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Abstract

This paper is devoted to the construction of fast solvers for penalty domain decomposition techniques,
based upon a posteriori error analysis. We introduce a penalty non-overlapping domain decomposition
method (ddm) motivated by the a posteriori error analysis of the method proposed by Chacén and Chacén
in [6]. In the new method a HéO/Q(F) penalty term replaces the L2(T") one in the original method. The
number of iterations needed by the new ddm to yield a solution with an error of the same order as
the discretization error is remarkably reduced. We develop an a posteriori error analysis that we use to
determine an optimal value of the penalty parameter for a given grid, and also to jointly determine an
optimal grid and a penalty parameter to reduce the error below a targeted value. Several numerical tests
for model problems exhibit the good performances of our approach and provide to a numerical comparison

of the two penalty methods.

Résumé

Cet article a pour but la construction de solveurs rapides pour les techniques de décomposition de
domaine avec pénalisation et repose sur une analyse a posteriori. Nous introduisons une méthode de
décomposition de domaine sans recouvrement, issue de ’analyse a posteriori de la méthode proposée
par Chacén et Chacén [6], ot une pénalisation de type Héf(l“) remplace celle de type L?(T") dans la
premiere méthode. Le nombre d’itérations pour une erreur du méme ordre que I'erreur de discrétisation est
considérablement réduit. Nous prouvons des estimations d’erreur a posteriori qui permettent d’optimiser
le choix du parametre de pénalisation pour une grille donnée, et aussi lors de ’adaptation de maillage.
Plusieurs expériences numériques sur des problemes académiques montrent les bonnes performances de

notre approche et permettent une comparaison numérique des deux méthodes.
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1 Introduction

This paper is devoted to the construction of fast solvers for penalty domain decomposition
techniques, based upon a posteriori error analysis. We introduce a penalty non-overlapping
domain decomposition method motivated by the a posteriori error analysis of the method
studied by Chacén and Chacén in [6] and [7].

The domain decomposition method (ddm) proposed in [7] enforces the continuity of the
variables across the interface between adjacent subdomains through a penalty technique.
If we denote this interface by T', a L*(T") penalty term is added to a convenient variational
formulation, with a structure that ensures the continuity of the fluxes across the interface.
This method provides fair accurate solutions. In fact, it is proved to be equivalent to a
penalty ddm with arbitrarily large overlapping region, analyzed by Lions [11] and Lions
and Pironneau [13]. However, it has a rather slow convergence rate. In [7] some solutions
to this problem were proposed, particularly the use of general acceleration techniques for
sequences, such as Aitken or the Minimal Polynomial Extrapolation methods.

In the present paper we address the problem of finding more specific techniques to
improve the convergence rate of the method. At first, we introduce a version of the
method in which a Hy,*(T') penalty term replaces the L2(I') one in the original method
of [7]. In this way we force the jump of the unknown to vanish along the interface I' in a
stronger sense.

The choice of this new penalty term is suggested by the a posteriori error analysis
of the ddm introduced in [7] that we perform in the paper at hand. An improvement is
deduced from the a priori error analysis that we develop: If the L?(T") penalty is replaced
by the HééQ(F) penalty, the number of iterations needed by the ddm to yield a solution
with an error of the same order as the discretization error is remarkably reduced. If the
discretization error is of order O(h*), the L?(T") penalty requires O(| log h|h~2*) iterations

in order to attain this error, while the Héf(F) penalty requires O(|log h|h~") iterations.

This improvement may be explained in an abstract framework: When HéO/Z(F) penalty
is used, the new ddm may be cast as the penalty of a stable mixed formulation of the
Poisson problem. This penalty procedure fits into a general framework studied by Girault
and Raviart in [9]. When L*(T') penalty is used, this mixed formulation is not uniformly
stable, due to the lack of an inf-sup condition.

In addition, we develop an a posteriori error analysis that provides independent error
indicators for both penalty and discretization errors, and allows to develop strategies to

provide further error reductions:

e On one hand, we determine an optimal value for the penalty parameter for a fixed
grid that yields a penalty error of the same size as the discretization error, with a
minimal computational effort.

e On another hand, we determine both optimal values for the penalty parameter and



optimal grids that allow to reduce the error below a targeted value, also with a
minimal computational effort.

Our results show at first that, indeed, the Hy,>(T') penalty is faster than the L*(T') one
for a fixed grid and a fixed penalty parameter, in good agreement with the a priori error
analysis mentioned above. However, surprisingly, a large computational gain is obtained
with L?(T") penalty when an adaptive computation strategy is used. This technique turns
out to be more flexible and to need much less computational time per iteration, as it does
not require the computation of H&éz(F) (or even a discrete equivalent) norm.

We refer to [14] for a similar approach (see also [8]). Other types of ddm and the
corresponding algorithms are described in [15] and the references therein.

The paper is organized as follows: Section 2 introduces the continuous version of the
new ddm. Section 3 performs a joint error analysis of this and the method introduced
in [6]. Section 4 characterizes the new ddm as the penalty of a stable mixed method
when Héég(l") penalty is used. Section 5 is devoted to the discretization by Lagrange
finite element spaces of the two methods considered. In Section 6 the a posteriori error
analysis of both methods is performed. In Section 7 the improvement of the convergence
rate due to the use of H%Z(F) penalty is analyzed, as an a priori error analysis. Section
8 describes practical strategies for the computation of optimal penalty parameters and
grids. In Section 9 we report some numerical tests for the Poisson problem as a model
problem in significative geometries, that exhibit the good performances of our approaches.
Finally, an Appendix contains the proof of some technical results.



2 The penalty problem

Let Q C RY(d = 2,3) be a simply connected and bounded domain with a Lipschitz-
continuous boundary 0€2. We consider a simple decomposition of 2 into two non-overlapping
subdomains €; and €2, and set I' = 0, N0, I'; = 092;NOY. We assume that all of these
boundaries are Lipschitz-continuous (d — 1)-dimensional manifolds with positive (d — 1)-
dimensional measure. Observe that under these hypotheses, I' may or may not intersect
0f). However, in this case {2 cannot have a connected boundary, see Figures 1 and 2.

Iy
I'y
T {2
9!

Figure 1: Subdivision of domain €2 when I' intersects 0f).

'1

Figure 2: Subdivision of domain €2 when I" does not intersect 0f).
We denote by n;; the outward normal vector on I' pointing from €2; into €2;, Oy,; the

partial derivative with respect to n;; and set n = n;,. For a measurable subset D of R"
and two functions f, g such that fg € L*(D), we denote

(fag)D:/Df(ZU)g(ZL‘)dx.

We consider the Sobolev spaces

XIZHI(QZ,FZ) :{’UE H1<Ql) such that U|Fz‘ :0}, 1= 1727 X =X x Xs.



We define for u = (uy,u2), v = (v1,v2) € X the scalar product and norm on X

2

(W v)x =Y (Vui, Voo, luflk = ((u,0))x,

=1

Let us consider the Poisson problem in €2:

Given f € L*(Q), find v € H}(Q) such that
(VU’7 VU)Q = (f? U)Q (1)

for all v € HJ(Q2). This is a model problem that in despite of its simplicity contains the
main difficulties set by the analysis of the ddms that we consider in this paper.

