
J. reine angew. Math. 687 (2014), 43–86 Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2012-0047 © De Gruyter 2014

Sharp weighted estimates for dyadic shifts
and the A2 conjecture

By Tuomas Hytönen at Helsinki, Carlos Pérez at Sevilla, Sergei Treil at Providence and
Alexander Volberg at East Lansing

Abstract. We give a self-contained proof of the A2 conjecture, which claims that the
norm of any Calderón–Zygmund operator is bounded by the first degree of the A2 norm of
the weight. The original proof of this result by the first author relied on a subtle and rather
difficult reduction to a testing condition by the last three authors. Here we replace this reduction
by a new weighted norm bound for dyadic shifts – linear in the A2 norm of the weight and
quadratic in the complexity of the shift –, which is based on a new quantitative two-weight
inequality for the shifts. These sharp one- and two-weight bounds for dyadic shifts are the
main new results of this paper. They are obtained by rethinking the corresponding previous
results of Lacey–Petermichl–Reguera and Nazarov–Treil–Volberg. To complete the proof of
theA2 conjecture, we also provide a simple variant of the representation, already in the original
proof, of an arbitrary Calderón–Zygmund operator as an average of random dyadic shifts and
random dyadic paraproducts. This method of the representation amounts to the refinement of
the techniques from non-homogeneous Harmonic Analysis.

1. Introduction

A Calderón–Zygmund operator in Rd is an integral operator, bounded in L2 and with
kernel K satisfying the following growth and smoothness conditions:

(i) jK.x; y/j �
Ccz

jx � yjd
for all x; y 2 Rd , x ¤ y.

(ii) There exists ˛ > 0 such that

jK.x; y/ �K.x0; y/j C jK.y; x/ �K.y; x0/j � Ccz
jx � x0j˛

jx � yjdC˛

for all x; x0; y 2 Rd such that jx � x0j < jx � yj=2.
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44 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

It is well known (see [12]) that a Calderón–Zygmund operator is bounded in the weighted
space L2.w/ if (and for many Calderón–Zygmund operators only if) the weight w satisfies the
famous Muckenhoupt A2 condition

(1.1) sup
Q

�
jQj�1

Z
Q

wdx
��
jQj�1

Z
Q

w�1dx
�
DW Œw�A2 <1:

The quantity Œw�A2 is called the Muckenhoupt norm of the weight w (although it is definitely
not a norm).

It has been an old problem to describe how the norm of a Calderón–Zygmund operator
in the weighted space L2.w/ depends on the Muckenhoupt norm Œw�A2 of w. A conjecture
was that for a fixed Calderón–Zygmund operator T its norm is bounded by C � Œw�A2 , where
the constant C depends on the operator T (but not on the weight w). Simple counterexamples
demonstrate that for the classical operators like Hilbert transform or Riesz transform, a better
estimate than C � Œw�A2 is not possible.

This linear (in Œw�A2) estimate of the norm has become known as the A2 conjecture.
For the maximal function, the estimate C � Œw�A2 was proved by S. Buckley [3]: he also

proved that this estimate is optimal for the maximal function. The first result for a singular
“integral” operator was due to J. Wittwer [42], who proved the A2 conjecture for the Haar
multipliers. The same result for Beurling–Ahlfors transform (convolution with ��1z�2 in C)
was obtained first by Petermichl–Volberg [34] by using the combination of Bellman function
technique and the heat extension, and later by Dragicevic–Volberg [7] via the representation of
the Beurling–Ahlfors transform as an average of Haar multipliers over all dyadic lattices.

This result was used in [34] to answer positively an important question in the theory of
quasiconformal maps, see [1], about whether a weakly quasiregular map is quasiregular (or
equivalently whether there is a self-improvement of a solution of the Beltrami equation in the
case of critical exponent).

Then S. Petermichl [32] proved the A2 conjecture for the Hilbert transform, again using
the representation of the Hilbert transform as an average of copies of a simple dyadic opera-
tor (the so-called dyadic, or Haar, shift of complexity 1 from [31]). Further cases of the A2
conjecture were settled in [2, 33].

We should mention here an earlier paper by R. Fefferman and J. Pipher [9], where a linear
estimate in terms of stronger A1 norm of the weight w was obtained for the Hilbert transform.
This result found its application in geometric questions pertinent to multi-parameter Harmonic
Analysis, in particular for singular operators on the Heisenberg group. The result in [32] is a
considerable strengthening of Fefferman–Pipher’s theorem. For other types of results on A1,
see [18].

A recent paper [16] by M. Lacey, S. Petermichl and M. Reguera established the A2
conjecture for general dyadic shifts. Another proof of the linear bound for dyadic shifts was
obtained in Cruz-Uribe–Martell–Pérez [4, 5] in a very beautiful and concise approach based
on a remarkable “formula” by Lerner [17]. Thus, the conjecture was proved for all operators
which can be represented by taking for each dyadic grid a sum of finitely many dyadic shifts
of uniformly bounded complexity (see definition below) and taking the average over all grids.

In particular, as it was shown by A. Vagharshakyan [39], any convolution Calderón–
Zygmund operator on the real line R with sufficiently smooth kernel can be obtained by aver-
aging copies of just one Haar shift, so the A2 conjecture holds for such operators.
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Note that estimates of the norms of the dyadic shifts obtained in [16] and in [4, 5] grew
exponentially in the complexity of the shift, so it was only possible to estimate the Calderón–
Zygmund operators obtained by averaging of finitely many such shifts.

Using linear estimates for the dyadic shifts and a special decomposition (in the form
proposed by Yang [43]) of a Calderón–Zygmund operator Hytönen–Lacey–Reguera–Sawyer–
Vagharshakyan–Uriarte-Tuero in [15] proved the A2 conjecture for all Calderón–Zygmund
operators with sufficiently smooth kernels (the smoothness was dependent on the dimension in
[15]). However, the problem for general Calderón–Zygmund operators required (as we shall
see) some probabilistic ideas rooted in non-homogeneous Harmonic Analysis [20,26] (see also
[6, 10, 13, 21, 24, 25, 37, 40]).

For general Calderón–Zygmund operators, the last three authors [30] reduced the A2
conjecture to a weak type estimate by establishing the inequality

kT kL2.w/!L2.w/ � C
�
Œw�A2 C kT kL2.w/!L2;1.w/ C kT

0
kL2.w�1/!L2;1.w�1/

�
:

In [30] it is also shown that theA2 conjecture is equivalent to getting the linear in Œw�A2 estimate
on simplest test functions (this is a T .1/ theorem in the presence of weight). Using this result
of Pérez–Treil–Volberg and the technique developed in [16], the first author [14] was able to
prove the A2 conjecture for general Calderón–Zygmund operators, i.e., the following theorem:

Theorem 1.1 ([14]). Let T be a Calderón–Zygmund operator and w be an A2 weight.
Then

kTf kL2.w/ � C � Œw�A2kf kL2.w/;

where the constant C depends only on the dimension d , the parameters Ccz, ˛ of the Calderón–
Zygmund operator and its norm in the non-weighted L2.

A crucial new element in [14] was a clever averaging trick, allowing one to get rid of the
so called bad cubes and thus represent an arbitrary Calderón–Zygmund operator as a weighted
average of (infinitely many) dyadic shifts. This averaging trick was a development of the
bootstrapping argument used by Nazarov–Treil–Volberg [26], where they exploited the fact
that the bad part of a function can be made arbitrarily small. Using the original Nazarov–Treil–
Volberg averaging trick would add an extra factor depending on Œw�A2 to the estimate, so a new
idea was necessary. A new observation in [14] was that as soon as the probability of a “bad”
cube is less than 1, it is possible to completely ignore the bad cubes (at least in the situation
where they cause troubles).

The paper [14], which itself is neither short or very simple, relies of a rather technically
involved preprint [30]. Thus the necessity of a simpler, direct proof, not using the reduction to
the weak type estimates seems pretty evident.

Such a direct proof of Theorem 1.1 is presented in this paper; moreover, we obtain new
results on the dyadic shifts into which the Calderón–Zygmund operator T is decomposed.
Indeed, the reduction of the A2 conjecture to a testing condition, which in [30] was made on
the level of the Calderón–Zygmund operator T , is here performed on the more elementary
level of the dyadic shifts in the representation of T . The possibility of such a simplification in
the proof of the A2 conjecture was suggested in [14, Section 8.A], and here we carry out this
program in detail.
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The main components of the proof are as follows:

(i) An averaging trick, which is a version of the one from [14] (unlike [14] we do not need
good shifts here, and this simplifies the matter). This trick allows us not to worry about
“bad” cubes and represent a general Calderón–Zygmund operator as a weighted average
of dyadic shifts with the weights decaying exponentially in the complexity of the shifts.

(ii) Sharp estimates, with all the constants written down, in the two weight T .1/ theorem
from [28] in the setting of dyadic shifts (Theorem 3.4). Note that while most of the
necessary estimates were done in [28], a formal application of the result from [28] would
give an exponential (in complexity) growth of the norm.
To get the polynomial (in complexity) growth, one needs some non-trivial modifications.
For the convenience of the reader we present the complete proof, not only the modifica-
tions: only describing modifications and referring the reader to the proof in [28] would
make the paper unreadable.

(iii) A modification of the proof from [16], which gives polynomial in complexity, instead of
exponential, as in [16], bound for the weighted norm of the dyadic shift (Theorem 5.1).
The main difference compared to [16] is a better (linear in complexity instead of ex-
ponential) estimate of the (non-weighted) weak L1 norm of a dyadic shift, which was
obtained in [14].
The rest of the proof essentially follows the construction from [16], keeping track of
constants, and clarifying parts of the proof that were presented there in a sketchy way.
We note that a variant of such a modification of [16] already appeared in [14], where it
was used to verify the required testing conditions for T , but not an explicit norm bound
for the shifts themselves.

Aside from the new self-contained proof of Theorem 1.1, the above-mentioned The-
orems 3.4 and 5.1, giving sharp quantitative two-weight and one-weight bounds for dyadic
shifts, are the main new results of this paper. In this paper, the two-weight bounds serve
mainly as a tool for sharp one-weight bounds, but they have been systematically studied in
[22, 27, 29, 35, 36].

2. Dyadic lattices and martingale difference decompositions. Random dyadic lattices

2.1. Random dyadic lattices. The standard dyadic system in Rd is

D0
WD

[
k2Z

D0
k ; D0

k WD
®
2k.Œ0; 1/d Cm/ W m 2 Zd

¯
:

For I 2 D0
k

and a binary sequence ! D .!j /1jD�1 2 .¹0; 1º
d /Z, let

I PC! WD I C
X
j<k

!j 2
j :

Following Nazarov–Treil–Volberg [26, Section 9.1], consider general dyadic systems of the
form

D D D!
WD ¹I PC! W I 2 D0

º D

[
k2Z

D!
k :
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Given a cube I D x C Œ0; `/d , let

ch.I / WD
®
x C �`=2C Œ0; `=2/d W � 2 ¹0; 1ºd

¯
denote the collection of dyadic children of I . Thus D!

k�1
D
S
¹ch.I / W I 2 D!

k
º. Note that,

in line with [26] but contrary to [14], we use the “geometric” indexing of cubes, where larger
k refers to larger cubes, rather than the “probabilistic” indexing, where larger k would refer to
finer sigma-algebras.

Consider the standard probability measure on ¹0; 1ºd , which assigns equal probability
2�d to every point. Define the measure P on .¹0; 1ºd /Z as the corresponding product measure.

2.2. Martingale difference decompositions and Haar functions. For a cube I in Rd

let
EIf WD

�−
I

fdx
�
1I WD

�
jI j�1

Z
I

fdx
�
1I ; �I WD �EI C

X
J2ch.I /

EJ :

It is well known that for an arbitrary dyadic lattice D every function f 2 L2.Rd / admits the
orthogonal decomposition

f D
X
I2D

�If:

We also need the weighted martingale difference decomposition. Let � be a Radon mea-
sure on Rd . Define the weighted expectation and martingale differences as

E�I f WD
�
.�.I //�1

Z
I

fd�
�
1I ; �

�
I WD �E�I C

X
J2ch.I /

E�J I

for the definiteness we set E�I f D 0 if �.I / D 0.
For an arbitrary dyadic lattice D and k 2 Z, any function f 2 L2.�/ admits an orthog-

onal decomposition

(2.1) f D
X

I2DW`.I/D2k

E�I f C
X

I2DW`.I/�2k

�
�
I f:

Given a cube Q in Rd , any function in the martingale difference space �QL2 is called
a Haar function (corresponding to Q) and is usually denoted by hQ. Note that hQ denotes a
generic Haar function, not any particular one.

