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Abstract

Given a Banach spaceX let A ⊂ X containing at leastk points. In location theory, reliability
analysis, and theoretical computer science, it is useful to minimize the sum of distances fromk
furthest points ofA: this problem has received some attention forX a finite metric space (a network
see, e.g., [Discrete Appl. Math. 109 (2001) 293]; in the caseX = En, k = 2 or 3, andA compact
some results have been given in [Math. Notes 59 (1996) 507]; also, in the field of theoretical co
science it has been considered in [T. Tokuyama, Minimax parametric optimization problems in
dimensional parametric searching, in: Proc. 33rd Annu. ACM Symp. on Theory of Computing,
pp. 75–84]. Here we study the above problem for a finite setA ⊂ X, generalizing—among other
things—the results in [Math. Notes 59 (1996) 507].
 2003 Published by Elsevier Inc.

1. Introduction

Let X be a Banach space; letA= {a1, . . . , an} ⊂ X, n � 3, ai �= aj for i �= j , a finite
set whose cardinality will be denoted by #A. Also, we denote byδ(A) the diameter ofA.

Given x ∈ X, let σ(x) = (σ1(x), . . . , σn(x)) be an ordering of the elements
{1,2, . . . , n} such that‖x − aσ1(x)‖ � ‖x − aσ2(x)‖ � · · · � ‖x − aσn(x)‖.

Given an integerk, 1� k � n, we set:

rk(A,x)= 1

k

k∑
i=1

‖x − aσi(x)‖ and rk(A)= inf
x∈X rk(A,x).
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Clearly,r1(A) is the Chebyshev radius ofA, that we shall also denote byr(A), while
rn(A) is the minimum average of distances from the points ofA, usually denoted byµ(A).
(We also use this notation when referring to others’ results.) A pointx (when it exists) such
thatrk(A,x)= rk(A) will be called ak-centrumof A.

In particular, a 1-centrum ofA is a (Chebyshev) center; ann-centrum ofA is a median
(or Fermat point). The termk-centrum was coined in the early seventies [15] to refer to the
minimization of the functionrk(A,x) whenX is a finite metric space. The reader sho
notice that this term (k-centrum) differs fromn-centeras it is used in recent papers. In t
latter,n-center means center or median forn-point sets orn-flat of a given finite set.

In this paper, we study the functionsrk(A,x) and thek-centra; these problems, apa
from some results given in [23], have been also considered in [11,15,16] from an algo-
rithmic point of view. The interested reader can also find different applications of
functions in different areas of applied mathematics as reliability: optimization of sys
k-out-of-n [1]; location analysis [13] or in decision theory [22], among others.

2. Preliminary results

We start with a simple remark; clearly, given a finite setA= {a1, . . . , an}, for anyx ∈X
we have

r1(A,x)� r2(A,x)� · · · � rn(A,x).

From this we have the following remark.

Remark 2.1. For anyA we have

r(A)� r2(A)� · · · � rn−1(A)� µ(A). (1)

Remark 2.2. We can also give estimates in the “opposite” sense. Let 1� k � j � n.
Given anyA = {a1, . . . , an}, for everyx ∈ X we havekrk(A,x)=∑k

i=1 ‖x − aσi(x)‖ �∑j
i=1 ‖x − aσi(x)‖ = jrj (A,x); taking infimum onx, we obtain

krk(A)� jrj (A). (2)

A better estimate is the following (whose proof is almost trivial) proposition.

Proposition 2.1. GivenA= {a1, . . . , an}, let n� 2h with h an integer1 � h� n/2. If i, j
is a pair of indexes such that‖ai − aj‖ = δ(A), setA1 = A \ {ai, aj }; then leti1, j1 be
indexes such thatai1, aj1 ∈ A1 and‖ai1 − aj1‖ = δ(A1); then defineA2 = A1 \ {ai1, aj1}.
Proceeding in this way, we obtain

2hr2h(A)� δ(A)+ δ(A1)+ δ(A2)+ · · · + δ(Ah−1). (3)

The next result gives us some structural properties of therk(A,x) function. They are
direct consequences of basic properties of the norm inX and thus, its proof is left out.
U
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Proposition 2.2. LetA= {a1, . . . , an} and letk be an integer1 � k � n; then the function
rk(A,x) (x ∈ X) is 1-Lipschitz continuous and convex. Moreover, ifX is strictly convex,
rk(A,x) is strictly convex outside lines containing at leastk points ofA.