We recall that Hy, (T') is the subspace of H*/2(I") whose extension by zero to 8, (for
instance, it could be also to 9§2;) belongs to H/2(9§);). An intrinsic scalar product on
H&f(F) is defined as

[[w, v]]r = /Fw(a:) v(z)dr + /r/ z) = wly) (vlz) = v(y)) dx dy (2)

|z —y|4

(w(
w(x) v(r)
+ /F d(z,ar) 2o

where the first two summands define the H'/?(I") scalar product (see Adams [1], Theorem
7.48). Its expression involves the distance d(z,dI') to the boundary of I'. It comes from
the restriction to H&f(F) of the scalar product in H'/2(9€;) for instance. It is given by
Lions and Magenes in [12], Chapitre 1, Théoreme 11.7.

For brevity, we also denote by [[-,-]Jr the L?(T") scalar product, and study both the L?(T')
and the HééQ(F) penalties at the same time with the same notation. We shall distinguish
the two cases when this is necessary.

We may now introduce our penalty problem as

Find u® € X such that
P. 1
(F2) (v, v))x + B [[uf — u5,v1 — vo]lr = F(v)for all v e X.

where F is the || - || x—continuous linear form on X given by

2

F(v) =3 (f,v)a,:

=1

and € > 0 is a parameter destinated to tend to zero.

This problem has a unique solution for any € > 0 due to Lax-Milgram Lemma. This is
also true when the (d — 1)-dimensional measure of some of the I'; is zero, but we have
excluded this case for simplicity.



When I' does not intersect 02, then the H&f(f‘) penalty coincides with the H'/?(T")
penalty: If I' is a manifold with no boundary, then HééQ(F): HY?(T). However, for

brevity we assume that T intersects 9 and use Hy*(T') penalty (or L2(T) penalty). All
our results are also true if I' does not intersect 92 and HY2(T") penalty is used.

Remark 1 The original method introduced in [7] only considers a L*(T') penalty term to
enhance the continuity of u® = (uj,u3) across I'. We also consider here a H&f(F) penalty
term to enhance this continuity in a stronger sense. In both cases, the method may be
interpreted as the variational formulation of a coupled system of PDFEs with the structure

—Au1 = f m Ql, _AUQ = f m QQ,
Uy = 0 on I, U9 =0 on Iy,
1 1
Onp,U1 = gb(m —uy) on T, Ony Uz = gb(u2 —uy) on T,

where b 1s an injective linear bounded boundary operator on I', which reduces to the identity
for L*(T") penalty. So, the method ensures the continuity of the normal fluxes through T
and forces by penalty the continuity of u®. Note that, in the case of H&éQ(F) penalty, this
is rather different from a Dirichlet to Neumann or Neumann to Neumann algorithm.



3 Penalty error analysis

Our first result is a generalization of the penalty error estimates of [7]. To state it we
denote by | - ||r the norm associated with the [[-, -]]r scalar product, and by || - ||, its dual
normi.

We use the notation

1
(u,v))e = ((u,v))x + B [[ur —ug,v1 —vo]lp, Vu, veX.
Theorem 1 Assume that one of the following assumptions hold:
e Either the solution u of (1) satisfies Oqu € L*(T') when L*(T') penalty is used,

e Or f belongs to L*(Q) when H&éQ(F) penalty is used.

Then, for all ¢ > 0 the following estimates hold
2
lus = wslle < [0nullre, Y lu—ufho < [10aull.r Ve (3)
i=1

Proof: The case of L?(T") penalty has been proved in [7] (Theorem 1), we include it in the
statement of the present theorem for completeness. We prove (3) in the case of Hééz(l“)
penalty.

For the solution u of problem (1) we write u = (v, ,uj, ) € X. Consider the consis-
tency error C € X' defined by

C,v) = (u,v)):—F(v),Vv=(v1,02) € X. (4)
Then the following property holds
(u—u.,v)).=(C,v),Vv=(v,v9) € X. (5)

To estimate the consistency error, observe that as Au € L*(€;), then dy,,u € (H(%Q(F))’
due to the relation

< 8niju,vi >r= (Vu, VUZ)QI + (Au, U'L‘)Qi, Yu; € X;.
Thus, we may integrate by parts in the expression of C to obtain
(C,v) =< Onpu, vy — vy >r .

We may now use the error equation (5) with v = u — u. to obtain
2 1
>l gy = a0 0y 16l ey )
1=
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By Young’s inequality,

1 € 1
€12 € €12 2 € €112

This yields estimates (3).
Q.E.D.

We next introduce a continuous penalty error indicator (and refer to [14], Thm 3.1, for
a similar indicator):

U R 7)

This is an optimal indicator, as it satisfies

Theorem 2 There exist two constants C' > 0 and C" > 0 independent of € such that

Lo < c'nfi=1,2. (8)

2
Cn” <) u—u
=1

Proof: The first estimate in (8) is obtained by

2

2
= 5 ey < D M=l gy < Co S s = vy
i=1 =1

whence

2
Hui - ugHHOléZ(F) < Cy Z ”u - uf 1,;-
=1

This inequality stems from the usual characterization of the H(%Q(F) norm (equivalent to

the intrinsic one given by (2), Cf. Adams [1], Theorem 7.53) defined as

inf w10,
wEXi,w‘F:ga

To prove the second estimate in (8), let us introduce the subspace of X,
)2 = {{/ = (171, 172) € X, such that f}l\r = ?N)er },
which is algebraically isomorphic to Hj(€2). Observe that

(u—u¥)x =0, WeX. (9)



There exists a lifting w € X of (uj — u3)|. satisfying

wilio, < Csllui = w3l g
for some constant C3 independent of €. For instance, this lifting is obtained as the solution
of the boundary value problem

—Awi=0iny, wj=0onIl4y, wj=u]—u;onl.

Define the function w® = (w$,0) € X. Then, taking v = u —u® + w® € X in (9), we have

2
lu—uflx < [lwllx, andso ) |u—uilo, < V2Juwila < Cin.

i=1

Q.E.D.

Observe that the a posteriori error estimator n” coincides with the H&éz(f‘) penalty
term. In this case, the error estimate for |u — uf|; o, stated in Theorem 1 is improved by
combining the second estimate in (8) with the first estimate in (3) :

Corollary 3 Assume that Hééz(l“) penalty is used and that f belongs to L*(Q).
Then, for all € > 0 the following estimate holds

2

S fu = i, < C 0wl oy < (10)

i=1
for some constant C independent of ¢.

This suggests to replace the L*(T") penalty term by the H&f(l“) penalty term to improve

the accuracy of our ddm. From the practical point of view this sets the problem of the
computation of the non-local H§é2(F) norm and scalar products. However, these can be
approximated numerically with low cost. We show the good performances of such an

approach in our numerical results.



