈X

b(v, µ)

‖v‖X
,

is a norm equivalent to the (H
1/2
00 (Γ))′ norm, and not to the L2(Γ) norm.
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5 Discretization of the penalty problem

To discretize (Pε) let us assume that the domains Ω, Ω1 and Ω2 are polygonal or polyhedral.
Consider a regular family of triangulations {Tih}{h>0} of each Ωi formed by polygons
(d = 2) or polyhedra (d = 3) such that Γ is the union of whole faces or sides of elements K
in each Tih. As usual, h > 0 denotes the largest diameter of the elements of Th = T1h∪T2h.

We assume that T1h and T2h have the same trace sets on Γ; i.e., the trace sets

∂ΓTih = {e ⊂ Rd such that e = ∂K ∩ Γ for some K ∈ Tih }; i = 1, 2

of T1h and T2h are equal to a same set, that we denote by EΓ
h . Then, Th is a triangulation

of Ω, and the family {Th}{h>0} is regular.
Next we consider a family of finite element subspaces Xih of Xi (i = 1, 2), built on

the grids Tih. Note that the two spaces X1h and X2h may be constructed with piecewise
polynomials of different degrees, or different finite elements.

We set Xh = X1h ×X2h. We define the spaces

X̃h = {ṽh = (ṽ1h, ṽ2h) ∈ Xh, such that ṽ1h|Γ
= ṽ2h|Γ

}, and

Vh = {vh : Ω 7→ Rd such that vh|Ω1
= ṽ1h and vh|Ω2

= ṽ2h for some (ṽ1h, ṽ2h) ∈ X̃h }.
Then, Vh is a finite element subspace of H1

0 (Ω) built on the triangulation Th. It is not
reduced to {0} in the situations that we take into consideration.

The structure of these finite element spaces allows compatible discretizations of our
penalty ddm, in the sense that a discrete orthogonality property (9) holds. We consider
the standard finite element Galerkin approximation uh ∈ Vh of u, satisfying

(Ph)

{
Find uh ∈ Vh such that
(∇uh,∇vh)Ω = (f, vh)Ω for all vh ∈ Vh.

Our penalty discrete problem is the standard finite element Galerkin approximation
uεh = (uε1h, u

ε
2h) ∈ Xh of uε, solution of

(Pε,h)

{
Find uεh ∈ Xh such that
((uεh,vh))ε = F (vh) for all vh ∈ Xh.

This problem admits a unique solution for any ε > 0.
We consider the parallel technique by Schwarz successive approximations introduced

in [7] to solve (Pε,h):
For n = 0, 1, 2, ..., un+1

1 = un+1,ε
1h ∈ X1h and un+1

2 = un+1,ε
2h ∈ X2h are computed from

un1h and un1h by solving (we drop the exponent ε and index h for simplicity),

(P n
ε,h)


(∇un+1

1 ,∇v1h)Ω1 +
1

ε
[[un+1

1 − un2 , v1h]]Γ = (f, v1h)Ω1 , ∀ v1h ∈ X1h,

(∇un+1
2 ,∇v2h)Ω2 +

1

ε
[[un+1

2 − un1 , v2h]]Γ = (f, v2h)Ω2 , ∀ v2h ∈ X2h.

(14)
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For k ≥ 1 we assume that uh is a finite element approximation of degree k of u, in
the sense that when u ∈ Hk+1(Ω) ∩H1

0 (Ω) the error committed with uh belongs to Vh is
O(hk); specifically

|uh − u|1,Ω ≤ C0 h
k |u|k+1,Ω (15)

for some constant C0 > 0.
We also assume that the spaces Xih verify the approximation estimates

∀vi ∈ Xi, ∃vih ∈ Xih s. t. ||vi − vih||α,Ωi
≤ C0 h

1−α |vi|1,Ωi
, 0 ≤ α ≤ 1, (16)

and ||vi − vih||α,Γ ≤ C0 h
1/2−α |vi|1,Ωi

, 0 ≤ α ≤ 1/2. (17)

Sufficient conditions that guarantee that rather general families of affine equivalent finite
element spaces satisfy these properties are given in Bernardi et al. [4], Chapitre IX (Cf.
Corollaire IX.3.9 and Théorème IX.3.10 for the proofs). In particular, these conditions
are verified by the Lagrange finite element spaces constructed with triangles (d = 2) or
tetrahedra (d = 3), as

X∗ih = {wh ∈ H1(Ωi) ; wh|K ∈ Pki
(K), ∀K ∈ Tih, wh|Γi

= 0 }, (18)

where Pki
(K) denotes the space of restrictions to K of polynomials with d variables and

total degre ≤ ki for positive integers ki.
Note that if k1 6= k2, say k1 > k2, then the first component v1h ∈ X∗1h of a pair

(v1h, v2h) ∈ X̃h must degenerate to polynomials of Pk2(e) on the sides or faces e ∈ EΓ
h

when the Xih are equal to the X∗ih.

12



6 A posteriori error analysis

From now on, we assume that each of the spaces Xih contains the space X∗ih defined in
(18), and that its trace space on Γ is

Wih = {vh ∈ H1
0 (Γ) : vh|e ∈ Pki

(e), ∀e ∈ EΓ
h }. (19)

To introduce our error indicators, for each K ∈ Tih, i = 1, 2, let us denote by EK the set
of edges (d = 2) or faces (d = 3) of K that are not contained in Γi. Let us also consider a
piecewise polynomial approximation fh of f on the triangulation Th. We introduce

• a family of discretization error indicators: For i = 1, 2 andK ∈ Tih,

ηKi = hK ‖fh + ∆uεih‖L2(K) +
∑
e∈EK

h1/2
e ‖[∂nK

uεih]‖L2(e),

where

– hK and he stand for for the diameters of K and e, respectively,

– nK stands for the unit outward normal to ∂K, and

– [∂nK
uεih] stands for the jump of ∂nK

uεih across e if e is not included in Γ, and for
∂nK

uε1h − ∂nK
uε2h if e is included in Γ.

• a penalty error indicator:

ηPh = ‖uε1h − uε2h‖H1/2
00 (Γ)

.