A generalized Haar function hQ is a linear combination of a Haar function and 1Q. In
other words, a generalized Haar function hQ is constant on the children of Q, but unlike the
regular Haar function it is not orthogonal to constants.

Similarly a function h 2 ��QL
2.�/ is called a weighted Haar function and is denoted

as h�Q.

3. Dyadic shifts. A sharp two weight estimate

Definition 3.1. An unweighted dyadic paraproduct is an operator … of the form

…f D
X
Q2D

.EQf /hQ;

where hQ are some (non-weighted) Haar functions.

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated

Download Date | 10/10/16 7:52 AM



48 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

Definition 3.2. Let m; n 2 N. An elementary dyadic shift with parameters m, n is an
operator given by

Sf WD
X
Q2D

X
Q0;Q002D;Q0;Q00�Q;

`.Q0/D2�m`.Q/;`.Q00/D2�n`.Q/

jQj�1.f; h
Q00

Q0 /h
Q0

Q00 ;

where hQ
00

Q0 and hQ
0

Q00 are (non-weighted) Haar functions for the cubes Q0 and Q00 respectively,
subject to normalization

(3.1)
hQ00Q0 1 � hQ0Q001 � 1:

Notice that this implies, in particular, that
(3.2)

Sf .x/ D
X
Q2D

jQj�1
Z
Q

aQ.x; y/f .y/dy; supp aQ � Q �Q; kaQk1 � 1;

where

(3.3) aQ.x; y/ D
X

Q0;Q002D;Q0;Q00�Q;
`.Q0/D2�m`.Q/;`.Q00/D2�n`.Q/

h
Q0

Q00.x/h
Q00

Q0 .y/:

The number max.m; n/ is called the complexity of the dyadic shift.

Definition 3.3. If in the above definition we allow some (or all) hQ0 , hQ00 to be gener-
alized Haar functions, we get what we will call an elementary generalized dyadic shift.

A dyadic shift with parameters m and n is a sum of at most .2d /2 elementary dyadic
shifts (with parameters m and n). If we allow some (or all) of the elementary dyadic shifts to
be generalized ones, we get the generalized dyadic shift.

Remark. The paraproduct… is an elementary generalized dyadic shift with parameters
0, 1, provided that khQk1 � 1 for all cubes Q.

Remark. The main difference between dyadic shifts and generalized ones is that a
dyadic shift is always a bounded operator in L2 (assuming the normalization (3.1)), while
for the boundedness of a generalized dyadic shift some additional conditions are required.

We always think that our dyadic shifts S are finite dyadic shifts meaning that only finitely
many Q’s are involved in its definition above. All estimates will be independent of this finite
number.

In the present section we consider a two weight T .1/ theorem for dyadic shifts. We fix
two measures �, � on Rd . Finite dyadic shifts are integral operators with kernel

A.x; y/ D
X
Q2D

aQ.x; y/;

the sum being well defined as it is finite. We define now

S�f .x/ WD

Z
A.x; y/f .y/ d�.y/;
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and its adjoint S�� ,

S��g.y/ D

Z
A.x; y/g.x/ d�.x/:

We need the notation
Œ�; ��A2 WD sup

I

h�iI h�iI ;

where h�iI WD jI j�1�.I /.
The following theorem is the first new main result of this paper. It is essentially a quan-

tified version of [28, Theorem 2.3].

Theorem 3.4. Let S be an elementary generalized dyadic shift with parameters m and
n. Let us suppose that there exists a constant B such that for any Q 2 D we have

(3.4)
Z
Q

jS�1Qj
2d� � B�.Q/;

Z
Q

jS��1Qj
2d� � B�.Q/:

Then

(3.5) kS�f k� � C
�
2d=2.r C 1/

�
B1=2 C Œ�; ��

1=2
A2

�
C r2Œ�; ��

1=2
A2

�
kf k�;

where r D max.m; n/, and C is an absolute constant.

The idea of the proof of this theorem is quite simple. The operator S� is represented
essentially as the sum of weighted paraproducts, which are estimated using condition (3.4) and
the operator with finitely many diagonals, which is estimated by C Œ�; ��1=2A2

.
Take two test functions f; g. Using martingale difference decomposition (2.1) we can

decompose

f D
X

Q2DW`.I/D2k

E�Qf C
X

Q2DW`.I/<2k

�
�
Qf;

g D
X

Q2DW`.I/D2k

E�Qg C
X

Q2DW`.I/<2k

��Qg:

We want to estimate the bilinear form hS�f; gi� . We will first concentrate on the non-
trivial case f D

P
Q2D �

�
Qf , g D

P
Q2D ��Qg; adding the terms

P
Q2DW`.I/D2k E�Qf

and
P
Q2DW`.I/D2k E�Qg will be easy.1)

3.1. Weighted paraproducts. Fix an integer r . Then the paraproduct …� D …
�
S ,

acting (formally) from L2.�/ to L2.�/ is defined as

…� WD
X
Q2D

E�Qf
X

R2D;R�Q;
`.R/D2�r`.Q/

��RS�1Q:

1) In fact, we will only apply this theorem in the situation when martingale difference decompositions not
involving E�

Q
and E�

Q
are possible.
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The paraproduct …� D …�S� , acting (formally) from L2.�/ to L2.�/, is defined similarly,

…� WD
X
Q2D

E�Qf
X

R2D;R�Q;
`.R/D2�r`.Q/

�
�
RS��1Q:

Notice that if r � n, then for any f 2 L1loc.�/ such that f jQ � 1, and for any R 2 D

such that R � Q and `.R/ � 2�r`.Q/, we have

(3.6) ��RS�f D �
�
RS�1Q:

Indeed, in the decomposition

hS�.1Q � f /; h
�
Ri� D

X
I2D

X
I 0;I 002D;I 0;I 00�I;

`.I 0/D2�m`.I/;`.I 00/D2�n`.I/

h1Q � f; hI 0i�hhI 00 ; h
�
Ri�

only the terms with I 0 6� Q and I 00 � R can give a non-zero contribution. But the inclusions
I 00 � R � Q together with size conditions on I 00 and R imply that

`.I / D 2n`.I 00/ � 2r`.I 00/ � 2r`.R/ � `.Q/;

so I � Q (because I \Q � I 00 ¤ ¿, so the inclusion of the dyadic cubes is determined by
their sizes). But the inclusion I � Q implies I 0 � Q, so the conditions I 0 6� Q and I 00 � R
are incompatible.

The equality (3.6) means that for r � n we can replace 1Q by 1, bringing our definition
of the paraproduct more in line with the classical one.

Lemma 3.5. Let Q;R 2 D , and let r � n. Then for the paraproduct …� D …
�
S�

defined above the following assertions hold:

(i) If `.R/ � 2�r`.Q/ then h…�h�Q; h
�
Ri� D 0 for all weighted Haar functions h�Q and h�R.

(ii) If R 6� Q, then h…�h�Q; h
�
Ri� D 0 for all weighted Haar functions h�Q and h�R.

(iii) If `.R/ < 2�r`.Q/, then for all weighted Haar functions h�Q and h�R

h…�h
�
Q; h

�
Ri� D hS�h

�
Q; h

�
Ri� I

in particular, if R 6� Q, then both sides of the equality are 0.

Proof. Let us use Q0 and R0 for the summation indices in the paraproduct, i.e., let us
write

…�h
�
Q WD

X
Q02D

E�Q0h
�
Q

X
R02D;R0�Q0;
`.R0/D2�r`.Q0/

��R0S�1Q0 :

Since h�R is orthogonal to ranges of all projections ��R0 except ��R we can write

(3.7) h…�h
�
Q; h

�
Ri� D h.E

�
Q0h

�
Q/�

�
RS�1Q0 ; h

�
Ri� D ahS�1Q0 ; h

�
Ri� ;

where Q0 is the ancestor of R of order r (i.e. the cube Q0 � R such that `.Q0/ D 2r`.R/) and
a is the value of E�Q0h

�
Q on Q0, E�Q0h

�
Q D a1Q0 .
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It is easy to see that E�Q0h
�
Q 6� 0 (equivalently a ¤ 0) only if Q0 ¤ Q. Therefore, see

(3.7),
h…�h

�
Q; h

�
Ri� ¤ 0

only if Q0 ¤ Q and statements (i) and (ii) of the lemma follow immediately.
Indeed, if `.R/ � 2�r`.Q/ and `.Q0/ D 2r`.R/, the inclusion Q0 ¤ Q is impossible,

so
h…�h

�
Q; h

�
Ri� D 0;

and the statement (i) is proved.
If R 6� Q, then the inclusionQ0 ¤ Q (which, as it was discussed above, is necessary for

h…�h
�
Q; h

�
Ri� ¤ 0) implies that R 6� Q0. This means thatQ0 is not an ancestor of R, however

(3.7) again shows that for Q0 to be an ancestor of R is necessary for h…�h�Q; h
�
Ri� ¤ 0.

Let us prove statement (iii). Let `.R/ < 2�r`.Q/. If R 6� Q then by the statement (ii)
of the lemma h…�h�Q; h

�
Ri� D 0. On the other hand if M is the ancestor of order r of R, then

Q \M D ¿, thus by (3.6)

hS�h
�
Q; h

�
Ri� D hS�0 � 1M ; h

�
Ri� D 0:

So, we only need to consider the case R � Q.
Let Q1 be the “child” of Q containing R (i.e. R � Q1 � Q, `.Q1/ D `.Q/=2), and let

b be the value of h�Q on Q1. Then, since `.R/ � 2�r`.Q1/, (3.6) implies that

hS�h
�
Q; h

�
Ri� D bhS�1Q1 ; h

�
Ri� :

On the other hand we have shown before, see (3.7), that

h…�h
�
Q; h

�
Ri� D h.E

�
Q0h

�
Q/�

�
RS�1Q0 ; h

�
Ri� ;

where Q0 2 D is the ancestor of order r of R, meaning that R � Q0, `.Q0/ D 2r`.R/.
Therefore Q0 � Q1 and so E�Q0h

�
Q D b1Q0 . We also know, see (3.6), that because Q0 � Q1

we have equality ��RS�1Q0 D �
�
RS�1Q1 . Thus we can continue:

h…�h
�
Q; h

�
Ri� D bh�

�
RS�1Q0 ; h

�
Ri� D bh�

�
RS�1Q1 ; h

�
Ri� D bhS�1Q1 ; h

�
Ri� :

Therefore h…�h�Q; h
�
Ri� D hS�h

�
Q; h

�
Ri� , and the lemma is proved.

3.2. Boundedness of the weighted paraproduct. We will need the following well-
known theorem.

Let fR WD 1
�.R/

R
R f d� be the average of the function f with respect to the measure �.

Theorem 3.6 (Dyadic Carleson embedding theorem). If the numbers aQ � 0, Q 2 D ,
satisfy the Carleson measure condition

(3.8)
X
Q�R

aQ � �.R/;

then for any f 2 L2.�/ X
R2D

aRjfRj
2
� 4 � kf k2

L2.�/
:
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52 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

This theorem is very well known, cf. [8]. Usual proofs are based on a stopping time
argument and the dyadic maximal inequality; the constant 4 appears as 22, where 2 is the norm
of the dyadic maximal operator on L2.�/. For an alternative proof using the Bellman function
method, see [20]. It was also proved in [23] that the constant 4 is optimal. We should mention
that in [19,23] this theorem was proved for R1, but the same proof works for general martingale
setup. A proof for R2 was presented in [20], and the same proof works for Rd .

Let us now show that the paraproduct … D …
�
S is bounded. Ranges of the projections

��R are mutually orthogonal, so to prove the boundedness of the paraproduct…�S it is sufficient
to show that the numbers

aQ WD
X

R2D;R�Q;
`.R/D2�r`.Q/

k��RS�1Rk
2
L2.�/

satisfy the Carleson measure condition (3.8) from Theorem 3.6. Let us prove this.
Consider a cube QQ. We want to show thatX

Q� QQ

X
R2D;R�Q;
`.R/D2�r`.Q/

k��RS�1Qk
2
L2.�/

� B�. QQ/:

By (3.6) we can replace 1Q by 1 QQ, so the desired estimates becomeX
R2D;R� QQ;

`.R/�2�r`. QQ/

k��RS�1 QQk
2
L2.�/

�

X
R� QQ

k��RS�1 QQk
2
L2.�/

� k1 QQS�1 QQk
2
L2.�/

:

By the assumption of Theorem 3.4, see (3.4),

k1 QQS�1 QQk
2
L2.�/

WD

Z
QQ

jS�1 QQj
2d� � B�. QQ/

and so the sequence aQ,Q 2 D satisfies the condition (3.8). Thus the norm of the paraproduct
…� is bounded by CB1=2 (we can pick C D 2 here) and similarly for …� .

