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Uncertainty principle estimates for vector fields

CARLOS PEREZ! AND RICHARD L. WHEEDEN T

1 Introduction

One form of Hardy’s inequality is the estimate

p dx )
/Jf(cv)! WSC/W IV f(z)dx,

for 1 < p < n and any smooth f with compact support, where the constant C' is independent
of f. This inequality, which can be found in [HLP], has had many important applications. For
instance, in Mathematical Physics, it is related (in fact, equivalent) in case p = 2 to the
Uncertainty Principle of Heisenberg ([RS], vol. 1L, p. 169).

In this paper, we will derive norm estimates for a wide class of integral operators of potential
type. These estimates can be used to obtain inequalities like the one above. In fact, if T" is the
integral operator defined by

71w = [ )=

then by using the well-known pointwise inequality
|f(@)| < e T(IVf])(2)

for any smooth f with compact support, one can deduce the Hardy estimate above from the

corresponding (weighted) LP norm estimate for 7. The same method can be used for more
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general differential operators X f often called generalized gradients; that is, one can bound
norms of f by norms of X f provided there is an integral operator T which is bounded on
appropriate weighted LP spaces and for which the pointwise estimate |f| < ¢T'(|X f]) is valid.
For example, this pointwise estimate is known to hold for vector fields of Hormander type

when T is given by
d(z, y)
|B(x, d(x,y))|

where d(z,y) is the associated Carnot—Carathéodory metric and B(z,r) denotes the metric

71 = [ ) .

ball with center x and radius r.

In addition to norm estimates for integral operators, we will also study norm estimates for
maximal operators that are closely associated with the integral operators. Our main theorems
generalize and sharpen some of the principal results obtained in [SW], [P1] and [P2]. We
improve these results in several ways, such as by considering spaces of homogeneous type
without any group structure, and by enlarging the classes of weight functions for which some
of the results hold. In particular, with regard to weight functions for integral operators, we
are able to avoid assuming the doubling conditions that are imposed in some of the results in
[SW], as well as improve the results there which deal with generalizations of the
Fefferman—Phong “r—bump” condition (see below). We will show that this sort of condition
can be replaced by weaker ones like those considered in [P1] and [P2], and which are closely
related to estimates derived in [CWW] and [ChW2]| for Schrédinger operators.

In order to obtain weighted results, the kinds of conditions that we will impose on the weights
are in the spirit of simple sufficient conditions which are close to necessary. For example, in
n-dimensional Euclidean space R™ with the usual metric, the classical Riesz fractional integral

operator

1
I f(z) = . f(y)mdy, 0<a<n,



is known to satisfy the norm inequality

(@) <e ([ Q@pepe) ()
(L ) = (f. )

1 <p<q< oo, if for some r > 1 and all balls B, the weights satisfy

/1 e /g Lo\
r(B)*"|B|a v (ﬁ/Bw(:p)”qu) (E/Bv(x)_rp dw) <C, (2)

where p’ denotes the conjugate index of p, that is, 117 + :z% = 1, and r(B) the radius of B. On

the other hand, the same condition with » = 1, i.e., the condition

r(B)*" ( /B w(x)qu) v ( /B v(z) ™ das) " <C,

is necessary but not sufficient for the norm inequality (this is exactly the A7 condition of
[SW], but with a different normalization). These facts are proved in [SW]. Extensions to
spaces of homogeneous type are also proved there, but with extra restrictions on either the
weights or the space, such as doubling conditions on w"? and v~ or a group structure for
the space. One of our goals is to remove these extra restrictions.

We refer to (2) as a Fefferman—Phong “r—bump” condition. It is simpler in nature than two
other kinds of conditions known to be both necessary and sufficient for such norm estimates.
To put our results for potential operators in perspective, it may help to briefly recall these
other conditions, even though they play no role in the paper. One of them involves “testing”
conditions of the type found first in [S] in the usual Euclidean situation, and then generalized
and sharpened in [SW], [SWZ], [WZ] and [VW]. Testing conditions are phrased in terms of
norm estimates for the integral operator when it is restricted to acting on the weight
functions themselves. The second sort of necessary and sufficient condition involves integrals
with “tails”, i.e., integrals extended over the entire space of products of weights times suitably
truncated powers of the kernel which appears in the integral operator. Such results are known

for 1 < p < ¢ < oo but not for ¢ = p: see [GK], [SW], [SWZ], [GGK]. Compared with

3



conditions of these two types, those of the Fefferman—Phong sort have the disadvantage of not
being necessary, but they have the advantage of being relatively simple and close to necessary.
No simple method is known for proving that Fefferman-Phong conditions imply either of
these other two types of conditions.

The r—bump requirement (2) was weakened in [P1] within the Euclidean framework; more
general potential operators of convolution form were also studied in [P1]. In the case of the
Riesz fractional integral, these weaker assumptions can be described as follows: let ¥ and ®

be doubling Young functions such that both

/:O (\;:t))q’l % < oo and /:o (qf:;))p_l % <00 (3)

for some positive constant ¢. Some examples of such ®(t) are, for large ¢,

®(t) = t"' (log t)? 718 and ®(t) = t* (logt)* ~!(loglog t)” =18 where # > 0. Then (1) holds if,

for all balls B, the weights satisfy the condition
1,1
r(B)* "Bl ||w||\p,B||U71||q>,B <K, (4)

where || f|| 5 (similarly || f[|5 5) denotes the localized Luxemburg norm

. 1 ol
||f||q,,B—mf{A>o.E/va(T) dygl}.

See section 4 for more information.
There is a similar situation for maximal functions. Indeed, it was also shown in [P1] that a
sufficient condition for the analogue of (1) with I, f replaced by the fractional maximal

function
Ma(f)(x) = supr(B)> / Foldy, 0<a<n,

where the supremum is taken over all balls B containing z, is just the condition (4) with no

“bump” on the weight w, namely with W(¢) = ¢?. In this case, the condition on the weights



becomes simply
1/q
s ([ wrde) o < K
B

for some ® as in (3) and all balls B. An antecedent of the results in [P1], [P3] was given by
Neugebauer in [N] for the case o = 0. Another goal of this paper is to extend these results for
M, to more general maximal operators and to spaces of homogeneous type.

In case w? and v™? are A, weights (in the sense of C. Fefferman and B. Muckenhoupt), as is
well-known, condition (2) holds for some r > 1 if and only if it holds for » = 1. Thus, in this
case, no bump is needed in the condition imposed on the weights in order to obtain (1). In a
sequel [PW] to this paper, we will show that no bump is needed for classes which are larger
than A, and in spaces which are more general than R"™. This extends earlier results of the
same kind in [SW] in the usual Euclidean case as well as in spaces of homogeneous type. See
also [BSa] for results about A,, weights in spaces of homogeneous type. For these more
general spaces, and for larger classes of weight functions than A.,, we also study in [PW]
extensions of results in [MW] relating norms of integral operators of potential type to norms

of maximal functions.

2 Statements of the main results

Following [SW], we consider potential operators 7' = T, of the form

Tf(x) = T(fdp)(z / F) K (2, y)du(y), (5)

where § is a space of homogeneous type with underlying doubling measure p. See §3 for the
exact definition of a space of homogeneous type; by a doubling measure, we mean a Borel

measure p with the property that there is a constant C' such that for every “ball” B C S,

n(2B) < Cu(B),

b}



where 2B denotes the ball with the same center as B but twice the radius. If d(z,y) denotes
the corresponding quasimetric in S, we will always assume that the kernel K (z,y) is
nonnegative and satisfies the following growth conditions: there exist constants Cy,Cy > 1
such that

K<I7y) S CIK(J’Jay) if d(JI/?y) S Ogd(l’,y), (6)
K(l‘,y) S ClK(may,) if d(l‘,y,) S CQd("L‘ay)

The main classical examples of such operators are the Riesz fractional integrals I, f
mentioned in the introduction. An important class of examples for metrics other than the
usual Euclidean metric consists of potential operators related to the regularity of subelliptic
differential equations. In particular, vector fields of Hormander type ([H]) as well as the
classes of nonsmooth vector fields studied in [FL] lead to integral operators of the type we will
study. In addition, the differential operators of Grushin type considered in [FGuW] (at least
in the simplest case of Lebesgue measure) are related to integrals of type (5). In fact, for all

these examples, the associated potential operator has the form

-~ d(z,y)
T1w) = [ 1) s duly). 7

where d(x,y) is a distance function that is naturally related to the vector fields and B(x,r)

denotes the corresponding ball with center x and radius r.