The penalty error is estimated by the following discrete version of Theorem 2:

Theorem 4 There exist two constants C > 0 and C ′ > 0 independent of ε and h such
that

C ηPh ≤
2∑
i=1

|uh − uεih|1,Ωi
≤ C ′ ηPh , i = 1, 2. (20)

Proof: It is parallel to that of Theorem 2. The first inequality is proved in the same way.
To prove the second inequality, we start from the discrete orthogonality property

((uh − uεh, ṽh))X = 0, ∀ṽh ∈ X̃h, with uh = (u1h, u2h), uεh = (uε1h, u
ε
2h). (21)

Denote by ϕh the extension by zero of (uε1h − uε2h)|Γ to ∂Ω1. Since (uε1h − uε2h)|Γ vanishes
on ∂Γ, assuming for instance k1 ≥ k2, then ϕh belongs to the trace space on ∂Ω1 of X1h.
Thus, following Bernardi et al. [4] (Théorème IX.4.1), there exists a lifting wε1h ∈ X1h of
ϕh that satisfies

|wε1h|1,Ω1 ≤ C1 ‖ϕh‖H1/2(∂Ω1),

13



for some constant C1 independent of ε. As

‖ϕh‖H1/2(∂Ω1) ≤ C2 ‖uε1h − uε2h‖H1/2
00 (Γ)

, then |wε1h|1,Ω1 ≤ C3 ‖uε1h − uε2h‖H1/2
00 (Γ)

.

Define the function wε
h = (wε1h, 0) ∈ Xh. Then, it is enough to take ṽh = uh−uεh+wε

h ∈ X̃h

in (21) and repeat the remaining arguments of the end of proof of Theorem 2.
Q.E.D.

We may now state our first a posteriori error analysis result:

Theorem 5 The solution of the discrete penalty problem (Ph,ε) satisfies the following a
posteriori error estimate

2∑
i=1

|u− uεih|1,Ωi
≤ C

{(
1 +

hγ

ε

)
ηPh (22)

+

(
2∑
i=1

∑
K∈Tih

(
ηKi
)2

+ h2
K ||f − fh||2L2(K)

)1/2
 ,

where γ =

{
1/2 if L2(Γ) penalty is used,

0 if H
1/2
00 (Γ) penalty is used.

Proof. We start from the triangle inequality

2∑
i=1

|u− uεih|1,Ωi
≤

2∑
i=1

|u− uεi |1,Ωi
+

2∑
i=1

|uεi − uεih|1,Ωi
(23)

To estimate the first term in the right-hand side of (23), we use (8):

2∑
i=1

|u− uεi |1,Ωi
≤ C1 ‖uε1 − uε2‖H1/2

00 (Γ)
≤ C1

(
‖uε1h − uε2h‖H1/2

00 (Γ)
+

2∑
i=1

‖uεi − uεih‖H1/2
00 (Γ)

)
.

Combining this estimate with (23) we obtain

2∑
i=1

|u− uεih|1,Ωi
≤ C2

(
ηPh +

2∑
i=1

|uεi − uεih|1,Ωi

)
, (24)

for some constant C2 ≥ 0 independent of ε and h.
To estimate the last term in the right-hand side of this inequality, we use the problems

(Pε) and (Pε,h) to deduce the residual equation:

((uε − uεh,v))ε = F (v)− ((uεh,v))ε = F (v− vh)− ((uεh,v− vh))ε, ∀v ∈ X, ∀vh ∈ Xh.

14



Then,

((uε − uεh,v))ε =
2∑
i=1

(fh, vi − vih)Ωi
− ((uεh,v− vh))ε +

2∑
i=1

(f − fh, vi − vih)Ωi
.

Whence,

((uε − uεh,v))ε =
2∑
i=1

∑
K∈Tih

(∫
K

(fh + ∆uεih) (vi − vih)−
∑
e∈EK

∫
e

∂nK
uεih (vi − vih)

)

+
2∑
i=1

(f − fh, vi − vih)−
1

ε
[[uε1h − uε2h, v1 − v1h − (v2 − v2h)]]Γ. (25)

The first three summands in (25) are estimated in a standard way from the approximation
properties (16) and (17) to give (see [16], Proposition 1.5)

((uε − uεh,v))ε ≤

(
2∑
i=1

∑
K∈Tih

(
ηKi
)2

+ h2
K ||f − fh||2L2(K)

)1/2 2∑
i=1

|vi|1,Ωi

+
1

ε
|[[uε1h − uε2h, (v1 − v1h)− (v2 − v2h) ]]Γ| . (26)

To estimate the last term in (26), consider first the L2(Γ) penalty case. Using (17),

|[[uε1h − uε2h, v1 − v1h − (v2 − v2h) ]]Γ| ≤ ||uε1h − uε2h||0,Γ
2∑
i=1

||vi − vih||0,Γ,

whence

|[[uε1h − uε2h, v1 − v1h − (v2 − v2h) ]]Γ| ≤ C5 h
1/2 ||uε1h − uε2h||H1/2

00 (Γ)

2∑
i=1

|vi|1,Ωi
(27)

Consider now the H
1/2
00 (Γ) penalty case. Then,

|[[uε1h − uε2h, v1 − v1h − (v2 − v2h) ]]Γ| ≤ ||uε1h − uε2h||H1/2
00 (Γ)

2∑
i=1

||vi − vih||H1/2
00 (Γ)

,

whence

|[[uε1h − uε2h, v1 − v1h − (v2 − v2h) ]]Γ| ≤ C6 ||uε1h − uε2h||H1/2
00 (Γ)

2∑
i=1

|vi|1,Ωi
(28)
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To conclude the proof, we need to use

2∑
i=1

|wi|1,Ωi
≤ sup

v∈X

((w,v))ε
((v,v))ε

, ∀w = (w1, w2) ∈ X,

and next to combine (26) with either (27) or (28).
Q.E.D.