4 Casting as a penalty mixed problem

In the case of H&éz(F) penalty, Problem (P.) may be cast as a penalty mixed problem, that
fits into the general framework of approximation of mixed problems by penalty analysed in
Chapter I, Section 4.3 of Girault and Raviart [9]. We also refer to [2] for the introduction
of a Lagrangian multiplier to handle the matching conditions in the ddm. To do this, let
us denote by M the space H&éz(f‘), and define the bilinear bounded form

b(,-): Xx M+~ R by b(v,\)=][[v;— v Allr.
We re-formulate the Poisson problem (1) as the following mixed problem:
Find a pair (@ = (41, U2), ) € X x M such that

(0, v))x +b(v,\) = F(v), VYveX,
(Pa) { ap) = 0,  YpeM (11)

It can be readily checked that the form b(-, ) satisfies an inf-sup condition: There exists a
constant 4 > 0 such that

b(v,
Blullar < sup 2wy e, (12)
Ve || ||X

Thus, problem (P);) admits a unique solution (i, ). From the second equation in (11),
@ = Uy on I'. Then, the solution of the Poisson problem is recovered from that of (Py;)

by
. fL1<I’) if z€ Ql,

Conversely, if we define @; = uj,, , then the second equation in (11) holds and the multiplier
A is obtained from the first equation in (11) thanks to the inf-sup condition (12).

Let us now consider the scalar product in HOO/Q(F),

C(>‘7 :U’) = [[)\7 ,u]]p,
and the penalty problem
Find a pair (0%, A\°) € X x M such that

e (@5, v))x +b(v,\°) = F(v), VveX.
(Fi) { —e (A%, ) +b(us, ) = 0, V€ M.

This problem is equivalent to (P.). Indeed, from the second equation in (13) we obtain

(13)

A" = - (4] — a3).



Inserting this equality in the first equation of (13), G° turns out to verify exactly (P.).
Problem (13) is studied in an abstract framework in Chapter I, Section 4.3 of [9]. Its
well-posedness is proved, so as the error estimate

[0® —allx + [[A° = Ay < K e ||F|x,

where K is a constant depending on €2, I', d and . This estimate is similar to the ones
that we have obtained in Theorem 1 and Corollary 3.

Observe that the L?(T") penalty does not fit into this framework, as an inf-sup condition
(12) does not hold. Indeed, in this case, the quantity

b
sup (v, 1)

veX IIVlx

is a norm equivalent to the (HééQ(F))’ norm, and not to the L?(T") norm.

10



5 Discretization of the penalty problem

To discretize (P.) let us assume that the domains 2, 2; and Q5 are polygonal or polyhedral.

Consider a regular family of triangulations {7;,} (h>0} of each €2; formed by polygons

(d = 2) or polyhedra (d = 3) such that I' is the union of whole faces or sides of elements K

in each 7;;,. As usual, h > 0 denotes the largest diameter of the elements of 7, = 7y, U75y,.
We assume that 775, and 75;, have the same trace sets on I'; i.e., the trace sets

orTy, = {e € R? such thate = 9K NT for some K € Ty, }; i =1,2

of 75, and 7y, are equal to a same set, that we denote by 5,5 . Then, 7}, is a triangulation
of Q, and the family {7x},.,, is regular.

Next we consider a family of finite element subspaces X;, of X; (i = 1,2), built on
the grids 7;;,. Note that the two spaces X7, and X5, may be constructed with piecewise
polynomials of different degrees, or different finite elements.

We set X, = X5, X Xo,. We define the spaces

Xy, = {\Nlh = (271}“ f)gh) € Xy, such that ﬁlh\r = '{Jgh‘r }, and

Vi = {vp, : Q+— R? such that Uhlg, = U1h and Uhlg, = Uah for some (01, 09p) € X, }.

Then, V}, is a finite element subspace of Hj(€2) built on the triangulation 7;,. It is not
reduced to {0} in the situations that we take into consideration.

The structure of these finite element spaces allows compatible discretizations of our
penalty ddm, in the sense that a discrete orthogonality property (9) holds. We consider
the standard finite element Galerkin approximation u;, € V}, of u, satisfying

(P,) Find u;, € V}, such that
h (Vuh, Vvh)Q = (f, Uh)Q for all v, € Vj,.

Our penalty discrete problem is the standard finite element Galerkin approximation
u; = (uj,,us,) € X, of uf, solution of

(P.) Find uj, € X}, such that
&b (U5, vp))e = F(vy) for all v, € X,

This problem admits a unique solution for any € > 0.

We consider the parallel technique by Schwarz successive approximations introduced
in [7] to solve (P:p):

For n = 0,1,2,..., u}™ = ;""" € Xy, and uy™ = ;™" € Xy, are computed from
uy, and uf, by solving (we drop the exponent ¢ and index h for simplicity),

1
(Vui™ Vo), + g[[u?ﬂ —uy,vip)le = (f,vn)a, Vv € Xup,

(PZn) (14)

1
(Vug+l7 VU?h)Q2 + g[[ug+1 - u’jrlLa UZhHF = (f: UQh)Qza v Vap, € XQh-

11



For k£ > 1 we assume that uy is a finite element approximation of degree k of u, in
the sense that when u € H*1(Q) N H} () the error committed with u; belongs to Vj, is
O(h*); specifically

lup, — ul1.0 < Co h* [ulnyi0 (15)

for some constant Cy > 0.
We also assume that the spaces X;, verify the approximation estimates

\V/’Ui € XZ', Elvih € Xih s. t. ||Ul — U’ihHa,Qi S CO hlia |/Ui|1,Q¢7 0 S 0 S 1, (16)
and ||Uz - Uih”a,f‘ S C() h1/2_a |U7;|17Q,L., 0 S « S ]_/2 (17)

Sufficient conditions that guarantee that rather general families of affine equivalent finite
element spaces satisfy these properties are given in Bernardi et al. [4], Chapitre IX (Cf.
Corollaire 1X.3.9 and Théoréeme 1X.3.10 for the proofs). In particular, these conditions
are verified by the Lagrange finite element spaces constructed with triangles (d = 2) or
tetrahedra (d = 3), as

Xy = {wn € H' ()5 wny, € Py(K), VK € Ty, wy,. =0}, (18)

where P, (K) denotes the space of restrictions to K of polynomials with d variables and
total degre < k; for positive integers k;.

Note that if k1 # ko, say ki > ko, then the first component vy, € X7, of a pair
(V1h, Vap) € X, must degenerate to polynomials of P,(e) on the sides or faces e € &
when the Xj;, are equal to the X}}.