Associated with the kernel K is a functional ¢ = ¢,. which acts on balls B and is defined by

o(B)= sup K(z,y) (8)

z,yeB
d(z,y)>cr(B)

for a sufficiently small positive geometric constant ¢ (see [SW]), where r(B) denotes the radius
of B. For example, in the case of the Riesz potential, we have K (z,y) = |z —y|*™™,0 < a < n,

so that ¢(B) ~ r(B)*". In the subelliptic case (7), note that ¢(B) ~ r(B)/u(B).



The conditions (6) on K lead to useful growth properties of ¢. If B is a ball and 6 > 0, let 6B
denote the ball concentric with B whose radius is 6r(B). It is shown in [SWZ, (4.2) and (4.3)]
that if @ > 1, there is a constant C' depending only on 0, C}, Cs, the constant ¢ in (8), and

geometric properties of S so that
©(B) < Cp(B) for all balls B C S. (9)
Also, for such a constant C' (but now C'is independent of ),
©(B) < Cyp(B') for all pairs of balls B" C B. (10)

We shall also assume in some of our results that ¢ satisfies the following condition for some

e>0:
r(B1)
r(B2)

w(&)u(msc( )Eso(Bz)u(Ba) it B, C B, (1)

Observe that in the case of the fractional integrals I, we can pick € = « in (11); for the
operator in (7), we can choose € = 1.
Next we define a class of Young functions that plays a key role in our results. Some further

facts about Young functions and Orlicz spaces are listed in §4.

Definition 2.1 Let 1 < p < co. A nonnegative function ®(t),t > 0, satisfies the B, condition

if there is a constant ¢ > 0 such that

© P(t) dt

/ Wdt _ (12)
Lt

Simple examples of functions which satisfy B, are t*=% and t?(log(1 + t))~'=?, both when

£ > 0.

The relevance of condition B, stems from its relationship to the boundedness of a maximal

function that is defined in terms of ®. In fact, given a Young function ®, let

B L[l
Il = w643 > 0: s [ @Dy d <13,
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and define the corresponding maximal function
Mo f(z) = sup [|fllgp- (13)
B:xzeB
We will prove the following characterization of B, 1 < p < oo, in Theorem 5.1 below:
¢ € B, ifand only if Mg : LP(S, p) = LP(S, p).

For example, in the standard case when ®(¢) = ¢" with r > 1, so that

1fllos = ((B)" [ |fI" dp) Y7 this statement reduces to the well-known fact that the
mapping
1 ) 1/r

AR ACEIAED
is bounded on LP(S, p) if and only if p > r. The characterization of B, mentioned above was
proved in the Euclidean context in [P3] and used to derive sharp two weight estimates for the
classical Hardy—Littlewood maximal function. In the general case, the characterization of B,
will play a main role in the proof of the boundedness of T" as stated in Theorem 2.2 below.
For other applications to different operators ;from harmonic analysis, see [P1], [P5], [P6],
[CP1] and [CP2].

A Young function ® has a conjugate function ® satisfying
t< ()P H(t) <2

for all ¢ > 0 (cf. §4). For example, if 1 < p < 0o and % + z% = 1, the conjugate of ¢ is t', and
the conjugate of t?(log(1+1))™*=%, 8 > 0, is t* (log(1 + 1)) =DU+) (cf. [O], p. 275).

We can now state our main result about the boundedness of the potential operators (5).

Theorem 2.2 Let 1 <p < g < oo and T be an integral operator of type (5) with a kernel K

such that (6) holds and ¢ satisfies (11). Let (w,v) be a pair of weights for which

[~

+

Q=
)

P

p(B)u(B)* 7 lwlly gllvT g 5 < C (14)

® B —
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for all balls B in S, where ¥ and ® are Young functions whose corresponding conjugate

functions U and ® satisfy ¥ € By and ® € B,. Then

([arsia) "oc ([arror an) " (15)

with C' independent of f.

In the Euclidean setting, condition (14) is a generalization of the sort of condition first
considered in [CWW] (see also [P1], [ChW2]).
For example, given p,q with 1 < p < ¢ < oo, if we choose W(t) = t"? and ®(t) = ¢"*" for any

r > 1, then condition (14) becomes

S(B)\u(B)+ (ﬁ /B W' du)"l" <ﬁ /B v duy" <c.

Assuming this r—bump condition, the conclusion (15) was proved in [SW] in the usual
Euclidean situation (with du = dx); it was also proved there for spaces of homogeneous type
but with one of the additional assumptions that both w"¢dyu, v=""'dp are doubling measures or
that there is an appropriate group stucture for S. In case v = 1 and if T is an integral
operator of type (7) with du = dx, (15) was proved in [D] without either of these additional
assumptions.

It is easy to see that when p > 1 and & satisfies the doubling property ®(2t) < c¢®(t), then

[55= G) o

for ¢ > 0. Hence, if both ® and V¥ satisfy this doubling condition, then the assumption in

Theorem 2.2 that ¥ € By and ® € B, is equivalent to assuming both

o/ qa NI gy T ' N\ dt
/c (W) e / (?t)) T

for some ¢ > 0.



The proof of Theorem 2.2 will be given in section 7 and is based on a procedure for
discretizing potential operators which appeared independently in [SW] and [JPW], combined
with the characterization of B, given in Theorem 5.1.

The case p = ¢ is important in applications, such as to Schrodinger operators, and in this
case by choosing ¥(t) = t?(log(1 + t))?~'*# and ®(t) = t*' (log(1 + t))¥ ~'*#, we have the

following special case of Theorem 2.2.

Corollary 2.3 Let 1 <p < oo and T, K and ¢ be as in Theorem 2.2. Let (w,v) be a pair of

weights such that for some 8 > 0 and all balls B in S,

o) ([ wrliog(a-+ o+ " ([ oogtas U_Ul—_(lB))]p,_Hﬁdﬂ) T ee
Then
Jarsoracsc sy (16)

Furthermore, this result is sharp in the sense that it does not hold when = 0.

Remark 2.4 [t would be interesting to derive an analogue of (16) for Calderéon—Zygmund

singular integral operators, assuming that the weights satisfy

(/B w”[log(1 + %)]p_lwdu) " (/B v P [log(1 + v_vl(lB))]p/—lde)l/p, < Cu(B)

for all balls B and some > 0. This conjecture has been partially confirmed in [TVZ] by

means of complex analysis when T s the Hilbert transform in the unit circle. There are
corresponding estimates for vector-valued mazximal operators in [P6]. Also, in [CP2], some
sharp two-weight weak-type inequalities for Calderon—Zygmund operators have been derived

assuming that

(ﬁ/Bwp[lOg(l i %)]p—wﬁ du) 1/p (ﬁ/jgv—rp' du> o <C.

Observe that here, we just need a bump on the left-hand weight.
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A natural maximal operator of “fractional” type associated with T' is defined by

M, f(z) = sup o(B) / Fldu, (17)

B:xeB

where ¢ is as in (8). For example, in the case of the classical Riesz fractional integral I,, M.,

is just the fractional maximal operator M, defined in R™ by

Maf(z) = sup r(B)* /B F)dy.

