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Uncertainty principle estimates for vector fields

Carlos Pérez§ and Richard L. Wheeden ¶

1 Introduction

One form of Hardy’s inequality is the estimate∫
Rn

|f(x)|p dx
|x|p
≤ C

∫
Rn

|∇f(x)|pdx,

for 1 ≤ p < n and any smooth f with compact support, where the constant C is independent

of f . This inequality, which can be found in [HLP], has had many important applications. For

instance, in Mathematical Physics, it is related (in fact, equivalent) in case p = 2 to the

Uncertainty Principle of Heisenberg ([RS], vol. II, p. 169).

In this paper, we will derive norm estimates for a wide class of integral operators of potential

type. These estimates can be used to obtain inequalities like the one above. In fact, if T is the

integral operator defined by

Tf(x) =

∫
Rn

f(y)
1

|x− y|n−1
dy,

then by using the well-known pointwise inequality

|f(x)| ≤ cn T (|∇f |)(x)

for any smooth f with compact support, one can deduce the Hardy estimate above from the

corresponding (weighted) Lp norm estimate for T . The same method can be used for more
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general differential operators Xf often called generalized gradients; that is, one can bound

norms of f by norms of Xf provided there is an integral operator T which is bounded on

appropriate weighted Lp spaces and for which the pointwise estimate |f | ≤ cT (|Xf |) is valid.

For example, this pointwise estimate is known to hold for vector fields of Hörmander type

when T is given by

Tf(x) =

∫
Rn

f(y)
d(x, y)

|B(x, d(x, y))|
dy,

where d(x, y) is the associated Carnot–Carathéodory metric and B(x, r) denotes the metric

ball with center x and radius r.

In addition to norm estimates for integral operators, we will also study norm estimates for

maximal operators that are closely associated with the integral operators. Our main theorems

generalize and sharpen some of the principal results obtained in [SW], [P1] and [P2]. We

improve these results in several ways, such as by considering spaces of homogeneous type

without any group structure, and by enlarging the classes of weight functions for which some

of the results hold. In particular, with regard to weight functions for integral operators, we

are able to avoid assuming the doubling conditions that are imposed in some of the results in

[SW], as well as improve the results there which deal with generalizations of the

Fefferman–Phong “r–bump” condition (see below). We will show that this sort of condition

can be replaced by weaker ones like those considered in [P1] and [P2], and which are closely

related to estimates derived in [CWW] and [ChW2] for Schrödinger operators.

In order to obtain weighted results, the kinds of conditions that we will impose on the weights

are in the spirit of simple sufficient conditions which are close to necessary. For example, in

n-dimensional Euclidean space Rn with the usual metric, the classical Riesz fractional integral

operator

Iαf(x) =

∫
Rn

f(y)
1

|x− y|n−α
dy, 0 < α < n,
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is known to satisfy the norm inequality(∫
Rn

{|Iαf(x)|w(x)}qdx
)1/q

≤ c

(∫
Rn

{|f(x)|v(x)}pdx
)1/p

, (1)

1 < p ≤ q <∞, if for some r > 1 and all balls B, the weights satisfy

r(B)α−n|B|
1
q

+ 1
p′

(
1

|B|

∫
B

w(x)rqdx

)1/rq (
1

|B|

∫
B

v(x)−rp
′
dx

)1/rp′

≤ C, (2)

where p′ denotes the conjugate index of p, that is, 1
p

+ 1
p′

= 1, and r(B) the radius of B. On

the other hand, the same condition with r = 1, i.e., the condition

r(B)α−n
(∫

B

w(x)q dx

)1/q (∫
B

v(x)−p
′
dx

)1/p′

≤ C,

is necessary but not sufficient for the norm inequality (this is exactly the Aαp,q condition of

[SW], but with a different normalization). These facts are proved in [SW]. Extensions to

spaces of homogeneous type are also proved there, but with extra restrictions on either the

weights or the space, such as doubling conditions on wrq and v−rp
′
, or a group structure for

the space. One of our goals is to remove these extra restrictions.

We refer to (2) as a Fefferman–Phong “r–bump” condition. It is simpler in nature than two

other kinds of conditions known to be both necessary and sufficient for such norm estimates.

To put our results for potential operators in perspective, it may help to briefly recall these

other conditions, even though they play no role in the paper. One of them involves “testing”

conditions of the type found first in [S] in the usual Euclidean situation, and then generalized

and sharpened in [SW], [SWZ], [WZ] and [VW]. Testing conditions are phrased in terms of

norm estimates for the integral operator when it is restricted to acting on the weight

functions themselves. The second sort of necessary and sufficient condition involves integrals

with “tails”, i.e., integrals extended over the entire space of products of weights times suitably

truncated powers of the kernel which appears in the integral operator. Such results are known

for 1 < p < q <∞ but not for q = p: see [GK], [SW], [SWZ], [GGK]. Compared with

3



conditions of these two types, those of the Fefferman–Phong sort have the disadvantage of not

being necessary, but they have the advantage of being relatively simple and close to necessary.

No simple method is known for proving that Fefferman–Phong conditions imply either of

these other two types of conditions.

The r–bump requirement (2) was weakened in [P1] within the Euclidean framework; more

general potential operators of convolution form were also studied in [P1]. In the case of the

Riesz fractional integral, these weaker assumptions can be described as follows: let Ψ and Φ

be doubling Young functions such that both∫ ∞
c

(
tq

Ψ(t)

)q′−1
dt

t
<∞ and

∫ ∞
c

(
tp
′

Φ(t)

)p−1
dt

t
<∞ (3)

for some positive constant c. Some examples of such Φ(t) are, for large t,

Φ(t) = tp
′
(log t)p

′−1+β and Φ(t) = tp
′
(log t)p

′−1(log log t)p
′−1+β, where β > 0. Then (1) holds if,

for all balls B, the weights satisfy the condition

r(B)α−n|B|
1
q

+ 1
p′ ‖w‖Ψ,B‖v−1‖Φ,B ≤ K, (4)

where ‖f‖Ψ,B (similarly ‖f‖Φ,B) denotes the localized Luxemburg norm

‖f‖Ψ,B = inf

{
λ > 0 :

1

|B|

∫
B

Ψ

(
|f(y)|
λ

)
dy ≤ 1

}
.

See section 4 for more information.

There is a similar situation for maximal functions. Indeed, it was also shown in [P1] that a

sufficient condition for the analogue of (1) with Iαf replaced by the fractional maximal

function

Mα(f)(x) = sup r(B)α−n
∫
B

|f(y)|dy, 0 ≤ α < n,

where the supremum is taken over all balls B containing x, is just the condition (4) with no

“bump” on the weight w, namely with Ψ(t) = tq. In this case, the condition on the weights
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becomes simply

r(B)α−n|B|1/p
′
(∫

B

wq dx

)1/q

‖v−1‖Φ,B ≤ K

for some Φ as in (3) and all balls B. An antecedent of the results in [P1], [P3] was given by

Neugebauer in [N] for the case α = 0. Another goal of this paper is to extend these results for

Mα to more general maximal operators and to spaces of homogeneous type.

In case wq and v−p
′

are A∞ weights (in the sense of C. Fefferman and B. Muckenhoupt), as is

well-known, condition (2) holds for some r > 1 if and only if it holds for r = 1. Thus, in this

case, no bump is needed in the condition imposed on the weights in order to obtain (1). In a

sequel [PW] to this paper, we will show that no bump is needed for classes which are larger

than A∞, and in spaces which are more general than Rn. This extends earlier results of the

same kind in [SW] in the usual Euclidean case as well as in spaces of homogeneous type. See

also [BSa] for results about A∞ weights in spaces of homogeneous type. For these more

general spaces, and for larger classes of weight functions than A∞, we also study in [PW]

extensions of results in [MW] relating norms of integral operators of potential type to norms

of maximal functions.

2 Statements of the main results

Following [SW], we consider potential operators T = T
K

of the form

Tf(x) = T (fdµ)(x) =

∫
S
f(y)K(x, y)dµ(y), (5)

where S is a space of homogeneous type with underlying doubling measure µ. See §3 for the

exact definition of a space of homogeneous type; by a doubling measure, we mean a Borel

measure µ with the property that there is a constant C such that for every “ball” B ⊂ S,

µ(2B) ≤ Cµ(B),
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where 2B denotes the ball with the same center as B but twice the radius. If d(x, y) denotes

the corresponding quasimetric in S, we will always assume that the kernel K(x, y) is

nonnegative and satisfies the following growth conditions: there exist constants C1, C2 > 1

such that

K(x, y) ≤ C1K(x′, y) if d(x′, y) ≤ C2d(x, y), (6)

K(x, y) ≤ C1K(x, y′) if d(x, y′) ≤ C2d(x, y).

The main classical examples of such operators are the Riesz fractional integrals Iαf

mentioned in the introduction. An important class of examples for metrics other than the

usual Euclidean metric consists of potential operators related to the regularity of subelliptic

differential equations. In particular, vector fields of Hörmander type ([H]) as well as the

classes of nonsmooth vector fields studied in [FL] lead to integral operators of the type we will

study. In addition, the differential operators of Grushin type considered in [FGuW] (at least

in the simplest case of Lebesgue measure) are related to integrals of type (5). In fact, for all

these examples, the associated potential operator has the form

Tf(x) =

∫
S
f(y)

d(x, y)

µ(B(x, d(x, y)))
dµ(y), (7)

where d(x, y) is a distance function that is naturally related to the vector fields and B(x, r)

denotes the corresponding ball with center x and radius r.

Associated with the kernel K is a functional ϕ = ϕ
K

which acts on balls B and is defined by

ϕ(B) = sup
x,y∈B

d(x,y)≥cr(B)

K(x, y) (8)

for a sufficiently small positive geometric constant c (see [SW]), where r(B) denotes the radius

of B. For example, in the case of the Riesz potential, we have K(x, y) = |x− y|α−n, 0 < α < n,

so that ϕ(B) ≈ r(B)α−n. In the subelliptic case (7), note that ϕ(B) ≈ r(B)/µ(B).
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The conditions (6) on K lead to useful growth properties of ϕ. If B is a ball and θ > 0, let θB

denote the ball concentric with B whose radius is θr(B). It is shown in [SWZ, (4.2) and (4.3)]

that if θ > 1, there is a constant C depending only on θ, C1, C2, the constant c in (8), and

geometric properties of S so that

ϕ(B) ≤ Cϕ(θB) for all balls B ⊂ S. (9)

Also, for such a constant C (but now C is independent of θ),

ϕ(B) ≤ Cϕ(B′) for all pairs of balls B′ ⊂ B. (10)

We shall also assume in some of our results that ϕ satisfies the following condition for some

ε > 0:

ϕ(B1)µ(B1) ≤ C

(
r(B1)

r(B2)

)ε
ϕ(B2)µ(B2) if B1 ⊂ B2. (11)

Observe that in the case of the fractional integrals Iα, we can pick ε = α in (11); for the

operator in (7), we can choose ε = 1.