GivenA, let for ε � 0 and 1� k � n= #A,

sk(A, ε)= {
x ∈X: rk(A,x)� rk(A)+ ε

}
. (4)

According to Proposition 2.2, the setssk(A, ε) are always closed and convex. Als
in a dual space, the functionsx → ‖x − a‖ are weak∗-lower semicontinuous, so the se
sk(A, ε) are bounded, w∗-closed, and w∗-compact. Therefore, the (possibly empty) set

sk(A)=
⋂
ε>0

sk(A, ε) (5)

is always closed, bounded, and convex, and its elements are thek-centra ofA, i.e., the
pointsx such thatrk(A,x)= rk(A).

By standard w∗-compactness arguments we obtain the following proposition.

Proposition 2.3. If X is a dual space(in particular, if X is reflexive), thensk(A) �= ∅ for
any finite setA and anyk between1 and#A.

Remark 2.3. The above result is true, for example, ifX = l∞. Also, the same result hold
if X is norm-one complemented inX∗∗. The proof in the case of existence of norm-o
projection is simple (and obtains following the line of proofs in [19]). General results o
this type have been given in [19].

Next result shows that also other spaces have the same properties.

Theorem 2.1. If X = c0, then for everyA= {a1, . . . , an} and1 � k � nwe havesk(A) �= ∅.

Proof. We may considerA as a subset ofl∞. Sincel∞ is a dual space, there existsx =
(x(1), x(2), . . . , x(n), . . .) ∈ l∞ such thatrk(A,x)= inf{rk(A,y): y ∈ l∞}. SinceA is in c0

there exists an indexh such that|a(j)i | � ‖x−aσk(x)‖, for all j > h andi = 1, . . . , n. Then,
x0 = (x(1), . . . , x(h),0, . . . ,0, . . .) ∈ c0 and

‖x0 − ai‖ � sup
{
sup
{∣∣a(j)i

∣∣: j > h
}
,sup

{∣∣x(j) − a
(j)
i

∣∣: j � h
}}

� ‖x − aσk(x)‖,
for i = 1, . . . , n. Hence,rk(A,x0)� ‖x − aσk(x)‖ � rk(A,x)= rk(A) and sork(A,x0)=
rk(A). ✷
Remark 2.4. There are spaces where for some finite sets, centers and/or medians
always exist; one of these spaces is a hyperplane ofc0 considered in [12]. (This does not
contradict Theorem 2.1.) Examples of four-point sets with a center but without medi
with a median but without a center are indicated in [12,20]. Examples of three-point se
withoutk-centra for anyk are shown at the end of this paper.
U
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Remark 2.5. LetA⊂ F , A containing at leastk points,F finite. Thenrk(A,x)� rk(F, x)

for all x ∈ X, and sork(A)� rk(F ) (1 � k � #A). Also, if rk(A)= rk(F ), thensk(A)⊂
sk(F ).

Remark 2.6. If mk ∈ sk(A) andc is a center ofF , then we have the almost trivial estima

‖mk − c‖ � d(A,mk)+ r(A), (6)

whered(A,mk)= infx∈A ‖x −mk‖ denotes the distance ofmk from the setA. In fact, if
‖mk − ai‖ = d(A,mk), then we have

‖mk − c‖ � ‖mk − ai‖ + ‖ai − c‖ � d(A,mk)+ r(A).

Remark 2.7. It is clear thatx ∈ sn(A) and‖x − ai‖ = constanti = 1,2, . . . , n, implies
x ∈ s1(A). (See, for example, [3] for results of this type.) More generally, ifck ∈ sk(A)

and thek farthest points tock in A are at the same distancerk from ck , then we have
r(A)� r(A, ck)= rk(A); so fori = 1, . . . , k, ri (A)= rk(A), and thenck ∈ si (A).

3. General results on k-centra

We start with a general result concerningk-centra, which generalizes results contain
in [23], well-known fork = #A.

Theorem 3.1. LetX be a strictly convex space andA ⊂ X; if k is odd, thensk(A) (1 �
k � n) contains at most one point; if k is even andsk(A) containsx ′ andx ′′, x ′ �= x ′′, then
there exist(at least) k points ofA on the line passing throughx ′ andx ′′.