B:xeB

In any case, the pointwise inequality
M, f(x) < cTf(x)

holds for all € S. This follows easily from the fact that p(B) < CK(z,y) for all x,y € B
(even if z,y € OB for any fixed 6 > 1), as shown in [SWZ, (4.1)]. On the other hand, T'f is
often controlled in norm by M, f: in the classical situation, see [MW] and [R], and in more
general situations, see [PW].

We can extend the definition of M, by considering functionals other than ¢. Thus, let

M, f(x) = sup (B) /B Fldu

B:xeB

where 1) is a nonnegative functional defined on balls. A way in which such a maximal function
is related to T is given in the next result, which is proved in §8 using Corollary 2.3. We use

the notation M f for the Hardy—Littlewood maximal function of f defined by

1

Mf(@) = sup /B @) du(y), (18)

and if k is a positive integer, M* f denotes the k-fold iterate M (M(...(Mf)...)). Also, [p]

denotes the integral part of p.
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Theorem 2.5 Let 1 <p < oo and T, K and ¢ be as in Theorem 2.2. Then there is a

constant C such that for any weight w and all f,

[irs@redi<c [ 1@ Ma0070) dy (19)
S S
where ¢ is defined by @(B) = (o(B)u(B))? u(B)~1.

Remark 2.6 Inequalities in the spirit of (19) but for Calderén—Zygmund operators have been

derived in [P4], but the method there is completely different from the one developed here.

To understand the interest of (19), we note that in the classical situation it can be restated as

| ef@pu@de <€ [ 1f@F Map(M70) (@) do (20)

since then ¢(B) = r(B)*~™ and consequently Mgz = M,,. First we observe that the exponent
[p] is sharp in the sense that MPlw cannot be replaced by MP~w (see [P2]). Second we

observe that (20) is sharper than the inequality

/Rn | f(x)[Pw(z)de < C /n |f(2)]P Mapr(wr)(x)l/r dx (21)

proved in [A] since by standard arguments, for any k = 1,2,---, r > 1 and a > 0, there is a

constant C' such that for all f,
Mo (M*f) < O (Mar(f7)"".

The expression on the right here is clearly related to the Fefferman—Phong r—bump condition,
while the one on the left is related to the condition considered by Chang, Wilson and Wolff in
[CWW]; see [P2], remark 1.5.

We also note that in the case of the operator defined in (7), the functional ¢ in (19) satisfies

@(B) =~ r(B)P/u(B) since p(B) ~ r(B)/u(B) in this case.
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We will also derive an analogue of Theorem 2.2 for the fractional maximal operator M,,. For
this operator, the condition that we need to impose on the weights is weaker than the one
used in Theorem 2.2 for potential operators. We consider any nonnegative function ¢ (B) of

balls B C § which satisfies the following conditions:

(l) w(Bl) S C'(b(BQ) if Bl C B2 C CBl
b)  ¢(B1) w(By) < cp(By) p(Bz) if By C By (22)
c) if S is unbounded, then ~ lim ¢ (B) =0, in the sense that

r(B)—oo

given € > 0, there exists N > 0 such that ¢(B) < e if r(B) > N.

Note that condition b) corresponds to the case € = 0 in (11), and hence b) is weaker than (11).
The main example of such a functional is )(B) = r(B)*/u(B) with a > 0, and in this case,
condition c¢) is true if p satisfies a reverse doubling condition of order strictly larger than «.

Given a functional ) which satisfies (22), we define the maximal function M, as before:

M, f(z) = sup $(B) / )] duly). (23)

B:xeB

Theorem 2.7 Let ¢ satisfy (22), and let My, be defined by (23). Let 1 <p < q < o0, w be a

Borel measure, and v be a weight such that
Y(B)w(B)Y u(B)Y v p < C (24)

for all balls B in S, where ® is any Young function whose conjugate function ® € B,, i.e.,

/°° D(t) dt
— < 0
.t ot

( / (Mmm) Toc ( Lo d,u) " 25)

13
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for some ¢ > 0. Then



In particular, if w,v is a pair of weights which satisfy

1/q L
WB><éw%w) W(B) [ g 5 < C.

(Lﬂmnmwmowsc(lwwvwf@

Observe that in the last condition above, no Orlicz type bump is required on w9, and so the

then

condition is weaker than the one considered in (14).

The second statement of Theorem 2.7 clearly follows from the first one by choosing

dw = wdpu.

In the next two sections, before proving the results stated above, we give some background
facts about spaces of homogeneous type and Orlicz classes. Our main theorems are proved
after these sections. When we come to the proofs, we first prove the results about maximal

functions and then those for integral operators.

3 Spaces of Homogeneous type

In this section, we briefly recall some basic definitions and facts about spaces of homogeneous

type.

A quasimetric d on a set S is a function d : § x § — [0, 00) which satisfies
(i) d(z,y) = 0 if and only if x = y;

(ii) d(z,y) = d(y, x) for all z,y;

(iii) there exists a finite constant x > 1 such that
d(z,y) < r(d(z, 2) + d(z,9))

for all x,y,z € S.

14



Given x € S and r > 0, let B(x,r) = {y € S : d(x,y) < r} be the ball with center = and
radius r. If B = B(x,r) is a ball, we denote its radius r by r(B) and its center z by zp. If v
is a measure and E' is a measurable set, v(E) denotes the v-measure of E. We sometimes

write |E|, instead of v(E).

Definition 3.1 A space of homogeneous type (S,d, i) is a set S together with a quasimetric

d and a nonnegative Borel measure j on S such that the doubling condition
w(B(x,2r)) < C p(B(x,1)) (26)
holds for all x € S and r > 0.

The balls B(z,r) are not necessarily open, but by a theorem of Macias and Segovia [MS],
there is a continuous quasimetric d’ which is equivalent to d (i.e., there are positive constants
¢ and ¢y such that c1d'(z,y) < d(z,y) < cod'(z,y) for all x,y € S) for which every ball is
open. We always assume that the quasimetric d is continuous and that balls are open.

If C' is the smallest constant for which (26) holds, then the number D = log C' is called the

doubling order of p. By iterating (26), we have

% <C, (:Eg;)D for all balls B C B. (27)

We also assume that all annuli in S are not empty, i.e., that B(z, R) \ B(x,r) is not empty for
allz € Sand 0 < r < R < oo. By [W, p.269], any doubling measure p then satisfies the

reverse doubling property: there exist 4 > 0 and ¢, > 0 such that

% >, (:Eg;y for all balls B C B. (28)

We shall often use the following observation: if P and B are balls with P N B # () and
r(P) < pr(B) for some 5 > 0, then

P C CgB (29)

15



with ¢g = k8 + k*8 + K% To verify (29), note that if 2 € BN P and y € P, then
Ay 25) < Kld(y.27) + d(ap,25)] < K[r(P) 1 w(d(zp,2) + d(z,25)]

< K[r(P) + &(r(P) +1(B))] < s[6r(B) + £(8r(B) + r(B))] = csr(B),

which implies (29).
We will use a grid of dyadic sets in & which are “almost balls”, as constructed in [SW]. In

fact, the following has been proved there:

If p = 8K, then for any (large negative) integer m, there are points {xf} and a

family D,,, = {E]k} of sets for k=m,m+1,--- and j = 1,2,--- such that

e B(z¥, p¥) C EF C B(ah, p*t)

e For each k =m,m+1,---, the family {Ejk} is pairwise disjoint in j, and

o If m < k <[, then either Ef¥ N E} =0 or Ef C E}.

We call the family D = U,,ezD,, a dyadic cube decomposition of S and refer to the sets in D
as dyadic cubes. A dyadic cube will usually be denoted by @, and Q* will denote the
containing ball described above with %Q* C Q C Q*; thus, if Q = E]k then Q* = B(x?, L.
We set £(Q) = r(Q*)/p and call ¢(Q) the “sidelength” of (). We note that while the cubes in
each D,, have the dyadic properties listed above, there may be no nestedness properties of the
cubes in D,,, relative to the cubes in D,,, if my, ms are different.