3.3. Boundedness of S: essential part. Let f 2 L2.�/, g 2 L2.�/, kf k�; kgk� � 1.
We want to estimate jhS�f; gi� j.

Consider first f and g of form

f D
X
Q2D

�
�
Qf; g D

X
R2D

��Rg; kf k� � 1; kgk� � 1:

Then by Lemma 3.5

(3.9) hS�f; gi� D h…
�
S�
f; gi� C hf;…

�
S��
gi� C

X
Q;R2D;

2�r�`.R/=`.Q/�2r

hS��
�
Qf;�

�
Rgi� :

We know that the paraproducts …�S� and …�
S��

are bounded, so the first two terms can be esti-
mated together by 4B1=2. Thus it remains to estimate the last sum.
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It is enough to estimate the operator S

hSf; gi� WD
X

Q;R2D;
2�r`.Q/�`.R/�`.Q/

hS��
�
Qf;�

�
Rgi�

because the sum over 2�r`.R/ � `.Q/ < `.R/ is estimated similarly. The operator S can be
split as S D

Pr
kD0 Sk , where

hSkf; gi� WD
X

Q;R2D;

`.R/D2�k`.Q/

hS��
�
Qf;�

�
Rgi� :

Each Sk can be in turn decomposed as Sk D
P
j2Z Sk;j , where

hSk;jf; gi� WD
X

Q;R2D;

`.Q/D2j; `.R/D2j�k

hS��
�
Qf;�

�
Rgi� :

For a fixed k the ranges RanSk;j , j 2 Z are mutually orthogonal inL2.�/, and the dual ranges
RanS�

k;j
, j 2 Z are mutually orthogonal in L2.�/. Therefore kSkk � maxj2ZkSk;j k, so we

only need to uniformly estimate individual operators Sk;j .
So, if

fj D
X

Q2DW`.Q/D2j

�
�
Qf; gj�k D

X
R2DW`.R/D2j�k

��Qg;

it is sufficient to estimate hSk;jfj ; gj�ki� D hS�fj ; gj�ki� .
We can decompose the operator Sk;j into interior and outer parts

hSk;jf; gi� D
X

Q;R2DWR�Q;

`.Q/D2j; `.R/D2j�k

hS��
�
Qf;�

�
Rgi� C

X
Q;R2DWR\QD¿;

`.Q/D2j; `.R/D2j�k

hS��
�
Qf;�

�
Rgi�

DW hS int
k;jf; gi� C hS

out
k;jf; gi� :

Let us estimate Sout
k;j

. For cubes Q;R 2 D , R \Q D ¿, `.Q/ D 2j , `.R/ D 2j�k and
the corresponding weighted Haar functions h�Q and h�R we can write

hSout
k;jh

�
Q; h

�
Ri� D hS�h

�
Q; h

�
Ri�(3.10)

D

X
M2D

jM j�1
Z
M�M

aM .x; y/h
�
Q.y/h

�
R.x/d�.y/d�.x/;

where the kernels aM are from (3.2).
If `.M/ � `.Q/ D 2j , then the cube M cannot contain both Q and R (because

R\Q D ¿), so the corresponding integral in (3.10) is 0. On the other hand, if `.M/ > 2r`.Q/,
r D max.m; n/ being the complexity of the dyadic shift S, then for any x the function aM .x; � /
is constant on Q, so the corresponding integral in (3.10) is again 0.
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54 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

So in (3.10) we only need to count M , 2j < `.M/ � 2jCr , and therefore we can write

ˇ̌
hSout
k;jh

�
Q; h

�
Ri�

ˇ̌
D

ˇ̌̌̌ jCrX
sDjC1

Z
Rd�Rd

As.x; y/h
�
Q.y/h

�
R.x/d�.y/d�.x/

ˇ̌̌̌

�

jCrX
sDjC1

Z
Rd�Rd

jAs.x; y/j � jh
�
Q.y/j � jh

�
R.x/jd�.y/d�.x/;

where As.x; y/ WD
P
M2DW`.M/D2s jM j

�1aM .x; y/.
Adding extra non-negative terms (with R � Q) we can estimate

jhSout
k;jf; gi� j

�

jCrX
sDjC1

X
Q;R2DWR\QD¿;

`.Q/D2j; `.R/D2j�k

Z
Rd�Rd

jAs.x; y/j � j�
�
Qf .y/j � j�

�
Rg.x/jd�.y/d�.x/

�

jCrX
sDjC1

Z
Rd�Rd

jAs.x; y/j � jfj .y/j � jgj�k.x/jd�.y/d�.x/

But each integral operator with kernel jAsj is the direct sum of the operators with kernels
jM j�1jaM j, M 2 D , `.M/ D 2s (recall that aM is supported on M �M ).

Since kaMk1 � 1 we can estimate the Hilbert–Schmidt normZ
M�M

jM j�2jaM .x; y/j
2d�.y/d�.x/ � Œ�; ��A2 :

So the norm of each operator with kernel jM j�1jaM .x; y/j is at most Œ�; ��1=2A2
. Therefore the

norm of each operator with kernel jAs.x; y/j is estimated by Œ�; ��1=2A2
, and summing in s we

get

(3.11) kSout
k;j kL2.�/!L2.�/ � rŒ�; ��

1=2
A2
:

To estimate the norm of S int
k;j

we need the following simple lemma.

Lemma 3.7. In the assumptions of Theorem 3.4

k1QS�h
�
Qk

2
� � 2

d .B C 4Œ�; ��A2/kh
�
Qk

2
�

for any �-Haar function h�Q.

Proof. Let Qk , k D 1; 2; : : : ; 2d be the dyadic children of Q. A �-Haar function h�Q
can be represented as

(3.12) h
�
Q D

2dX
kD1

˛k1Qk ;

2dX
kD1

˛k�.Qk/ D 0
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and

(3.13) kh
�
Qk

2
� D

2dX
kD1

j˛kj
2�.Qk/:

By assumption (3.4) of Theorem 3.4

(3.14) k1QkS�1Qkk
2
� � B�.Qk/:

Let us estimate k1QnQkS�1Qkk� . We know that

S�1Qk .x/ D
X
M2D

jM j�1
Z
Qk

aM .x; y/1Qk .y/d�.y/:

Since the functions aM are supported on M � M , only the terms with M � Q can give a
non-zero contribution for x … Qk . Therefore, summing the geometric series we get that

jS�1Qk .x/j � 2�.Qk/jQj
�1
8x … Qk :

Then
k1QnQkS�1Qkk

2
� � 4�.Qk/

2
jQj�2�.Q/;

and combining this estimate with (3.14) we get

k1QS�1Qkk
2
� � B�.Qk/C 4�.Qk/

2
jQj�2�.Q/

� B�.Qk/C 4�.Qk/�.Q/jQj
�2�.Q/

� .B C 4Œ�; ��A2/�.Qk/:

Therefore, we can get, recalling (3.12) and (3.13),

k1QS�h
�
Qk� �

2dX
kD1

j˛kjk1QS�1Qkk�

� .B C 4Œ�; ��A2/
1=2

2dX
kD1

j˛kj�.Qk/
1=2

� .B C 4Œ�; ��A2/
1=22d=2

� 2dX
kD1

j˛kj
2�.Qk/

�1=2
D 2d=2.B C 4Œ�; ��A2/

1=2
kh
�
Qk�:

Using the above Lemma 3.7, we can easily estimate S int
k;j

. Namely,

kS int
k;jfj k

2
� D

X
Q2DW`.Q/D2j

 X
R�QW`.R/D2j�k

��RS��
�
Qf

2
�

�

X
Q2DW`.Q/D2j

k1QS��
�
Qf k

2
�

� 2d .B C 4Œ�; ��A2/
X

Q2DW`.Q/D2j

k�
�
Qf k

2
�

D 2d .B C 4Œ�; ��A2/kfj k
2
�:
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56 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

Combining this with the estimate (3.11) of kSout
k;j
k, we get that

kSk;j kL2.�/!L2.�/ � 2
d=2.B C 4Œ�; ��A2/

1=2
C rŒ�; ��

1=2
A2
:

Since the operator Sk is the orthogonal sum of Sk;j , we get the same estimate for kSkk. To get
the estimate for kSk, S D

Pr
kD0 Sk , we just multiply the above estimate by r C 1.

Adding in (3.9) all the estimates together we get that for f and g of form

f D
X
Q2D

�
�
Qf; g D

X
R2D

��Rg; kf k� � 1; kgk� � 1;

we have

(3.15) jhS�f; gi� j � 4B
1=2
C 2 � .r C 1/

�
2d=2.B C 4Œ�; ��A2/

1=2
C rŒ�; ��

1=2
A2

�
I

the first term here comes from the paraproducts, and the extra factor 2 in the second term is to
take into account the sum over `.Q/ < `.R/ in (3.9).

3.4. Boundedness of S: some little details. We are almost done with the proof of
Theorem 3.4, modulo a little detail: for arbitrary measures � functions f 2 L2.�/ do not
admit martingale difference decomposition f D

P
Q2D �

�
Qf .

Each compact subset of Rd is contained in at most 2d cubes of the same size as the
size of this compact subset, so let Qk , k D 1; 2; : : : ; 2d be the dyadic cubes of some size 2N

containing supports of f and g. The correct decomposition is given by (2.1) which reads as

(3.16) f D
X

Q2DW`.Q/D2k

E�Qf C
X

Q2DW`.Q/�2k

�
�
Qf

(here k is an arbitrary but fixed integer), and similarly for g 2 L2.�/,

(3.17) g D
X

Q2DW`.Q/D2k

E�Qg C
X

Q2DW`.Q/�2k

��Qg:

So we need to estimate some extra terms. Of course, in the situation when we apply the
theorem (d� D wdx, d� D w�1dx, w satisfies the A2 condition) f and g can be represented
via martingale difference decomposition, although some explanation will still be needed.

Fortunately, there is a very simple way to estimate the extra terms. Let us say that dyadic
cubes Q;R 2 D are relatives if they have a common ancestor, i.e. a cube M 2 D such that
Q;R �M . The importance of the notion of relatives stems from the trivial observation that if
the cubes Q and R are not relatives, then S�1Q � 0 on R.

It is sufficient to prove the estimate on a dense set of compactly supported functions.
For compactly supported functions f and g only finitely many terms E�Qf and E�Qg in the
decompositions (3.16) and (3.17) are non-zero. Let us slit the collection of corresponding cubes
into equivalence classes of relatives, and for each equivalence class find a common ancestor (it
is always possible because of finiteness).

Denote by A the set of these common ancestors. Then we can write instead of (3.16) and
(3.17)

f D
X
Q2A

E�Qf C
X
Q2A

X
R2DWR�Q

�
�
Rf DW fe C fd;(3.18)

g D
X
Q2A

E�Qg C
X
Q2A

X
R2DWR�Q

��Rg DW ge C gd;(3.19)
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the indices “e” and “d” here mean expectation and difference. Let us decompose

hS�f; gi� D hS�.fe C fd/; ge C gdi�

D hS�fe; gi� C hS�fd; gei� C hS�fd; gdi� :

The last term is estimated by (3.15) (note that kf k2� D kfek
2
�Ckfdk

2
� and similarly for kgk2�),

so we just need to estimate the first two terms.
Any two cubes Q;Q0 2 A, Q ¤ Q0 are not relatives, so as we already mentioned

S�1Q � 0 on any Q0 2 A, Q0 ¤ Q. Therefore

jhS�E�Qf; gi� j D jhS�E�Qf; g1Qi� j � k1QS�E�Qf k�kg1Qk�

� B1=2kE�Qf k�kg1Qk�

(we use assumption (3.4) of Theorem 3.4 for the last inequality). Summing over all Q 2 A

and applying the Cauchy–Schwarz inequality we get

jhS�fe; gi� j D
X
Q2A

jhS�E�Qf; gi� j � B
1=2

X
Q2A

kE�Qf k�kg1Qk�

� B1=2kfek�kgk� � B
1=2
kf k�kgk� :

Similarly

jhS�fd; gei� j D jhfd;S
�
�gei� j � B

1=2
kfdk�kgek� � B

1=2
kf k�kgk� ;

so in general case we just need to add 2B1=2 to the right side of (3.15).