12



6 A posteriori error analysis

From now on, we assume that each of the spaces Xj; contains the space X}, defined in
(18), and that its trace space on I is

Win = {’Uh S Hé(F) D Un, S Pki<€)7 Ve € 5,5 } (19)

To introduce our error indicators, for each K € 7, i = 1,2, let us denote by i the set
of edges (d = 2) or faces (d = 3) of K that are not contained in I';. Let us also consider a
piecewise polynomial approximation f;, of f on the triangulation 7. We introduce

e a family of discretization error indicators: Fori = 1,2 and K € 7Tj,,

mie = hue o+ Dullzc + D e O]l 2o

eefK
where

— hg and h, stand for for the diameters of K and e, respectively,
— nx stands for the unit outward normal to 0K, and
— [Onyu5,) stands for the jump of 0, u5, across e if e is not included in I', and for

Ong i), — On,usy, if e is included in T

e a penalty error indicator:
P _ € €
m, = llui, u?hHHéé2(F)'

The penalty error is estimated by the following discrete version of Theorem 2:

Theorem 4 There exist two constants C > 0 and C' > 0 independent of € and h such
that

2
0775 < Z |un — u§h|1,ﬂi < 0/771]57 i=1,2. (20)
i=1

Proof: It is parallel to that of Theorem 2. The first inequality is proved in the same way.
To prove the second inequality, we start from the discrete orthogonality property

(uy —u, ) x =0, Vv, € Xy, with wy, = (uip, usp), W = (05, u5,).  (21)

Denote by ¢, the extension by zero of (uj, — u3;,), to 9Q4. Since (uj, — u3,)|. vanishes
on OI', assuming for instance k; > ko, then ¢, belongs to the trace space on 9€2; of Xyj,.
Thus, following Bernardi et al. [4] (Théoreme IX.4.1), there exists a lifting w5, € Xy, of
@y that satisfies

[wiplior < C1llenllmrzea),

13



for some constant C independent of €. As

HSOhHHl/Q(an) < Ca [Jugy, — u;h||Héé2(F)7 then |wih|1,ﬂl < Cs|Jugy, — uthHééQ([‘)'

Define the function w5 = (wj,,0) € X;. Then, it is enough to take v, = u,—uj +w5, € X,
in (21) and repeat the remaining arguments of the end of proof of Theorem 2.

Q.E.D.

We may now state our first a posteriori error analysis result:

Theorem 5 The solution of the discrete penalty problem (Pr.) satisfies the following a

posteriori error estimate

2 h,y
Shu-iiha < ¢ { (1450
i=1

(22)

2 1/2
* (Z Z (nf)2+h%(‘|f—fh”%2(f<)> )

=1 KeTy,

1/2 if L*(T") penalty is used,

h —
e { 0 if HyYX(T) penalty is used.

Proof. We start from the triangle inequality

2 2 2
Z |u - u?h 1,8 < Z |u - u’ﬂLQi + Z |uf - u?h'LQi
=1 =1 =1

To estimate the first term in the right-hand side of (23), we use (8):

=1 =1

Combining this estimate with (23) we obtain

2 2
S o < Co (nif e |) |
=1 =1

for some constant Cy > 0 independent of £ and h.

2 2
Z ‘u - uﬂl,Qi <G ||ui - u;”HééQ(I‘) <G ( Huih - U’;hHHééQ(p) + Z ||uz(€ -

(23)

“fh”Héé%r)) '

(24)

To estimate the last term in the right-hand side of this inequality, we use the problems

(P.) and (P- ;) to deduce the residual equation:

(0 —uj,v))e = F(v) = ((u5,v)e = F(v—vy) — ((uj,v—vp)), ¥VveEX, Vv, € Xp.

14



[\

2

(0 =, v)e = D (fuovi = vinda, — (0, v = va))e + > (f = fasvi = vin)e.

=1 =1
Whence,
2
(0 —wj,v Z Z (/ n + Aug,) (vi — vip) /&m ugy, ( —Uz'h)>
i=1 KeTy;, \"K e€lx

2
+ ) (f = fuovi —vin) — i [[ulp — ugp, v1 — vin — (va — vap)]Jr. (25)

=1

The first three summands in (25) are estimated in a standard way from the approximation
properties (16) and (17) to give (see [16], Proposition 1.5)

12
((u® —uj, v (Z > () h%{”f‘fh”%?(f()) > lvihe,
1=1

i=1 KeT;,

* % [y, — w5, (v1 = vin) — (v2 = van) JJr - (26)

To estimate the last term in (26), consider first the L?(T") penalty case. Using (17),

2

[[u5h — w5, 01 — v1n — (v2 — van) Ir] < |[uf, — uSyllor D i = vanllorr,
=1

whence

[[usy — ugn, v1 — vin — (v2 — van) JJr| < Cs W2 [Jug), — Uon!l /2y Z |vil 10, (27)
=1

Consider now the H&{Q(F) penalty case. Then,

2

[, = uzp, v1 = van = (V2 = van) lIr| < [Jugy, = uSpll sz Z [lvi = vinll g2y,
=1

whence

2

[y — un, o1 — vin — (v2 = van) Je| < G |lusy, = udpll ey D loihas (28)
=1
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To conclude the proof, we need to use

2
P
i=1

and next to combine (26) with either (27) or (28).
Q.E.D.

We next analyze the optimality of the error indicators that we have introduced. To do
it, we need some further notation. For a given element K € 7, i = 1,2, we define the
union wy of the elements K’ € 775, U 7Ty, that share an edge (d = 2) or a face (d = 3) with
K. We denote by £k (respectively, £%) the set of edges or faces of £ that are (resp., are
not) included in I'. We also define the seminorm

) 1/2
|v|1,wK7h=(z 3 |uf—ufh|af<) |

=1 Keﬂh,KCwK

(% o (
1S R () T €

We set the following result.

Theorem 6 The error indicators n& and nf verify the following estimates

nf < O (Ju® = ujliwen + i 1f = full iz ) » (29)
2

m < O |u— i, (30)
=1

for some constants C' > 0 and C" > 0 that are independent on & and h.
Proof.

e Discretization error indicator. We start from the residual equation (25), where
we set v;, = 0:

(0" = w5, v)e = Y ( > /K(fh + Aug) v+ (f - fhyvi)ﬂi> (31)

i=1 \KeT;,
2
L Op,o US O US
- B (O uip) vi — ni Wip Vi
i=1 KeTip, ecEl V¢ ecel V¢
1
— i — whvn — el

For each K € T, the estimate of || f; + Aug,||12(x) is standard. To do it, v; must
be chosen as the product of (f; + Aug, )|, times the bubble function (the product of

16



the barycentric coordinates of K) on element K and to zero elsewhere. The use of
inverse inequalities allows to prove that (Cf. Verfurth [16], Proposition 1.5)

hic || fn + Auy || 2y < Cr ([0 — 0|y + b || f = fallrza) ) - (32)

Next, let us estimate [|[0,us,]||12(), for some e € E. There exist two elements
K, € Ty, and Ky € 75, that share the edge or face e. We choose v; € X; with
support in Kj; such that vy, = vg). = ¢, where ¢ is a suitable polynomial function
that we choose later. Then the interface product vanishes in the residual equation
(31), that reduces to

2

(= wo =3 ([ uiluit [ (ke (/- o). @)

i=1
The choice of the v; is standard: If 1, denotes the bubble function on e, defined as
the product of the barycentric coordinates of e, then

90*[ ng U zh]we

This is a polynomial function of degree, say r, vanishing on de. Then, the v; are

defined by
v — Ri,e(p) _in K
b 0 in Q\(K1UK2> ’

where R, . is a lifting operator from the space of polynomials P,(e) vanishing on
Je onto the space of polynomials P, (K;) vanishing on 0K; \ e. This operator is con-
structed from a fixed lifting operator on a reference triangle by affine transformation.
It verifies the estimate (Cf. Verfiirth [16], Lemma 1.3 and Proposition 1.5)

Ric.e (@)l + hi R (@)l |2y < Ca b Il |12y
From this estimate, again standard arguments allow to deduce from (33) that

R P[00l r2e) < Cs (|0 = 05 | gy urea) + Pl fr + AU || 22 (ky0k)
+ hillf = fullL2xuks))-

The same choice of the v; allows to estimate ||[0,u5,]| r2(e) for edges faces e € Ex not
situated on I'. In this case the support of the v; does not intersect I', so the scalar
product interface term in the expression of the residual directly vanishes.