As usual, we say that w is a weight if w(x) is a nonnegative locally integrable function with
respect to u, and for a measurable set E, we write w(E) = [, w(x) du(z). Thus,

w(E) = |E|

wdp”
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4  Orlicz spaces

We next recall some basic definitions and facts about Orlicz spaces, referring to [RR] and [BS]
for a complete account.

A function @ : [0, 00) — [0, 00) is called a Young function if it is continuous, convex,
increasing and satisfies ®(0) = 0 and ®(¢) — oo as t — oo. It follows that ®(t)/t is increasing,
and in particular, that

O(yt) > vP(t) ify>1andt>0.

For Orlicz spaces, we are usually only concerned about the behavior of Young functions for ¢
large. If A, B are two Young functions, we write A(t) ~ B(t) if there are constants ¢, c;,co > 0

with c; A(t) < B(t) < o A(t) for t > c. By definition, the Orlicz space Lg consists of all

fo () e

for some positive . Note that if 0 < A\; < Ay, then
o (1) < Mg (1Y
A2 A2 A1

lim (I><m) du=0 1if f € Lg.
S A

A—00

measurable functions f such that

so that

The space Lg is a Banach function space with the Luxemburg norm

11l = 1l = int3 > 05 [ @l g <y

S

Each Young function ® has an associated complementary Young function ® satisfying

t< o )P H(t) < 2t (30)



for all t > 0. The function ® is called the conjugate of ®, and the space Lg is called the
conjugate space of Lg. For example, if ®(t) = ¢ for 1 < p < oo, then

d(t) =t",p' = p/(p — 1), and the conjugate space of LP(x) is L (). Another example that
will be used frequently is ®(t) ~ tP(logt) ™!~ for large ¢, 1 < p < oo, € > 0, with
complementary function ®(t) ~ ¥ (logt)® D1+ (cf. [0]).

A very important property of Orlicz spaces is the generalized Holder inequality

/S Faldu < [ fllallls- (31)

We will sometimes assume that ® satisfies the doubling condition ®(2t) < C' ®(t). If ¢ is
doubling then ®'(t) &~ ®(t)/t almost everywhere.

Recall that if X is a rearrangement-invariant function space with respect to the measure p,
then the fundamental function of X, ¢ (¢), is defined so that if ¢ > 0 and E is any

measurable set with p(E) = ¢, then

Py (t) = HXE”X

See [BS] for more information. In particular, it is shown there that for any Young function ®,

Lg is a rearrangement—invariant space with fundamental function given by

1
t
In particular, if £/ is a measurable subset of X, then
1
||XE||<I>,# = 1Ly (33)

w(E)
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5 Auxiliary exotic maximal functions

In order to define another maximal function which will play a key role, we need to introduce

local versions of Orlicz norms. If ® is a Young function, let

1
a5 = 15, = 0603 > 02— [ o<y

For this norm, we will use the fact that if A > 0, then || f[|5 5 > A if and only if
B) [, ® 5 ®([f|/A) du > 1. Furthermore, the local version of the generalized Holder inequality
(31) is
5 | Fodn <11 plals o (34)

As in (13), there is a corresponding maximal function defined by

Mo f(z) = sup [|fllgz (35)
B:xzeB

This maximal function has been used in the usual Euclidean context in [P3] as a tool to
derive sharp weighted estimates for the Hardy-Littlewood maximal function. Also, it was
considered in the work of T. Iwaniec and Greco [GI] and in [WW] in case ®(t) ~ tlog t.

Note that from 32 we have with the corresponding normalization that

HXKHQB - (I)fl( w(B) )’

and therefore

1
Malx)le) = sup —
(

@ - (B)
BzeB H-1 M(tjgﬂ}())

The main results that we will prove about Mg are summarized in the next theorem.

Theorem 5.1 Let 1 <p < oo and ® be a doubling Young function. Then the following

statements are equivalent.
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i) ® € By, i.e., there is a constant ¢ > 0 such that

/Oo o) dt . (37)

[/

ii) There is a constant C' > 0 such that

/ Mo f(x)? du(x) < C / £ du(z) (33)
S S

for all nonnegative f.

iii) There is a constant C > 0 such that

/mf (2) dpu(x) <c/f Y Muw(z) du(z) (39)

for all nonnegative f and w, where Mw is the Hardy—Littlewood mazimal function defined in

(18).

iv) There is a constant C' > 0 such that

[ Mty g dnta) < © [ fap B

for all nonnegative f, w and u, where M again denotes the operator defined in (18).

) dua) (40)

The proof of Theorem 5.1 is based on the following lemma.

Lemma 5.2 Let ® be a Young function and f be a bounded nonnegative function with
bounded support. For A >0, let Q = {x € S : Mo f(x) > A}. If Q) is not empty, then given

o > 1, there exists a countable family {B;} of pairwise disjoint balls such that

i) UiB; C Q\ C U;Bf, where B* = k(4k + 1)B (K is the quasimetric constant),

77

i) [ fllgp, > A for all i,

iii) ||fllg 5 < A if B is any ball with B; C B and r(B) > or(B;) for some i.

20



Consequently,

f

ue < [ od)dn (41)

S

Proof: The proof uses a sort of Calderén—Zygmund decomposition combined with Vitali’s
lemma. A similar method occurs in [MP]. Fix f and A. If x € Q,, there is a ball B such that

z € B and | f|lsp > A Define R = R(f,)) by

R = r(B).

su
B[ fl 5>
We claim that R is finite. Indeed, suppose that the support of f is contained in a ball By, and

let B satisfy ||f|lp g > A. Then by definition of the Luxemburg norm, B satisfies

it () () 5o () 5

Therefore, B and By must intersect. Assuming as we may that r(B) > r(By), we easily obtain

from (29) that By C x(2x + 1)B, and then

o (Ulhm) MBOBY (11 015

() (35)

for some fixed § > 0 by the reverse doubling property of u (see (28)). In particular,

1/5
r(B) <c® (%) r(Bo). (42)

This shows that R is finite. It also shows that each ball B for which || f||5 5 > A is contained
in ¢Bj with ¢ depending only on A and f, since then B intersects By and (42) holds.

Now, for each x, let

Rx - R:U(f7 /\) = sup T(B)7
B:xeB,HfHQB»

and note that R, is finite since R, < R. Fix o0 > 1. If x € Q,, there is a ball B, which

contains x, whose radius r(B,) satisfies R, /o < r(B;) < R, and for which || f|lg 5. > A. If B
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is any ball with B, C B and r(B) > or(B;), then r(B) > R,, and consequently [|f|ls 5 < A

since x € B. Thus the ball B, satisfies ii) and iii). Also note that 2, =J B,. Picking a

JTGQ)\
Vitali type subcover of {B,}.cq, as in [SW], Lemma 3.3, then provides a family of pairwise
disjoint balls {B;} C {By}zeq, satisfying i). Therefore {B;} satisfies 1), ii) and iii).Finally,
(41) follows in a standard way from i) and ii) by the doubling property of x and the

disjointness of the B;:

) <D (B < Cu(B

o fo(use oo

Proof of Theorem 5.1

We may assume that f is bounded with bounded support and that f > 0. We start by
proving that i) implies ii). Let Q) = {z € S : Mg f(x) > A}. For each X\ > 0, we split f as
usual: f = fi+ fo where fi(z) = f(z) if f(z) > A/2 and fi(z) = 0 otherwise. We may assume
without loss of generality that ® is normalized so that ®(1) = 1. Since fo < A/2, it then
follows that Mg(f2) < A/2, and consequently that

Mo (f) < Ma(f1) + Ma(fa) < Ma(f1) + A/2. Using this combined with (41), we get
2f(iﬂ)>
M(QA) = ¢ /xES:f(:z:)>)\/2 ? ( A dlu(x)

o dA
[ Moty dn = p/ Wu() S

gO/OOOAp/xesf - (2];(3;)) _O//Zf Apcp(QfA("”)) %du(az)
e frr [ M [

since ® € B,. This proves that i) implies ii).