4. Dyadic shifts and random lattices

In this section we use a probabilistic approach to decompose an arbitrary Calderón–
Zygmund operator as an average of simple blocks, namely, the dyadic shifts investigated above.
More precisely, we prove the following result, which is a variant of [14, Theorem 4.2]. The
decomposition here is easier than in [14], and there is a reason for that: the shifts in [14] needed
to have an extra geometric property pertinent to being applied in conjunction with [30]. Here
we do not need that as we are not basing our reasoning on a weighted T1 theorem of [30]. The
idea of such decomposition goes back to methods of non-homogeneous Harmonic Analysis
exploited in [26] or [41] for example.

Theorem 4.1. Let T be a Calderón–Zygmund operator in Rd with parameter ˛. Then
T can be represented as

T D C

Z
�

X
m;n2ZC

2�.mCn/˛=2 S!m;n dP .!/;

where S!m;n is a dyadic shift with parametersm; n in the lattice D!; the shifts with parameters
0; 1 and 1; 0 can be generalized shifts, and all other shifts are the regular ones.

The constant C depends only on the dimension d and the parameters of the Calderón–
Zygmund operator T (the norm kT kL2!L2 , the smoothness ˛, and the constant Ccz in the
Calderón–Zygmund estimates).
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58 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

4.1. Getting rid of bad cubes. Let D! , ! 2 � be the translated dyadic lattice in Rd

as defined in Section 2.1 and let P be the canonical probability measure on � (also defined in
Section 2.1).

Fix r0 2 N. Let  D ˛
2.dC˛/

, where ˛ is the Calderón–Zygmund parameter of the
operator T .

Definition. A cube Q 2 D! is called bad if there exists a bigger cube R 2 D! such
that `.Q/ < 2�r0`.R/ and

dist.Q;R/ < `.Q/`.R/1� :

Let us introduce some probabilistic notation we will use in this section. Let E D E�
denote the expectation with respect to the probability measure P ,

E�F D E�F.!/ D

Z
�

F.!/ dP .!/I

slightly abusing the notation we will often write E�F.!/ to emphasize that F is a random
variable (depending on !).

For k 2 Z let Ak be the sigma-algebra generated by the random variables !j , j < k, and
let EAk be the corresponding conditional expectation. Because of the product structure of �,
the conditional expectation EAk is easier to understand: it is just the integration with respect
to a part of variables !j .

Namely, for k 2 Z one can split ! D . !k ; !k/, where !k WD .!j /j<k , !k WD .!j /j�k ,
so � is represented as a product � D �k ��k . Note that the sets �k and �k are probability
spaces with respect to the standard product measures. We will use the same letter P for these
measures (probabilities), hoping that this will not lead to confusion.

Denote by �kŒ !k � the “slice” of �,

�kŒ !k � D
®
. !k ; !k/ W !k 2 �k

¯
:

Then for almost all !k , assuming that ! D . !k ; !k/ we have

.EAkF /.!/ D E�kŒ !k �F WD

Z
�k
F. !k ; Q!k/ dP . Q!k/;

so the conditional expectation EAk is just the integration over slices.
Finally, given a cube Q 2 D! , `.Q/ D 2k , denote by �ŒQ� the slice �ŒQ� WD �kŒ !k �

for the particular choice of the parameters !k D .!j /j<k determining the position of Q (and
of all cubes of size 2k). The notation E�ŒQ� then should be clear, and one also can define the
conditional probability

P¹eventjQº WD E�ŒQ�1event:

Lemma 4.2. �bad D �bad.r0; ; d/ WD P¹Q is badjQº � C.d/ 2�cr0 .

In words: given a cube Q, the probability that it is bad is a constant depending only on
r0,  and d , and can be estimated as stated.

Proof. The proof is an easy exercise for the reader.
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From now on let us fix a sufficiently large r0 such that �bad < 1, so the probability of
being good satisfies �good D 1 � �bad > 0.

Lemma 4.3. Let T be a bounded operator in L2 D L2.Rd ; dx/. Then for all
f; g 2 C10 one has

hTf; gi D ��1good

Z
�

X
I;J2D! ;
`.I /�`.J /;
I is good

hT�If;�Jgi dP .!/

C ��1good

Z
�

X
I;J2D! ;
`.I />`.J /;
J is good

hT�If;�Jgi dP .!/:

Proof. It is more convenient to use probabilistic notation in the proof. Let

fgood;! WD
X
I2D! ;
I is good

�If:

Then for any f; g 2 L2,

E�hfgood;! ; gi D E�
X
I2D! ;
I is good

h�If;�Igi

D

X
k2Z

E�EAk

X
I2D! W`.I/D2

k ;
I is good

h�If;�Igi

D

X
k2Z

E�EAk

X
I2D! W`.I/D2k

h�If;�Igi1¹I is goodº.!/:

To compute the conditional expectation let us notice that the position of the cubes I 2 D! ,
`.I / D 2k depends only on the random variables !j , j < k. On the other hand, the event that
a cube I 2 D! , `.I / D 2k is good depends only on the variables !j , j � k, and for fixed
variables !j , j < k the corresponding conditional probability of this event is �good, so we can
write for the conditional expectation

(4.1) EAk1¹I is goodº.!/ D �good:

Therefore

EAk

X
I2D! W`.I/D2�k

h�If;�Igi1¹I is goodº.!/ D �good

X
I2D! W`.I/D2�k

h�If;�Igi;

which gives us

(4.2) E�hfgood;! ; gi D �goodhf; gi:
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60 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

Applying this identity to hTfgood;! ; gi D hfgood;! ; T
�gi (with T �g instead of g) we get

�goodhTf; gi(4.3)

D E�hTfgood;! ; gi

D E�
X

I;J2D! ;
`.I /�`.J /;
I is good

hT�If;�Jgi

C

X
k2Z

E�EAk

X
I;J2D! ;

`.I /D2k ;`.I />`.J /

hT�If;�Jgi1¹I is goodº

D E�
X

I;J2D! ;
`.I /�`.J /;
I is good

hT�If;�Jgi C �goodE�
X

I;J2D! ;
`.I />`.J /

hT�If;�JgiI

here again in the last equality we used (4.1) and the fact that for 2k D `.I / � `.J / the
position of I and J depends on the variables !j , j < k, while the property of I depends on
the variables !j , j � k and is not influenced by the position of J .

Remark 4.4. To justify the interchange of the summation and expectation E� in (4.3)
we first observe that for smooth f

k�If k1 �

´
C.d/krf k1`.I / `.I / < 1;

kf k1jI j
�1 `.I / � 1:

So, if we denote

f k! WD
X

I2D! W`.I/D2k

�If; f kgood;! WD
X

I2D! W`.I/D2
k ;

I is good

�If;

then, integrating the previous estimates, we have for f 2 C10

kf k! kL2 ; kf
k

good;!kL2 � C.f /min¹2k; 2�kd º;

so X
k2Z

kf k! kL2 � C.f /;
X
k2Z

kf kgood;!kL2 � C.f /:

Then for f; g 2 C10 X
j;k2Z

jhTf kgood;! ; g
j
!ij � kT kC.f /C.g/;

which justifies the first interchange of summation and integration in (4.3). The same estimate
holds if we replace f kgood;! by f k! , and this justifies the second interchange.

Note also that the sum f k! has at most C.f; k/ non-zero terms�If (where C.f; k/ <1
does not depend on !), so for fixed k and j we can interchange summation over I , `.I / D 2k

and integration without any problems.
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Let us continue with the proof of Lemma 4.3. Since for all ! 2 �

hTf; gi D
X

I;J2D!

hT�If;�Jgi;

averaging over all ! we get

(4.4) hTf; gi D E�
X

I;J2D! ;
`.I /�`.J /

hT�If;�Jgi C E�
X

I;J2D! ;
`.I />`.J /

hT�If;�Jgi:

Multiplying this identity by �good and comparing with (4.3) we get that

(4.5) �goodE�
X

I;J2D! ;
`.I /�`.J /

hT�If;�Jgi D E�
X

I;J2D! ;
`.I /�`.J /;
I is good

hT�If;�Jgi:

Remark. Note that the above identity cannot be obtained by directly applying the above
trick with the conditional expectation to the right side. If 2s D `.I / < `.J / D 2k , then the
position of I and J is defined by the variables !j , j < k, and the property of I being good
depends on !j , j � s. Thus the conditional probability of I being good depends on the mutual
position of I and J and so there is no splitting we used proving (4.2), (4.3).

We can repeat the reasoning leading to (4.4) without any changes to the splitting into
`.I / < `.J / and `.I / � `.J / to get

�goodE�
X

I;J2D! ;
`.I /<`.J /

hT�If;�Jgi D E�
X

I;J2D! ;
`.I /<`.J /;
I is good

hT�If;�Jgi:

From the symmetry between I and J we can conclude that

(4.6) �goodE�
X

I;J2D! ;
`.I />`.J /

hT�If;�Jgi D E�
X

I;J2D! ;
`.I />`.J /;
J is good

hT�If;�Jgi:

Substituting (4.3) and (4.4) into (4.6) we get

hTf; gi D E�
X

I;J2D! ;
`.I /�`.J /

hT�If;�Jgi C E�
X

I;J2D! ;
`.I />`.J /

hT�If;�Jgi

D ��1goodE�
X

I;J2D! ;
`.I /�`.J /;
I is good

hT�If;�Jgi C �
�1
goodE�

X
I;J2D! ;
`.I />`.J /

J is good

hT�If;�Jgi:

4.2. Subtracting paraproducts. For a Calderón–Zygmund operator T in L2.Rd / and
a dyadic lattice D! , define the dyadic paraproduct …!T ,

…!T f WD
X
Q2D!

.EQf /�QT 1:
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Here �QT 1 is defined by duality,

h�QT 1; gi WD h1; T ��Qgi 8g 2 L
2
I

the right side here is well defined, as one can easily show that T ��Qg 2 L1. (This is a pretty
standard place in the theory of Calderón–Zygmund operators.)

Define operators QT!
QT! WD T �…

!
T � .…

!
T �/
�:

Remark 4.5. The matrix of the paraproduct …!T has a very special “triangular” form.
Namely, a block �R…!T�Q, Q;R 2 D! can be non-zero only if R ¤ Q. Notice also, that if
`.Q/ D 2k , then the block �R…!T�Q does not depend on the variables !j , j � k.

From the above observation it is easy to see that if Q;R 2 D! , max¹`.Q/; `.R/º D 2k ,
then the block �R QT!�Q does not depend on variables !j , j � k, and that

�R QT!�Q D �RT�Q

if Q \R D ¿ or Q D R.

The paraproducts were introduced in Calderón–Zygmund theory in the proofs of T .1/
and T .b/ theorems. The main idea is that one can estimate the operators QT! by estimating
the absolute values of the entries of its matrix in the Haar basis, but one cannot, in general,
do the same with paraproducts (and so with a general Calderón–Zygmund operator T ). The
paraproducts however can be easily estimated by the Carleson embedding theorem, using the
condition T1 2 BMO (T b 2 BMO).

Definition. Let D.Q;R/ be the so-called long distance between the cubes Q and R,
see [26],

D.Q;R/ WD dist.Q;R/C `.Q/C `.R/:

Lemma 4.6. Let T be a Calderón–Zygmund operator (with parameter ˛), and let
Q;R 2 D! , `.Q/ � `.R/. Let hQ and hR be Haar functions, khQk D khRk D 1. If
Q is a good cube, then

jh QT!hQ; hRij; jh QT!hR; hQij � C
`.Q/˛=2`.R/˛=2

D.Q;R/dC˛
jQj1=2jRj1=2;

where C D C.r0; d; ˛; Ccz/ <1.

The proof is pretty standard, see for example [26].

Lemma 4.7. Let C D C.r0; d; ˛; Ccz/ ¤ 0 be the constant from the above Lemma 4.6,
and let jaQ;Rj � 1. Then for any dyadic lattice D! and for any m; n 2 ZC, m � n the
operator

C�1
X

M2D!

X
Q;R2D! WQ;R�M;
`.Q/D2�m`.M/;
`.R/D2�n`.M/;

Q is good

aQ;R2
.mCn/˛=2

�
D.Q;R/dC˛

`.M/dC˛
�R QT!�Q
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is a dyadic shift with parameters m, n, and the same holds if we replace �R QT!�Q by
�Q QT!�R.