We next analyze the optimality of the error indicators that we have introduced. To do
it, we need some further notation. For a given element K ∈ Tih, i = 1, 2, we define the
union ωK of the elements K ′ ∈ T1h ∪T2h that share an edge (d = 2) or a face (d = 3) with
K. We denote by EΓ

K (respectively, E0
K) the set of edges or faces of EK that are (resp., are

not) included in Γ. We also define the seminorm

|v|1,ωK ,h =

(
2∑
i=1

∑
K∈Tih,K⊂ωK

|uεi − uεih|21,K

)1/2

.

We set the following result.

Theorem 6 The error indicators ηKi and ηPh verify the following estimates

ηKi ≤ C
(
|uε − uεh|1,ωK ,h + hK ||f − fh||L2(ωK)

)
, (29)

ηPh ≤ C ′
2∑
i=1

|u− uεih|1,Ωi
, (30)

for some constants C > 0 and C ′ > 0 that are independent on ε and h.

Proof.

• Discretization error indicator. We start from the residual equation (25), where
we set vih = 0:

((uε − uεh,v))ε =
2∑
i=1

( ∑
K∈Tih

∫
K

(fh + ∆uεih) vi + (f − fh, vi)Ωi

)
(31)

−
2∑
i=1

∑
K∈Tih

1

2

∑
e∈E0

K

∫
e

[∂nK
uεih] vi −

∑
e∈EΓ

K

∫
e

∂nK
uεih vi


− 1

ε
[[uε1h − uε2h, v1 − v2]]Γ.

For each K ∈ Tih, the estimate of ‖fh + ∆uεih‖L2(K) is standard. To do it, vi must
be chosen as the product of (fh + ∆uεih)|K times the bubble function (the product of
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the barycentric coordinates of K) on element K and to zero elsewhere. The use of
inverse inequalities allows to prove that (Cf. Verfürth [16], Proposition 1.5)

hK ‖fh + ∆uεih‖L2(K) ≤ C1

(
|uε − uεh|H1(K) + hK ||f − fh||L2(K)

)
. (32)

Next, let us estimate ‖[∂nuεih]‖L2(e), for some e ∈ EΓ
K . There exist two elements

K1 ∈ T1h and K2 ∈ T2h that share the edge or face e. We choose vi ∈ Xi with
support in Ki such that v1|Γ = v2|Γ = ϕ, where ϕ is a suitable polynomial function
that we choose later. Then the interface product vanishes in the residual equation
(31), that reduces to

((uε − uεh,v))ε =
2∑
i=1

(∫
∂Ki

[∂nK
uεih] vi +

∫
Ki

(fh + ∆uεih) vi + (f − fh, vi)
)
. (33)

The choice of the vi is standard: If ψe denotes the bubble function on e, defined as
the product of the barycentric coordinates of e, then

ϕ = [∂nK
uεih]ψe.

This is a polynomial function of degree, say r, vanishing on ∂e. Then, the vi are
defined by

vi =

{
RKi,e(ϕ) in Ki

0 in Ω \ (K1 ∪K2)
,

where RKi,e is a lifting operator from the space of polynomials Pr(e) vanishing on
∂e onto the space of polynomials Pr(Ki) vanishing on ∂Ki \ e. This operator is con-
structed from a fixed lifting operator on a reference triangle by affine transformation.
It verifies the estimate (Cf. Verfürth [16], Lemma 1.3 and Proposition 1.5)

|RKi,e(ϕ)|H1(K) + h−1
K ||RKi,e(ϕ)||L2(K) ≤ C2 h

−1/2
e ||ϕ||L2(e).

From this estimate, again standard arguments allow to deduce from (33) that

h1/2
e ‖[∂nuεih]‖L2(e) ≤ C3 (|uε − uεh|H1(K1∪K2) + hK‖fh + ∆uεih‖L2(K1∪K2)

+ hK‖f − fh‖L2(K1∪K2)).

The same choice of the vi allows to estimate ‖[∂nuεih]‖L2(e) for edges faces e ∈ EK not
situated on Γ. In this case the support of the vi does not intersect Γ, so the scalar
product interface term in the expression of the residual directly vanishes.

Estimate (29) follows.

• Penalty error estimator. The estimate for ηPh is also obtained by a triangle
inequality, as in Theorem 2,

ηPh ≤ ||uε1h − u||H1/2
00 (Γ)

+ ||uε2h − u||H1/2
00 (Γ)

≤ C4

2∑
i=1

|u− uεih|1,Ωi
.
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Q.E.D.
Note that the estimator ηKi is not directly bounded in (29) in terms of the total error

|u− uεh|1,ωK ,h, but in terms of the discretization error |uε − uεh|1,ωK ,h. This should not be
surprising, as ηKi is the error arising in the discretization step of the penalized problem
(Pε) to obtain (Pε,h).

Let us consider the penalty error Eε and the discretization error Eh, respectively defined
by

Eε =
2∑
i=1

|u− uεi |1,Ωi
, Eh =

2∑
i=1

|uεi − uεih|1,Ωi
.

Theorems 5 and 6 set the following bounds (assuming for simplicity that there is no error
stemming from the source terms),

C1

ηPh +

(
2∑
i=1

∑
K∈Tih

(
ηKi
)2

)1/2
 ≤ Eε + Eh (34)

≤ C2

ηPh +

(
2∑
i=1

∑
K∈Tih

(
ηKi
)2

)1/2

+
hγ

ε
ηPh

 .

where C1 and C2 are constants independent of h and ε. From these bounds we conclude
that our error indicators are quasi-optimal. There is only a lack of optimality due to the
hγ/ε term in the upper bound.

However, under some mild additional conditions we may considerably improve the
estimate on the right-hand side of (34).
We introduce the following notation:

• πΓ
ih denotes the orthogonal projection operator from either L2(Γ) or H

1/2
00 (Γ) onto

Wih with respect to the [[·, ·]]Γ scalar product.

• For some K ∈ Tih, ∆K denotes the set of all elements K ′ of Tih such that K∩K ′ 6= ∅.

• For any face or side e of some element K ∈ Tih, ∆e denotes the set of all elements
K ′ of Tih such that e ∩K ′ 6= ∅.

• Vi denotes the set of Lagrange interpolation nodes contained in Ωi associated with
the space Xih.