Then
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We now show that ii) implies iii). For k € Z and v > 1, 7 to be chosen, let
QU ={2eS: Ms(f)(z) >~}

For o > 1 to be chosen, by applying Lemma 5.2 to each €2, we obtain balls {B]"?}j with
U, Bf O C U, cBY, and for each k the balls {B}} are disjoint in j. Furthermore, for all k
and 7, || fllg ge > 7" and || fllg 5 < 7" if B is any ball with B C B and r(B) > or(Bj). Then

[ Matrpwdn <3 [ Malppwdn < 300 w0

& £\ Qg1

¢ Sy eB) = ST i

w ch l/p
| Gi) 1

Now consider the family of sets {Ef}k] defined by E¥ = B\ Q1. Observe that the E¥ are

(eB5)

u(BY). (43)

k
®, B!

disjoint in both k, 7. We will show that for sufficiently large v there exists a constant ¢ such
that for all £, j,

u(BY) < cu(EY)

Assuming this for the moment, we obtain from (43) that

[Mappuinze s
S k.j

(inf gx Mw)l/prZB u(ES) <c Z Ma(f(Mw)''?) dp
J , f “ JEk

< c//\/lq,(f(Mw)l/p)pd,u <C /prwd,u by hypothesis,
S S

and thus iii) would be proved.

To prove that pu(B}) < cu(EY) if  is large, it is enough to show that

1 P
,u(B]]-“ NQgr1) < 5 u(Bf)lf ~is large. (44)
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Recall that by Lemma 5.2, the sets { B¥} are disjoint in m for each k, and that
Q1 C U, eBi™ with ¢ = r(4k + 1). Moreover, || fllg gesr > 2™, and || fllg 5 < 7* if B

satisfies B} C B and r(B) > or(BY) for some j, k (with ¢ > 1 still to be chosen). Thus
p(BE N O < S (BN eBEH) (45)

We claim that if Bf N eBit # 0 then r(B}) > r(BEH). To see this, first note that if B} and
B! intersect and r(BE) < r(BE), then BY C ¢; BEM for a geometric constant ¢; > 1.

Since ® is a Young function, ®(¢)/t is increasing, so that

/ f f
? (W) = (';““) 278 ('V’““)’ v

and therefore by the doubling property of u, there is a geometric constant C' > 1 such that

1 f v f
—_ L >__ 1
p(er B /CIBfn“ v <7’“> = C u(BLH) /B,knﬂ ? (7“1) e

~
> =>1,
C

if we choose v > C. (Recall that for any A > 1, the inequality ||f|ls z > A is the same as

B) J5 ®(f/A) dp > 1.) This implies that || f||4 , grr1 > 7*. However, if we now choose o with
1 < 0 < ¢, we obtain from the inequality 7(Bf) < r(B}t') that the ball ¢; B;™ has radius at
least or(BY), and therefore since Bf C ¢; B, we must have || fllg ., g < 7% by
construction of B]’?. This contradiction shows our claim.
Thus if Bf N Bt # 0, then r(B}) > r(BJ'), and consequently BJi' C ¢;BY. Hence by

(45) and the doubling property of n,

pB Q) < Y uBineB) <e o Yo (B

m:B,}f:rlCclB;? m:B,I;fICqB;C
<e Y < i
<c k+1 k+1 dp <c k(ID i dp
m:B Ce1 BY B c1Bj
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since the sets { B¥11, = are disjoint. Again using the fact that ®(¢)/t is increasing together

with property iii) of Lemma 5.2 for B]’?, we can continue the last chain of inequalities with

c f c o C e 1 &
< - (=) du<— BY) < —u(BY) < = u(B;
= /clB;? (’Yk) M_,y:u(cl ])_’Ylu( j) 2[’[’( ])
if v is large. This completes the proof of (44) and also shows that part ii) of the theorem
implies part iii).

We prove now that iii) implies iv). Assume then that iii) holds. Since (40) is equivalent to

p  w(x) p
jzﬂ4<fg>cr> Eﬁzgaﬁzz5p;du<x>f;cQ/£f<x> Muw(z)du(z),

for all nonnegative functions f, g, and w, iv) follows immediately from (39) after an

application of the inequality
M(fg)(x) < Mo f(x)Msg(x), x €S,

which is a consequence of the local version (34) of the generalized Hélder’s inequality.

To prove that iv) implies i), we let w = 1 in (40), obtaining

P ! x xpl x
[ MY S ) <€ [ P (16)

(63}

for all nonnegative functions f and w. Fix any z € S and r > 0, and let K = B(z,r). WE
USE HERE THAT THE SPACE HAS MORE THAN ONE POINT BY THE ANNULI

CONDITION. Choosing f = u = x,. in (46) gives

v 1
.LM““@>M%umumW“”SC

(where C' depends on p(K)). On the other hand, by (36),

1
Ms(f)(x) = sup —————
(

e &1 (_aB) )
B:xeB H—1 u(lijK))
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1
3-1()

Now, since t — is increasing, it is easy to see that there is a positive constant b
depending on pu(K') such that if d(x, z) > nr for a large geometric constant n > 1 to be

chosen, then

1
Ma(xx) (@) = O-1(bu(B(x,d(z,2))))

Similarly, the Hardy-Littlewood maximal function satisfies M (xx)(z) > ¢/u(B(z, d(z, 2)).

Letting B(z,n*r) = By and A}, = By, \ By, we obtain from these estimates and doubling that

i 1 - b du(@)
J MO G 40 2 C [, MBI e
> . dp(z)
C kZ/ B(z,d(z,2)))) 1(B(z, d(z, 2)))P

~
~

/ p(B(z,d(z, 2)))?

=1
1

>

i O (b
[ & ¢ (B do )P dp(z)

- p(Ar) =1, P
~ O (0 u(Bg))" -
Recall that since annuli are not empty, the reverse doubling property (28) of 1 implies that

p(Brt1)

>c 775.
1(By) .

If we choose 7 so large that ¢, n° > 2, then p(Ag) = w(Biyr \ Bi) > 5 (By). Combining this

with (30), it follows that the last sum is larger than a multiple of

i M(Bk) >Ci/b/u(3k+1) t @
OV u(Br)P T = Jyusy PTHOP

/°° t dt /°° O(t) dt
=C — — & —.
oy @R LT St

The last formula follows from the change of variables s = ®(¢) and from the fact that
Q'(t) ~ ®(t)/t since ¢ is doubling. The constants depend on z and r. This gives condition

(37) and concludes the proof of Theorem 5.1.
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6 Proof of Theorem 2.7

The proof uses arguments similar to ones in the proof of Theorem 5.1, particularly those

showing that ii) implies iii). Recall from (23) that the maximal function M, f is defined by

Mf(x) = sup 0B / fldu

B:zeB

where 1(B) is assumed to be nonnegative and to satisfy (22), i.e

a) if By C By C ¢ By, then ¢(By) < c(By);
b) if By C By, then v(By) u(B1) < ctb(By) pu(Ba):
c) if S is unbounded, then lim, ) ¥(B) = 0.

We need a version of Lemma 5.2 adapted to M.