Proof. We will need the notion of the standard Haar basis here. For an interval I � R
let h0I WD jI j

�1=21I , and let h1I be the standard L2-normalized Haar function,

h1I WD jI j
�1=2.1IC � 1I�/;

where IC and I� are the right and the left halves of I respectively.
For a cube Q D I1 � I2 � � � � � Id 2 Rd and an index j , 0 � j < 2d , let

h
j
Q.x/ WD

dY
kD1

h
jk
Ik
.xk/; x D .x1; x2; : : : ; xd /;

where jk 2 ¹0; 1º are the coefficients in the binary decomposition j D
Pd
kD1 jk2

k�1 of j .
The system h

j
Q, j D 1; : : : ; 2d � 1 form an orthonormal basis in �QL2, which we will

call the standard Haar basis.
Note that h0Q D jQj

�1=21Q. The block �R QT!�Q can be represented as

�R QT!�Q D

2d�1X
j;kD1

cj;k.Q;R/h � ; h
k
Qih

j
R;

where cj;k.Q;R/ D h QT!hkQ; h
j
Ri.

Since khjQk1 D jQj
�1=2 we can estimate, using Lemma 4.6,

(4.7) jcj;k.Q;R/j � kh
k
Qk1 � kh

j
Rk1 � C

`.Q/˛=2`.R/˛=2

D.Q;R/dC˛
;

where C D C.r0; d; ˛; Ccz/ is the constant from Lemma 4.6.
Clearly for fixed j; k and the constant C from Lemma 4.6 we can write

C�1
X

M2D!

X
Q;R2D! WQ;R�M;
`.Q/D2�m`.M/;
`.R/D2�n`.M/;

Q is good

aQ;R2
.mCn/˛=2

�
D.Q;R/dC˛

`.M/dC˛
cj;k.Q;R/h � ; h

k
Qih

j
R

D

X
M2D!

X
Q;R2D! WQ;R�M;
`.Q/D2�m`.M/;
`.R/D2�n`.M/;

Q is good

h � ; hQihR;

where hQ and hR are multiples of hkQ and hjR. This sum has the structure of an elementary
dyadic shift, and to prove the lemma we only need to estimate khQk1khRk1.

Using (4.7) we get for fixed cubes Q and R

khQk1khRk1 �
`.Q/˛=2`.R/˛=2

D.Q;R/dC˛
2.mCn/˛=2 �

D.Q;R/dC˛

`.M/dC˛

D
1

`.M/d
�
`.Q/˛=2`.R/˛=2

`.M/˛
2.mCn/˛=2 D

1

`.M/d
;

because `.Q/=`.M/ D 2�m, `.R/=`.M/ D 2�n.
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64 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

So, the above sum is indeed an elementary dyadic shift with parameters m, n. Summing
over all j; k we get the conclusion of the lemma.

4.3. Proof of Theorem 4.1. As we explained before, see Lemma 4.3, we can represent
T as the average

T D ��1goodE�
X

Q;R2D! ;
`.Q/�`.R/;
Q is good

�RT�Q C �
�1
goodE�

X
Q;R2D! ;
`.R/<`.Q/;
R is good

�RT�QI

here and below in this section the averages E� are understood in the weak sense, as equalities
of the bilinear forms for f; g 2 C10 . As it was explained before in the proof of Lemma 4.3,
see Remark 4.4 there, in this case we can freely interchange the summation and expectation
(integration) E�.

Recalling the decomposition

T D QT! C…
!
T C .…

!
T �/
�;

and using the fact that for Q;R 2 D!

�R…
!
T�Q D 0; �Q.…

!
T �/
��R D 0

if `.Q/ � `.R/, we can write

T D ��1goodE�
X

Q;R2D! ;
`.Q/�`.R/;
Q is good

�R QT!�Q C �
�1
goodE�

X
Q;R2D! ;
`.R/<`.Q/;
R is good

�R QT!�Q

(4.8)

C ��1goodE�
X

Q;R2D! ;
`.Q/�`.R/;
Q is good

�R.…
!
T �/
��Q C �

�1
goodE�

X
Q;R2D! ;
`.R/<`.Q/;
R is good

�R…
!
T�Q:

Lemma 4.8. For the paraproducts …!T one has

E�
X

Q;R2D! ;
`.R/<`.Q/;
R is good

�R…
!
T�Q D E�

X
Q;R2D! ;
`.R/�`.Q/;
R is good

�R…
!
T�Q D �goodE�…

!
T :

Proof. It is not hard to see from the definition of the paraproduct that for f 2 L2X
Q;R2D! ;
`.R/<`.Q/;
R is good

�R…
!
T�Qf D

X
Q;R2D! ;
`.R/�`.Q/;
R is good

�R…
!
T�Qf D

X
R2D! ;
R is good

.�RT 1/ERf:
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Applying E� we get that

E�
X

R2D! ;
R is good

.�RT 1/ERf D
X
k2Z

E�EAk

X
R2D! ;

`.R/D2k

.�RT 1/.ERf /1R is good.!/

D �good

X
k2Z

E�
X

R2D! ;

`.R/D2k

.�RT 1/ERf D �goodE�…
!
T f I

here we again used the fact that, by (4.1), EAk1R is good.!/ D �good for R 2 D! , `.R/ D 2k .

By Lemma 4.8 the second line in (4.8) is E�.…
!
T C .…

!
T �/
�/. We know that the para-

products …!T and .…!T �/
� are (up to a constant factor C D C.˛; d; Ccz; kT k/) generalized

dyadic shifts with parameters 0; 1 and 1; 0 respectively.
So to prove the theorem we need to represent the first line in (4.8) as the average of dyadic

shifts. Let us represent the first term. For m; n 2 ZC, m � n, define the dyadic shifts S!m;n as

S!m;n D
X

M2D!

X
Q;R2D! WQ;R�M;
`.Q/D2�m`.M/;
`.R/D2�n`.M/;

Q is good

�.QjR/ � ��1Q;R � 2
.mCn/˛=2

�
D.Q;R/dC˛

`.M/dC˛
�R QT!�Q;

where
�.QjR/ D P¹Q is goodjRº D E�ŒR�1Q is good

(note that `.Q/ � `.R/). The weights �Q;R, Q;R 2 D! , are defined by

(4.9) �Q;R WD E�ŒR�
X

M2D! WQ;R�M

D.Q;R/dC˛

`.M/dC˛
� 1Q is good.!/I

note that in the above expression we assume (can assume) that the variables !j , j < k, deter-
mining the position of R (and so of Q) are fixed.

Remark 4.9. In general, �Q;R can be zero. However, it is not hard to see that �Q;R > 0
if �.QjR/ > 0, so the dyadic shifts S!m;n are well defined.

Averaging we get

E�
X

m;n2ZWm�n

2�.mCn/˛=2S!m;n

D E�
X

Q;R2D! ;
`.Q/�`.R/;
�.QjR/¤0

X
M2D! ;
Q;R�M

�.QjR/ � ��1Q;R
D.Q;R/dC˛

`.M/dC˛
� 1Q is good.!/�R QT!�Q

D E�
X

Q;R2D! ;
`.Q/�`.R/;
�.QjR/¤0

E�ŒR��.QjR/ � �
�1
Q;R ��R

QT!�Q
X

M2D! ;
Q;R�M

D.Q;R/dC˛

`.M/dC˛
� 1Q is good.!/
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and recalling the definition of �Q;R we conclude

E�
X

m;n2ZWm�n

2�.mCn/˛=2S!m;n D E�
X

Q;R2D! ;
`.Q/�`.R/

�.QjR/�R QT!�Q:

On the other hand

E�
X

Q;R2D! ;
`.Q/�`.R/;
Q is good

�R QT!�Q D
X
k2Z

E�EAk

X
Q;R2D! ;

`.Q/�`.R/D2k

1Q is good.!/ ��R QT!�Q

D

X
k2Z

E�
X

Q;R2D! ;

`.Q/�`.R/D2k

.E�ŒR�1Q is good/�R QT!�Q

D E�
X

Q;R2D! ;
`.Q/�`.R/

�.QjR/�R QT!�Q;

so

E�
X

m;n2ZWm�n

2�.mCn/˛=2S!m;n D E�
X

Q;R2D! ;
`.Q/�`.R/;
Q is good

�R QT!�Q:

It now remains to show that S!m;n are (up to a constant factor) the dyadic shifts. The
operators S!m;n have the appropriate structure, so we only need to prove the estimates, i.e.,
prove that the weights �Q;R are uniformly bounded away from 0. The necessary estimate
follows from Lemma 4.10 below.

So, we have decomposed the first term in (4.8) as the average of dyadic shifts. The
decomposition of the second term is carried out similarly, so Theorem 4.1 is proved (modulo
Lemma 4.10).

Lemma 4.10. Let Q;R 2 D! , `.Q/ � `.R/. Then

(i) �.QjR/ > 0 if and only if Q is “good up to the level of R”, meaning that

(4.10) dist.Q;Q0/ � `.Q/`.Q0/1� 8Q0 2 D! W 2
r0`.Q/ < `.Q0/ � `.R/I

note that the cubes Q0 do not depend on the variables !j , j � k where 2k D `.R/.

(ii) There exists a constant c D c.d; r0; / such that

�Q;R � c.d; r0/ 8Q;R 2 D! W �.QjR/ ¤ 0:

Proof. We want to estimate conditional probability end expectation withR andQ fixed.
That means the lattice up to the level of R is fixed, so nothing changes if we replace R by a
cube in the same level. So, without loss of generality we can assume that Q � R.

Let us first consider a special case. Let `.R/ D `.Q/2s , where

(4.11) s � 2= C r0 � .1 � /=;
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and let
dist.Q; @R/ �

1

4
`.R/:

Then the estimate (4.11) implies that

`.Q/ Œ2r0`.R/�1� D 2�s2r0.1�/`.R/ �
1

4
`.R/;

meaning that for any cube M 2 D! , `.R/ � `.M/ � 2r0`.R/ (assuming that the lattice D!

is fixed up to the level of R)

(4.12) `.Q/`.M/1� �
1

4
`.R/ � dist.Q; @R/ � dist.Q; @M/:

On the other hand, if `.M/ > 2r0`.R/ and the pair R, M is good, meaning that

dist.R; @M/ � `.R/`.M/1� ;

then

(4.13) dist.Q; @M/ � `.Q/`.M/1� ;

so the pair Q, M is also good.
Therefore, if the cube R is good, then Q is good as well: as we just discussed, the

inequality (4.13) holds if `.M/ > 2r0`.R/, and it holds for `.R/ � `.M/ � 2r0`.R/ by
(4.12). And the assumption (4.10) covers the remaining cases.

So, in our special case �.QjR/ � �good.
The general case can be easily reduced to this special situation. Namely, if Q ¨ R, then

with probability at least 2�d the parent QR of R satisfies

dist.Q; @ QR/ �
1

4
`. QR/I

one can easily see that for d D 1, and considering the coordinates independently, one gets the
conclusion.

Applying this procedure s0�1 times, where s0 is the smallest integer satisfying (4.11), we
arrive (with probability at least 2�.s0�1/d ) at the special situation we just discussed. Therefore
for Q ¨ R (equivalently `.Q/ < `.R/) statement (i) is proved with the estimate

(4.14) �.QjR/ � 2�.s0�1/d�good DW �0:

Finally, if Q D R, we arrive with probability 1 at the previous situation, so the statement (i) is
now completely proved with estimate (4.14).

The statement (ii) is now easy. First note, that if � 2 Z is such that 2� > D.Q;R/, then

(4.15) P
®
9M 2 D! W `.M/ D 2� ; Q;R �M j R

¯
� 1 � d � 2D.Q;R/=2� :

Indeed, in one dimension the probability that suchM does not exist can be estimated above by
2D.Q;R/=2� , so to get the estimate of non-existence in Rd we can just multiply it by d . The
extra factor 2 appears in the one-dimensional case because M cannot be moved continuously,
but only in multiples of `.R/.
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Define
�0 WD blog2.dD.Q;R/=�0/c C 3;

so
d � 2D.Q;R/=2�0 � �0=2:

Comparing the estimates (4.14) and (4.15) of probabilities, we can get that for fixed Q
and R the probability that Q is good and that Q;R � M for some M 2 D! , `.M/ D 2�0 , is
at least �0=2.

On the other hand, the definition of �0 implies that `.M/ D 2�0 � 8 � d �D.Q;R/=�0,
so

D.Q;R/=`.M/ � �0=8:

Therefore, the contribution to the sum (4.9) defining �Q;R of the term with such M alone is at
least

.�0=8/
dC˛�0=2:

That proves (ii) and so the lemma.