Estimate (29) follows.

Penalty error estimator. The estimate for 7} is also obtained by a triangle
inequality, as in Theorem 2,

i < Mk = ull gy + s = lloge <C4Z|u—um|m
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Q.E.D.

Note that the estimator 7% is not directly bounded in (29) in terms of the total error
|u — |1 0., but in terms of the discretization error [u® — uj |, 1. This should not be
surprising, as 7~ is the error arising in the discretization step of the penalized problem
(P.) to obtain (P.p).

Let us consider the penalty error E. and the discretization error E},, respectively defined
by

2 2
EE :Z’u_uﬂlﬂw Eh:z‘ui_u;—h‘lﬂi'
=1 i=1

Theorems 5 and 6 set the following bounds (assuming for simplicity that there is no error
stemming from the source terms),

e Lo+ (z 3 (W) N

i=1 KeTy,

IN

E. + E, (34)

IN

5 1/2
h'Y
Cy S mf + (Z > (mK)Z) +

i=1 KeTy,

where ' and (5 are constants independent of h and . From these bounds we conclude
that our error indicators are quasi-optimal. There is only a lack of optimality due to the
h? /e term in the upper bound.

However, under some mild additional conditions we may considerably improve the
estimate on the right-hand side of (34).
We introduce the following notation:

e 71 denotes the orthogonal projection operator from either L*(T') or Ha/*(T') onto
Wi, with respect to the [[-, ]]r scalar product.

e For some K € Tj;,, Ak denotes the set of all elements K’ of T3, such that KNK' # ().

e For any face or side e of some element K € 7;;,, A, denotes the set of all elements
K' of T, such that e N K’ # 0.

e V), denotes the set of Lagrange interpolation nodes contained in €; associated with
the space Xj.

e V? denotes the subset of the nodes of V; located in ;.
e V! denotes the subset of the nodes of V; located on T'.

° 7;2 is the set of elements of 7;;, that intersect I'.

18



e 7. is the set of elements of 7y, that do not intersect I

With each a in V;, we associate the Lagrange function ¢, in X, which is equal to 1 in
a and to 0 in all @’ # a in V;. Thus, we consider the Clément interpolation operators

C;hv = Z(ﬂ-av) (a) Pas

acV;

where 7, is a local L? projection operator (for instance, on an element K, of 73, containing
a). We also consider the modified Clément operator

Conv = Y (mav)(@) pa+ Y (my0)(a) o

aEVZQ aGViF
We state the following result.

Lemma 1 For any function v; of H*(S;), the following estimates hold

||lv; — Cihvil\%a(;() < Chi |vilma,), of KNI = 0: (35)
[v; = Convill 72y < ChY? il ma,y,  if eNT =0 (36)
(Y h2 lloi — Canvill2ae))® < C (14 M) il o (37)
KeT},

(3 S ht o = Canvill2ae)? < C (1 + M) [l (38)

KeT] ecék
where
i) In the case of L*(T') projection,

A = (har/h)Y?, with  hy = max hg, hp = min hg;
KNC'#£) KNT'#£)

ii) In the case of HééZ(F) projection,
A = (Bag /B + B )Y2

We report the proof of this Lemma to an appendix to keep on the main line of our
argumentation. Note that in the case of L*(T") projection, the coefficient A, is bounded if
only a finite number of grid refinements are performed, as it is usual. However, in the case
of H(%Z (I') projection, there is a hm'/? loss of optimality. Nevertheless, this loss is limited
to the elements, sides or faces that intersect the interface I'.

From the technical point of view, this loss of optimality could be avoided by means of a
duality estimate of the error ||v; — m},v;||z2(ry in terms of the HééQ(F) norm of v;, that is
lacking up to our knowledge.

As a consequence of this Lemma, we deduce our main a posteriori error estimate result,
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Theorem 7 Assume that the trace spaces Wiy, and Wy, defined in (19) coincide. Then,
the solution of the discrete penalty problem (P ) satisfies the following a posteriori error
estimate

2 2 1/2
€ 2
ZIU—Uihh,ﬂi <O+ (Z Z (prnit )"+ (hx hi)® Hf_th%Q(K)> , (39)

i=1 i=1 KeT;,

o= {7 RN

Proof. We adapt the proof of Theorem 5, that we only change from the residual equation
(25) between problems (P.) and (P).

Consider v; € X;, i = 1,2. We put vy, = Cyv; in the residual equation (25). By
construction of C;;,, the trace on I' of vy, is W{}LUZ“F that belongs to Wy,. As Wy, = Way,
then uj, — u3;, belongs to Wiy, and it is orthogonal to {(vi — vin) — (v — v1p)}, with
respect to the [[-,]|r scalar product. Then, the boundary term in the residual equation
vanishes and this reduces to

(0 —u,v)). = Z > (/ fn + AUS,) (v — Cipvs) Z/ankum mm))

=1 KET EESK
2

+ S (f — favvi — Cawvs) = T+ 1T + I11. (40)
=1

We bound the first term of the right-hand side of (40) by

2
I = G Z Z 1+ Augp |12y 1o = Cinvill L2k

i=1 KeT;,
) 1/2 1/2
< G Z Z (i )? Z Z (urhi)™ Hvz‘—CihUiH%%K)
=1 Ke’]'lg; =1 Ke’]’lr};
) 1/2 ) 1/2
A PIPD 2 2 il = il
=1 =1 Ke'];%

1/2

< (2; 2; (1 ) )1/2 (gw) :

where the last bound comes from estimates (35) and (37) of Lemma 1. Similar arguments
lead to the bound for the quantity //7. The second term of the right-hand side of (40) is
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bounded by

2
1 €
IT < 3 E E E 1O win)llz2(e) llvi — Cinvill L2(e)

1/2 1/2

2
D> D uth v = Cinvillzag
i=1

=1 KeT} ecfk

IA
Q
M)~
g
=
2
Z

1/2 1/2

2 2
A PID LY N DID I DR e 20
i=1

= 0
KeT) e€fk

1/2 9 1/2
i=1 KeT;, i=1

where the last bound comes from estimates (36) and (38) of Lemma 1.
The remaining of the proof is similar to that of Theorem 5.

Q.E.D.