Next we define a class of Young functions that plays a key role in our results. Some further

facts about Young functions and Orlicz spaces are listed in §4.

Definition 2.1 Let 1 ≤ p <∞. A nonnegative function Φ(t), t > 0, satisfies the Bp condition

if there is a constant c > 0 such that ∫ ∞
c

Φ(t)

tp
dt

t
<∞. (12)

Simple examples of functions which satisfy Bp are tp−β and tp(log(1 + t))−1−β, both when

β > 0.

The relevance of condition Bp stems from its relationship to the boundedness of a maximal

function that is defined in terms of Φ. In fact, given a Young function Φ, let

‖f‖Φ,B = inf{λ > 0 :
1

µ(B)

∫
B

Φ(
|f |
λ

) dµ ≤ 1},
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and define the corresponding maximal function

MΦf(x) = sup
B:x∈B

‖f‖Φ,B. (13)

We will prove the following characterization of Bp, 1 < p <∞, in Theorem 5.1 below:

Φ ∈ Bp if and only if MΦ : Lp(S, µ)→ Lp(S, µ).

For example, in the standard case when Φ(t) = tr with r ≥ 1, so that

‖f‖Φ,B =
(
µ(B)−1

∫
B
|f |r dµ

)1/r
, this statement reduces to the well-known fact that the

mapping

f → sup
B:x∈B

(
1

µ(B)

∫
B

|f |r dµ
)1/r

is bounded on Lp(S, µ) if and only if p > r. The characterization of Bp mentioned above was

proved in the Euclidean context in [P3] and used to derive sharp two weight estimates for the

classical Hardy–Littlewood maximal function. In the general case, the characterization of Bp

will play a main role in the proof of the boundedness of T as stated in Theorem 2.2 below.

For other applications to different operators ¿from harmonic analysis, see [P1], [P5], [P6],

[CP1] and [CP2].

A Young function Φ has a conjugate function Φ̄ satisfying

t ≤ Φ̄(t)Φ̄−1(t) ≤ 2t

for all t > 0 (cf. §4). For example, if 1 < p <∞ and 1
p

+ 1
p′

= 1, the conjugate of tp is tp
′
, and

the conjugate of tp(log(1 + t))−1−β, β > 0, is tp
′
(log(1 + t))(p′−1)(1+β) (cf. [O], p. 275).

We can now state our main result about the boundedness of the potential operators (5).

Theorem 2.2 Let 1 < p ≤ q <∞ and T be an integral operator of type (5) with a kernel K

such that (6) holds and ϕ satisfies (11). Let (w, v) be a pair of weights for which

ϕ(B)µ(B)
1
q

+ 1
p′ ‖w‖

Ψ,B
‖v−1‖

Φ,B
≤ C (14)
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for all balls B in S, where Ψ and Φ are Young functions whose corresponding conjugate

functions Ψ̄ and Φ̄ satisfy Ψ̄ ∈ Bq′ and Φ̄ ∈ Bp. Then(∫
S
(|Tf |w)q dµ

)1/q

≤ C

(∫
S
(|f | v)p dµ

)1/p

(15)

with C independent of f .

In the Euclidean setting, condition (14) is a generalization of the sort of condition first

considered in [CWW] (see also [P1], [ChW2]).

For example, given p, q with 1 < p ≤ q <∞, if we choose Ψ(t) = trq and Φ(t) = trp
′

for any

r > 1, then condition (14) becomes

φ(B)µ(B)
1
q

+ 1
p′

(
1

µ(B)

∫
B

wrq dµ

) 1
rq
(

1

µ(B)

∫
B

v−rp
′
dµ

) 1
rp′

≤ C.

Assuming this r–bump condition, the conclusion (15) was proved in [SW] in the usual

Euclidean situation (with dµ = dx); it was also proved there for spaces of homogeneous type

but with one of the additional assumptions that both wrqdµ, v−rp
′
dµ are doubling measures or

that there is an appropriate group stucture for S. In case v = 1 and if T is an integral

operator of type (7) with dµ = dx, (15) was proved in [D] without either of these additional

assumptions.

It is easy to see that when p > 1 and Φ satisfies the doubling property Φ(2t) ≤ cΦ(t), then∫ ∞
c

Φ(t)

tp
dt

t
≈
∫ ∞
c

(
tp
′

Φ̄(t)

)p−1
dt

t

for c > 0. Hence, if both Φ̄ and Ψ̄ satisfy this doubling condition, then the assumption in

Theorem 2.2 that Ψ̄ ∈ Bq′ and Φ̄ ∈ Bp is equivalent to assuming both∫ ∞
c

(
tq

Ψ(t)

)q′−1
dt

t
<∞ and

∫ ∞
c

(
tp
′

Φ(t)

)p−1
dt

t
<∞

for some c > 0.
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The proof of Theorem 2.2 will be given in section 7 and is based on a procedure for

discretizing potential operators which appeared independently in [SW] and [JPW], combined

with the characterization of Bp given in Theorem 5.1.

The case p = q is important in applications, such as to Schrödinger operators, and in this

case by choosing Ψ(t) = tp(log(1 + t))p−1+β and Φ(t) = tp
′
(log(1 + t))p

′−1+β, we have the

following special case of Theorem 2.2.

Corollary 2.3 Let 1 < p <∞ and T,K and ϕ be as in Theorem 2.2. Let (w, v) be a pair of

weights such that for some β > 0 and all balls B in S,

ϕ(B)

(∫
B

wp[log(1 +
w

w(B)
)]p−1+βdµ

)1/p(∫
B

v−p
′
[log(1 +

v−1

v−1(B)
)]p
′−1+βdµ

)1/p′

≤ C.

Then ∫
S
(|Tf |w)p dµ ≤ C

∫
S
(|f | v)p dµ. (16)

Furthermore, this result is sharp in the sense that it does not hold when β = 0.

Remark 2.4 It would be interesting to derive an analogue of (16) for Calderón–Zygmund

singular integral operators, assuming that the weights satisfy(∫
B

wp[log(1 +
w

w(B)
)]p−1+βdµ

)1/p(∫
B

v−p
′
[log(1 +

v−1

v−1(B)
)]p
′−1+βdµ

)1/p′

≤ Cµ(B)

for all balls B and some β > 0. This conjecture has been partially confirmed in [TVZ] by

means of complex analysis when T is the Hilbert transform in the unit circle. There are

corresponding estimates for vector-valued maximal operators in [P6]. Also, in [CP2], some

sharp two-weight weak-type inequalities for Calderón–Zygmund operators have been derived

assuming that(
1

µ(B)

∫
B

wp[log(1 +
w

w(B)
)]p−1+β dµ

)1/p(
1

µ(B)

∫
B

v−rp
′
dµ

)1/rp′

≤ C.

Observe that here, we just need a bump on the left-hand weight.
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A natural maximal operator of “fractional” type associated with T is defined by

Mϕf(x) = sup
B:x∈B

ϕ(B)

∫
B

|f |dµ, (17)

where ϕ is as in (8). For example, in the case of the classical Riesz fractional integral Iα, Mϕ

is just the fractional maximal operator Mα defined in Rn by

Mαf(x) = sup
B:x∈B

r(B)α−n
∫
B

|f(y)| dy.

In any case, the pointwise inequality

Mϕf(x) ≤ c Tf(x)

holds for all x ∈ S. This follows easily from the fact that ϕ(B) ≤ CK(x, y) for all x, y ∈ B

(even if x, y ∈ θB for any fixed θ > 1), as shown in [SWZ, (4.1)]. On the other hand, Tf is

often controlled in norm by Mϕf : in the classical situation, see [MW] and [R], and in more

general situations, see [PW].

We can extend the definition of Mϕ by considering functionals other than ϕ. Thus, let

Mψf(x) = sup
B:x∈B

ψ(B)

∫
B

|f |dµ

where ψ is a nonnegative functional defined on balls. A way in which such a maximal function

is related to T is given in the next result, which is proved in §8 using Corollary 2.3. We use

the notation Mf for the Hardy–Littlewood maximal function of f defined by

Mf(x) = sup
B:x∈B

1

µ(B)

∫
B

|f(y)| dµ(y), (18)

and if k is a positive integer, Mkf denotes the k-fold iterate M(M(. . . (Mf) . . . )). Also, [p]

denotes the integral part of p.
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Theorem 2.5 Let 1 < p <∞ and T,K and ϕ be as in Theorem 2.2. Then there is a

constant C such that for any weight w and all f ,∫
S
|Tf(x)|pw dµ ≤ C

∫
S
|f(x)|pMϕ̃(M [p]w) dµ, (19)

where ϕ̃ is defined by ϕ̃(B) = (ϕ(B)µ(B))p µ(B)−1.

Remark 2.6 Inequalities in the spirit of (19) but for Calderón–Zygmund operators have been

derived in [P4], but the method there is completely different from the one developed here.

To understand the interest of (19), we note that in the classical situation it can be restated as∫
Rn

|Iαf(x)|pw(x) dx ≤ C

∫
Rn

|f(x)|pMαp(M
[p]w)(x) dx (20)

since then ϕ̃(B) = r(B)αp−n and consequently Mϕ̃ = Mαp. First we observe that the exponent

[p] is sharp in the sense that M [p]w cannot be replaced by M [p−1]w (see [P2]). Second we

observe that (20) is sharper than the inequality∫
Rn

|Iαf(x)|pw(x) dx ≤ C

∫
Rn

|f(x)|pMαpr(w
r)(x)1/r dx (21)

proved in [A] since by standard arguments, for any k = 1, 2, · · · , r > 1 and α > 0, there is a

constant C such that for all f ,

Mα(Mkf) ≤ C (Mαr(f
r))1/r.

The expression on the right here is clearly related to the Fefferman–Phong r–bump condition,

while the one on the left is related to the condition considered by Chang, Wilson and Wolff in

[CWW]; see [P2], remark 1.5.