Lemma 6.1 Let f be a bounded nonnegative function with bounded support, and let 1) and
My f be as above for any measure j1 (u need not be a doubling measure here). For A > 0, let
O ={reS: Myf(x) > A}. Then given x € Qy and o > 1, there is a ball B, C 2y

containing x with

W(B,) | fdp> A

Bg

and such that if B is any ball with B, C B and r(B) > or(B,), then

w<B>/deu <A

Moreover, if Q0 is not empty, then given o > 1, there is a countable family {B;} of pairwise

disjoint balls such that

i) U;B; C Q\ C U; B}, where B* = k(4k + 1)B;

77

ii) V(B fB fdu > X for all i;
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wi) if B is any ball such that B; C B and r(B) > or(B;) for some i, then ¢(B) [5 fdu < A

Proof: If x € Q,, there is a ball B with z € B and ¢(B fB fdu> A For xz € Q,, let R, be

defined by
R, =sup{r(B) :x € B and w(B)/ fdup> A}
B

We claim that R, is finite. If S is bounded this is obvious. If S is unbounded and the support
of f is contained in a ball By, then any ball B for which ¢(B) [ 5 J A > X must intersect By

and satisfy
A< o(B) / Fdp < |[fll g 1(Bo) 6(B).

Since A, f and By are fixed, the last inequality means that there is a constant ¢ > 0 so that
Y(B) > ¢ for any such B, and consequently, by property c) of 1, that r(B) is bounded for
such B. This shows that R, is finite and in fact bounded in z for x € €2,. Moreover, since
every such B intersects By, it now follows that any B which satisfies ¢(B) [ g Jdu > Xlies in
a fixed enlargement (depending on f, \) of By.

Thus, if ¢ > 1 and = € €2,, there is a ball B, containing x whose radius satisfies

R,/o <r(B;) < R, and for which ¢(B fB fdp > X This ball satisfies ii), and if B is any
ball containing B, with r(B) > or(B,), then r(B) > R, and hence ¢(B) [, fdu < . Also

observe that Q) = B,. Picking a Vitali type subcover of { B, }.cq, gives us a family of

ey

pairwise disjoint balls {B;} C {B,}.cq, satisfying all the desired properties.

For v > 1 to be chosen and k € Z, let {2 = (1x. Then

/ Myf)? dw = Z/ . (Myf)odw <~ y#T00(Qy). (47)
2\ Q41 k

Assuming as we may that f is nonnegative, bounded and has bounded support, and given

o > 1, we can use Lemma 6.1 for each k to find a family {B}}; of pairwise disjoint balls with
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U, B} € Q% C U, ¢B} and 4(Bj) ka fdp > ~*. Moreover, if B is any ball with BY C B and

r(B) > or(B}) for some k, j, then ¢(B) [, f dpu < ~*. Then for the last sum in (47), we have

>t <03 (s |,

By the local generalized Holder inequality (34),

fd,u> w(e Bf)

J

1
— d :—/ votdu < || folls aellv™? )
M(B]k) ka I M(B]’?) Bj’?f w<|f H<I>,B;?H H<I>,BJ’.“

Collecting estimates, we obtain
q
J sy < 7SS 0BT (B ol gl o) e B
k,j

1 q
< Z W(BeB) w(eB) v g o] £V e (BEY".
Since we are assuming (see (24)) that for all balls B,

L

-
‘w(B)e|lv g < C,

S

(B)pu(B)

it follows that the last expression is bounded by

q/p

¢ Z 1follg 5 #(B5) <o Z 1fol15, 5 (B])

since q > p.
Consider the family of sets {EF},; defined by Ef = B} \ Q44 and observe that the Ef are
disjoint in both £ and j. We claim that if v is sufficiently large, there is a constant ¢ such that

1(BF) < cp(EY) for all k, j. To prove this, it is enough to show that if v is large, then

1
p(By N Qeyr) < EM(B]"C)-

Since Q41 C U, cBEF,

u(Bf N Q) < p(BE N eBEH). (49)
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Let BEM satisfy BY N eBpt # 0, and suppose that r(Bf) < r(BEH). Then BF C ¢; Bi! for
some geometric constant ¢; > 1, and therefore, using properties of B*"! and property a) of ¥,

we obtain

w(cle%“)/ fdp>cep(By) [ fduz ey >0
if 7y is large enough. Now pick 0 = ¢; and let B = ¢; B}*'. Then BY C B,r(B) > or(B}) and,
by the last estimate, ¢(B) |, gfdu> ~*, in contradiction to the properties of Bk Thus
r(BY) > r(BEH) if BY N eBEM # 0, and consequently, Bit! C ¢y BY in this case. Hence, by
(49) and the doubling property of p,

pB Q) < D0 wBiNeB) < 3T (B

771:B7kn+1CclB;C m:BfnJrlCclB;“

C
< O e [ s

k
K m:Bfn'HCqBJ’? Bm
Using property b) of ¢ together with the fact that the sets { B¥F'},, are pairwise disjoint, we

can continue the chain of estimates above with

C
< = (1 By )(er BY) Z

m:BfnJrlCclB;C

C
fdp < WM(B;?W(QB?) fdu

Bﬁjl clB;.C

C C

because of the properties of B;? and the fact that o = ¢;. To conclude the proof of the claim,

we just choose 7y so large that C'/y < 1/2.

It follows from (48) and the claim that

q/p

/5 (Myf)? d < C [Z |0l e ()

k“hj

<C

a/p a/p
Z ./\/lq) fo ”d,u] <C </ Mg (fv)? du)

J
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<o ([oran) "

This completes the proof of Theorem 2.7.

O
7 Proof of Theorem 2.2
Recall that the potential operator T is defined by
71w) = [ 16) K dnto) (50)

where the kernel K (z,y) satisfies (6) and p is the underlying (doubling) measure on the space
S of homogeneous type. Associated with K is the functional ¢ = ¢ acting on balls defined
by

p(B)= sup K(z,y) (51)
z,yEB
d(a,y)>er(B)
for a sufficiently small positive constant c. We recall that we are assuming that for some

e > 0, ¢ satisfies

r(By)
7(B2)

w(Bl)u(Bl)SC( )690(32)#(32) if B, C B (52)

We divide the proof of Theorem 2.2 into several steps.

7.1 Step 1: Discretization of the potential operator

Let D,, be the grid of dyadic cubes associated with p = 8+° > 1 and a fixed m € Z as in

section 3. For f > 0, let

Taf@)= [ K du)

Momentarily fix z,y with d(z,y) > p™ and pick the integer ¢ > m for which

pt < d(z,y) < pt Select Q € D,, with I(Q) = p* and z € Q. Let B(Q) denote the
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containing ball of @), and let zg denote its center xp(g). Thus, %B(Q) C Q C B(Q) and

r(B(Q)) = p**'. We then have
d(y,zq) < k(d(y, z) +d(z,2q)) < K(p"™" + p) = 2kr(B(Q)),

so that y € 26B(Q). Since d(z,y) > p* = r(26B(Q))/2kp, then by definition and property
(10) of ¢,

K(z,y) < ¢(26B(Q)) < Cp(B(Q)).

Hence,
K(2,y) < ep(B(Q)X ()Xo 500 ¥) S ¢ D o(B@)Xo(¥) Xy W):
QEDm
where the last estimate holds for all x,y with d(x,y) > p™. Therefore,
T.fw) < e 3 e(B@o@) [ fw)duty) (53)
Q€D 26B(Q)

and then if ¢ > 0, we obtain

[@angudnse Y oB@) [ fin [ gudn (54)

S GcDn 26B(Q) Q

For k € Z and v > 1 to be chosen, let

Ck:{QGDm:'yk<@/ngdugfykﬂ}.