Proof. GivenA= {a1, . . . , an} andk, 1� k � n, if x ′, x ′′ belong tosk(A), then according
to the convexity ofsk(A) alsox = (x ′ + x ′′)/2 belongs tosk(A). Let a1, . . . , ak be thek
points ofA furthest away tox ′ andx ′′, so that

∑k
i=1 ‖x − ai‖ = krk(A). Then, we have

krk(A)=
k∑
i=1

∥∥∥∥x ′ + x ′′

2
− ai

∥∥∥∥�
k∑
i=1

(‖x ′ − ai‖
2

+ ‖x ′′ − ai‖
2

)

� krk(A,x
′)

2
+ krk(A,x

′′)
2

= krk(A),

so all these inequalities are equalities. This means two facts: (1)a1, . . . , ak are also thek
points inA furthest tox; and (2)x ′ − ai = λi(x

′′ − ai) for some non-negativeλi , i = 1,
. . . , k; thereforex ′, x ′′, a1, . . . , ak are all collinear. This is impossible fork odd because in
this case the unique median ofA′ = {a1, . . . , ak} is the only point ofA′ leaving(k − 1)/2
points ofa1, . . . , ak to each side (“central point”); fork even, all points lettingk/2 on each
side are medians ofA′. ✷
Remark 3.1. The proof of the above theorem shows that ifX is a strictly convex spac
andA⊂X, if #A is odd, or #A is even and does not containk collinear points, thensk(A)
(1� k � n) contains at most one point. (The last result follows also from Proposition
U
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Whenk = 2 we have no uniqueness result. (See Remark 3.3 below.)

Theorem 3.2. For anyA⊂X we haver(A)= r2(A).

Proof. Assume by contradiction, thatr2(A) < r(A) for someA = {a1, . . . , an}. Take
x ∈X such thatr2(A,x) = r(A) − σ for someσ > 0; we haver(A,x) � r(A) (by de-
finition) so there existsai ∈A such that‖x − ai‖ � r(A).

For anyaj ∈A , j �= i, we have

‖x − ai‖ + ‖x − aj‖
2

� r2(A,x)= r(A)− σ,

so

‖x − aj‖ � 2r(A)− 2σ − ‖x − ai‖ � 2r(A)− 2σ − r(A)= r(A)− 2σ.

If xλ = λai + (1− λ)x, 0� λ� 1, then we have‖xλ − x‖ = λ‖ai − x‖;

1

2

(‖ai − xλ‖ + ‖xλ − aj‖
)
� 1

2

(‖ai − x‖ − ‖x − xλ‖ + ‖xλ − x‖ + ‖x − aj‖
)

� r(A)− σ for all j �= i.

Chooseλ ∈ (0,1) so that‖xλ − ai‖ = r(A)− σ ; we obtain, for allj �= i

‖xλ − aj‖ � 2
(
r(A)− σ

)− ‖ai − xλ‖ = 2r(A)− 2σ − (
r(A)− σ

)= r(A)− σ ;
thereforer(A,xλ)� r(A)− σ , a contradiction. ✷
Remark 3.2. In general, in any space, we haver3(A) < r2(A) for someA: for example,
also in the Euclidean planeE2, there are three-point sets where the center and the m
do not coincide.

We have proved (Theorem 3.2) thatr1(A)= r2(A) always. On the contrary, the equali
rk(A)= rk+1(A) for k � 2 does not happen frequently and it has some strong implicat
We shall discuss now this fact, giving a converse of Remark 2.7.

Theorem 3.3. Let rk(A) = rk+1(A) for somek � 1 andA = {a1, . . . , an}; n > k. Then
sk(A) ⊂ sk+1(A). (In particular, by Theorem3.2, if c is a center ofA, thenc ∈ s2(A).)
Moreover, ifck ∈ sk(A), then(at least) thek + 1 points ofA which are farthest tock have
the same distancerk(A) from it; in addition, for i = 1, . . . , k, ri(A)= rk(A); ck ∈ si(A);
si (A)⊂ si+1(A). (Note that ifX is strictly convex, thensk+1(A) is a singleton fork � 2
since thek + 1 points farthest tock are not collinear.)