We also note that in the case of the operator defined in (7), the functional ϕ̃ in (19) satisfies

ϕ̃(B) ≈ r(B)p/µ(B) since ϕ(B) ≈ r(B)/µ(B) in this case.
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We will also derive an analogue of Theorem 2.2 for the fractional maximal operator Mψ. For

this operator, the condition that we need to impose on the weights is weaker than the one

used in Theorem 2.2 for potential operators. We consider any nonnegative function ψ(B) of

balls B ⊂ S which satisfies the following conditions:

a) ψ(B1) ≤ c ψ(B2) if B1 ⊂ B2 ⊂ cB1

b) ψ(B1)µ(B1) ≤ c ψ(B2)µ(B2) if B1 ⊂ B2 (22)

c) if S is unbounded, then lim
r(B)→∞

ψ(B) = 0, in the sense that

given ε > 0, there exists N > 0 such that ψ(B) < ε if r(B) > N.

Note that condition b) corresponds to the case ε = 0 in (11), and hence b) is weaker than (11).

The main example of such a functional is ψ(B) = r(B)α/µ(B) with α > 0, and in this case,

condition c) is true if µ satisfies a reverse doubling condition of order strictly larger than α.

Given a functional ψ which satisfies (22), we define the maximal function Mψ as before:

Mψf(x) = sup
B:x∈B

ψ(B)

∫
B

|f(y)| dµ(y). (23)

Theorem 2.7 Let ψ satisfy (22), and let Mψ be defined by (23). Let 1 < p ≤ q <∞, ω be a

Borel measure, and v be a weight such that

ψ(B)ω(B)1/q µ(B)
1
p′ ‖v−1‖Φ,B ≤ C (24)

for all balls B in S, where Φ is any Young function whose conjugate function Φ̄ ∈ Bp, i.e.,

where ∫ ∞
c

Φ̄(t)

tp
dt

t
<∞

for some c > 0. Then (∫
S
(Mψf)q dω

)1/q

≤ C

(∫
S
(|f | v)p dµ

)1/p

. (25)
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In particular, if w, v is a pair of weights which satisfy

ψ(B)

(∫
B

wq dµ

)1/q

µ(B)
1
p′ ‖v−1‖Φ,B ≤ C,

then (∫
S
{(Mψf)w}q dµ

)1/q

≤ C

(∫
S
(|f | v)p dµ

)1/p

.

Observe that in the last condition above, no Orlicz type bump is required on wq, and so the

condition is weaker than the one considered in (14).

The second statement of Theorem 2.7 clearly follows from the first one by choosing

dω = wq dµ.

In the next two sections, before proving the results stated above, we give some background

facts about spaces of homogeneous type and Orlicz classes. Our main theorems are proved

after these sections. When we come to the proofs, we first prove the results about maximal

functions and then those for integral operators.

3 Spaces of Homogeneous type

In this section, we briefly recall some basic definitions and facts about spaces of homogeneous

type.

A quasimetric d on a set S is a function d : S × S → [0,∞) which satisfies

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y;

(iii) there exists a finite constant κ ≥ 1 such that

d(x, y) ≤ κ(d(x, z) + d(z, y))

for all x, y, z ∈ S.
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Given x ∈ S and r > 0, let B(x, r) = {y ∈ S : d(x, y) < r} be the ball with center x and

radius r. If B = B(x, r) is a ball, we denote its radius r by r(B) and its center x by xB. If ν

is a measure and E is a measurable set, ν(E) denotes the ν-measure of E. We sometimes

write |E|ν instead of ν(E).

Definition 3.1 A space of homogeneous type (S, d, µ) is a set S together with a quasimetric

d and a nonnegative Borel measure µ on S such that the doubling condition

µ(B(x, 2r)) ≤ C µ(B(x, r)) (26)

holds for all x ∈ S and r > 0.

The balls B(x, r) are not necessarily open, but by a theorem of Macias and Segovia [MS],

there is a continuous quasimetric d′ which is equivalent to d (i.e., there are positive constants

c1 and c2 such that c1d
′(x, y) ≤ d(x, y) ≤ c2d

′(x, y) for all x, y ∈ S) for which every ball is

open. We always assume that the quasimetric d is continuous and that balls are open.

If C is the smallest constant for which (26) holds, then the number D = logC is called the

doubling order of µ. By iterating (26), we have

µ(B)

µ(B̃)
≤ Cµ

(
r(B)

r(B̃)

)D
for all balls B̃ ⊂ B. (27)

We also assume that all annuli in S are not empty, i.e., that B(x,R) \B(x, r) is not empty for

all x ∈ S and 0 < r < R <∞. By [W, p.269], any doubling measure µ then satisfies the

reverse doubling property: there exist δ > 0 and cµ > 0 such that

µ(B)

µ(B̃)
≥ cµ

(
r(B)

r(B̃)

)δ
for all balls B̃ ⊂ B. (28)

We shall often use the following observation: if P and B are balls with P ∩B 6= ∅ and

r(P ) ≤ βr(B) for some β > 0, then

P ⊂ cβB (29)
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with cβ = κβ + κ2β + κ2. To verify (29), note that if z ∈ B ∩ P and y ∈ P , then

d(y, xB) ≤ κ[d(y, xP ) + d(xP , xB)] ≤ κ[r(P ) + κ(d(xP , z) + d(z, xB))]

≤ κ[r(P ) + κ(r(P ) + r(B))] ≤ κ[βr(B) + κ(βr(B) + r(B))] = cβr(B),

which implies (29).

We will use a grid of dyadic sets in S which are “almost balls”, as constructed in [SW]. In

fact, the following has been proved there:

If ρ = 8K5, then for any (large negative) integer m, there are points {xkj} and a

family Dm = {Ek
j } of sets for k = m,m+ 1, · · · and j = 1, 2, · · · such that

• B(xkj , ρ
k) ⊂ Ek

j ⊂ B(xkj , ρ
k+1)

• For each k = m,m+ 1, · · · , the family {Ek
j } is pairwise disjoint in j, and

S = ∪jEk
j .

• If m ≤ k < l, then either Ek
j ∩ El

i = ∅ or Ek
j ⊂ El

i.

We call the family D = ∪m∈ZDm a dyadic cube decomposition of S and refer to the sets in D

as dyadic cubes. A dyadic cube will usually be denoted by Q, and Q∗ will denote the

containing ball described above with 1
ρ
Q∗ ⊂ Q ⊂ Q∗; thus, if Q = Ek

j then Q∗ = B(xkj , ρ
k+1).

We set `(Q) = r(Q∗)/ρ and call `(Q) the “sidelength” of Q. We note that while the cubes in

each Dm have the dyadic properties listed above, there may be no nestedness properties of the

cubes in Dm1 relative to the cubes in Dm2 if m1,m2 are different.

As usual, we say that w is a weight if w(x) is a nonnegative locally integrable function with

respect to µ, and for a measurable set E, we write w(E) =
∫
E
w(x) dµ(x). Thus,

w(E) = |E|wdµ.
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4 Orlicz spaces

We next recall some basic definitions and facts about Orlicz spaces, referring to [RR] and [BS]

for a complete account.

A function Φ : [0,∞)→ [0,∞) is called a Young function if it is continuous, convex,

increasing and satisfies Φ(0) = 0 and Φ(t)→∞ as t→∞. It follows that Φ(t)/t is increasing,

and in particular, that

Φ(γt) ≥ γΦ(t) if γ ≥ 1 and t ≥ 0.

For Orlicz spaces, we are usually only concerned about the behavior of Young functions for t

large. If A,B are two Young functions, we write A(t) ≈ B(t) if there are constants c, c1, c2 > 0

with c1A(t) ≤ B(t) ≤ c2A(t) for t > c. By definition, the Orlicz space LΦ consists of all

measurable functions f such that ∫
S

Φ

(
|f |
λ

)
dµ <∞

for some positive λ. Note that if 0 < λ1 < λ2, then

Φ

(
|f |
λ2

)
≤ λ1

λ2

Φ

(
|f |
λ1

)
,

so that

lim
λ→∞

∫
S

Φ

(
|f |
λ

)
dµ = 0 if f ∈ LΦ.

The space LΦ is a Banach function space with the Luxemburg norm

‖f‖Φ = ‖f‖Φ,µ = inf{λ > 0 :

∫
S

Φ(
|f |
λ

) dµ ≤ 1}.

Each Young function Φ has an associated complementary Young function Φ̄ satisfying

t ≤ Φ−1(t)Φ̄−1(t) ≤ 2 t (30)
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for all t > 0. The function Φ̄ is called the conjugate of Φ, and the space LΦ̄ is called the

conjugate space of LΦ. For example, if Φ(t) = tp for 1 < p <∞, then

Φ̄(t) = tp
′
, p′ = p/(p− 1), and the conjugate space of Lp(µ) is Lp

′
(µ). Another example that

will be used frequently is Φ(t) ≈ tp(log t)−1−ε for large t, 1 < p <∞, ε > 0, with

complementary function Φ̄(t) ≈ tp
′
(log t)(p′−1)(1+ε) (cf. [O]).

A very important property of Orlicz spaces is the generalized Hölder inequality∫
S
|fg| dµ ≤ ‖f‖Φ‖g‖Φ̄. (31)

We will sometimes assume that Φ satisfies the doubling condition Φ(2t) ≤ C Φ(t). If Φ is

doubling then Φ′(t) ≈ Φ(t)/t almost everywhere.

Recall that if X is a rearrangement–invariant function space with respect to the measure µ,

then the fundamental function of X, ϕ
X

(t), is defined so that if t > 0 and E is any

measurable set with µ(E) = t, then

ϕ
X

(t) =
∥∥χ

E

∥∥
X
.

See [BS] for more information. In particular, it is shown there that for any Young function Φ,

LΦ is a rearrangement–invariant space with fundamental function given by

ϕ
LΦ

(t) =
1

Φ−1(1
t
)
. (32)

In particular, if E is a measurable subset of X, then

∥∥χ
E

∥∥
Φ,µ

=
1

Φ−1( 1
µ(E)

)
. (33)
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5 Auxiliary exotic maximal functions

In order to define another maximal function which will play a key role, we need to introduce

local versions of Orlicz norms. If Φ is a Young function, let

‖f‖Φ,B = ‖f‖Φ,B,µ = inf{λ > 0 :
1

µ(B)

∫
B

Φ(
|f |
λ

) dµ ≤ 1}.