IA
—

Mw

ing

=

=

3

N
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7 Improvement of convergence rate

If Hégz(F) penalty is used, the convergence rate of the parallel iteration process (14) is
remarkably increased. This is proved thanks to Theorem 4 by replacing the L*(T") penalty

by the Héf(l“) one in the proof of Theorem 2 in [7]. This yields

|uin — uthHééz(r) <C (\/Ehk +¢),

where C' = C(u) is a positive constant that only depends on u. Combining this estimate

with (20), we deduce
2

D luf —uphe < C (VER +e). (41)

i=1
Note that

2 2 2 2
D i = uilie, Y0 |ui—uflig, + > U5 = uplie, + > uj — uflie,
i=1 i=1 i=1 =1

where the second term in the right-hand side is of order h*. Then, the best choice for ¢ in
(41) is

e = O(h¥), to achieve an overall O(h*) accuracy. Other choices improving the accu-
racy between uj and uj, would require a larger computational effort without diminishing
the discretization error which in any case is of order h*. This choice ¢ = O(h¥) gives

2 2
Z lup, — u5, 1.0, < C B*,  and then Z lu —us, |10, < C A" (42)

i=1 i=1
This allows to state the

Theorem 8 Assume that hypothesis (15) on the solution u of problem (1) hold. Assume
that the sequence {(u?}jl’s,ug,fl’e)}nx is computed by the full discretized problem (Pl),

with Hégz(f‘) penalty and a penalty parameter ¢ of size € = O(h¥). Then, if the number of
iterations n is of order O(|log h| h™F), the following error estimate holds,

2
D u—ufhe, < C R, (43)
i=1

where C' is a constant independent of € and h.

Proof. An argument similar to that developed in the proof of Theorem 3 of [7] yields:

2
E 1
€ g,n+1 0
E p— < —
pa |uzh Ui, |17Qz — \/E (1 n 200€)n/27

(44)
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2
where £y = Z |u9® — ug,|lo.r and Cp is a positive constant independent of b and &.
i=1
As e = O(h¥), and the number of iterations n is of order O(]logh|h~*) estimate (44)
yields an accuracy of order h* between ug, and ;"' in H'(€;) norm. It is enough to
combine it with estimate (42) to obtain (43).
Q.E.D.

Remark 2 The number of iterations O(|log h| h=*) given by this result to obtain an O(h*)

accuracy with H(%Q(F ) penalty must be compared with a number of iterations of order
O(|log h| h=2k), which corresponds to L*(T') penalty.
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8 Application to penalty parameter optimization and
grid adaptation

We describe a strategy to optimize the penalty parameter and to adapt the grid, based
upon the error indicators developed in the previous sections. Our purpose is to determine
the penalty parameter that yields an error of the same size or sligthly smaller than the
error due to the discretization, for a fixed grid. Indeed, computing a numerical solution
with a penalty parameter that yields a penalty error neatly smaller than that of the dis-
cretization would require a useless extra computational effort.

Adaptation algorithm
We use the penalty error and discretization error indicators (for both H(%Q(F) and
L*(T) penalties) by

n+1,P n+1l,e n+1l,e

M, = flugy 7 —uy, HH01(§2(F)7 (45)
5 L\ 12

P = (Z > (m) ) . with (46)
i=1 KeTy,

T = e o+ D e + Y Y2 0w e

ecli

Initialization: Set three tolerance levels ny, no and n3 and a parameter p in [0, 1].

e Set an initial penalty parameter €2 > 0.

o Build an initial triangulation T such that the corresponding approzimation error
bl f — fullez is smaller than ;.

Iteration: Once solved the full discrete problem (Pl,) with a current penalty error £",
compute the error indicators by (45) and (46) Then, the adaptation strategy is made in
three steps:

* Step 1: Adaptation of the penalty parameter.

1— n+1,D
o IfnptT s Y set et = gnen, with 0" = (77%
h

1P 1,.D
o Ifny T < Y set entl = gn,

* Step 2: Adaptation of the mesh.

We compute the nX and their mean value 7. For all K such that n* is larger than 7,
we divide K into smaller triangles such that the diameters of these new elements behave
like hX multiplied by the ratio 1, /nk.
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» Step 3: Solution of (P7,) .
Iterate the Schwarz procedure to obtain a refined solution of (PLY,), until

m+1,e m,e

o™ = w Ml <2, where w™ = (g, ug,”) (47)

* Stop test: If max{n """ 5P} < ns, stop.

We refer to [3], Section 5, for first tests of this strategy in a complete different frame-
work. In [3], Step 2 is iterated 4 of 5 times for each iteration of Step 1. In our case we have
observed a faster convergence when Step 2 is iterated just once. Also, Step 3 in practice is
needed to guarantee the convergence of the overall process, particularly for large grid sizes.

Optimization of penalty parameter:
By skipping Step 2, we only optimize the value of ¢ for a fixed mesh.
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9 Numerical experiments

This section is aimed to two objectives: Comparing the practical efficiency of H&F(F)
versus L?(T") penalty, and testing the grid adaptation + penalty parameter optimization
strategy. In a first step, we test the theoretical predictions of convergence rate and error
estimates for the single Schwarz iteration process (14). Next we check the efficiency of
the two types of indicators. In a third step, we propose an adaptive strategy aimed to
optimize the choice of ¢ with and without refining the mesh.

Our results are rather surprising: For a fixed grid the H(% (T") penalty is faster than
the L?*(T') penalty when the penalty parameter ¢ is small enough, as expected from the
theoretical predictions. However, when a combined strategy of grid adaptation + penalty
parameter optimization is used, the situation turns to be the opposite: The L*(T") penalty
is faster, and the gain of computing time mcreases as h decreases. This is mainly due
to the cost required by the computation of the Hoo (F) norm. In fact, we use a discrete
equivalent norm much less costly, but this does not changes our conclusions: The HSf(F)
penalty is faster for a fixed grid, but the L?(T") penalty is much faster when grid adaptation
strategies are used.

In this section, we work in dimension d = 2 and in the case where the discrete spaces

are made of piecewise affine functions (k; = ks = 1). All experiments are performed on
the finite element code FreeFEM++, see [10], using a Toshiba laptop computer with an
Intel Pentium processor to 1.80 Ghz.
We recall that the scalar product of H&{Q(F) as defined in (2) is non local, hence difficult to
compute. So, in the numerical experiments that follow, we use instead a discrete analogue:
If e;, 1 < j < J(h), denote the edges of & such that the endpoints of each e; are x; and
xjy1, and if h; stands for the length |z; 11 — 2],

i® o &) wJ —w* vJ — ok wivd
wth—Zhwv +Z Z hhk I —Ik +Zh]dl‘] 8F (48)
j=1 k=1,k#j ’

where w’ and v/ denotes the values of w and v at the node z;. Indeed, it is proved in
[5], Lemma 5.1, that the norm associated with the two first terms in this summand is
equivalent to the norm of H'/2(I") on the spaces Wy, and Wy, with equivalence constants
independent of h, in the case of a uniformly regular family of triangulations. However the
extension of this result to a regular family of triangulations and also to the Héf(l“) norm
seems easy to establish.