5. Sharp weighted estimate of dyadic shifts

Recall that for a dyadic shift S with parametersm and n its complexity is r WDmax.m; n/.
In this section we assume that a dyadic lattice D is fixed. Let S be an elementary (possibly
generalized) dyadic shift

(5.1) Sf .x/ D
X
Q2D

Z
Q

aQ.x; y/f .y/dy;

where aQ are supported onQ�Q, kaQk1 � jQj�1 (in this section we will incorporate jQj�1

into aQ). Let A � D be a collection of dyadic cubes. Define the restricted dyadic shift SA by
taking the sum in (5.1) only over Q 2 A.

As it was shown by Theorem 4.1 that a Calderón–Zygmund operator T is a weighted
average of dyadic shifts with exponentially (in complexity of shifts) decaying weights, to prove
Theorem 1.1 it is sufficient to get an estimate of the norm of dyadic shifts which is polynomial
in complexity. The following theorem, indeed, achieves a norm bound which is quadratic
in complexity. This is the second new main result of this paper and represents a substantial
quantitative improvement over earlier sharp weighted bounds for dyadic shifts [5, 16], which
were exponential in complexity. Note that the paper [14], while using dyadic shifts as auxiliary
operators in the original proof of Theorem 1.1, circumvented the question of actually estimating
their norm. This is achieved in [14] by going through the test conditions of rather involved
paper [30].

Theorem 5.1. Let S be an elementary (possibly generalized) dyadic shift of complexity
r in Rd , such that all restricted shifts SA are uniformly bounded in L2,

(5.2) sup
A�D

kSAkL2!L2 DW B2 D BS <1:
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Then for any A2 weight w

(5.3) kSf kL2.w/ � C2
3d=2.r C 1/2.B22 C 1/Œw�A2kf kL2.w/; 8f 2 L

2.w/;

where C is an absolute constant.

Note that for dyadic shifts we are considering (that is non-generalized dyadic shifts and
paraproducts), the assumption about uniform boundedness of SA is satisfied automatically.
Namely, any non-generalized dyadic shift is a contraction in L2, so (5.2) holds with B D 1. It
is also easy to see that for the paraproducts kSAkL2!L2 � kSkL2!L2 .

The estimate (5.3) with C depending exponentially on r was proved (for non-generalized
dyadic shifts) in [16]. However, careful analysis of proofs there allows (after some modifica-
tions) to obtain polynomial estimates.

Compared to [16], the main new ingredients here are

� the sharp two weight estimate of Haar shifts, see the above Theorem 3.4, which is es-
sentially the main result of [28] (with the additional assumptions about “size” of the
operator), with the dependence of the estimates on all parameters spelled out;

� Proposition 5.1 of [14], reproduced as Theorem 5.2 below, which gives a linear in com-
plexity of S estimate of the unweighted weak L1 norm of S; the corresponding estimate
in [16] was exponential in complexity.

Replacing f in (5.3) by f w�1 and noticing that kf w�1kL2.w/ D kf kL2.w�1/ we can
rewrite it as

(5.4) kS.f w�1/kL2.w/
� C23d=2.r C 1/2.B22 C 1/Œw�A2kf kL2.w�1/; 8f 2 L

2.w�1/;

so we are in the settings of Theorem 3.4 with d� D w�1dx, d� D wdx. By Theorem 3.4, to
prove estimate (5.4) it is sufficient to show thatZ

Q

jS.1Qw
�1/j2wdx � BŒw�2A2w

�1.Q/; 8f 2 L2.w�1/;Z
Q

jS.1Qw/j
2w�1dx � BŒw�2A2w.Q/; 8f 2 L

2.w/;(5.5)

where
B1=2 D C2d .r C 1/.B22 C 1/

with an absolute constant C .
Since Œw�1�A2 D Œw�A2 , one can get one estimate from the other by replacing w by w�1.

Thus, to prove Theorem 5.1 and so the main result (Theorem 1.1) we only need to prove one
of the above estimates, for example (5.5).

The rest of the section is devoted to proving (5.5).

5.1. Weak type estimates for dyadic shifts. Let kSk2 be a shorthand for kSkL2!L2 .
We say that a shift S has scales separated by r levels, if all cubes Q with aQ 6� 0 in (5.1)
satisfy log2 `.Q/ � j mod r for some fixed j 2 ¹0; 1; : : : ; r � 1º.

The following result reproduces [14, Proposition 5.1] with an additional observation con-
cerning shifts which have their scales separated. This seemingly technical variant allows us to
obtain the asserted quadratic, rather than cubic, dependence on complexity in Theorem 5.1.
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Theorem 5.2. Let S be a generalized elementary dyadic shift with parameters m; n.
Then S has weak type 1-1 with the estimate

(5.6) kSkL1!L1;1 � C.d;m; kSk2/ D 2
dC2
kSk22 C 1C 4m;

meaning that for all f 2 L1 and for all � > 0

ˇ̌®
x W jSf .x/j > �

¯ˇ̌
�
C.d;m; kSk2/

�
kf k1:

If S has scales separated by r � m levels, then we have the improved estimate

kSkL1!L1;1 � C.d; 1; kSk2/ D 2
dC2
kSk22 C 5:

Proof. Our shift S can be written (see (3.2)) as

Sf .x/ D
X
Q2D

Z
aQ.x; y/f .y/dy;

where aQ is supported on Q � Q and kaQk1 � jQj�1 (we incorporated the factor jQj�1

from (3.2) into aQ here). It follows from the representation (3.3) of aQ that for fixed x the
function aQ.x; � / is constant on cubes Q0 2 D , `.Q0/ < 2�m`.Q/.

To estimate its weak norm we use the standard Calderón–Zygmund decomposition at
height � > 0 with respect to the dyadic lattice D . Namely, as it is well known, see for example
[11, p. 286], given f 2 L1 there exists a decomposition f D g C b, b D

P
Q2Q bQ, where

Q � D is a collection of disjoint dyadic cubes, such that

(i) kgk1 � kf k1, kgk1 � 2d �;

(ii) each function bQ is supported on a cube Q and

kbQk1 � 2 � k1Qf k1;

Z
Rd
bQ dx D 0I

(iii)
X
Q2Q

jQj � ��1kf k1.

The property (i) of the Calderón–Zygmund decomposition implies that

(5.7) kf k22 � 2
d�kf k1:

As usual, we can estimateˇ̌®
x W jSf .x/j > �

¯ˇ̌
�
ˇ̌®
x W jSg.x/j > �=2

¯ˇ̌
C
ˇ̌®
x W jSb.x/j > �=2

¯ˇ̌
(one of the two terms should be at least half of the sum). The measure of the first set is estimated
using the boundedness of S in L2:

ˇ̌®
x W jSg.x/j > �=2

¯ˇ̌
� kSk22 kgk

2
2

4

�2
� kSk22

2dC2

�
kf k1;

where kSk2 is the shorthand for kSkL2!L2 ; we used (5.7) to get the second inequality.
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To estimate j¹x W jSb.x/j > �=2ºj we fix a Q 2 Q and write a pointwise inequality:

jSbQ.x/j �
X

R2DWQ¤R

ˇ̌̌̌Z
R

aR.x; y/bQ.y/dy

ˇ̌̌̌
C

ˇ̌̌̌ X
R2DWR�Q

Z
R

aR.x; y/bQ.y/dy

ˇ̌̌̌
:

Therefore, summing in Q 2 Q, we get

jSb.x/j �
X
Q2Q

X
R2DWQ¤R

ˇ̌̌̌Z
R

aR.x; y/bQ.y/dy

ˇ̌̌̌
C

X
Q2Q

ˇ̌̌̌ X
R2DWR�Q

Z
R

aR.x; y/bQ.y/dy

ˇ̌̌̌
DW A.x/C B.x/:

Hence, using again the fact that one of the two terms should be at least a half of the sum, we
can estimate ˇ̌®

x W jSb.x/j > �=2
¯ˇ̌
�
ˇ̌®
x W A.x/ > �=2

¯ˇ̌
C
ˇ̌®
x W B.x/ > 0

¯ˇ̌
:

The second set is obviously inside
S
Q2QQ: indeed the function B.x/ vanishes outside this

set because aR.x; y/ D 0 for all x … R, and R � Q. So, using the property (iii) of the
Calderón–Zygmund decomposition, we can estimate the measure of the second set asˇ̌®

x W B.x/ > 0
¯ˇ̌
�

X
Q2Q

jQj �
1

�
kf k1:

To estimate the first measure we want to show that kAk1 � Ckf k1, then clearly

(5.8)
ˇ̌®
x W A.x/ > �=2

¯ˇ̌
�
2

�
kAk1 �

2C

�
kf k1:

We will estimate the norm of each term in A separately. Let us fix Q 2 Q and let us consider

AQ.x/ WD
X

R2D;Q¤R

ˇ̌̌̌Z
R

aR.x; y/bQ.y/dy

ˇ̌̌̌
:

Since the function bQ is orthogonal to constants, and the function aR.x; � / is constant on cubes
Q 2 D , `.Q/ < 2�m`.R/, we can see that the only cubes R which may contribute to AQ are
the ancestors of Q of orders 1; : : : ; m. So, in general, there are at most m non-zero terms in
AQ; if S has scales separated by r � m levels, there is at most one.

Recalling that for an integral operator T with kernel K

kT kL1!L1 D ess sup
y
kK. � ; y/k1;

we can see that the integral operator with kernel aR is a contraction in L1. Since at most m
such operators contribute to AQ,

kAQk1 � mkbQk1 � 2mk1Qf k1I

the last inequality here holds because of property (ii) of the Calderón–Zygmund decomposition.
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Summing over all Q 2 Q we get

kAk1 � 2m
X
Q2Q

k1Qf k1 � 2mkf k1:

So, see (5.8), ˇ̌®
x W A.x/ > �=2

¯ˇ̌
�
2

�
kAk1 �

4m

�
kf k1:

If S has scales separated by r � m levels, we can take 1 in place ofm in the last few estimates.

Using this improved weak type estimate one can get the desired estimate (5.5) by fol-
lowing the proof in [16] and keeping track of the constants. However, there are several other
places in [16], where the curse of exponentiality appears. So for the convenience of the reader,
we are doing all necessary estimates below. Note that an analogous modification of [16] was
already carried out in [14]; here we present yet another argument in the spirit of [16] but with
modifications pertinent to eliminating the curse of exponentiality.

5.2. First slicings. Let us fix Q0 2 D , and let us prove estimate (5.5) for Q D Q0.
Recall that S is an integral operator with kernel

P
Q2D aQ.x; y/, where aQ as in the previous

section (jQj�1 is incorporated in aQ).
Define

fQ.x/ WD

Z
Q0

aQ.x; y/w.y/dy;

so
S.1Q0w/ D

X
Q2DWQ\Q0¤¿

fQ DW f:

We can split f into “inner” and “outer” parts,

f D
X

Q2DWQ�Q0

fQ C
X

Q2DWQ0¤Q

fQ DW fi C fo:

The “outer” part fo is easy to estimate. Since kaQ.x; � /k1 � jQj�1, we can write for
Q0 ¤ Q

jfQ.x/j � w.Q0/jQj
�1

and summing over all Q, Q0 ¤ Q,

jfo.x/j � jQ0j
�1w.Q0/

X
Q2DWQ0¤Q

jQj�1jQ0j

D jQ0j
�1w.Q0/

1X
kD1

2�kd � jQ0j
�1w.Q0/:

Therefore, Z
Q0

jfoj
2w�1 � jQ0j

�2w.Q0/
2w�1.Q0/ � Œw�A2w.Q0/;

so k1Q0fokL2.w�1/ � Œw�
1=2
A2
w.Q0/

1=2, and it only remains to estimate kfikL2.w�1/.
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Now we perform the first splitting. Let r be the complexity of the shift S. Let us split the
lattice D into r C 1 lattices D

j
r , j D 0; 1; : : : ; r , where each lattice D

j
r consists of the cubes

Q 2 D of size 2j�.rC1/� , � 2 Z.
If we can show that uniformly in j

(5.9)
Z
Q0

ˇ̌̌̌ X
Q2D

j
r

fQ

ˇ̌̌̌2
w�1 � C22d .B22 C 1/

2Œw�2A2w.Q0/;

where C is an absolute constant, then we are done. Indeed, (5.9) gives us an estimate of the
norm of the sum in the left-hand side. Taking the sum over all j D 1; 2; : : : ; r we only multiply
the estimate of the norm by r C 1. So, to get from the estimate (5.9) to the desired estimate
(5.5), we just need to multiply the right side of (5.9) by .r C 1/2.