For this norm, we will use the fact that if λ > 0, then ‖f‖Φ,B > λ if and only if

1
µ(B)

∫
B

Φ(|f |/λ) dµ > 1. Furthermore, the local version of the generalized Hölder inequality

(31) is

1

µ(B)

∫
B

fg dµ ≤ ‖f‖Φ,B‖g‖Φ̄,B. (34)

As in (13), there is a corresponding maximal function defined by

MΦf(x) = sup
B:x∈B

‖f‖Φ,B. (35)

This maximal function has been used in the usual Euclidean context in [P3] as a tool to

derive sharp weighted estimates for the Hardy-Littlewood maximal function. Also, it was

considered in the work of T. Iwaniec and Greco [GI] and in [WW] in case Φ(t) ≈ t log t.

Note that from 32 we have with the corresponding normalization that

∥∥χ
K

∥∥
Φ,B

=
1

Φ−1
(

µ(B)
µ(B∩K)

) ,
and therefore

MΦ(χ
K

)(x) = sup
B:x∈B

1

Φ−1
(

µ(B)
µ(B∩K)

) . (36)

The main results that we will prove about MΦ are summarized in the next theorem.

Theorem 5.1 Let 1 < p <∞ and Φ be a doubling Young function. Then the following

statements are equivalent.
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i) Φ ∈ Bp, i.e., there is a constant c > 0 such that∫ ∞
c

Φ(t)

tp
dt

t
<∞. (37)

ii) There is a constant C > 0 such that∫
S
MΦf(x)p dµ(x) ≤ C

∫
S
f(x)p dµ(x) (38)

for all nonnegative f .

iii) There is a constant C > 0 such that∫
S
MΦf(x)pw(x) dµ(x) ≤ C

∫
S
f(x)pMw(x) dµ(x) (39)

for all nonnegative f and w, where Mw is the Hardy–Littlewood maximal function defined in

(18).

iv) There is a constant C > 0 such that∫
S
Mf(x)p

w(x)

[MΦ̄(u1/p)(x)]p
dµ(x) ≤ C

∫
S
f(x)p

Mw(x)

u(x)
dµ(x) (40)

for all nonnegative f , w and u, where M again denotes the operator defined in (18).

The proof of Theorem 5.1 is based on the following lemma.

Lemma 5.2 Let Φ be a Young function and f be a bounded nonnegative function with

bounded support. For λ > 0, let Ωλ = {x ∈ S :MΦf(x) > λ}. If Ωλ is not empty, then given

σ > 1, there exists a countable family {Bi} of pairwise disjoint balls such that

i) ∪iBi ⊂ Ωλ ⊂ ∪iB∗i , where B∗ = κ(4κ+ 1)B (κ is the quasimetric constant),

ii) ‖f‖Φ,Bi
> λ for all i,

iii) ‖f‖Φ,B ≤ λ if B is any ball with Bi ⊂ B and r(B) ≥ σr(Bi) for some i.

20



Consequently,

µ(Ωλ) ≤ C

∫
S

Φ(
f

λ
) dµ. (41)

Proof: The proof uses a sort of Calderón–Zygmund decomposition combined with Vitali’s

lemma. A similar method occurs in [MP]. Fix f and λ. If x ∈ Ωλ, there is a ball B such that

x ∈ B and ‖f‖Φ,B > λ. Define R = R(f, λ) by

R = sup
B:‖f‖

Φ,B
>λ

r(B).

We claim that R is finite. Indeed, suppose that the support of f is contained in a ball B0, and

let B satisfy ‖f‖Φ,B > λ. Then by definition of the Luxemburg norm, B satisfies

1 <
1

µ(B)

∫
B

Φ

(
f

λ

)
dµ =

1

µ(B)

∫
B∩B0

Φ

(
f

λ

)
dµ ≤ Φ

(
‖f‖L∞
λ

)
µ(B ∩B0)

µ(B)
.

Therefore, B and B0 must intersect. Assuming as we may that r(B) ≥ r(B0), we easily obtain

from (29) that B0 ⊂ κ(2κ+ 1)B, and then

1 < Φ

(
‖f‖L∞
λ

)
µ(B ∩B0)

µ(B)
≤ Φ

(
‖f‖L∞
λ

)
µ(B0)

µ(B)

≤ Φ

(
‖f‖L∞
λ

)
cκ,µ

(
r(B0)

r(B)

)δ
for some fixed δ > 0 by the reverse doubling property of µ (see (28)). In particular,

r(B) ≤ cΦ

(
‖f‖L∞
λ

)1/δ

r(B0). (42)

This shows that R is finite. It also shows that each ball B for which ‖f‖Φ,B > λ is contained

in cB0 with c depending only on λ and f , since then B intersects B0 and (42) holds.

Now, for each x, let

Rx = Rx(f, λ) = sup
B:x∈B,‖f‖

Φ,B
>λ

r(B),

and note that Rx is finite since Rx ≤ R. Fix σ > 1. If x ∈ Ωλ, there is a ball Bx which

contains x, whose radius r(Bx) satisfies Rx/σ < r(Bx) ≤ Rx, and for which ‖f‖Φ,Bx
> λ. If B
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is any ball with Bx ⊂ B and r(B) ≥ σr(Bx), then r(B) > Rx, and consequently ‖f‖Φ,B ≤ λ

since x ∈ B. Thus the ball Bx satisfies ii) and iii). Also note that Ωλ =
⋃
x∈Ωλ

Bx. Picking a

Vitali type subcover of {Bx}x∈Ωλ as in [SW], Lemma 3.3, then provides a family of pairwise

disjoint balls {Bi} ⊂ {Bx}x∈Ωλ satisfying i). Therefore {Bi} satisfies i), ii) and iii).Finally,

(41) follows in a standard way from i) and ii) by the doubling property of µ and the

disjointness of the Bi:

µ(Ωλ) ≤
∑

µ(B∗i ) ≤
∑

Cµ(Bi)

≤ C
∑∫

Bi

Φ

(
f

λ

)
dµ ≤ C

∫
S

Φ

(
f

λ

)
dµ.

2

Proof of Theorem 5.1

We may assume that f is bounded with bounded support and that f ≥ 0. We start by

proving that i) implies ii). Let Ωλ = {x ∈ S :MΦf(x) > λ}. For each λ > 0, we split f as

usual: f = f1 + f2 where f1(x) = f(x) if f(x) > λ/2 and f1(x) = 0 otherwise. We may assume

without loss of generality that Φ is normalized so that Φ(1) = 1. Since f2 ≤ λ/2, it then

follows that MΦ(f2) ≤ λ/2, and consequently that

MΦ(f) ≤MΦ(f1) +MΦ(f2) ≤MΦ(f1) + λ/2. Using this combined with (41), we get

µ(Ωλ) ≤ C

∫
x∈S:f(x)>λ/2

Φ

(
2f(x)

λ

)
dµ(x).

Then ∫
S
MΦ(f)p dµ = p

∫ ∞
0

λpµ(Ωλ)
dλ

λ

≤ C

∫ ∞
0

λp
∫
x∈S:f(x)>λ/2

Φ

(
2f(x)

λ

)
dµ(x)

dλ

λ
= C

∫
S

∫ 2f(x)

0

λpΦ

(
2 f(x)

λ

)
dλ

λ
dµ(x)

= C

∫
S
f(x)p

∫ ∞
1

Φ(t)

tp
dt

t
dµ(x) = C

∫
S
f(x)p dµ(x)

since Φ ∈ Bp. This proves that i) implies ii).
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We now show that ii) implies iii). For k ∈ Z and γ > 1, γ to be chosen, let

Ωk = {x ∈ S :MΦ(f)(x) > γk}.

For σ > 1 to be chosen, by applying Lemma 5.2 to each Ωk, we obtain balls {Bk
j }j with⋃

j B
k
j ⊂ Ωk ⊂

⋃
j cB

k
j , and for each k the balls {Bk

j } are disjoint in j. Furthermore, for all k

and j, ‖f‖Φ,Bkj
> γk and ‖f‖Φ,B ≤ γk if B is any ball with Bk

j ⊂ B and r(B) ≥ σr(Bk
j ). Then∫

S
MΦ(f)pw dµ ≤

∑
k

∫
Ωk\Ωk+1

MΦ(f)pw dµ ≤
∑
k

γ(k+1)pw(Ωk)

≤ c
∑
k,j

‖f‖p
Φ,Bkj

w(cBk
j ) = c

∑
k,j

‖f‖p
Φ,Bkj

w(cBk
j )

µ(cBk
j )
µ(cBk

j )

≤ c
∑
k,j

∥∥∥∥(w(cBkj )

µ(cBkj )

)1/p

f

∥∥∥∥p
Φ,Bkj

µ(Bk
j ). (43)

Now consider the family of sets {Ek
j }k,j defined by Ek

j = Bk
j \ Ωk+1. Observe that the Ek

j are

disjoint in both k, j. We will show that for sufficiently large γ there exists a constant c such

that for all k, j,

µ(Bk
j ) ≤ c µ(Ek

j )

Assuming this for the moment, we obtain from (43) that∫
S
MΦ(f)pw dµ ≤ c

∑
k,j

∥∥∥(infBkj Mw)1/pf
∥∥∥p

Φ,Bkj

µ(Ek
j ) ≤ c

∑
k,j

∫
Ekj

MΦ(f(Mw)1/p)p dµ

≤ c

∫
S
MΦ(f(Mw)1/p)p dµ ≤ C

∫
S
fpMwdµ by hypothesis,

and thus iii) would be proved.

To prove that µ(Bk
j ) ≤ cµ(Ek

j ) if γ is large, it is enough to show that

µ(Bk
j ∩ Ωk+1) <

1

2
µ(Bk

j )if γis large. (44)
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Recall that by Lemma 5.2, the sets {Bk+1
m } are disjoint in m for each k, and that

Ωk+1 ⊂
⋃
m cB

k+1
m with c = κ(4κ+ 1). Moreover, ‖f‖Φ,Bk+1

m
> γk+1, and ‖f‖Φ,B ≤ γk if B

satisfies Bk
j ⊂ B and r(B) ≥ σr(Bk

j ) for some j, k (with σ > 1 still to be chosen). Thus

µ(Bk
j ∩ Ωk+1) ≤

∑
m

µ(Bk
j ∩ cBk+1

m ). (45)

We claim that if Bk
j ∩ cBk+1

m 6= ∅ then r(Bk
j ) > r(Bk+1

m ). To see this, first note that if Bk
j and

cBk+1
j intersect and r(Bk

j ) ≤ r(Bk+1
m ), then Bk

j ⊂ c1B
k+1
m for a geometric constant c1 > 1.