• V0
i denotes the subset of the nodes of Vi located in Ωi.

• VΓ
i denotes the subset of the nodes of Vi located on Γ.

• T Γ
ih is the set of elements of Tih that intersect Γ.
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• T 0
ih is the set of elements of Tih that do not intersect Γ.

With each a in Vi, we associate the Lagrange function ϕa in Xih which is equal to 1 in
a and to 0 in all a′ 6= a in Vi. Thus, we consider the Clément interpolation operators

C∗ihv =
∑
a∈Vi

(πav)(a)ϕa,

where πa is a local L2 projection operator (for instance, on an element Ka of Tih containing
a). We also consider the modified Clément operator

Cihv =
∑
a∈V0

i

(πav)(a)ϕa +
∑
a∈VΓ

i

(πΓ
ihv)(a)ϕa.

We state the following result.

Lemma 1 For any function vi of H1(Ωi), the following estimates hold

‖vi − Cihvi‖2
L2(K) ≤ C hK |vi|H1(∆K), if K ∩ Γ = ∅; (35)

‖vi − Cihvi‖2
L2(e) ≤ C h1/2

e |vi|H1(∆e), if e ∩ Γ = ∅; (36)

(
∑
K∈T Γ

ih

h−2
K ‖vi − Cihvi‖

2
L2(K))

1
2 ≤ C (1 + λh) |vi|H1(Ωi); (37)

(
∑
K∈T Γ

ih

∑
e∈EK

h−1
e ‖vi − Cihvi‖2

L2(e))
1
2 ≤ C (1 + λh) |vi|H1(Ωi); (38)

where

i) In the case of L2(Γ) projection,

λh = (hM/hm)1/2, with hM = max
K∩Γ 6=∅

hK , hm = min
K∩Γ6=∅

hK ;

ii) In the case of H
1/2
00 (Γ) projection,

λh = (hM/hm + h−1
m )1/2.

We report the proof of this Lemma to an appendix to keep on the main line of our
argumentation. Note that in the case of L2(Γ) projection, the coefficient λh is bounded if
only a finite number of grid refinements are performed, as it is usual. However, in the case
of H

1/2
00 (Γ) projection, there is a h

−1/2
m loss of optimality. Nevertheless, this loss is limited

to the elements, sides or faces that intersect the interface Γ.
From the technical point of view, this loss of optimality could be avoided by means of a
duality estimate of the error ‖vi − πΓ

ihvi‖L2(Γ) in terms of the H
1/2
00 (Γ) norm of vi, that is

lacking up to our knowledge.
As a consequence of this Lemma, we deduce our main a posteriori error estimate result,
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Theorem 7 Assume that the trace spaces W1h and W2h defined in (19) coincide. Then,
the solution of the discrete penalty problem (Ph,ε) satisfies the following a posteriori error
estimate

2∑
i=1

|u− uεih|1,Ωi
≤ C

ηPh +

(
2∑
i=1

∑
K∈Tih

(
µK η

K
i

)2
+ (µK hK)2 ||f − fh||2L2(K)

)1/2
 , (39)

where µK =

{
(1 + λh) if K ∩ Γ 6= ∅,

1 if K ∩ Γ = ∅.

Proof. We adapt the proof of Theorem 5, that we only change from the residual equation
(25) between problems (Pε) and (Ph,ε).

Consider vi ∈ Xi, i = 1, 2. We put vih = Cihvi in the residual equation (25). By
construction of Cih, the trace on Γ of vih is πΓ

ihvi|Γ that belongs to Wih. As W1h = W2h,

then uε1h − uε2h belongs to Wih, and it is orthogonal to {(v1 − v1h) − (v2 − v1h)}|Γ with
respect to the [[·, ·]]Γ scalar product. Then, the boundary term in the residual equation
vanishes and this reduces to

((uε − uεh,v))ε =
2∑
i=1

∑
K∈Tih

(∫
K

(fh + ∆uεih) (vi − Cihvi)−
∑
e∈EK

∫
e

∂nK
uεih (vi − Cihvi)

)

+
2∑
i=1

(f − fh, vi − Cihvi) = I + II + III. (40)

We bound the first term of the right-hand side of (40) by

I ≤ C1

2∑
i=1

∑
K∈Tih

‖fh + ∆uεih‖2
L2(K) ‖v − Cihvi‖L2(K)

≤ C2

 2∑
i=1

∑
K∈T Γ

ih

(µKηK)2

1/2  2∑
i=1

∑
K∈T Γ

ih

(µKhK)−2 ‖vi − Cihvi‖2
L2(K)

1/2

+ C2

 2∑
i=1

∑
K∈T 0

ih

η2
K

1/2  2∑
i=1

∑
K∈T 0

ih

h−2
K ‖vi − Cihvi‖

2
L2(K)

1/2

≤ C3

(
2∑
i=1

∑
K∈Tih

(µK ηK)2

)1/2 ( 2∑
i=1

|vi|2
)1/2

,

where the last bound comes from estimates (35) and (37) of Lemma 1. Similar arguments
lead to the bound for the quantity III. The second term of the right-hand side of (40) is
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bounded by

II ≤ 1

2

2∑
i=1

∑
K∈Tih

∑
e∈EK

‖[∂nK
uεih]‖L2(e) ‖vi − Cihvi‖L2(e)

≤ C4

 2∑
i=1

∑
K∈T Γ

ih

(µKηK)2

1/2  2∑
i=1

∑
K∈T Γ

ih

∑
e∈EK

µ−2
K h−1

e ‖vi − Cihvi‖2
L2(e)

1/2

+ C4

 2∑
i=1

∑
K∈T 0

ih

η2
K

1/2  2∑
i=1

∑
K∈T 0

ih

∑
e∈EK

h−1
e ‖vi − Cihvi‖2

L2(e)

1/2

≤ C5

(
2∑
i=1

∑
K∈Tih

(µK ηK)2

)1/2 ( 2∑
i=1

|vi|2
)1/2

.

where the last bound comes from estimates (36) and (38) of Lemma 1.
The remaining of the proof is similar to that of Theorem 5.