We consider two test cases:

L-shaped domain. Here, Q =]0,1[?\[3,1]%. It is divided into two sub-domains sym-
metric with respect to the straight line x = y. The boundary I' is the segment of this line
between the points (0,0) and (1,1). We consider the solution u given by

1 1

u(z,y) = sin 3z + y)zy(l — x)(1 — y)(§ - x)(§ —Y),
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which satisfies the homogeneous Dirichlet boundary condition, and is not symmetric with
respect to the boundary I'. Figure 3 displays one of the initial triangulations that we have
used for this domain and its division into two sub-domains.

Square domain. Here, Q is the square ]0,1[%, divided into the rectangles 2; =
10, 1[x]0, 5[ and Q, =]0,1[x]3, 1[. We consider the solution u given by

u(z,y) =sin (zy) (1 — z)y(l —y),

which satisfies the desired boundary conditions.
We mainly present the results for the L-shape domain test, but we stress that all results
that we report are qualitatively similar for the square domain test.

aaaaaaaaaaaa

Figure 3: Initial triangulation of L-shaped domain.

9.1 Test of a priori error analysis

We test here the analysis of penalty error and the improvement of convergence rate per-
formed in Sections 3 and 7, respectively.

Theorem 1 and Corollary 3 respectively state penalty error estimates proportional to
Ve for L*(T') penalty and to € for H%Q(F) penalty. We have observed that in practice these
estimates are sharp, in the sense that the rate of H&?(F) to L?(T") errors is proportional
to y/e. This probably corresponds to asymptotic behaviors as

Epp2(€) ~Ce, Epa(e) ~C'\e as e¢— 0. (49)

Here we denote
Epe(e) = lu—ufllx, FErz(e) = [[w — wx,

where u‘ and w* respectively are the solutions of (P.) for HY*(T') and L(T') penalty.
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Lshape test: Influence of the penalty parameter in the seminorm H1 of the error (h=1/64)

T
T T
—s— NormH1 (Pen. H0012)
—s— NormH1 (Pen. H0012)

Square test: Influence of the penalty parameter in the seminorm H1 of the error (h=1/64)
T

0.0001

0.00007 -

0.00005 ; - L L
0.025 0.05 0.1 0.2 0.025 0.05 0.1 0.2

Epsilon Epsilon

(a) L-shaped domain (b) Square domain
Figure 4: Comparison of penalty errors due to Hééz(F) penalty (for penalty parameter ¢)
and to L*(T) (for penalty parameter €).

Figure 4 displays approximations of the computed errors Ey1/2(¢) and Ep2(e?) for the L-
shape and square domains with grids of size h = 1/64, as a function of e. We approximate
u by its Lagrange interpolate Z,u on space Vj,. We also approximate for instance u® by

a close-to-convergence uZ‘H’6 in the iterative Schwarz process (14). Specifically, we have
taken u¢ = u]"""° when the quantity
[l = wp Y /llupllx < n = 107", (50)
h ho X/ 11X <7

These errors indeed appear to be proportional (in fact, are almost equal) for e small
enough, in agreement with relations (49). We have observed the same qualitative behavior
for several grids of both test domains. We just present one of these results for brevity. It is
striking that these errors appear to be asymptotically equal instead of simply proportional,
but we have obtained the same behavior in all our tests. We infer that the constants C
and C” in (49) are equal for some reason.

Also, as stated in Remark 2, the HééQ(F) penalty provides a better convergence rate
than the L?(T") penalty in the Schwarz iterative process (14). To test this point, we have
run both penalty procedures on a same grid, and compared the number of iterations needed
for the iterative processes to converge.

Figure 5 displays the number of iterations required by the HééQ(l") and L?(T") penalty
procedures for the L-shape and square domains test, as a function of . Here again, we
approximate u® by the u”! verifying the stop test (50). We observe a linear dependence

of this number of iterations with respect to € for L*(T") and H&f(F) penalty, with a better
slope for the Héf(l“ ) one. We have observed exactly the same qualitative behavior for
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LShape test: Influence of the penalty parameter in the number of iterations (h=1/64) Square test: Influence of the penalty parameter in the number of iterations (h=1/64)
T T
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Epsilon Epsilon

(a) L-shaped domain (b) Square domain

Figure 5: Comparison of number of iterations required for convergence of Schwarz iterative
processes.

other grid sizes h. We conclude that for ¢ small enough the HééQ(I‘) penalty procedure is
faster than the L*(T") one.

9.2 The efficiency of the indicators

To test the efficiency of the indicators, we first work with a uniform structured mesh for
the square domain, with h equal to 1/32 and ¢ decreasing from 5 to 5 x 1073, Figure 6(a)
presents, in logarithmic scales and as a function of ¢,

e the curves of the errors

2 2
dITu—wlme)  and > (|Tu - ug, )2,
i=1 i—1

in dotted dashed line and dotted line, respectively.
e the indicator i} in plain line and the Hilbertian sum 77 of all indicators n/* in dashed
line.
The error decreases with ¢ until the penalization error (which behaves like ce) is of the
same order as the finite element discretization error, for a critical value ¢, ~ 0.2. For
e sufficiently larger than ., the error indicator curve 5} is parallel to the curves of the
errors. In contrast, the quantity n” turns out to be fully independent of .

Next, we fix € equal to 0.01 and we still use uniform (unstructured) meshes. Figure
6(b) presents the same curves as previously, now in semi-logarithmic scales and for h
decreasing from 0.25 to 1.5 x 1072, There also the error decreases with h until it reaches
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Square test: Influence of the Hé{]z penalty parameter (h=1/32) Square test: Influence Hé{f of the mesh size (eps=0.01)
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(a) Fixed grid (b) Fixed epsilon

Figure 6: Influence of penalty parameter and grid size in error indicators: Square domain

the penalization error. Also, the curves of the indicators and of the errors are almost
parallel for h sufficiently larger than a critical h,..

Figure 7 represents the same curves for the L-squared domain, where the behavior of
the indicators is qualitatively the same. Let us also remark that the behavior of indicators
corresponding to L? penalty is also similar, for both the square and the L-shaped domain.

We can infer from these results that the error estimate (39) is probably suboptimal, in
the sense that the parameter ux appears in practice to be of order one. If this parameter
had an asymptotic growth to 400 as h — 0, we would not have obtained the behavior of
the indicators exhibited in Figures 6(b) and 7(b).

These results resemble in a striking way to those obtained in [3], Section 5, for a
completely different type of penalization. In this last paper, the Stokes problem is solved
by non-mixed finite elements, and penalty is used to treat the incompressibility restriction.
This similar behavior is probably due to the common formulation of both discretizations
as mixed problems, in the way indicated in Section 4.