Since Φ is a Young function, Φ(t)/t is increasing, so that

Φ

(
f

γk

)
= Φ

(
γ f

γk+1

)
≥ γ Φ

(
f

γk+1

)
, γ > 1,

and therefore by the doubling property of µ, there is a geometric constant C > 1 such that

1

µ(c1Bk+1
m )

∫
c1B

k+1
m

Φ

(
f

γk

)
dµ ≥ γ

C µ(Bk+1
m )

∫
Bk+1
m

Φ

(
f

γk+1

)
dµ

>
γ

C
> 1,

if we choose γ > C. (Recall that for any λ > 1, the inequality ‖f‖Φ,B > λ is the same as

1
µ(B)

∫
B

Φ(f/λ) dµ > 1.) This implies that ‖f‖Φ,c1B
k+1
m

> γk. However, if we now choose σ with

1 < σ ≤ c1, we obtain from the inequality r(Bk
j ) ≤ r(Bk+1

m ) that the ball c1B
k+1
m has radius at

least σr(Bk
j ), and therefore since Bk

j ⊂ c1B
k+1
m , we must have ‖f‖Φ,c1B

k+1
m
≤ γk by

construction of Bk
j . This contradiction shows our claim.

Thus if Bk
j ∩ cBk+1

m 6= ∅, then r(Bk
j ) > r(Bk+1

m ), and consequently Bk+1
m ⊂ c1B

k
j . Hence by

(45) and the doubling property of µ,

µ(Bk
j ∩ Ωk+1) ≤

∑
m:Bk+1

m ⊂c1Bkj

µ(Bk
j ∩ cBk+1

m ) ≤ c
∑

m:Bk+1
m ⊂c1Bkj

µ(Bk+1
m )

≤ c
∑

m:Bk+1
m ⊂c1Bkj

∫
Bk+1
m

Φ

(
f

γk+1

)
dµ ≤ c

∫
c1Bkj

Φ

(
f

γk+1

)
dµ
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since the sets {Bk+1
m }m are disjoint. Again using the fact that Φ(t)/t is increasing together

with property iii) of Lemma 5.2 for Bk
j , we can continue the last chain of inequalities with

≤ c

γ

∫
c1Bkj

Φ

(
f

γk

)
dµ ≤ c

γ
µ(c1B

k
j ) ≤ C

γ
µ(Bk

j ) <
1

2
µ(Bk

j )

if γ is large. This completes the proof of (44) and also shows that part ii) of the theorem

implies part iii).

We prove now that iii) implies iv). Assume then that iii) holds. Since (40) is equivalent to∫
S
M(fg)(x)p

w(x)

[MΦ̄(g)(x)]p
dµ(x) ≤ c

∫
S
f(x)pMw(x)dµ(x),

for all nonnegative functions f , g, and w, iv) follows immediately from (39) after an

application of the inequality

M(fg)(x) ≤MΦf(x)MΦ̄g(x), x ∈ S,

which is a consequence of the local version (34) of the generalized Hölder’s inequality.

To prove that iv) implies i), we let w = 1 in (40), obtaining∫
S
Mf(x)p

1

[MΦ̄(u1/p)(x)]p
dµ(x) ≤ C

∫
S
f(x)p

1

u(x)
dµ(x) (46)

for all nonnegative functions f and u. Fix any z ∈ S and r > 0, and let K = B(z, r). WE

USE HERE THAT THE SPACE HAS MORE THAN ONE POINT BY THE ANNULI

CONDITION. Choosing f = u = χ
K

in (46) gives∫
S
M(χK)(x)p

1

[MΦ̄(χK)(x)]p
dµ(x) ≤ C

(where C depends on µ(K)). On the other hand, by (36),

MΦ̄(f)(x) = sup
B:x∈B

1

Φ̄−1
(

µ(B)
µ(B∩K)

) .
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Now, since t→ 1
Φ̄−1( 1

t
)

is increasing, it is easy to see that there is a positive constant b

depending on µ(K) such that if d(x, z) > ηr for a large geometric constant η > 1 to be

chosen, then

MΦ̄(χK)(x) =
1

Φ̄−1(b µ(B(x, d(x, z))))
.

Similarly, the Hardy-Littlewood maximal function satisfies M(χK)(x) ≥ c/µ(B(x, d(x, z)).

Letting B(z, ηkr) = Bk and Ak = Bk+1 \Bk, we obtain from these estimates and doubling that∫
S
M(χK)(x)p

1

[MΦ̄(χK)(x)]p
dµ(x) ≥ C

∫
d(x,z)>ηr

Φ̄−1 (b µ(B(x, d(x, z))))p
dµ(x)

µ(B(x, d(x, z)))p

= C
∞∑
k=1

∫
Ak

Φ̄−1 (b µ(B(x, d(x, z))))p
dµ(x)

µ(B(x, d(x, z)))p

≈
∞∑
k=1

∫
Ak

Φ̄−1 (b′ µ(B(z, d(x, z))))
p dµ(x)

µ(B(z, d(x, z)))p

≈
∞∑
k=1

µ(Ak)

µ(Bk)p
Φ̄−1 (b′ µ(Bk))

p
.

Recall that since annuli are not empty, the reverse doubling property (28) of µ implies that

µ(Bk+1)

µ(Bk)
≥ cµ η

δ.

If we choose η so large that cµ η
δ > 3

2
, then µ(Ak) = µ(Bk+1 \Bk) >

1
2
µ(Bk). Combining this

with (30), it follows that the last sum is larger than a multiple of

∞∑
k=1

µ(Bk)

Φ−1(b′ µ(Bk)p
≥ C

∞∑
k=1

∫ b′ µ(Bk+1)

b′ µ(Bk)

t

Φ−1(t)p
dt

t

= C

∫ ∞
b′ µ(B1)

t

Φ−1(t)p
dt

t
≈
∫ ∞
c

Φ(t)

tp
dt

t
.

The last formula follows from the change of variables s = Φ(t) and from the fact that

Φ′(t) ≈ Φ(t)/t since Φ is doubling. The constants depend on z and r. This gives condition

(37) and concludes the proof of Theorem 5.1.

2
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6 Proof of Theorem 2.7

The proof uses arguments similar to ones in the proof of Theorem 5.1, particularly those

showing that ii) implies iii). Recall from (23) that the maximal function Mψf is defined by

Mψf(x) = sup
B:x∈B

ψ(B)

∫
B

|f | dµ,

where ψ(B) is assumed to be nonnegative and to satisfy (22), i.e.,

a) if B1 ⊂ B2 ⊂ cB1, then ψ(B1) ≤ c ψ(B2);

b) if B1 ⊂ B2, then ψ(B1)µ(B1) ≤ c ψ(B2)µ(B2);

c) if S is unbounded, then limr(B)→∞ ψ(B) = 0.

We need a version of Lemma 5.2 adapted to Mψ.

Lemma 6.1 Let f be a bounded nonnegative function with bounded support, and let ψ and

Mψf be as above for any measure µ (µ need not be a doubling measure here). For λ > 0, let

Ωλ = {x ∈ S : Mψf(x) > λ}. Then given x ∈ Ωλ and σ > 1, there is a ball Bx ⊂ Ωλ

containing x with

ψ(Bx)

∫
Bx

f dµ > λ

and such that if B is any ball with Bx ⊂ B and r(B) > σr(Bx), then

ψ(B)

∫
B

f dµ ≤ λ.

Moreover, if Ωλ is not empty, then given σ > 1, there is a countable family {Bi} of pairwise

disjoint balls such that

i) ∪iBi ⊂ Ωλ ⊂ ∪iB∗i , where B∗ = κ(4κ+ 1)B;

ii) ψ(Bi)
∫
Bi
f dµ > λ for all i;
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iii) if B is any ball such that Bi ⊂ B and r(B) > σr(Bi) for some i, then ψ(B)
∫
B
f dµ ≤ λ.

Proof: If x ∈ Ωλ, there is a ball B with x ∈ B and ψ(B)
∫
B
f dµ > λ. For x ∈ Ωλ, let Rx be

defined by

Rx = sup{r(B) : x ∈ B and ψ(B)

∫
B

f dµ > λ}.

We claim that Rx is finite. If S is bounded this is obvious. If S is unbounded and the support

of f is contained in a ball B0, then any ball B for which ψ(B)
∫
B
f dµ > λ must intersect B0

and satisfy

λ < ψ(B)

∫
B

f dµ ≤ ‖f‖L∞ µ(B0)ψ(B).

Since λ, f and B0 are fixed, the last inequality means that there is a constant c > 0 so that

ψ(B) > c for any such B, and consequently, by property c) of ψ, that r(B) is bounded for

such B. This shows that Rx is finite and in fact bounded in x for x ∈ Ωλ. Moreover, since

every such B intersects B0, it now follows that any B which satisfies ψ(B)
∫
B
f dµ > λ lies in

a fixed enlargement (depending on f, λ) of B0.

Thus, if σ > 1 and x ∈ Ωλ, there is a ball Bx containing x whose radius satisfies

Rx/σ < r(Bx) ≤ Rx and for which ψ(Bx)
∫
Bx
f dµ > λ. This ball satisfies ii), and if B is any

ball containing Bx with r(B) > σr(Bx), then r(B) > Rx and hence ψ(B)
∫
B
f dµ ≤ λ. Also

observe that Ωλ =
⋃
x∈Ωλ

Bx. Picking a Vitali type subcover of {Bx}x∈Ωλ gives us a family of

pairwise disjoint balls {Bi} ⊂ {Bx}x∈Ωλ satisfying all the desired properties.

2

For γ > 1 to be chosen and k ∈ Z, let Ωk = Ωγk . Then∫
S
(Mψf)q dω =

∑
k

∫
Ωk\Ωk+1

(Mψf)q dω ≤
∑
k

γ(k+1)q ω(Ωk). (47)

Assuming as we may that f is nonnegative, bounded and has bounded support, and given

σ > 1, we can use Lemma 6.1 for each k to find a family {Bk
j }j of pairwise disjoint balls with
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⋃
j B

k
j ⊂ Ωk ⊂

⋃
j cB

k
j and ψ(Bk

j )
∫
Bkj
f dµ > γk. Moreover, if B is any ball with Bk

j ⊂ B and

r(B) > σr(Bk
j ) for some k, j, then ψ(B)

∫
B
f dµ ≤ γk. Then for the last sum in (47), we have

∑
k

γ(k+1)q ω(Ωk) ≤ γq
∑
k,j

(
ψ(Bk

j )

∫
Bkj

f dµ

)q

ω(cBk
j ).