Q.E.D.
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7 Improvement of convergence rate

If H
1/2
00 (Γ) penalty is used, the convergence rate of the parallel iteration process (14) is

remarkably increased. This is proved thanks to Theorem 4 by replacing the L2(Γ) penalty

by the H
1/2
00 (Γ) one in the proof of Theorem 2 in [7]. This yields

‖uε1h − uε2h‖H1/2
00 (Γ)

≤ C (
√
ε hk + ε),

where C = C(u) is a positive constant that only depends on u. Combining this estimate
with (20), we deduce

2∑
i=1

|uεh − uεih|1,Ωi
≤ C (

√
ε hk + ε). (41)

Note that

2∑
i=1

|ui − uεih|1,Ωi
≤

2∑
i=1

|ui − uεi |1,Ωi
+

2∑
i=1

|uεi − uεh|1,Ωi
+

2∑
i=1

|uεh − uεih|1,Ωi
,

where the second term in the right-hand side is of order hk. Then, the best choice for ε in
(41) is
ε = O(hk), to achieve an overall O(hk) accuracy. Other choices improving the accu-
racy between uεh and uεih would require a larger computational effort without diminishing
the discretization error which in any case is of order hk. This choice ε = O(hk) gives

2∑
i=1

|uh − uεih|1,Ωi
≤ C hk, and then

2∑
i=1

|u− uεih|1,Ωi
≤ C hk. (42)

This allows to state the

Theorem 8 Assume that hypothesis (15) on the solution u of problem (1) hold. Assume
that the sequence

{
(un+1,ε

1h , un+1,ε
2h )

}
n≥1

is computed by the full discretized problem (P n
ε,h),

with H
1/2
00 (Γ) penalty and a penalty parameter ε of size ε = O(hk). Then, if the number of

iterations n is of order O(| log h|h−k), the following error estimate holds,

2∑
i=1

|u− un,εih |1,Ωi
≤ C hk, (43)

where C is a constant independent of ε and h.

Proof. An argument similar to that developed in the proof of Theorem 3 of [7] yields:

2∑
i=1

|uεih − u
ε,n+1
ih |1,Ωi

≤ E0√
ε

1

(1 + 2C0 ε )n/2
, (44)
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where E0 =
2∑
i=1

‖u0,ε
ih − u

ε
ih‖0,Γ and C0 is a positive constant independent of h and ε.

As ε = O(hk), and the number of iterations n is of order O(| log h|h−k) estimate (44)
yields an accuracy of order hk between uεih and uε,n+1

ih in H1(Ωi) norm. It is enough to
combine it with estimate (42) to obtain (43).
Q.E.D.

Remark 2 The number of iterations O(| log h|h−k) given by this result to obtain an O(hk)

accuracy with H
1/2
00 (Γ) penalty must be compared with a number of iterations of order

O(| log h|h−2k), which corresponds to L2(Γ) penalty.
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8 Application to penalty parameter optimization and

grid adaptation

We describe a strategy to optimize the penalty parameter and to adapt the grid, based
upon the error indicators developed in the previous sections. Our purpose is to determine
the penalty parameter that yields an error of the same size or sligthly smaller than the
error due to the discretization, for a fixed grid. Indeed, computing a numerical solution
with a penalty parameter that yields a penalty error neatly smaller than that of the dis-
cretization would require a useless extra computational effort.

Adaptation algorithm
We use the penalty error and discretization error indicators (for both H

1/2
00 (Γ) and

L2(Γ) penalties) by

ηn+1,P
h = ‖un+1,ε

1h − un+1,ε
2h ‖

H
1/2
00 (Γ)

, (45)

ηn+1,D
h =

(
2∑
i=1

∑
K∈Tih

(
ηn+1,K
i

)2
)1/2

, with (46)

ηn+1,K
i = hK ‖fh + ∆un+1,ε

ih ‖L2(K) +
∑
e∈EK

h1/2
e ‖[∂nu

n+1,ε
ih ]‖L2(e).

Initialization: Set three tolerance levels η1, η2 and η3 and a parameter ρ in [0, 1].

• Set an initial penalty parameter ε0
e > 0.

• Build an initial triangulation T 0
h such that the corresponding approximation error

h ‖f − fh‖L2(Ω) is smaller than η1.

Iteration: Once solved the full discrete problem (P n
ε,h) with a current penalty error εn,

compute the error indicators by (45) and (46) Then, the adaptation strategy is made in
three steps:
? Step 1: Adaptation of the penalty parameter.

• If ηn+1,P
h > ηn+1,D

h , set εn+1 = θn εn, with θn =
(1− ρ) ηn+1,D

h

ηn+1,P
h

;

• If ηn+1,P
h < ηn+1,D

h , set εn+1 = εn.

? Step 2: Adaptation of the mesh.
We compute the ηKi and their mean value ηh. For all K such that ηKi is larger than ηh,
we divide K into smaller triangles such that the diameters of these new elements behave
like hKi multiplied by the ratio ηh/η

K
i .
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? Step 3: Solution of (P n
ε,h) .

Iterate the Schwarz procedure to obtain a refined solution of (P n
ε,h), until

‖um+1,ε
h − um,εh ‖X/‖um,εh ‖X < η2, where um,εh = (um,ε1h , u

m,ε
2h ) (47)

? Stop test: If max{ηn+1,P
h , ηn+1,D

h } ≤ η3, stop.
We refer to [3], Section 5, for first tests of this strategy in a complete different frame-

work. In [3], Step 2 is iterated 4 of 5 times for each iteration of Step 1. In our case we have
observed a faster convergence when Step 2 is iterated just once. Also, Step 3 in practice is
needed to guarantee the convergence of the overall process, particularly for large grid sizes.

Optimization of penalty parameter:
By skipping Step 2, we only optimize the value of ε for a fixed mesh.
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9 Numerical experiments

This section is aimed to two objectives: Comparing the practical efficiency of H
1/2
00 (Γ)

versus L2(Γ) penalty, and testing the grid adaptation + penalty parameter optimization
strategy. In a first step, we test the theoretical predictions of convergence rate and error
estimates for the single Schwarz iteration process (14). Next we check the efficiency of
the two types of indicators. In a third step, we propose an adaptive strategy aimed to
optimize the choice of ε with and without refining the mesh.