Proof. Let rk(A) = rk+1(A); ck ∈ sk(A). Order the elements ofA so that‖ck − a1‖ �
‖ck − a2‖ � · · · � ‖ck − an‖; we have

rk(A)= 1

k

k∑
‖ck − ai‖ � 1

k + 1

k+1∑
‖ck − ai‖ = rk+1(A, ck)� rk+1(A).
U
Ni=1 i=1
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Therefore, our assumption implies thatck ∈ sk+1(A); moreover,

1

k + 1

(
k∑
i=1

‖ck − ai‖ + ‖ck − ak+1‖
)

= 1

k

k∑
i=1

‖ck − ai‖

implies

‖ck − ak+1‖
k + 1

=
(

1

k
− 1

k + 1

) k∑
i=1

‖ck − ai‖ = rk

k + 1
,

so‖ck − ak+1‖ = rk(A); but then, since

‖ck − ak+1‖ � min
1�i�k

‖ck − ai‖ � 1

k

k∑
i=1

‖ck − ai‖ = rk(A),

‖ck − a1‖ = · · · = ‖ck − ak‖ = ‖ck − ak+1‖. By recalling Remark 2.7, we obtain the co
clusion. ✷
Remark 3.3. In general, also ifX is the Euclidean plane, a 2-centrum ofA is not a center
for example, ifA= {(0,1); (0,−1); (ε,0)}, 0� ε � 1, then the unique center ofA is the
origin, while all points(0, α); |α| � (1− ε2)/2, are 2-centra.

Remark 3.4. If A has at most one(k + 1)-centrum andrk(A) = rk+1(A), then x ∈
sk+1(A) ⇒ sk(A) ⊆ {x}. Without the assumption of uniqueness onsk+1(A) this is not
true, as the following example shows. LetX be the plane with the max norm, an
A = {(− 9

10,0); (11
10,1); (− 9

10,−1)}; we haver2(A)= r3(A) = 1; P = ( 1
10,0) belongs to

s2(A)⊂ s3(A); the origin belongs tos3(A) but not tos2(A).

Our next result, whose proof follows from the definition ofrk(A), extends [3, Proposi-
tion 2.7].

Theorem 3.4. Letmk ∈ sk(A), mj ∈ sj (A), max{k, j } � n= #A. Then we have

‖mk −mj‖ � rk(A)+ rj (A). (7)

In particular, if j = k and{mk, m
′
k} ⊂ sk(A), then∥∥mk −m′

k

∥∥� 2rk(A). (8)

Remark 3.5. The estimates (7) and (8) are sharp. (See [3, Example 2.9].) But if we assume
thatX is strictly convex, then we have better estimates. In fact, according to Remar
in this case (fork �= 2) we have uniqueness of solutions in many cases. But fork �= j we
cannot give better inequalities (see [4, §4]) apart from the fact that strict inequality hold
in both (7) and (8).

Now assume that we have equality in (7). Looking at the proof of Theorem
we obtain subsequently; for thej farthest points tomj , ai , i = 1,2, . . . , j , we have
‖mj − ai‖ + ‖ai − mk‖ = ‖mj − mk‖; the j farthest points tomk, all have distance
rk(A,mk) from it; therefore, ifj > k then rk(A) = rj (A) and bothmk andmj belong
U
N
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to sj (A). If j = k, then thek farthest points tomj [mk] are on the sphere of radiusrk
centered atmj [respectively atmk ]; moreover the distance between the centers of the
balls is twice the radiusrk .

In the following we consider a localization property of thek-centra with respect to
co(A), the convex hull of the setA.

Theorem 3.5. If X is a two-dimensional space, or ifX is a Hilbert space, then for anyA
and anyk (1 � k � #A), it holdssk(A)∩ co(A) �= ∅. Moreover, ifX is a Hilbert space, or
if dim(X)= 2 andX is strictly convex, thensk(A)⊂ co(A).

Proof. The assumptions imply thatsk(A) �= ∅. If dim(X) = 2 then (see [21]) for every
x ∈X there existsx∗ ∈ co(A) such that‖x∗−a‖ � ‖x−a‖ for anya ∈A; i.e.,‖x∗ −ai‖ �
‖x − ai‖ for i = 1, . . . , n= #A, sork(A,x∗)� rk(A,x): if we takex ∈ sk(A), this shows
that there also existsx∗ ∈ sk(A)∩ co(A).