By the local generalized Hölder inequality (34),

1

µ(Bk
j )

∫
Bkj

f dµ =
1

µ(Bk
j )

∫
Bkj

fv v−1dµ ≤ ‖fv‖Φ̄,Bkj
‖v−1‖Φ,Bkj

.

Collecting estimates, we obtain∫
S
(Mψf)q dω ≤ γq

∑
k,j

ψ(Bk
j )q
(
µ(Bk

j )‖fv‖Φ̄,Bkj
‖v−1‖Φ,Bkj

)q
ω(cBk

j )

≤ γq
∑
k,j

[
ψ(cBk

j )µ(cBk
j )

1
p′ ω(cBk

j )
1
q ‖v−1‖Φ,cBkj

]q
‖fv‖q

Φ̄,Bkj
µ(Bk

j )q/p.

Since we are assuming (see (24)) that for all balls B,

ψ(B)µ(B)
1
p′ ω(B)

1
q ‖v−1‖Φ,B ≤ C,

it follows that the last expression is bounded by

C
∑
k,j

‖fv‖q
Φ̄,Bkj

µ(Bk
j )q/p ≤ C

[∑
k,j

‖fv‖p
Φ̄,Bkj

µ(Bk
j )

]q/p
(48)

since q ≥ p.

Consider the family of sets {Ek
j }k,j defined by Ek

j = Bk
j \ Ωk+1 and observe that the Ek

j are

disjoint in both k and j. We claim that if γ is sufficiently large, there is a constant c such that

µ(Bk
j ) ≤ c µ(Ek

j ) for all k, j. To prove this, it is enough to show that if γ is large, then

µ(Bk
j ∩ Ωk+1) <

1

2
µ(Bk

j ).

Since Ωk+1 ⊂
⋃
m cB

k+1
m ,

µ(Bk
j ∩ Ωk+1) ≤

∑
m

µ(Bk
j ∩ cBk+1

m ). (49)
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Let Bk+1
m satisfy Bk

j ∩ cBk+1
m 6= ∅, and suppose that r(Bk

j ) ≤ r(Bk+1
m ). Then Bk

j ⊂ c1B
k+1
m for

some geometric constant c1 > 1, and therefore, using properties of Bk+1
m and property a) of ψ,

we obtain

ψ(c1B
k+1
m )

∫
c1B

k+1
m

f dµ ≥ c ψ(Bk+1
m )

∫
Bk+1
m

f dµ ≥ c γk+1 > γk

if γ is large enough. Now pick σ = c1 and let B = c1B
k+1
m . Then Bk

j ⊂ B, r(B) ≥ σr(Bk
j ) and,

by the last estimate, ψ(B)
∫
B
f dµ > γk, in contradiction to the properties of Bk

j . Thus

r(Bk
j ) > r(Bk+1

m ) if Bk
j ∩ cBk+1

m 6= ∅, and consequently, Bk+1
m ⊂ c1B

k
j in this case. Hence, by

(49) and the doubling property of µ,

µ(Bk
j ∩ Ωk+1) ≤

∑
m:Bk+1

m ⊂c1Bkj

µ(Bk
j ∩ cBk+1

m ) ≤ C
∑

m:Bk+1
m ⊂c1Bkj

µ(Bk+1
m )

≤ C

γk+1

∑
m:Bk+1

m ⊂c1Bkj

ψ(Bk+1
m )µ(Bk+1

m )

∫
Bk+1
m

f dµ.

Using property b) of ψ together with the fact that the sets {Bk+1
m }m are pairwise disjoint, we

can continue the chain of estimates above with

≤ C

γk+1
µ(c1B

k
j )ψ(c1B

k
j )

∑
m:Bk+1

m ⊂c1Bkj

∫
Bk+1
m

f dµ ≤ C

γk+1
µ(Bk

j )ψ(c1B
k
j )

∫
c1Bkj

f dµ

≤ C

γk+1
µ(Bk

j )γk =
C

γ
µ(Bk

j ),

because of the properties of Bk
j and the fact that σ = c1. To conclude the proof of the claim,

we just choose γ so large that C/γ < 1/2.

It follows from (48) and the claim that

∫
S
(Mψf)q dω ≤ C

[∑
k,j

‖fv‖p
Φ̄,Bkj

µ(Ek
j )

]q/p

≤ C

[∑
k,j

∫
Ekj

MΦ̄(fv)p dµ

]q/p
≤ C

(∫
S
MΦ̄(fv)p dµ

)q/p
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≤ C

(∫
S
(fv)p dµ

)q/p
.

This completes the proof of Theorem 2.7.

2

7 Proof of Theorem 2.2

Recall that the potential operator T is defined by

Tf(x) =

∫
S
f(y)K(x, y) dµ(y) (50)

where the kernel K(x, y) satisfies (6) and µ is the underlying (doubling) measure on the space

S of homogeneous type. Associated with K is the functional ϕ = ϕK acting on balls defined

by

ϕ(B) = sup
x,y∈B

d(x,y)≥cr(B)

K(x, y) (51)

for a sufficiently small positive constant c. We recall that we are assuming that for some

ε > 0, ϕ satisfies

ϕ(B1)µ(B1) ≤ c

(
r(B1)

r(B2)

)ε
ϕ(B2)µ(B2) if B1 ⊂ B2. (52)

We divide the proof of Theorem 2.2 into several steps.

7.1 Step 1: Discretization of the potential operator

Let Dm be the grid of dyadic cubes associated with ρ = 8κ5 > 1 and a fixed m ∈ Z as in

section 3. For f ≥ 0, let

Tmf(x) =

∫
d(x,y)>ρm

K(x, y)f(y) dµ(y).

Momentarily fix x, y with d(x, y) > ρm and pick the integer ` ≥ m for which

ρ` < d(x, y) ≤ ρ`+1. Select Q ∈ Dm with l(Q) = ρ` and x ∈ Q. Let B(Q) denote the
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containing ball of Q, and let xQ denote its center xB(Q). Thus, 1
ρ
B(Q) ⊂ Q ⊂ B(Q) and

r(B(Q)) = ρ`+1. We then have

d(y, xQ) ≤ κ(d(y, x) + d(x, xQ)) ≤ κ(ρ`+1 + ρ`+1) = 2κr(B(Q)),

so that y ∈ 2κB(Q). Since d(x, y) > ρ` = r(2κB(Q))/2κρ, then by definition and property

(10) of ϕ,

K(x, y) ≤ ϕ(2κB(Q)) ≤ Cϕ(B(Q)).

Hence,

K(x, y) ≤ cϕ(B(Q))χ
Q

(x)χ
2κB(Q)

(y) ≤ c
∑
Q∈Dm

ϕ(B(Q))χ
Q

(x)χ
2κB(Q)

(y),

where the last estimate holds for all x, y with d(x, y) > ρm. Therefore,

Tmf(x) ≤ c
∑
Q∈Dm

ϕ(B(Q))χ
Q

(x)

∫
2κB(Q)

f(y)dµ(y), (53)

and then if g ≥ 0, we obtain∫
S

(Tmf) g w dµ ≤ c
∑
Q∈Dm

ϕ(B(Q))

∫
2κB(Q)

f dµ

∫
Q

g w dµ. (54)

For k ∈ Z and γ > 1 to be chosen, let

Ck = {Q ∈ Dm : γk <
1

µ(Q)

∫
Q

g w dµ ≤ γk+1}.

Assuming as we may that g is bounded and has bounded support, we can choose maximal

cubes {Qk
j}j in Dm with

γk <
1

µ(Qk
j )

∫
Qkj

g w dµ.

If Ikj is the next largest dyadic cube containing Qk
j , then

γk <
1

µ(Qk
j )

∫
Qkj

g w dµ ≤ cµ,ρ
1

µ(Ikj )

∫
Ikj

g w dµ ≤ cµ,ργ
k ≤ γk+1 (55)
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by choosing γ ≥ cµ,ρ. Thus Qk
j ∈ Ck. Since each cube Q ∈ Dm must lie in some Ck, it must be

contained in some Qk
j . Of course, the sets {Qk

j}j are pairwise disjoint for fixed k. Then∫
S

(Tmf) g w dµ ≤ c
∑
k

∑
Q∈Ck

ϕ(B(Q))µ(Q)

∫
2κB(Q)

f dµ
1

µ(Q)

∫
Q

g w dµ

≤ c
∑
k

γk+1
∑
j

∑
Q∈∆m(Qkj )

ϕ(B(Q))µ(Q)

∫
2κB(Q)

f dµ, (56)

where we have used the notation ∆m(Q0) = {Q ∈ Dm : Q ⊂ Q0}.

Lemma 7.1 Let f ≥ 0 and ϕ satisfy (52), and let ∆m(Q0) = {Q ∈ Dm : Q ⊂ Q0} if

Q0 ∈ Dm. There exists a geometric constant C such that for each Q0 ∈ Dm,

∑
Q∈∆m(Q0)

ϕ(B(Q))µ(Q)

∫
2κB(Q)

f dµ ≤ C ϕ(B(Q0))µ(Q0)

∫
κ(2κ+1)B(Q0)

f dµ. (57)

Proof: The left side of (57) equals

∞∑
`=0

∑
Q∈∆m(Q0)

`(Q)=ρ−``(Q0)

ϕ(B(Q))µ(Q)

∫
2κB(Q)

f dµ,

which by (52) is at most

c
∞∑
`=0

∑
Q∈∆m(Q0)

`(Q)=ρ−``(Q0)

ρ−` ε ϕ(B(Q0)) µ(Q0)

∫
2κB(Q)

f dµ

= c ϕ(B(Q0)) µ(Q0)
∞∑
`=0

ρ−ε`
∑

Q∈∆m(Q0)

`(Q)=ρ−``(Q0)

∫
2κB(Q)

f dµ. (58)

To estimate the last expression, first observe that if Q ⊂ Q0 and `(Q) ≤ `(Q0), then

2κB(Q) ⊂ κ(2κ+ 1)B(Q0), since if y ∈ 2κB(Q) then

d(y, xQ0) ≤ κ[d(y, xQ) + d(xQ, xQ0)] ≤ κ[2κr(B(Q)) + r(B(Q0))]

= κ[2κρ`(Q) + r(B(Q0))] ≤ κ[2κρ`(Q0) + r(B(Q0))] = κ(2κ+ 1) r(B(Q0)).
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Thus (58) is at most

c ϕ(B(Q0))µ(Q0)
∞∑
`=0

ρ−ε`
∫
κ(2κ+1)B(Q0)

∑
Q∈Dm

`(Q)=ρ−``(Q0)

χ
2κB(Q)

(x) f(x) dµ(x),

and therefore (57) will follow if we show that

∑
Q∈Dm

`(Q)=ρ−``(Q0)

χ
2κB(Q)

(x) ≤ C (59)

uniformly in x, j, k, l,m. To prove this, fix x, j, k, l,m and write r = ρ−``(Q0). If Q ∈ Dm,

`(Q) = r and x ∈ 2κB(Q), then for any y ∈ Q we have

d(x, y) ≤ κ[d(x, xQ) + d(xQ, y)] ≤ κ[2κr(B(Q)) + r(B(Q))]

≤ κ(2κ+ 1))ρ`(Q) = c1r,

so that Q ⊂ B(x, c1r). But those Q ∈ Dm with `(Q) = r are disjoint, and consequently by

doubling, since each Q has sidelength comparable to the radius of B(x, c1r), the number of

such Q ⊂ B(x, c1r) is bounded uniformly in x and r. This proves (59) and so also (57).