Our results are rather surprising: For a fixed grid the H
1/2
00 (Γ) penalty is faster than

the L2(Γ) penalty when the penalty parameter ε is small enough, as expected from the
theoretical predictions. However, when a combined strategy of grid adaptation + penalty
parameter optimization is used, the situation turns to be the opposite: The L2(Γ) penalty
is faster, and the gain of computing time increases as h decreases. This is mainly due
to the cost required by the computation of the H

1/2
00 (Γ) norm. In fact, we use a discrete

equivalent norm much less costly, but this does not changes our conclusions: The H
1/2
00 (Γ)

penalty is faster for a fixed grid, but the L2(Γ) penalty is much faster when grid adaptation
strategies are used.

In this section, we work in dimension d = 2 and in the case where the discrete spaces
are made of piecewise affine functions (k1 = k2 = 1). All experiments are performed on
the finite element code FreeFEM++, see [10], using a Toshiba laptop computer with an
Intel Pentium processor to 1.80 Ghz.
We recall that the scalar product of H

1/2
00 (Γ) as defined in (2) is non local, hence difficult to

compute. So, in the numerical experiments that follow, we use instead a discrete analogue:
If ej, 1 ≤ j ≤ J(h), denote the edges of EΓ

h such that the endpoints of each ej are xj and
xj+1, and if hj stands for the length |xj+1 − xj|,

[[w, v]]hΓ =

J(h)∑
j=1

hj w
jvj +

J(h)∑
j=1

J(h)∑
k=1,k 6=j

hjhk
(wj − wk)(vj − vk)

(xj − xk)2
+

J(h)∑
j=1

hj
wjvj

d(xj, ∂Γ)
, (48)

where wj and vj denotes the values of w and v at the node xj. Indeed, it is proved in
[5], Lemma 5.1, that the norm associated with the two first terms in this summand is
equivalent to the norm of H1/2(Γ) on the spaces W1h and W2h, with equivalence constants
independent of h, in the case of a uniformly regular family of triangulations. However the
extension of this result to a regular family of triangulations and also to the H

1/2
00 (Γ) norm

seems easy to establish.
We consider two test cases:

L-shaped domain. Here, Ω =]0, 1[2\[1
2
, 1]2. It is divided into two sub-domains sym-

metric with respect to the straight line x = y. The boundary Γ is the segment of this line
between the points (0, 0) and (1, 1). We consider the solution u given by

u(x, y) = sin (3x+ y)xy(1− x)(1− y)(
1

2
− x)(

1

2
− y),
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which satisfies the homogeneous Dirichlet boundary condition, and is not symmetric with
respect to the boundary Γ. Figure 3 displays one of the initial triangulations that we have
used for this domain and its division into two sub-domains.

Square domain. Here, Ω is the square ]0, 1[2, divided into the rectangles Ω1 =
]0, 1[×]0, 1

2
[ and Ω2 =]0, 1[×]1

2
, 1[. We consider the solution u given by

u(x, y) = sin (xy)x(1− x)y(1− y),

which satisfies the desired boundary conditions.
We mainly present the results for the L-shape domain test, but we stress that all results

that we report are qualitatively similar for the square domain test.

Malla inicial

Figure 3: Initial triangulation of L-shaped domain.

9.1 Test of a priori error analysis

We test here the analysis of penalty error and the improvement of convergence rate per-
formed in Sections 3 and 7, respectively.

Theorem 1 and Corollary 3 respectively state penalty error estimates proportional to√
ε for L2(Γ) penalty and to ε for H

1/2
00 (Γ) penalty. We have observed that in practice these

estimates are sharp, in the sense that the rate of H
1/2
00 (Γ) to L2(Γ) errors is proportional

to
√
ε. This probably corresponds to asymptotic behaviors as

EH1/2(ε) ' C ε, EL2(ε) ' C ′
√
ε as ε→ 0. (49)

Here we denote
EH1/2(ε) = ‖u− uε‖X, EL2(ε) = ‖w−wε‖X,

where uε and wε respectively are the solutions of (Pε) for H
1/2
00 (Γ) and L2(Γ) penalty.
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Square test: Influence of the penalty parameter in the seminorm H1 of the error (h=1/64)

Epsilon

NormH1 (Pen. H0012)
NormH1 (Pen. L2)

2.e−5 

(b) Square domain

Figure 4: Comparison of penalty errors due to H
1/2
00 (Γ) penalty (for penalty parameter ε)

and to L2(Γ) (for penalty parameter ε2).

Figure 4 displays approximations of the computed errors EH1/2(ε) and EL2(ε2) for the L-
shape and square domains with grids of size h = 1/64, as a function of ε. We approximate
u by its Lagrange interpolate Ihu on space Vh. We also approximate for instance uε by
a close-to-convergence um+1,ε

h in the iterative Schwarz process (14). Specifically, we have
taken uε = um+1,ε

h when the quantity

‖um+1,ε
h − um,εh ‖X/‖um,εh ‖X < η = 10−7. (50)

These errors indeed appear to be proportional (in fact, are almost equal) for ε small
enough, in agreement with relations (49). We have observed the same qualitative behavior
for several grids of both test domains. We just present one of these results for brevity. It is
striking that these errors appear to be asymptotically equal instead of simply proportional,
but we have obtained the same behavior in all our tests. We infer that the constants C
and C ′ in (49) are equal for some reason.

Also, as stated in Remark 2, the H
1/2
00 (Γ) penalty provides a better convergence rate

than the L2(Γ) penalty in the Schwarz iterative process (14). To test this point, we have
run both penalty procedures on a same grid, and compared the number of iterations needed
for the iterative processes to converge.