9.3 Testing the adaptivity strategy and penalty parameter op-
timization
The adaptivity strategy provides a large saving of computational effort for both H&?(F)
and L?(T') penalties. The most surprising result is that the L?(T") penalty is computation-
ally faster than the H&éz(f‘) one.
We present the results obtained with the L-shape domain test. Figures 8(a), 8(b) and

9 respectively display an intermediate solution, the final solution and the grids associated
to these solutions. These results are obtained starting from the initial triangulation pre-
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LShape test: Infl HY2 of the mesh si =0.01
LShape test: Influence of the Hég penalty parameter (h=1/64) 10 ape test: Influence Ho of the mesh size (eps )

107

; « Norml2
< NormL2 e E{’;:

— Etay SemiNormH1
L= SemiNOrmHL | @ L L L L L e e e e e e e e e e e — - :_‘ Ele;zl orm
- EtaD 1072 4
107 4

10°F _.-

107}

10°F
10°F -

_____________

& o
10°F ._,.-’ 1 10°

.
10 . . . . = =
= = o T 10 10
10 10 Epsilon 10 10 h

(a) Fixed grid (b) Fixed epsilon

Figure 7: Influence of penalty parameter and grid size in error indicators: L-shaped domain

sented in Figure 3, with H&f(F) penalty. We observe that the continuity and even the

differentiability of iso-lines of the solution across the interface I' is progressively improved
in the adaptive process. The intermediate solution could be acceptable for some applica-
tions not requiring high precision. The high accuracy of the final solution is rather costly,
as the density of triangles of the adapted grid is quite large. This density is larger in the
zones of strong gradients of the solution, as could be expected, but is not particularly high
in the neighborhood of T'.

Combined grid adaptation-penalty parameter optimization

In order to compare the H(%Q(F) and L?(T') penalties, we have run the L-shape domain
test with the same set of data for both: The initial grid displayed in Figure 3, € = 0.1,
m = 0.1, 75 = 5 x 1072, p = 0.05. To obtain an accurate solution, we have stopped the
process when

|u, — Zhulx /|| Zrullx < 3 x 107°. (51)

Table 1 compares the results obtained. The number of iterations stands for the total
number of applications of the Schwarz iteration procedure along the adaptation process.
We observe that the values of the estimators )/ and 7 and the number of triangles of the
final grids are quite close for both penalties. Also, that the optimal ¢ for L?(T") penalty is
close to the square of the optimal ¢ for HééQ(F) penalty. We may observe a large saving
of CPU time for L*(T") penalty. This is due to two effects: The faster convergence of the
L?(T") penalty, that requires much less iterations, and the cost due to the computation of

the (even discrete) HSéQ(I’) norm.
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|

Comparison of Hy)*(T') versus L2(T') penalties.

Penalty || eop nt nP Triangles | Iterations | CPU time

H)?(T) | 0.0387 | 0.00180 | 0.00136 | 8148 471 287.7s

L*(T) | 0.0035 [ 0.00180 | 0.00134 | 8230 56 41.7s
Table 1.

Also, we have tested the improvement of computational time due to the adaptive strategy
with respect to the single iterating Schwarz procedure. To do it we have run the Schwarz
procedure, using the optimized grids and the optimal penalty parameters. We have ob-
tained the results presented in Table 2. We remark for both penalties a large gain of CPU
time due to the adaptivity strategy, with a ratio larger than 4 in both cases.

’ Schwarz iteration procedure with optimized data ‘

Penalty E opt CPU time
Hy*(D) | 0.0387 1158.65
L*T) |/ 0.0035 266.55

Table 2.

Penalty parameter optimization

We have performed a final test, where only the penalty parameter is optimized for a fixed
grid. As stated in Section 8, this is achieved by skipping the grid adaptation step (Step
2) in the adaptation algorithm. We have used a non-structured grid with 3092 triangles,
corresponding to h = 1/64. The procedure stops when

<y,
as in this case the discretization error is fixed, and the purpose is to decrease the penalty
error below this value.

Table 3 displays the results obtained. Again, the optimal ¢ for L?(T") penalty is close to
the square of the optimal one for HééQ(F) penalty. Both penalties take a similar number
of iterations, but the H&éz(f‘) one is neatly more costly.

All the results presented in this subsection are qualitatively the same for the square
test. We do not present them for brevity.

] Penalty parameter optimization for fixed grid. ‘

Penalty copt | Iterations CPU time
Hy)*(T) || 0.0503 | 165 126.3s
L) [ 00020 157 99.0s
Table 3.
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Appendix

This appendix is devoted to the rather technical proof of Lemma 1.

Proof of (35) and (36). If some element K € 7, does not intersect I', then C,v; = Cipv;
on K. Also, if some edge e of some element of 7;;, does not intersect I', then C},v; = C;pv;
on e. Thus, estimates (35) and (36) are standard properties of Clément operator (Cf. [4],
Théoréme 1X.3.7).

Proof of (37) and (38). We write the triangle inequality

v = Cinvill L2y < ||vi = Civil| 2exe) + ||Ciyvi — Cinvi|| 2k

The estimates (Cf. [4], Corollaire 1X.3.10)

v — Chvill ey < C e [oilmareys v — Civillreey < C R vilmag), Ve € Ex
imply
_ * — * L
(D hd v = Chuilliee + D D bt llvi = Chvillia)? < Cluilm@y.  (52)
ket KeTh et

We consider now the quantity ||C},v; —Cinv; || 2(k), and note that the support of Cj; v; —Cipv;
is included in the union of the elements K of 7;;, that intersect I'. On such a K, we have

Civvi = Cnvi = ) ((mavi)(@) = (mhi)(@)) P
acVI'nK

Denote by e, a side or a face containing a and included in I". Then,

d
Cihvi — Cinvil| L2(ry < chi; max |70 vs — T 0| Lo (ea)-

We next use the inverse inequality

_d—1
17avi = Tipill Lo (ea) < Che | Tavi = Wil 2 -

We deduce

> G — Cnvill2 ) < C by <Z [0i — auil|Z2 (e, + Il — Wirhvi|!%2(r)> . (53)

r r
KeT, a€y

Consider now a side or face e of some element K of 7} . In this case,

d—1
”C:hvi - CihviHLQ(e) <Che? QEH%%(K H%’UZ‘ - ngvi”LW(ea)-
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We now deduce

> hChv = Covill 3oy < Chy)! (Z [0i = Tavill T2y + 103 — Wil;LUiH%?(F))

KeT} e€fk aeVrl
(54)
Thus, the proofs of (37) and (38) are reduced to estimate the term
Z [0i = TavillFa(eny + 10 = Tipvill 22 (ry- (55)

aeV’
To estimate the first summand of the right-hand side, we recall [4], Corollaire 1X.3.9,
0 = mavillz(eny < C Bl lloillars ane, )

where K, is some element of the triangulation 7;, such that a is a side or a face of K,.
Then,

Z lvi — ﬂ-aviH%Q(ea) < Chy |,U|%{1(QZ~)' (56)

aeVl

The estimate of the second summand in the right-hand side of (55) is made as follows.
i) Assume that ), is the L?(T") projector. As 7}, is a projection,

[vi = mpvilliz@y < lloi — Chvilliaey < Charvilin o, (57)

ii) Assume now that 75 is the Hy,*(T') projector. Also, using that 75 is a projection,

lvi = mipvill 2y < Nl = mipvil o oy < l0ill gz gy < C'lvilmay (58)

Combining (52), (53) and (54) with (56), (57) and (58), we deduce (37) and (38) .
Q.E.D.
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