Now letX be Hilbert or if dim(X) = 2,X strictly convex; ifx /∈ co(A), let x∗ be the
best approximation tox from co(A): we have‖x∗ − ai‖ < ‖x − ai‖ for i = 1, . . . , n, so
rk(A,x

∗) < rk(A,x), thus an element ofsk(A) must belong to co(A). ✷
Corollary 3.1. LetX be Hilbert or if dim(X) = 2, X strictly convex; givenA ⊂ X with
no subset ofk points being collinear, ifmk ∈ sk(A) andc ∈ s1(A), then‖mk − c‖ = r(A)

implies thatmk ∈A.

Proof. Follow the line of the proof of [4, Proposition 5.1]. ✷
Another interesting property ofk-centra of a setA is that they allow to characterize inn

product spaces in terms of their intersection with the convex hull ofA. Characterization
of this type are known from the sixties. (See [8,9].) The same property concerning media
was considered in the nineties by Durier [7], where partial answers were given. It has be
proved only recently for medians of three-point sets, this result can be found in [6].

Theorem 3.6. If dim(X)� 3 and the norm ofX is not hilbertian, then there exists a thre
point setA such thats3(A)∩ co(A)= ∅.

By using such theorem, it is not difficult to obtain the following proposition.

Proposition 3.1. If dim(X)� 3 and the norm ofX is not hilbertian, then for everyn� 3
there exists ann-point setF such thats3(F )∩ co(F )= ∅.

Proof. We prove the result forn= 4, the extension ton� 4 being similar.
Under the assumptions done, according to Proposition 2.2, infx∈co(A) r3(A,x) is always

attained; now takeA= {a1, a2, a3} as given by Theorem 3.6: for someσ > 0 we have

inf r3(A,x)= r3(A)+ 4σ > r3(A).
U
Nx∈co(A)
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Takex̄ ∈X such thatr3(A, x̄) < r3(A)+σ ; it is not a restriction to assume that‖x̄−a3‖ �
min{‖x̄ − a1‖,‖x̄ − a2‖}. Now takea4 /∈A such that‖a3 − a4‖ � σ and letF = A∪ {a4}.
We haver3(F, x̄)� r3(A, x̄)+ σ � r3(A)+ 2σ . Now takey ∈ co(F ): there isx ∈ co(A)
such that‖x − y‖ � σ ; therefore|r3(F, y)− r3(F, x)| � σ , sor3(F, y)� r3(F, x)− σ �
r3(A,x)− σ � r3(A)+ 3σ ; thus

inf
y∈co(F )

r3(F, y)� r3(A)+ 3σ � r3(F, x̄)+ σ � r3(F )+ σ,

this proves the thesis.✷
Given a setA with n points andk < n, we can divide the spaceX into

(
n
k

)
regionsRj , so

that whenx is taken in one of these regions, the samek points ofA are the farthest tox; of
course, inside each of these regions there arek! different possible orderingsσ1, . . . , σk . It
is possible to haveRi ∩Rj �= ∅ (the values of thekth distance can be equal to the(k+ 1)th
one); also, ifRj is determined bya1, . . . , ak thenai /∈ Rj for i = 1, . . . , k. Also in general
the medians ofa1, . . . , ak (if they exist) do not belong toRj . Note that these regions a
not in general convex: for example, ifX if the plane with the max norm, givena1 = (1,0)
anda2 = (−1,0), the set‖x−a1‖ � ‖x−a2‖ is not convex. But the same is true, for som
pair, in any space with a non-hilbertian norm.

If X is a Hilbert space, then the regionsRj are convex: in fact, consider, e.g., the reg
R determined by the pointsa1, . . . , ak, k < #A: then

R =
k⋂
i=1

{
x ∈X: ‖x − ah‖ � ‖x − ai‖ for h= k + 1, . . . , n

}
.

R is the intersection ofk(n− k)-convex regions, therefore it is convex. A detailed analy
of these sets can be found in [13]. (Not only for Hilbert spaces.) Also in the particular ca
of two-dimensional spaces some geometrical properties as well as the complexity a
are given in [14].