Figure 5 displays the number of iterations required by the H
1/2
00 (Γ) and L2(Γ) penalty

procedures for the L-shape and square domains test, as a function of ε. Here again, we
approximate uε by the um+1

ε verifying the stop test (50). We observe a linear dependence

of this number of iterations with respect to ε for L2(Γ) and H
1/2
00 (Γ) penalty, with a better

slope for the H
1/2
00 (Γ) one. We have observed exactly the same qualitative behavior for
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(a) L-shaped domain
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Figure 5: Comparison of number of iterations required for convergence of Schwarz iterative
processes.

other grid sizes h. We conclude that for ε small enough the H
1/2
00 (Γ) penalty procedure is

faster than the L2(Γ) one.

9.2 The efficiency of the indicators

To test the efficiency of the indicators, we first work with a uniform structured mesh for
the square domain, with h equal to 1/32 and ε decreasing from 5 to 5× 10−3. Figure 6(a)
presents, in logarithmic scales and as a function of ε,
• the curves of the errors

2∑
i=1

|Ihu− uεih|H1(Ωi) and
2∑
i=1

‖Ihu− uεih‖L2(Ωi),

in dotted dashed line and dotted line, respectively.
• the indicator ηPh in plain line and the Hilbertian sum ηDh of all indicators ηKi in dashed
line.
The error decreases with ε until the penalization error (which behaves like c ε) is of the
same order as the finite element discretization error, for a critical value εc ' 0.2. For
ε sufficiently larger than εc, the error indicator curve ηPh is parallel to the curves of the
errors. In contrast, the quantity ηDh turns out to be fully independent of ε.

Next, we fix ε equal to 0.01 and we still use uniform (unstructured) meshes. Figure
6(b) presents the same curves as previously, now in semi-logarithmic scales and for h
decreasing from 0.25 to 1.5× 10−2. There also the error decreases with h until it reaches
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Figure 6: Influence of penalty parameter and grid size in error indicators: Square domain

the penalization error. Also, the curves of the indicators and of the errors are almost
parallel for h sufficiently larger than a critical hc.

Figure 7 represents the same curves for the L-squared domain, where the behavior of
the indicators is qualitatively the same. Let us also remark that the behavior of indicators
corresponding to L2 penalty is also similar, for both the square and the L-shaped domain.

We can infer from these results that the error estimate (39) is probably suboptimal, in
the sense that the parameter µK appears in practice to be of order one. If this parameter
had an asymptotic growth to +∞ as h→ 0, we would not have obtained the behavior of
the indicators exhibited in Figures 6(b) and 7(b).

These results resemble in a striking way to those obtained in [3], Section 5, for a
completely different type of penalization. In this last paper, the Stokes problem is solved
by non-mixed finite elements, and penalty is used to treat the incompressibility restriction.
This similar behavior is probably due to the common formulation of both discretizations
as mixed problems, in the way indicated in Section 4.

9.3 Testing the adaptivity strategy and penalty parameter op-
timization

The adaptivity strategy provides a large saving of computational effort for both H
1/2
00 (Γ)

and L2(Γ) penalties. The most surprising result is that the L2(Γ) penalty is computation-

ally faster than the H
1/2
00 (Γ) one.

We present the results obtained with the L-shape domain test. Figures 8(a), 8(b) and
9 respectively display an intermediate solution, the final solution and the grids associated
to these solutions. These results are obtained starting from the initial triangulation pre-
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Figure 7: Influence of penalty parameter and grid size in error indicators: L-shaped domain

sented in Figure 3, with H
1/2
00 (Γ) penalty. We observe that the continuity and even the

differentiability of iso-lines of the solution across the interface Γ is progressively improved
in the adaptive process. The intermediate solution could be acceptable for some applica-
tions not requiring high precision. The high accuracy of the final solution is rather costly,
as the density of triangles of the adapted grid is quite large. This density is larger in the
zones of strong gradients of the solution, as could be expected, but is not particularly high
in the neighborhood of Γ.

Combined grid adaptation-penalty parameter optimization

In order to compare the H
1/2
00 (Γ) and L2(Γ) penalties, we have run the L-shape domain

test with the same set of data for both: The initial grid displayed in Figure 3, ε0 = 0.1,
η1 = 0.1, η2 = 5 × 10−2, ρ = 0.05. To obtain an accurate solution, we have stopped the
process when

‖un,εh − Ihu‖X/‖Ihu‖X < 3× 10−3. (51)

Table 1 compares the results obtained. The number of iterations stands for the total
number of applications of the Schwarz iteration procedure along the adaptation process.
We observe that the values of the estimators ηPh and ηDh and the number of triangles of the
final grids are quite close for both penalties. Also, that the optimal ε for L2(Γ) penalty is

close to the square of the optimal ε for H
1/2
00 (Γ) penalty. We may observe a large saving

of CPU time for L2(Γ) penalty. This is due to two effects: The faster convergence of the
L2(Γ) penalty, that requires much less iterations, and the cost due to the computation of

the (even discrete) H
1/2
00 (Γ) norm.
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IsoValue
-0.00215587
-0.00195091
-0.00174595
-0.00154099
-0.00133604
-0.00113108
-0.000926119
-0.000721161
-0.000516203
-0.000311245
-0.000106287
9.86709e-005
0.000303629
0.000508587
0.000713545
0.000918503
0.00112346
0.00132842
0.00153338
0.00173834

u1 y u2 intermedia

(a) Intermediate solution

IsoValue
-0.00218992
-0.00198171
-0.0017735
-0.00156529
-0.00135708
-0.00114887
-0.000940658
-0.000732447
-0.000524236
-0.000316026
-0.000107815
0.000100396
0.000308606
0.000516817
0.000725028
0.000933238
0.00114145
0.00134966
0.00155787
0.00176608

u1 y u2

(b) Final solution

Figure 8: Snapshots of iterated solutions in adaptivity strategy

Malla intermedia adaptada

(a) Intermediate grid

Malla final adaptada

(b) Final grid

Figure 9: Triangulations of iterated solutions in adaptivity strategy
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Comparison of H
1/2
00 (Γ) versus L2(Γ) penalties.

Penalty εopt ηPh ηDh Triangles Iterations CPU time

H
1/2
00 (Γ) 0.0387 0.00180 0.00136 8148 471 287.7s
L2(Γ) 0.0035 0.00180 0.00134 8230 56 41.7s

Table 1.