The main reason for this splitting of D is that it simplifies the structure meaning that for
Q 2 D

j
r the function fQ is constant on the children of Q in the lattice D

j
r . Also note that the

shift
Sjf .x/ WD

X
Q2D

j
r

Z
Q

aQ.x; y/f .y/dy

has scales separated by r C 1 > m levels, and 1
D
j
r
.Q/ � fQ D Sj .1Q0w/.

Let us fix j , and let us from now on consider the lattice Dr WD D
j
r . Since j is not

important in what follows, we will skip it and use the notation Dr , freeing the symbol j for
use in a different context. We also denote Sj simply by S, bearing in mind the separation of
scales which allows the use of the sharper estimate in the weak-type bound of Theorem 5.2.

Now we split the lattice Dr into the collections Qk , k 2 ZC, k < log2.Œw�A2/, where
each Qk is the set of all cubes Q 2 Dr such that

(5.10) 2k �
w.Q/

jQj
�
w�1.Q/

jQj
< 2kC1:

We want to show that

(5.11)
Z
Q0

ˇ̌̌̌ X
Q2Qk WQ�Q0

fQ

ˇ̌̌̌2
w�1 � C12

kŒw�A2 w.Q0/;

where C1 D C22d .B22 C 1/
2 is the constant in the right side of (5.9). Then, using the triangle

inequality and summing the geometric progression we get1Q0 X
Q2Dr

fQ


L2.w�1/

� C
1=2
1 Œw�

1=2
A2

X
k2ZCWk<log2.Œw�A2 /

2k=2w.Q0/

< 4C
1=2
1 Œw�A2 w.Q0/;

so (5.11) implies that (5.9) holds with C D 16C1.
So, we reduced the main result to the estimate (5.11) with C1 D C22d .B22 C 1/

2. Note
that if we prove (5.11) for Q0 2 Qk , then we are done, because for general Q0 we can add up
the estimate for maximal subcubes of Q0 belonging to Qk .
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74 Hytönen, Pérez, Treil and Volberg, The A2 conjecture

5.3. Stopping moments and Corona decomposition. Let us suppose that the weight
w and the lattices Dr and Q D Qk � Dr described above are fixed.

Given a cube Q0 2 Q D Qk let us construct the generations

G �� D G �� .Q0/ D G �� .Q0; w;Q/; � 2 ZC

of stopping cubes as follows. Define the initial generation G �0 to be the cube Q0.
For all cubes Q 2 G �� we consider maximal cubes Q0 2 Q, Q0 � Q such that

w.Q0/

jQ0j
> 4

w.Q/

jQj
I

the collection of all such cubes Q0 is the next generation G ��C1 of the stopping cubes.
Let G � D G �.Q0/ WD

S
��0 G �� be the collection of all stopping cubes.

Note that if we start constructing stopping moments from a cube Q 2 G �, the stopping
moments G �.Q/ will agree with G �, meaning that

G �.Q/ D ¹Q0 2 G � W Q0 � Qº:

Let us introduce the last piece of notation. For a cube Q 2 G � let us define

Q.Q/ WD ¹Q0 2 Q W Q0 � Qº;

and let
P .Q/ WD Q.Q/ n

[
Q02G�WQ0¤Q

Q.Q0/:

The above definitions make sense for arbitrary Q 2 Q, but we will use it only for Q 2 G �, so
we included this assumption in the definition. Note that for Q0 2 Q the set Q.Q0/ admits the
following disjoint decomposition:

(5.12) Q.Q0/ D
[

Q2Q�.Q0/

P .Q/:

Properties of stopping moments. It follows from the construction of G � that ifR 2 G �

and Q is a maximal cube in G � such that Q ¤ R, then

(5.13)
w.Q/

jQj
> 4

w.R/

jRj
:

The estimate (5.13) implies

(5.14) jQj �
jRj

4
�
w.Q/

w.R/
;

and summing over all such maximal Q 2 G �, Q ¤ R (assume that R 2 G �� ) we get

(5.15)
ˇ̌̌̌ [
Q2G�WQ¤R

Q

ˇ̌̌̌
D

X
Q2G�

�C1
WQ¤R

jQj �
jRj

4w.R/

X
Q2G�

�C1
WQ¤R

w.Q/ �
1

4
jRj;

for all R 2 G �.

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated

Download Date | 10/10/16 7:52 AM



Hytönen, Pérez, Treil and Volberg, The A2 conjecture 75

Repeating this estimate for each Q and summing over the generations we get

X
Q2G�WQ¤R

jQj � jRj

1X
nD1

4�n D
1

3
jRj:

Adding jRj to this sum we get the following Carleson property of the stopping moments G �:

(5.16)
X

Q2G�WQ�R

jQj �
4

3
jRj:

It is easy to see that this estimate holds for all R 2 D , not just for R 2 G �: one just needs to
consider maximal cubes R0 2 G �, R0 � R and apply (5.16) to each of these cubes.

Iterating (5.15) and summing over all generations we get

(5.17)
 X
Q2G�;Q�R

1Q


2

� jRj1=2
1X
kD0

2�k D 2jRj1=2:

We need the following simple lemma.

Lemma 5.3. For any R 2 D

(5.18)
X

Q2G�;Q�R

w.Q/ � C Œw�A2w.R/;

where C is an absolute constant.

Proof. The Carleson embedding theorem (see Theorem 3.6) applied to 1R together with
the Carleson property (5.16) imply thatX

Q2G�;Q�R

�−
Q

w1=2
�2
jQj � Ck1Rw

1=2
k
2
2 D Cw.R/

(the best constant is C D 4 � 4=3). But�−
w1=2

��1
�

−
w�1=2 �

�−
w�1

�1=2
by Cauchy–Schwarz

� Œw�
1=2
A2

�−
Q

w
��1=2

because
�−
Q

w
��−

Q

w�1
�
� Œw�A2 ;

so −
Q

w � Œw�A2

�−
Q

w1=2
�2

and the lemma is proved (with C D 16=3).

This proof was (essentially) presented in [38]. In [16] a different proof was presented,
using a clever iteration argument and giving the better constant C D 16=9.
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5.4. John–Nirenberg type estimates. Given a collection A of cubes, A � Dr , define
the function fA by

fA WD

X
Q2A

fQ:

For the cube Q0 2 G � consider the function fQ.Q0/. By (5.12) the function fQ.Q0/ can be
decomposed as

(5.19) fQ.Q0/ D

X
R2G�

fP .R/;

where G � WD G �.Q0/ is the collection of stopping cubes.
The main reason for introducing this decomposition is that, as we will show below, the

functions fP .R/ behave in many respects as BMO functions: they have exponentially decaying
distribution functions, so, in particular all Lp norms for p <1 are equivalent.

In the proof of these facts the weak L1 estimate of dyadic shifts (Theorem 5.2) is used.
The first lemma, which is [16, Lemma 3.15], is a simple observation, that for the John–

Nirenberg estimates of the distribution function it is sufficient to have weak type estimates.
Recall that Dr is a 2r -adic lattice, i.e., the children Q0 of Q satisfy `.Q0/ D 2�r`.Q/.

Definition 5.4. Let �Q, Q 2 Dr be a collection of functions such that �Q is supported
on Q and is constant on children (in Dr ) of Q. For R0 2 Dr let ��R0 be a maximal function

��R0.x/ WD sup
Q2Dr WQ3x

ˇ̌̌̌ X
R2Dr WQ¤R�R0

�R.x/

ˇ̌̌̌
:

Lemma 5.5. Let �Q, Q 2 Dr be a collection of functions such that

(i) �Q is supported on Q and constant on the children (in Dr ) of Q;

(ii) k�Qk1 � 1;

(iii) there exists ı 2 .0; 1/ such that for all cubes R 2 Drˇ̌®
x 2 R W ��R.x/ > 1

¯ˇ̌
� ıjRj:

Then for all R 2 Dr and for all t � 0ˇ̌®
x 2 R W ��R.x/ > t

¯ˇ̌
� ı.t�1/=2jRj:

Proof. Let us prove the conclusion of the lemma for a fixed cube R D R0 2 Dr .
Let B1 be the collection of all maximal cubes Q 2 Dr , Q � R0 such that

(5.20)
ˇ̌̌̌ X
R2Dr WQ¤R�R0

�R.x/

ˇ̌̌̌
> 1; x 2 QI

note that the functions �R (and so the sum) are constant on the cube Q.
Define the set B1,

B1 WD
[
Q2B1

Q:

It follows from the construction that ��R0 � 1 outside of B1, and that for any Q 2 B1 the sum
in (5.20) is at most 2. Note also that by the assumption (iii) we have that jB1j � ıjR0j.
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For each cube QR 2 B1 we repeat the above construction (with QR instead of R0); we will
get a collection of stopping cubes B2 and the set B2 D

S
Q2B2

Q, B2 � B1, jB2j � ı2jR0j.
It is easy to see that ��R0 � 2C 1 D 3 outside of B2 and that for any cube Q 2 B2ˇ̌̌̌ X

R2Dr WQ¤R�R0

�R.x/

ˇ̌̌̌
� 4; x 2 Q

(sums outside of QR 2 B1 contribute at most 2, and the sums starting at QR 2 B1 contribute at
most 1 outside of B2 and at most 2 on Q 2 B2.)

Repeating this procedure we get the collections Bn of “stopping cubes” and the decreas-
ing sequence of sets Bn D

S
Q2Bn

Q, such that

jBnj � ı
n;

��R0 � 2n � 1 outside of Bn;(5.21)

and ˇ̌̌̌ X
R2Dr WQ¤R�R0

�R.x/

ˇ̌̌̌
� 2n 8Q 2 Bn; 8x 2 Q:

The last inequality is only needed for the inductive construction.
Given t > 1 let n be the largest integer such that 2n � 1 � t ,

n D b.t C 1/=2c:

By (5.21)
��R0 � 2n � 1 � t 8x … Bn;

so ˇ̌®
x 2 R0 W �

�
R0
.x/ > t

¯ˇ̌
� jBnj � ı

n
� ı.t�1/=2:

This completes the proof for t > 1, but for 0 � t � 1 the conclusion is trivial.

As it was shown above in Theorem 5.2, the weak L1 norm of a dyadic shift S of com-
plexity r , with scales separated by r C 1 levels, can be estimated by C D 2dC2kSk22 C 5, so
the weak L1 norm of our dyadic shift S and all its subshifts SA, A � Dr , can be estimated by

(5.22) B1 D 2
dC2B22 C 5;

where
B2 D sup

A�D

kSAkL2!L2 :

Now we need the following lemma, which is essentially [16, Lemma 4.7] with all con-
stants written down; in fact, certain modifications in the argument are needed to avoid introduc-
ing exponential dependence on r , which was (implicitly) the case in [16]. Such a modification
(with linear dependence on r) was first obtained in [14, Lemma 7.2]; here we even achieve an
estimate uniform with respect to r by taking into account the separation of scales of our shift,
and the resulting improvement in the estimate of Theorem 5.2.
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Let P � Dr be a collection of cubes. Define the maximal function f �
P

(compare with
Definition 5.4) by

(5.23) f �P .x/ WD sup
Q2Dr WQ3x

ˇ̌̌̌ X
R2P WQ¤R

fR.x/

ˇ̌̌̌
:

For the function fP .R0/, R0 2 G � defined above in the beginning of Section 5.4 we have
jfP .R0/j � f

�
P .R0/

, so we will use f �
P .R0/

to estimate the distribution function of jfP .R0/j.
Note that forR 2 P we cannot guarantee that its children in Dr are in P . So while in the

above definition the sums are taken over all R 2 P , we need to take supremum over Q 2 Dr .