We will apply Lemma 7.1 to each Qk
j . In fact, by combining (56), (57) and (55), we obtain∫

S

(Tmf) g w dµ ≤ c
∑
k,j

γk+1ϕ(B(Qk
j ))µ(Qk

j )

∫
κ(2κ+1)B(Qkj )

f dµ

≤ cγ
∑
k,j

ϕ(B(Qk
j ))

∫
κ(2κ+1)B(Qkj )

f dµ

∫
Qkj

g w dµ. (60)

This completes the process of discretizing Tm.

7.2 Applying the condition on the weights

For simplicity, let Q̃k
j = κ(2κ+ 1)B(Qk

j ). We estimate (60) by using the generalized Hölder

inequality (34) and the growth condition (9):∫
S

(Tmf) g w dµ
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≤ c
∑
k,j

ϕ(B(Qk
j ))µ(Q̃k

j )

(
1

µ(Q̃k
j )

∫
Q̃kj

f dµ

)(
1

µ(Qk
j )

∫
Qkj

g w dµ

)
µ(Qk

j )

≤ c
∑
k,j

ϕ(Q̃k
j )µ(Q̃k

j ) ‖fv‖Φ̄,Q̃kj
‖v−1‖Φ,Q̃kj

‖g‖Ψ̄,Qkj
‖w‖Ψ,Qkj

µ(Qk
j ),

where we have used (10) to majorize ϕ(B(Qk
j )) by a multiple of ϕ(Q̃k

j ). By the doubling of µ,

we can also majorize ‖w‖Ψ,Qkj
by a fixed multiple of ‖w‖Ψ,Q̃kj

. Then using condition (14) on

the weights and Hölder inquality, we can continue the estimates above with

≤ c
∑
k,j

(
ϕ(Q̃k

j )µ(Q̃k
j )

1
q

+ 1
p′ ‖w‖Ψ,Q̃kj

‖v−1‖Φ,Q̃kj

)
‖fv‖Φ̄,Q̃kj

µ(Q̃k
j )

1
p ‖g‖Ψ̄,Qkj

µ(Qk
j )

1
q′

≤ c
∑
k,j

‖fv‖Φ̄,Q̃kj
µ(Q̃k

j )
1
p ‖g‖Ψ̄,Qkj

µ(Qk
j )

1
q′

≤ c

(∑
k,j

‖fv‖q
Φ̄,Q̃kj

µ(Q̃k
j )

q
p

)1/q(∑
k,j

‖g‖q
′

Ψ̄,Qkj
µ(Qk

j )

)1/q′

≤ c

(∑
k,j

‖fv‖p
Φ̄,Q̃kj

µ(Qk
j )

)1/p(∑
k,j

‖g‖q
′

Ψ̄,Q̃kj
µ(Qk

j )

)1/q′

(61)

since q ≥ p and µ is doubling.

7.3 Patching the pieces together

Recall that the family {Qk
j}j consists of maximal dyadic cubes satisfying

γk <
1

µ(Qk
j )

∫
Qkj

g w dµ,

and that we also have

1

µ(Qk
j )

∫
Qkj

g w dµ ≤ cµ,ργ
k. (62)

Let Ωk = {x : Md
mg(x) > γk} where Md

mg is the dyadic maximal function defined by

Md
mg(x) = sup

Q:x∈Q
Q∈Dm

1

µ(Q)

∫
Q

|g| dµ,
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and note that Ωk = ∪jQk
j . As before, consider the sets Ek

j = Qk
j \ Ωk+1. These are pairwise

disjoint in both j and k, and we will show that there is a universal constant c such that for

each j, k,

µ(Qk
j ) ≤ cµ(Ek

j ).

The proof is somewhat easier than before due to the dyadic structure. In fact, since

µ(Qk
j ) = µ(Qk

j ∩ Ωk+1) + µ(Ek
j ), it is enough to show that

µ(Qk
j ∩ Ωk+1) ≤ cµ,ρ

γ
µ(Qk

j )

and then pick γ > cµ,ρ. We have

µ(Qk
j ∩ Ωk+1) =

∑
`

µ(Qk
j ∩Qk+1

` ).

If Qk
j ∩Qk+1

` is nonempty, then by the dyadic structure, either Qk
j ⊂ Qk+1

` or Qk+1
` ⊂ Qk

j . If

Qk
j were strictly contained in Qk+1

` , then by the maximality of Qk
j we would have

1

µ(Qk+1
` )

∫
Qk+1
`

g w dµ ≤ γk,

which contradicts the fact that this average exceeds γk+1. Consequently, Qk+1
` ⊂ Qk

j if these

sets intersect, and therefore

µ(Qk
j ∩ Ωk+1) =

∑
`:Qk+1

` ⊂Qkj

µ(Qk+1
` ) ≤

∑
`:Qk+1

` ⊂Qkj

1

γk+1

∫
Qk+1
`

g w dµ

≤ 1

γk+1

∫
Qkj

g w dµ ≤ cµ,ρ
γ
µ(Qk

j ),

which proves the assertion above.

Consequently, by (61),

∫
S

(Tmf) g w dµ ≤ c

(∑
k,j

‖fv‖p
Φ̄,Q̃kj

µ(Qk
j )

)1/p(∑
k,j

‖g‖q
′

Ψ̄,Q̃kj
µ(Qk

j )

)1/q′
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≤ c

(∑
k,j

‖fv‖p
Φ̄,Q̃kj

µ(Ek
j )

)1/p(∑
k,j

‖g‖q
′

Ψ̄,Q̃kj
µ(Ek

j )

)1/q′

≤ c

(∑
k,j

∫
Ekj

MΦ̄(fv)p dµ

)1/p(∑
k,j

∫
Ekj

MΨ̄(g)q
′
dµ

)1/q′

≤ c

(∫
S

MΦ̄(fv)p dµ

)1/p(∫
S

MΨ̄(g)q
′
dµ

)1/q′

≤ c

(∫
S

(fv)p dµ

)1/p(∫
S

gq
′
dµ

)1/q′

by using Theorem 5.1, since Φ̄ ∈ Bp and Ψ̄ ∈ Bq′ by hypothesis. Since the constant c is

independent of m, Theorem 2.2 now follows from duality by letting m→∞.

2

8 Proof of Theorem 2.5

8.1 A local version of a classical lemma of Wiener

We will derive a local version of a result of N. Wiener which leads to a way to control the

L logL norm of a function by the L1 norm of its Hardy–Littlewood maximal function. We

first need a local version of the classical Calderón–Zygmund decomposition as shown in [MP].

We adapt the arguments there to our context.

Fix δ > 0 and a ball B0, and consider the following family of balls adapted to B0:

B = BB0,δ = {B : xB ∈ B0 and r(B) ≤ δr(B0)}. (63)

This family has the properties listed in the next lemma. We use the notation B̂0 = (1 + δ)κB0,

where κ is the quasimetric constant of d, and we also denote f
B

= 1
µ(B)

∫
B
f dµ.

In order to obtain our local version of the Calderón–Zygmund lemma, we begin with the

following observations.
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Lemma 8.1 Let B0 be a ball, B be defined as in (63), and D be the doubling order of µ

relative to B̂0, i.e.,

µ(B̂0)

µ(B)
≤ cµ

(
r(B̂0)

r(B)

)D

if B ⊂ B̂0.

Let f be a nonnegative function which is integrable on B̂0.

a) If B ∈ B then B ⊂ B̂0.

b) If B ∈ B and f
B
> λ, then

r(B) ≤
(
cµ
f
B̂0

λ

)1/D

r(B̂0).

If we also assume that λ ≥ γf
B̂0

, where γ = cµ
M
δ

and M > 0, then

r(B) ≤
(
δ

M

)1/D

r(B̂0).

Proof: The first observation follows from the quasimetric inequality, since if B ∈ B and

x ∈ B, then

d(x, xB0) ≤ κ[d(x, xB) + d(xB, xB0)] < κ[r(B) + r(B0)]

≤ κ[δr(B0) + r(B0)] = κ(1 + δ)r(B0).

To show b), let B ∈ B and fB > λ. Then by using a) and the doubling property of µ, we have

λ < f
B
≤ µ(B̂0)

µ(B)
f
B̂0
≤ cµ

(
r(B̂0)

r(B)

)D

fB̂0
,

and the first part of b) follows. The second part of b) is a simple corollary of the first part.

2

Given an integrable function f on B̂0, the maximal function of f associated to B is defined by

MBf(x) = sup
B:x∈B∈B

1

µ(B)

∫
B

|f | dµ

38



if x belongs to an element of the basis B, and MBf(x) = 0 otherwise. Therefore, if λ > 0 and

we define

Ωλ = {x ∈ S : MBf(x) > λ},

then Ωλ ⊂ B̂0.

The version of the Calderón–Zygmund lemma that we will use is given in the next lemma.

Lemma 8.2 Let f be a nonnegative and integrable function on B̂0, γ be as in part c) of

Lemma 8.1, and λ ≥ γf
B̂0

. If Ωλ is not empty, then given σ > 1, there exists a countable

family {Bi} of pairwise disjoint balls such that

i) ∪iBi ⊂ Ωλ ⊂ ∪iB∗i , where B∗ = κ(4κ+ 1)B and κ is the quasimetric constant

ii) r(Bi) ≤
(
δ
M

)1/D
r(B̂0) for all i, where D is the doubling order of µ,

iii) 1
µ(Bi)

∫
Bi
f dµ > λ for all i,

iv) 1
µ(σBi)

∫
σBi

f dµ ≤ λ if σBi ∈ B.