Assuming as we may that ¢ is bounded and has bounded support, we can choose maximal

cubes {Q¥}; in D, with

1
k
vy <—/ gwdp.
@) Jor

IfI ]k is the next largest dyadic cube containing Qf, then

1 1
k k k+1
— D~ du < — < du < < 55
s M(Q?) /Q’? g N C%p:u(ljk) /I’.C g = Gl =T ( )
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by choosing v > ¢, ,. Thus Q? € C*. Since each cube ) € D,, must lie in some C*, it must be

contained in some Qf. Of course, the sets {Q;‘?}j are pairwise disjoint for fixed k. Then

1
/( Tof)gwdp <ed Y o /%B(Q)fdum/cggwdu

k Qeck

<CZ’V'““Z Z (@) /2 | (56)

i QA

where we have used the notation A,,(Qy) = {Q €D, :Q CQo}

Lemma 7.1 Let f > 0 and ¢ satisfy (52), and let A, (Qo) ={Q € Dy, : Q C Qo} if

Qo € D,,. There exists a geometric constant C' such that for each Qo € Dy,

S w(BQWEQ) /

fdp < C o(B(Qu))u(Qo) / fdu.  (57)
QEAm(QO) ZKB(Q)

#(2r+1)B(Qo)

Proof: The left side of (57) equals

Z S w(BQ) (@) / fdu,

(=0 Qeam(Qp) 2:B(Q)

£(Q)=p~4(Qo)
which by (52) is at most

C N —te B 0 0 d
S 7 o(BQ ))M(Q)/M(Q)f P

(=0 QeAm(Qp)
2(Q)=p~*(Qo)

—cp(BQ) Q) Yt Y / 5 (58)
=0 : K

QEAm QO)

{Q)=p~*(Qo
To estimate the last expression, first observe that if Q C Qy and £(Q) < £(Qy), then

2kB(Q) C k(2K 4+ 1)B(Qo), since if y € 26B(Q) then
d(y, q,) < wld(y, 1q) + d(xq, 1q,)] < r[2rr(B(Q)) +1(B(Qo))]

= [26pl(Q) + r(B(Qo))] < £[26pl(Qo) + r(B(Qo))] = £(2k +1) r(B(Qo))-
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Thus (58) is at most

co(B(Q0) p(Q0) 3 5 /(2 e 2 Xag®) @) ()

=0 QEDm
£(Q)=p~"4(Qo)
and therefore (57) will follow if we show that
QeEDm
£(Q)=p~4(Qo)

uniformly in x, j, k, 1, m. To prove this, fix x, j, k,[,m and write r = p~“4(Qo). If Q € D,,,

(Q) =r and = € 2cB(Q), then for any y € ) we have

d(z,y) < kld(z, 1) + d(xq, y)] < k[26r(B(Q)) + r(B(Q))]

< k(26 +1))pl(Q) = e,

so that @ C B(x,c¢yr). But those Q € D,,, with ¢(Q) = r are disjoint, and consequently by
doubling, since each @ has sidelength comparable to the radius of B(x,c;r), the number of
such Q) C B(z, c¢ir) is bounded uniformly in « and r. This proves (59) and so also (57).

We will apply Lemma 7.1 to each Q?. In fact, by combining (56), (57) and (55), we obtain

k41 k k
[(Eangwins e S om@ma [ g

k,j

<o S eB@) [ fan [ guwdn (60)
> K(2r+1)B(QY) Q

This completes the process of discretizing T5,.

7.2 Applying the condition on the weights

For simplicity, let Qg“ = k(2k + 1) B(Q}). We estimate (60) by using the generalized Holder

inequality (34) and the growth condition (9):

/S(Tmf)gwdu
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<cZgo Q)( (Q’f)/ f u)( (Q’f)/ gwdu) 1(Q5)

<c Zs@ (@)@ [1fv]15 v e g llglla gellwlly gr 1(Q5).

where we have used (10) to majorize gp(B(Q;‘?)) by a multiple of go(@f) By the doubling of p,

we can also majorize ||w » by a fixed multiple of ||w||y 5+ Then using condition (14) on
v,Qk v,Qk
g v

the weights and Holder inquality, we can continue the estimates above with

1
7

<e Z( (@5 Twlly g v logr ) 10l g (@57 llgllg g (@57

1
7

<o Z I folla,grin(@)7 llglg,qrn(@))7
1/q 1/¢

(Z £l e Qk->5> (Z oIl e (@] )
1/p 1/¢

(Z £l g (@ >) (Z lollf, e (@) )

since ¢ > p and g is doubling.

7.3 Patching the pieces together

Recall that the family {Qf}j consists of maximal dyadic cubes satisfying

1
k
& <—/ gwdp,
M(Q?) Qk

and that we also have
1

p(@F)
Let Q; = {z : M2 g(x) > +*} where M¢g is the dyadic maximal function defined by

/ gwdp < cu .
@

Mpg(e) = sup —mg / 9] dp,

(62)



and note that 2, = U, Q As before, consider the sets Ek Qf \ Qx11. These are pairwise
disjoint in both j and k, and we will show that there is a universal constant ¢ such that for
each 7, k,

Q%) < cu(EY).
The proof is somewhat easier than before due to the dyadic structure. In fact, since

w(QF) = p(QF N Qpy1) + u(EY), it is enough to show that
M(Qf N Q1) < %N(Q?)
and then pick v > ¢, ,. We have
QN Quyr) = Y (@ N Q).
¢

If Qk N QkH is nonempty, then by the dyadic structure, either Qk C QkH or QkH C Qf If

Qf were strictly contained in Qlfl, then by the maximality of Qf we would have

— gwdp <7,
Q) Jar
which contradicts the fact that this average exceeds v*+1. Consequently, k“ C Q? if these

sets intersect, and therefore

1
k o k+1
Q7 N Qpyr) = Z @) < Z AR /Qf“ gwdp

EQk“CQf ZQkHCQ?

1 Cu.p k
§7k+1/k9wdu< (Q)

J

which proves the assertion above.

Consequently, by (61),

1/q
/1 mf>gwdu<c<2||fv||wu< >> (Zuguwu )
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<ec (/SM¢(fv)pdu)l P (/SM\IJ(Q)‘Z/ dﬂ)l " <e </S(f7’)pdu>l/p (/qu, d'u)l/q,

by using Theorem 5.1, since ® € B, and U e B, by hypothesis. Since the constant c is

independent of m, Theorem 2.2 now follows from duality by letting m — oo.

8 Proof of Theorem 2.5

8.1 A local version of a classical lemma of Wiener

We will derive a local version of a result of N. Wiener which leads to a way to control the
LlogL norm of a function by the L' norm of its Hardy—Littlewood maximal function. We
first need a local version of the classical Calderén-Zygmund decomposition as shown in [MP].
We adapt the arguments there to our context.

Fix 0 > 0 and a ball By, and consider the following family of balls adapted to By:
B=Bp,s={B:xzp € By and r(B) < r(By)}. (63)

This family has the properties listed in the next lemma. We use the notation By = (14 9)kBy,
. . . _ 1

where x is the quasimetric constant of d, and we also denote f, = B / 5 fdp.

In order to obtain our local version of the Calderén-Zygmund lemma, we begin with the

following observations.
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Lemma 8.1 Let By be a ball, B be defined as in (63), and D be the doubling order of u

relative to By, 1i.e.,

—~ —~\D

B B —~
A 0)<cu (Z( °)> if B C By.
Let [ be a nonnegative function which is integrable on B\o.

a) If B € B then B C B,

b) If B € B and f, > A, then

FNYD
r(B) < (cu% r(Bo).

If we also assume that \ > fny\O, where v = Cu% and M > 0, then
s\YD

Proof: The first observation follows from the quasimetric inequality, since if B € B and
x € B, then
d(z,vp,) < Kld(z, 2p) + d(vp, ¥p,)] < K[r(B) + r(Bo)]

< k[0r(Bo) + r(Bo)] = k(1 4 §)r(By).

To show b), let B € B and fp > A. Then by using a) and the doubling property of u, we have

u(Bo) r(B)\"
A<fp= M(B)fl?SC“(m) 15

and the first part of b) follows. The second part of b) is a simple corollary of the first part.
O

Given an integrable function f on E), the maximal function of f associated to B is defined by

1
My f(x) =B:§£GB@/BUMM
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if x belongs to an element of the basis B, and M f (x) = 0 otherwise. Therefore, if A > 0 and
we define

={reS: M,f(z) > A},
then Q) C B\o.

The version of the Calderon-Zygmund lemma that we will use is given in the next lemma.