Lemma 5.6. Let B1 be given by (5.22). Then for any R 2 G � we haveˇ̌̌°
x 2 R W f �P .R/.x/ > 16t

w.R/

jRj

±ˇ̌̌
� 2
p
2 � 2�t=2B1 jRj;(5.24)

w�1
�°
x 2 R W f �P .R/.x/ > 20t

w.R/

jRj

±�
� 24 � 2�t=2B1w�1.R/:(5.25)

Proof. Now it is time to perform the last splitting. Namely, let us split the set P .R/ into
the sets P˛.R/, ˛ 2 ZC, where the collection P˛ D P˛.R/ consists of all cubes Q 2 P .R/

for which

(5.26) 4�˛
w.R/

jRj
<
w.Q/

jQj
� 4�˛C1

w.R/

jRj
:

Note that by the construction of stopping moments

w.Q/

jQj
� 4

w.R/

jRj
;

so we do not need ˛ < 0. We can estimate

f �P .R/ �
X
˛2ZC

f �P˛.R/:

Now let us estimate the level sets of f �
P˛.R/

using the above Lemma 5.5. For Q 2 P˛.R/

jfQ.x/j �
w.Q/

jQj
� 4�˛C1

w.R/

jRj
�
w.R/

jRj
2�2˛C3B1

(recall that B1 � 1). To this end, let

�Q WD 1P˛.R/.Q/ �
22˛�3jRj

B1w.R/
� fQ;

so that �Q satisfies the first two assumptions of Lemma 5.5.
Recall the notation ��R1 from Definition 5.4. We want to use the weak type estimate for

shifts to estimate the size of the set ®
x 2 R1 W �

�
R1
> 1

¯
:
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Observe that this set is the union of the maximal cubes M 2 Dr such thatˇ̌̌̌ X
M WM¤Q�R1

�Q.x/

ˇ̌̌̌
> 1

for x 2M . Let M stand for the collection of these maximal cubes, and let

N WD
®
Q 2 Dr W Q � R1I 6 9M 2M;Q �M

¯
:

Then ®
x 2 R1 W �

�
R1
> 1

¯
D

°
x 2 R1 W

ˇ̌̌̌ X
Q2N

�Q

ˇ̌̌̌
> 1

±
;

where X
Q2N

�Q D
22˛�3jRj

B1w.R/

X
Q2P˛.R/\N

fQ D
22˛�3jRj

B1w.R/
SP˛.R/\N .1R1w/I

hence, by Theorem 5.2 and k1R1wk1 D w.R1/,ˇ̌®
x 2 R1 W �

�
R1
> 1

¯ˇ̌
� B1

22˛�3jRj

B1w.R/
w.R1/:

If R1 2 P˛.R/, then the right side is directly dominated by 22˛�3 � 4�˛C1jR1j D 1
2
jR1j.

For an arbitrary R1 2 Dr , observe that ��R1 D
P
P �
�
P , where the summation ranges over

the maximal P 2 P˛.R/ with P � R1. Since supp��P � P , and these cubes are disjoint, it
follows thatˇ̌®

x 2 R1 W �
�
R1
> 1

¯ˇ̌
D

X
P

ˇ̌®
x 2 P W ��P > 1

¯ˇ̌
�

X
P

1

2
jP j �

1

2
jR1j:

Observing that

��R D
22˛�3jRj

B1w.R/
� f �P˛.R/;

Lemma 5.5 implies thatˇ̌̌°
x 2 R W f �P˛.R/ > t

w.R/

jRj
2�2˛C3t

±ˇ̌̌
D
ˇ̌®
x 2 R W ��R > t

¯ˇ̌
� 2�.t�1/=2jRj:

Rescaling t we can rewrite the inequality as

(5.27)
ˇ̌̌°
x 2 R W f �P˛.R/.x/ > 16t

w.R/

jRj

±ˇ̌̌
�
p
2 � 2�t4

˛=B1 jRj 8t > 0:

Denote the set above as E˛.t/,

E˛.t/ WD
°
x 2 R W f �P˛.R/.x/ > 16t

w.R/

jRj

±
:

We want to estimate the set where
1X
˛D0

f �P˛.R/.x/ > T:
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If this happens for x 2 R, then either f �
P0.R/

.x/ > T=2, or

1X
˛D1

f �P˛.R/.x/ > T=2:

The latter inequality implies that either f �
P0.R/

.x/ > T=4 or

1X
˛D1

f �P˛.R/.x/ > T=4;

and so on. Repeating this reasoning with T D 16w.R/t=jRj, we can see that°
x 2 R W f �P .R/.x/ > 16t

w.R/

jRj

±
�

[
˛�0

E˛.2
�˛�1t /:

So using (5.27) we get

jRj�1
ˇ̌°
x 2 R W f �P .R/.x/ > 16t

w.R/

jRj

±ˇ̌
�
p
2

1X
˛D0

2�t �2
˛�1=B1

�
p
2

1X
˛D0

2�t=2B1�˛ if t � 2B1

� 2
p
2 � 2�t=2B1 ;

which proves (5.24). We have proved (5.24) for t � 2B1, but for t < 2B1 this estimate is
trivial, because the right side is greater than jRj. Thus, (5.24) holds for all t > 0.

To prove (5.25), let us first recall that all our cubes are in Q D Qk , so (5.10) holds for
all of them. If, in addition Q 2 P˛.R/, then (5.26) (the definition of P˛.R/) is satisfied, and
combining these two estimates we get

2k4˛�1
jRj

w.R/
�
w�1.Q/

jQj
� 2kC14˛

jRj

w.R/
8Q 2 P˛.R/:(5.28)

So w�1.Q/ can be estimated via jQj. Thus we will use the known estimates of the Lebesgue
measure of level sets to get the estimates of the w�1 measure.

Let us consider the set where

f �P˛.R/.x/ > 20t
w.R/

jRj
:

This set is a disjoint union of cubesQ0 2 Dr , which are the first (maximal) cubesQ for which
the sum in (5.23) defining f �

P˛.R/
exceeds 20t � w.R/=jRj. Unfortunately the cubes Q0 are

not necessarily in P˛.R/, so we cannot use (5.28) for them. But their parents are in P˛.R/

(because the summation is over P˛.R/).
So, let E˛.t/ be the collection of such parents, and let

QE˛.t/ WD
[

Q2E˛.t/

Q:
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Note that to get QE˛.t/ it is sufficient to take the union of the maximal cubes Q 2 E˛.t/, so the
set QE˛.t/ is a disjoint union of cubes Q � P˛.R/. Since for Q 2 P˛.R/

jfQ.x/j �
w.Q/

jQj
� 4�˛C1

w.R/

jRj
;

we can conclude that for all Q 2 E˛.t/ and all t � 4�˛ˇ̌̌̌ X
R02P˛.R/WQ¤R0

fR0.x/

ˇ̌̌̌
� 20t

w.R/

jRj
� 4 � 4�˛

w.R/

jRj
� 16t

w.R/

jRj
8x 2 Q

(because the corresponding sum for one of the children Q0 of Q exceeds 20t � w.R/=jRj on
Q0, and the difference between the two sums is fQ; we also use that the sum in the left hand
side is constant on Q).

So f �
P˛.R/

.x/ > 16t � w.R/=jRj on Q, and we conclude that for t � 4�˛ the inclusion
QE˛.t/ � E˛.t/ holds. Using the estimate (5.27) for jE˛.t/j (and replacing

p
2 by 2 there) we

get that for t � 4�˛

(5.29) j QE˛.t/j � 2 � 2
�t4˛=B1 jRj:

Note that for t < 4�˛ the above estimate is trivial, so it holds for all t > 0.
Since by (5.28) for all Q 2 P˛.R/

w�1.Q/ � 2kC14˛
jRj

w.R/
jQj

summing over maximal cubes in E˛.t/ we get

w�1. QE˛.t// � 2
kC14˛

jRj

w.R/
j QE˛.t/j

� 2kC14˛
jRj

w.R/
2 � 2�t4

˛=B1 jRj by (5.29)

� 4˛ � 22 � 2�t4
˛=B1w�1.R/ by (5.10).(5.30)

Now we want to estimate w�1. QE.t//, where

QE.t/ WD
°
x 2 R W f �P .x/ > 20t

w.R/

jRj

±
:

Let T WD 20t � w.R/=R. If for x 2 R

1X
˛D0

f �P˛.R/.x/ > T;

then either f �
P0.R/

.x/ > T=2 (in which case x 2 QE0.t=2/) or

1X
˛D1

f �P˛.R/.x/ > T=2:
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If the latter inequality holds, then either f �
P1.R/

.x/ > T=4, so x 2 QE0.t=4/, or

1X
˛D2

f �P˛.R/.x/ > T=4:

Repeating this reasoning we get that

QE.t/ �
[
˛�0

QE˛.t2
�˛�1/:

So we conclude

w�1. QE.t// �

1X
˛D0

w�1. QE˛.t2
�˛�1//

� 4w�1.R/

1X
˛D0

4˛2�t2
˛�1=B1 by (5.30)

� 4w�1.R/ � 6 � 2�t=2B1 if t � 2B1.

To prove the last inequality we need to estimate for t � 2B1 the sum

1X
˛D0

22˛�t2
˛=2B1 :

Since 2˛ � 3˛ C 2 for ˛ � 4, we can estimate for ˛ � 4 and t � 2B1

2˛ � t2˛=2B1 � 2˛ � t � .3˛ C 2/=2B1

D .2˛ � 2˛t=2B1/ � ˛t=2B1 � 2t=2B1

� 0 � ˛ � t=2B1;

so
1X
˛D4

22˛�t2
˛=2B1 � 2�t=2B1

1X
˛D4

2�˛ <
1

2
� 2�t=2B1 :

For ˛ D 0; 1; 2; 3 we can estimate

22˛�t2
˛=2B1 � c˛2

�t=2B1 ; where c0 D 1; c1 D c2 D 2; c3 D
1

2
;

so adding everything we get that

w�1. QE.t// � 24 � 2�t=2Bw�1.R/:

We proved that estimate for t � 2B1, but for t < 2B1 the estimate is trivial because the right
side is bigger than w�1.R/. So the estimate holds for all t > 0.
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5.5. Conclusion of the proof.

Lemma 5.7. For any R 2 G �

kfP .R/kL2 � C1B1
w.R/

jRj
jRj1=2;(5.31)

kfP .R/kL2.w�1/ � C1B1
w.R/

jRj

q
w�1.R/;(5.32)

where C1 and C2 are absolute constants and B1 is given by (5.22).

This lemma is proved by using the distributional inequalities from Lemma 5.6 and com-
puting the norms using distribution functions. That will give the desired estimates for the
norms of the maximal function f �

P .R/
, and since jfP .R/j � f

�
P .R/

, we get the conclusion of
the lemma. We leave the details as a trivial exercise for the reader.

Recall that to prove the main result we need to prove estimate (5.11) for all cubes
Q0 2 Q D Qk . For a cube Q 2 Q, let Q.Q/ WD ¹Q0 2 Q W Q0 � Qº. We want to
estimate kfQ.Q0/kL2.w�1/, Q0 2 Q, where

fQ.Q0/ WD

X
Q2Q.Q0/

fQ:

Since (see (5.19))
fQ.Q0/ D

X
Q2G�.Q0/

fP .Q/;

we can write

kfQ.Q0/k
2
L2.w�1/

�

X
R2G�.Q0/

kfP .R/k
2
L2.w�1/

C 2
X

R;Q2G�.Q0/WQ¤R

jhfP .R/; fP .Q/iw�1 j

D S1 C S2:

The first sum is easy to estimate. By (5.32)

kfP .R/k
2
L2.w�1/

� ŒC1B1�
2w.R/

2

jRj2
w�1.R/;

� ŒC1B1�
22kC1w.R/ because R 2 Q D Qk .

Summing over all R 2 G � D G �.Q0/ we get, using (5.18),

S1 � 2ŒC1B1�
22k

X
R2G�.G0/

w.R/ � CB212
kŒw�A2w.Q0/;

where C is an absolute constant.
Let us now estimate S2. Let Q;R 2 G �, Q ¤ R. Then fP .R/.x/ is constant on Q; let

us use the symbol fP .R/.Q/ to denote this constant. We then can estimate

jhfP .R/; fP .Q/iw�1 j � jfP .R/.Q/j � .w
�1.Q//1=2kfP .Q/kL2.w�1/ by Cauchy–Schwarz

� C1B1jfP .R/.Q/j
w�1.Q/w.Q/

jQj
by (5.32)

� C1B1jfP .R/.Q/j2
kC1
� jQj because Q 2 Qk .(5.33)
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Using this estimate we can write

S2.R/ WD
X

Q2G�WQ¤R

jhfP .R/; fP .Q/iw�1 j

� 2kC1C1B1
X

Q2G�WQ¤R

jfP .R/.Q/j � jQj by (5.33)

D 2kC1C1B1

Z
R

jfP .R/j

X
Q2G�WQ¤R

1Q dx

� 2kC1C1B1kfP .R/k2 �

 X
Q2G�WQ¤R

1Q


2

by Cauchy–Schwarz

� 2kC2ŒC1B1�
2w.R/ by (5.31) and (5.17).

Therefore, using (5.18), we have

S2 � 2
kC1ŒC1B1�

2
� 2kC1ŒC1B1�

2
X

R2G�.Q0/

w.R/ � C.B1/
22kŒw�A2w.Q0/

with some absolute constant C . But that is exactly the estimate (5.11), so Theorem 5.1 is
proved.
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