Proof: The proof is similar to that of Lemma 5.2. Fix f and λ. If x ∈ Ωλ, there exists a ball

B′ ∈ B with x ∈ B′ and 1
µ(B′)

∫
B′
f dµ > λ. Define R = R(x, f, λ) by

R = sup{r(B) : B ∈ B, x ∈ B and fB > λ}.

Lemma 8.1 implies that

R ≤
(
δ

M

)1/D

r(B̂0).

Then there is a ball Bx with x ∈ B ∈ B whose radius satisfies R
σ
< r(Bx) ≤ R and for which

f
Bx
> λ. For this ball, ii), iii) and iv) hold with Bx in place of Bi. Part iii) implies that

Ωλ =
⋃
x∈Ωλ

Bx. Picking a Vitali type subcover of {Bx}x∈Ωλ as in [SW], Lemma 3.3, we obtain
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a family of pairwise disjoint balls {Bi} ⊂ {Bx}x∈Ωλ satisfying i) as well as the rest of the

properties.

2

In our context, we have the following version of a classical estimate due to Wiener.

Lemma 8.3 Let f be a nonnegative locally integrable function, δ > 0, B0 be any ball, and γ

be as in Lemma 8.1 with M chosen to satisfy

M ≥ [κ2(4κ+ 1)(1 + δ)]Dδ1−D,

where κ is the quasimetric constant and D is the doubling order of µ. Then there exists a

constant A = Aκ,µ such that for each λ ≥ γf
B̂0

,

1

λ

∫
{x∈B̂0:f(x)>λ}

f dµ ≤ Aµ({x ∈ B̂0 : MB(f)(x) > λ}). (64)

Remark 8.4 In Rn, if we consider a cube Q instead of a ball, and if Md
Q denotes the usual

dyadic maximal operator with respect to Q, then it is not difficult to see that a corresponding

inequality holds with no “blow-up” in the constant. To be more precise, we then have

1

λ

∫
{x∈Q:f(x)>λ}

f dµ ≤ 2nµ({x ∈ Q : Md
Qf(x) > λ})

for λ > fQ.

Proof of Lemma 8.3: Fix λ ≥ γfB̂0
with γ = cµM/δ and M to be chosen. Note that

Ωλ = {x ∈ B̂0 : MB(x) > λ}. We may assume without loss of generality that f is bounded.

We may also assume that Ωλ is not empty since {x ∈ B̂0 : f(x) > λ} ⊂ Ωλ (except possibly

for a set of µ-measure zero) by the Lebesgue differentiation theorem. Applying Lemma 8.2 to

f and λ with σ = κ(4κ+ 1), we obtain a family of disjoint balls {Bi} satisfying⋃
iBi ⊂ Ωλ ⊂

⋃
i σBi. Furthermore, for all i, 1

µ(Bi)

∫
Bi
fdµ > λ and 1

µ(σBi)

∫
σBi

f dµ ≤ λ since
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σBi ∈ B if we choose M with M1/D ≥ κ2(4κ+ 1)(1 + δ)δ1/D−1, because σBi is centered in B0

and

r(σBi) = σr(Bi) ≤ σ

(
δ

M

)1/D

r(B̂0) = σ

(
δ

M

)1/D

(1 + δ)κr(B0) ≤ δr(B0)

for such M .

Then, since {x ∈ B̂0 : f(x) > λ} ⊂ Ωλ a.e., these properties together with the doubling of µ

imply that ∫
{x∈B̂0:f(x)>λ}

f dµ ≤
∫

Ωλ

f dµ ≤
∑
i

∫
σBi

f dµ

≤ λ
∑
i

µ(σBi) ≤ Aλ
∑
i

µ(Bi) ≤ Aλµ(Ωλ),

which proves the lemma.

2

8.2 Proof of Theorem 2.5

We will show that Theorem 2.5 follows from Corollary 2.3. Thus, we must show that there are

positive constants C and β so that the pair of weights (w1/p, {Mϕ̃(M [p]w)}1/p) satisfies the

condition

LB := ϕ(B)µ(B)
∥∥w1/p

∥∥
Lp(logL)p−1+β(B)

∥∥{Mϕ̃(M [p]w)}−1/p
∥∥
Lp′ (logL)p′−1+β(B)

≤ C

for all balls B in S. Recalling that ϕ̃(B) = (ϕ(B)µ(B))p µ(B)−1 and that B̂ = (1 + δ)κB, we

have that Mϕ̃(M [p]w)(x)−1/p ≤
(

[ϕ(B̂)µ(B̂)]p

µ(B̂)

∫
B̂
M [p]w dµ

)−1/p

for all x ∈ B. Hence,

LpB ≤ [ϕ(B)µ(B)]p
∥∥w1/p

∥∥p
Lp(logL)p−1+β(B)

(
[ϕ(B̂)µ(B̂)]p

µ(B̂)

∫
B̂

M [p]w dµ

)−1

≤ c‖w‖
L(logL)p−1+β(B)

(
1

µ(B̂)

∫
B̂

M [p]w dµ

)−1

,

by the reverse doubling properties of ϕ(B) and µ(B) (see (9) for ϕ).
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Therefore, showing that LB ≤ C will follow from proving that

‖w‖
L(logL)p−1+β(B)

≤ Cp

µ(B̂)

∫
B̂

M [p]w dµ (65)

for an appropiate β. Now, if we choose β = [p]− p+ 1 > 0, we must check that

‖w‖
L(logL)[p](B)

≤ Cp

µ(B̂)

∫
B̂

M [p]w dµ.

Hence, everything is reduced to the following general lemma.

Lemma 8.5 Let δ > 0, k = 1, 2, · · · , B be a ball and B̂ = (1 + δ)κB where κ is the

quasimetric constant. Then there is a positive a constant c such that for any measurable

function w,

‖w‖
L(logL)k(B)

≤ c

µ(B̂)

∫
B̂

Mkw dµ. (66)

This lemma, in the same form but in the context of Rn and with balls replaced by cubes

(with no “blow-up” (1 + δ)κ in the constant) can be found in [P7]. A similar estimate is also

given in both [GI] and [WW]. The idea of deducing L logL behavior of a function from

integrability of its maximal function goes back to E. Stein in [St], although the inequality

proved there does not preserve homogeneity as ours.

Proof: By definition of the Luxemburg norm, (66) will follow from showing that for some

constant c > 1, c independent of w,

1

µ(B)

∫
B

w

λB
logk(1 +

w

λB
) dµ ≤ 1, (67)

where we denote λB = c

µ(B̂)

∫
B̂
Mkw dµ.

To prove this, we will use induction. We start by proving (67) with k=1. Let f = w/λB.

Recall that fB = 1
µ(B)

∫
B
f dµ so that 0 ≤ fB̂ ≤

1
c

by the Lebesgue differentiation theorem and

the definition of λB. Using the formula∫
X

Φ(f) dν =

∫ ∞
0

Φ′(λ) ν({x ∈ X : f(x) > λ}) dλ,
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which holds for any Young function Φ, we have

1

µ(B)

∫
B

f log(1 + f)dµ =
1

µ(B)

∫ ∞
0

1

1 + λ
f({x ∈ B : f(x) > λ}) dλ

=
1

µ(B)

∫ γf
B̂

0

+
1

µ(B)

∫ ∞
γf
B̂

· · · = I + II,

where γ is given in Lemma (8.1) and where we use the notation f(E) =
∫
E
f dµ for any

measurable set E. Recalling that fB̂ ≤ 1/c, we have by the doubling property of µ that

I ≤ C γ f 2
B̂
≤ Cγ

c2
.

For II, we use estimate (64):

II =
1

µ(B)

∫ ∞
γf
B̂

1

1 + λ
f({x ∈ B : f(x) > λ}) dλ

≤ A

µ(B)

∫ ∞
γf
B̂

λ

1 + λ
µ({x ∈ B̂ : MBf(x) > λ}) dλ

≤ A

µ(B)

∫ ∞
0

µ({x ∈ B̂ : Mf(x) > λ}) dλ =
A

µ(B)

∫
B̂

Mf dµ =
A

µ(B)

∫
B̂

Mwdµ
1

λB
≤ C

c

by definition of λB and doubling. Therefore,

I + II ≤ Cγ

c2
+
C

c
≤ 1

if c is large enough.

We now assume that the estimate holds for a certain k. Then with f = w/λB and

λB = c

µ(B̂)

∫
B̂
Mk+1w dµ,

1

µ(B)

∫
B

f logk+1(1 + f) dµ =
k + 1

µ(B)

∫ ∞
0

logk(1 + λ)

1 + λ
f({x ∈ B : f(x) > λ}) dλ

=
k + 1

µ(B)

(∫ γf
B̂

0

+

∫ ∞
γf
B̂

· · ·

)
= I + II.
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Again by the Lebesgue differentiation theorem, we can chose c ≥ 1 independent of B and w

such that I ≤ 1/2. Let Φ(λ) = λ logk(1 + λ). Then Φ′(λ) = logk(1 + λ) + kλ logk−1(1+λ)
1+λ

, and

again for II we use estimate (64):

II =
k + 1

µ(B)

∫ ∞
γf
B̂

logk(1 + λ)

1 + λ
f({x ∈ B : f(x) > λ}) dλ

≤ A(k + 1)

µ(B)

∫ ∞
γf
B̂

λ logk(1 + λ)

1 + λ
µ({x ∈ B̂ : MBf(x) > λ}) dλ

≤ A(k + 1)

µ(B)

∫ ∞
0

Φ′(λ)µ({x ∈ B̂ : Mf(x) > λ}) dλ since
λ

1 + λ
≤ 1

≤ A(k + 1)

µ(B)

∫
B̂

Mf logk(1 +Mf) dµ ≤ 1/2.

In the last inequality, we have used the induction hypothesis applied to Mw since f = w/λB

and λB = c

µ(B̂)

∫
B̂
Mk+1w dµ ≥ c

µ(B̂)

∫
B̂
Mkw dµ, and we have chosen an appropriately large

constant c in order to compensate for the factor A(k + 1). This completes the proof of the

lemma and hence the proof of Theorem 2.5.

2
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for Grushin type operators, Comm. P. D. E. 19 (1994), 523–604.

45



[GGK] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, Criteria of general weak type

inequalities for integral transforms with positive kernels, Proc. Georgian Acad. Sci.

(Math) 1 (1993), 11–34.

[GI] L. Greco and T. Iwaniec, New inequalities for the Jacobian, Ann. Inst. Henri
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