Lemma 8.2 Let f be a nonnegative and integrable function on E), v be as in part c) of
Lemma 8.1, and \ > fyféz. If Q0 is not empty, then given o > 1, there exists a countable

family {B;} of pairwise disjoint balls such that
i) U;B; C Qy\ C U;B], where B* = k(4k + 1)B and k is the quasimetric constant
ii) r(B;) < (%)I/D T(E\o) for all i, where D is the doubling order of p,
iii) @ fBi fdu> X\ for all i,

Z.”U) mfa&fd,u S A ZfO'Bl eB.

Proof: The proof is similar to that of Lemma 5.2. Fix f and \. If z € Q,, there exists a ball

B' € B with z € B" and ﬁfB,fd,u > \. Define R = R(z, f,\) by
R =sup{r(B): B € B,z € B and fg > A}.

Lemma 8.1 implies that
sNUD
R < <M> 7(By).
Then there is a ball B, with € B € B whose radius satisfies £ < 7(B,) < R and for which
[, > A. For this ball, ii), iii) and iv) hold with B, in place of B;. Part iii) implies that

Oy = U, cq, B:- Picking a Vitali type subcover of { B, }.cq, as in [SW], Lemma 3.3, we obtain
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a family of pairwise disjoint balls {B;} C {B,}.cq, satisfying i) as well as the rest of the

properties.
(]

In our context, we have the following version of a classical estimate due to Wiener.

Lemma 8.3 Let f be a nonnegative locally integrable function, § > 0, By be any ball, and

be as in Lemma 8.1 with M chosen to satisfy
M > [k*(4k + 1)(1 +0)]P6' P,

where K is the quasimetric constant and D is the doubling order of . Then there exists a

constant A = A, ,, such that for each A > yfég,

;/,\ fdu < Ap({x € By : My(f)(x) > A}). (64)
{z€Bo: f(x)>A}

Remark 8.4 In R", if we consider a cube ) instead of a ball, and if Mg denotes the usual
dyadic mazximal operator with respect to @, then it is not difficult to see that a corresponding

wnequality holds with no “blow-up” in the constant. To be more precise, we then have

/ Fdu <2 p({z € Q : MAF(z) > A})
{z€Q:f(x)>N}

> =

for X > fo.

Proof of Lemma 8.3: Fix A > 7 f5 with v = c,M/é and M to be chosen. Note that

O ={ze B\O : Mg(z) > A\}. We may assume without loss of generality that f is bounded.
We may also assume that €2, is not empty since {z € 1/3\0 : f(x) > A} C Q) (except possibly
for a set of y-measure zero) by the Lebesgue differentiation theorem. Applying Lemma 8.2 to
f and X with o = k(4K + 1), we obtain a family of disjoint balls {B;} satisfying

U; B: € Q, C U, 0B;. Furthermore, for all i, @ Jp, fdu> X and m Jo5, fdu < X since
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oB; € B if we choose M with MYP > k2?(4k 4+ 1)(1 + 6)6"/P~1, because o B; is centered in By

and

—

r(0B;) = or(B) < o (M) v r(By) = o (%) 7 (1+ 8)wr(Bo) < or(By)
for such M.

Then, since {x € By : f(z) > A} C Q) a.e., these properties together with the doubling of p

imply that

fin< [ faus / Fd
/{‘J‘GBof )>A} Qx Z
<)\ZMUB <A)\Zu ) < AMp(Qy),

which proves the lemma.

8.2 Proof of Theorem 2.5

We will show that Theorem 2.5 follows from Corollary 2.3. Thus, we must show that there are
positive constants C' and 3 so that the pair of weights (w'/?, { Mz(MPlw)}/P) satisfies the

condition

Ly = ¢(B)u(B)|lw (MM )} <C

1/p||LP(logL)P*1+5(B) | v ‘ ‘ L?' (logL)?' =1+8(B)

for all balls B in S. Recalling that $(B) = (o(B)u(B))” u(B)~" and that B = (1 + §)kB, we

) =

)P 1/p
have that Mg(MPlw)(z)~1/P < (% [z MP wdu) for all z € B. Hence,

~

(BB [ du) h

Liy < lp(B)u(B) [P |[7, 100y I+B<B>< u(B)

-1

1
< CHw”L(logL)p—1+B(B) (m /J§ M dﬂ) )

by the reverse doubling properties of ¢(B) and u(B) (see (9) for ).
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Therefore, showing that Lg < C will follow from proving that

Cp
[Pl
HwHL(lOgL)p—1+ﬁ(B) < ,u(é)/ﬁM wdu (65)

for an appropiate 5. Now, if we choose 8 = [p] —p+ 1 > 0, we must check that

P / M dy.

Hence, everything is reduced to the following general lemma.

Lemma 8.5 Let 6 >0, k=1,2,---, B be a ball and B= (14 §)xkB where k is the
quasimetric constant. Then there is a positive a constant ¢ such that for any measurable

function w,

T wdp. (66)

This lemma, in the same form but in the context of R™ and with balls replaced by cubes
(with no “blow-up” (14 0)x in the constant) can be found in [P7]. A similar estimate is also
given in both [GI] and [WW]. The idea of deducing L logL behavior of a function from
integrability of its maximal function goes back to E. Stein in [St], although the inequality
proved there does not preserve homogeneity as ours.

Proof: By definition of the Luxemburg norm, (66) will follow from showing that for some

constant ¢ > 1, ¢ independent of w,

/—log (14 4y dp <1, (67)
B

where we denote \p = ﬁ fﬁ MF*w dp.
To prove this, we will use induction. We start by proving (67) with k=1. Let f = w/\p.

Recall that fp fdpsothat 0 < fg < % by the Lebesgue differentiation theorem and

= 5 s
the definition of Ag. Using the formula

/X(I)(f)dl/:/ooo@'()\)y({meX s f(z) > A})dA
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which holds for any Young function ¢, we have

1 1 > 1
_B)[Bflog(1+f)duzu(3)/o A € B () > M)A

L /WC}§ L /°° I +11
= — +— e — + ,
u(B) Jo w(B) Sy

where v is given in Lemma (8.1) and where we use the notation f(E) = [, f du for any

measurable set E. Recalling that fz < 1/c, we have by the doubling property of u that

< Mé) /:o 1iAu({xE§:M3f(x) > A}) dA
A

o ~ A 1
< p({x € B: Mf(x) > \}) d)\— / Mfdy=—— /deu—g
i ), 0= w8 J5 MR
by definition of Az and doubling. Therefore,

Cy C
T+Ir<=—l4+=<1
C &

if ¢ is large enough.
We now assume that the estimate holds for a certain k. Then with f = w/Ap and

_ Akl
A = e M w dpu,

k—|—1/00010g (1+)‘>f({x€B;f($)>)\})d)‘

w(B) 1+A

1 75 00
_ k1 (/ B+/ --->:I+H.
B) 0 g

—B)/Bflogk“(l—l—f)du:
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Again by the Lebesgue differentiation theorem, we can chose ¢ > 1 independent of B and w

such that [ < 1/2. Let ®(A) = Alog(1 + A). Then ®'(\) = log"(1 + \) + Eee 0 g

again for 11 we use estimate (64):

k41 [ log"(1+ ) .
H_M(B)/m§ (e B f(@) > A ax

<Al D) / TABLEN e B Mg p(a) > A)) A
15

w(B) I+ A
_ Akt [
- u(B)

' (Nu({z € B: Mf(z) > A})dx sinceli)\<1

[e=]

gA /Mflog (14+ Mf)du <1/2.

In the last inequality, we have used the induction hypothesis applied to Mw since f = w/\g

— ¢ [ MFH > < [ MF '
and \g el fB M wdp > e M"w du, and we have chosen an appropriately large

constant ¢ in order to compensate for the factor A(k + 1). This completes the proof of the

lemma and hence the proof of Theorem 2.5.
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