Minimizing rk(A) is equivalent to solve
(
n
k

)
constrained Fermat problems; then look

for the minimum of the values obtained: for eachRj , determined byk given points, say
{a1, . . . , ak}, look for a median of these points, restricted to the “feasible region”Rj . Al-
gorithms for the solution of this kind of problems in two-dimensional spaces can be
in [14]; also, in networks (finite metric spaces) algorithms are given in [10,16].

GivenX, consider fork ∈ N the parameter

Jk(X)= sup

{
2rk(A)

δ(A)
: A⊂X finite, max{2, k} � #A

}
. (9)

For k = 1, the numberJ1(X) = J (X) is called the finite Jung constant and has b
studied intensively; in general, 1� J (X)� 2, while the value ofJ (X) gives information
on the structure ofX. As shown partially in [5] and later completely in [18], we always
have

J (X)= sup

{
2µ(A)

δ(A)
: A⊂X finite, 2� n= #A

}
.

Sinceµ(A)� rk(A)� r(A) always (see (1)), we obtain the following result.
U
N
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Theorem 3.7. In every spaceX, for every positive integerk, we have

Jk(X)= J (X). (10)

Our last result in this section was already known for medians (see [4]) but it can be
extended to generalk-centra.

Proposition 3.2. Let mk ∈ sk(A) for some setA. Assume thatAk ⊂ A, #Ak = k and
rk(A)= 1

k

∑
a∈Ak ‖mk − a‖. If ‖mk − 1

k

∑
a∈Ak a‖ = rk(A) thenX is not strictly convex.

Proof. By the triangular inequality we have

rk(A)=
∥∥∥∥mk − 1

k

∑
a∈Ak

a

∥∥∥∥� 1

k

∑
a∈Ak

‖mk − a‖ = rk(A).

Thus,mk is also a center ofAk andrk(A)= r(Ak). Now, we apply first claim in [4, Propo-
sition 3.1] to the setAk to get the result. ✷

4. Concluding remarks

To conclude our analysis ofk-centra, we study several properties of these points
garding equilateral sets. Recall thatA is calledequilateral if ‖ai − aj‖ = constant for
i �= j , 1 � i, j � n = #A. Also, recall that the centroid of a finite setA is given by the
point 1

#A

∑
a∈A a. For equilateral sets there are several nice properties connecting ce

medians and centroids (see [2]). Some of them can be extended further tok-centra.

Proposition 4.1. LetA be an equilateral set in an inner product spaceX and letk � 3;
then the centroid ofA belongs tosk(A).

Proof. Assume that 0 is the center ofA; then 〈ai, aj 〉 = constant fori �= j , 1 � i, j �
n = #A. Let y =∑n

j=1λjaj ; then the functionf (λ1, . . . , λn) =∑k
i=1 ‖y − ai‖ is sym-

metric.
In Hilbert spaces it always existsmk ∈ sk(A)∩ co(A). Moreover, under the hypothes

of the propositionsk(A) is a singleton, thenmk is the unique minimizer off andλ1 =
λ2 = · · · = λn = 1/n; thusmk is the centroid ofA. ✷
Remark 4.1. LetA= {a1, . . . , an} be an equilateral set with‖ai − aj‖ = d , ∀i �= j ; then
it is easy to see that

rk(A,x)� d

2
for anyx ∈X.

Indeed, for anyx ∈X, krk(A,x) is attained as a sum of distances fromx to k points ofA.
Let us denote byAk(x) the subset ofA containing the points that definerk(A,x). Ak(x)
itself is an equilateral set with‖ai − aj‖ = d , ∀i �= j , ai, aj ∈Ak(x); then

krk(A,x)=
∑

‖a − x‖ � kd

2
,

U
Na∈Ak(x)
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where inequality comes from [2, Lemma 4.1] applied to the setAk(x). (Also if k is even,
it follows from (3).)

Proposition 4.2. For any equilateral set in the hypothesis of Remark4.1, the conditions
r(A) = d/2 and rk(A) = d/2 are equivalent, for anyk = 2,3, . . . , n. In these case
k-centra for anyk = 1,2, . . . , n= #A coincide.

Proof. Runs parallel to [2, Proposition 5.1] except for the details of considering part
sums ofk-largest distances.✷

From this last result we can present an example of set withoutk-centra for anyk. [2, Ex-
ample 5.2] is an equilateral three-point set without median. Now, we apply Propositio
to conclude that the set in that example cannot havek-centra for anyk = 1,2,3.
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