Also, we have tested the improvement of computational time due to the adaptive strategy
with respect to the single iterating Schwarz procedure. To do it we have run the Schwarz
procedure, using the optimized grids and the optimal penalty parameters. We have ob-
tained the results presented in Table 2. We remark for both penalties a large gain of CPU
time due to the adaptivity strategy, with a ratio larger than 4 in both cases.

Schwarz iteration procedure with optimized data

Penalty εopt CPU time

H
1/2
00 (Γ) 0.0387 1158.6s
L2(Γ) 0.0035 266.5s

Table 2.

Penalty parameter optimization

We have performed a final test, where only the penalty parameter is optimized for a fixed
grid. As stated in Section 8, this is achieved by skipping the grid adaptation step (Step
2) in the adaptation algorithm. We have used a non-structured grid with 3092 triangles,
corresponding to h = 1/64. The procedure stops when

ηn+1,P
h ≤ ηDh ,

as in this case the discretization error is fixed, and the purpose is to decrease the penalty
error below this value.

Table 3 displays the results obtained. Again, the optimal ε for L2(Γ) penalty is close to

the square of the optimal one for H
1/2
00 (Γ) penalty. Both penalties take a similar number

of iterations, but the H
1/2
00 (Γ) one is neatly more costly.

All the results presented in this subsection are qualitatively the same for the square
test. We do not present them for brevity.

Penalty parameter optimization for fixed grid.

Penalty εopt Iterations CPU time

H
1/2
00 (Γ) 0.0503 165 126.3s
L2(Γ) 0.0029 157 99.0s

Table 3.
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Appendix

This appendix is devoted to the rather technical proof of Lemma 1.

Proof of (35) and (36). If some element K ∈ Tih does not intersect Γ, then C∗ihvi = Cihvi
on K. Also, if some edge e of some element of Tih does not intersect Γ, then C∗ihvi = Cihvi
on e. Thus, estimates (35) and (36) are standard properties of Clément operator (Cf. [4],
Théorème IX.3.7).

Proof of (37) and (38). We write the triangle inequality

‖v − Cihvi‖L2(K) ≤ ‖vi − C∗ihvi‖L2(K) + ‖C∗ihvi − Cihvi‖L2(K).

The estimates (Cf. [4], Corollaire IX.3.10)

‖vi − C∗ihvi‖L2(K) ≤ C hK |vi|H1(∆K), ‖vi − C∗ihvi‖L2(e) ≤ C h1/2
e |vi|H1(∆K), ∀e ∈ EK

imply

(
∑
K∈T Γ

ih

h−2
K ‖vi − C

∗
ihvi‖2

L2(K) +
∑
K∈T Γ

ih

∑
e∈EK

h−1
e ‖vi − C∗ihvi‖2

L2(e))
1
2 ≤ C |vi|H1(Ωi). (52)

We consider now the quantity ‖C∗ihvi−Cihvi‖L2(K), and note that the support of C∗ihvi−Cihvi
is included in the union of the elements K of Tih that intersect Γ. On such a K, we have

C∗ihvi − Cihvi =
∑

a∈VΓ∩K

((πavi)(a)− (πΓ
ihvi)(a))ϕa.

Denote by ea a side or a face containing a and included in Γ. Then,

‖C∗ihvi − Cihvi‖L2(K) ≤ c h
d
2
K max

a∈VΓ∩K
‖πavi − πΓ

ihvi‖L∞(ea).

We next use the inverse inequality

‖πavi − πΓ
ihvi‖L∞(ea) ≤ C h

− d−1
2

K ‖πavi − πΓ
ihvi‖L2(ea).

We deduce∑
K∈T Γ

ih

h−2
K ‖C

∗
ihvi − Cihvi‖2

L2(K) ≤ C h−1
m

(∑
a∈VΓ

‖vi − πavi‖2
L2(ea) + ‖vi − πΓ

ihvi‖2
L2(Γ)

)
. (53)

Consider now a side or face e of some element K of T Γ
ih . In this case,

‖C∗ihvi − Cihvi‖L2(e) ≤ C h
d−1

2
e max

a∈VΓ∩K
‖πavi − πΓ

ihvi‖L∞(ea).
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We now deduce

∑
K∈T Γ

ih

∑
e∈EK

h−1
e ‖C∗ihvi − Cihvi‖2

L2(e) ≤ C h−1
m

(∑
a∈VΓ

‖vi − πavi‖2
L2(ea) + ‖vi − πΓ

ihvi‖2
L2(Γ)

)
(54)

Thus, the proofs of (37) and (38) are reduced to estimate the term∑
a∈VΓ

‖vi − πavi‖2
L2(ea) + ‖vi − πΓ

ihvi‖2
L2(Γ). (55)

To estimate the first summand of the right-hand side, we recall [4], Corollaire IX.3.9,

‖vi − πavi‖L2(ea) ≤ C h
1/2
Ka
‖vi‖H1(∆Ka ),

where Ka is some element of the triangulation Tih such that a is a side or a face of Ka.
Then, ∑

a∈VΓ

‖vi − πavi‖2
L2(ea) ≤ C hM |v|2H1(Ωi)

. (56)

The estimate of the second summand in the right-hand side of (55) is made as follows.

i) Assume that πΓ
ih is the L2(Γ) projector. As πΓ

ih is a projection,

‖vi − πΓ
ihvi‖2

L2(Γ) ≤ ‖vi − C∗ihvi‖2
L2(Γ) ≤ C hM |vi|2H1(Ωi)

. (57)

ii) Assume now that πΓ
ih is the H

1/2
00 (Γ) projector. Also, using that πΓ

ih is a projection,

‖vi − πΓ
ihvi‖L2(Γ) ≤ ‖vi − πΓ

ihvi‖H1/2
00 (Γ)

≤ ‖vi‖H1/2
00 (Γ)

≤ C |vi|H1(Ωi) (58)

Combining (52), (53) and (54) with (56), (57) and (58), we deduce (37) and (38) .
Q.E.D.
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