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REVERSE HÖLDER PROPERTY FOR STRONG WEIGHTS

AND GENERAL MEASURES

TERESA LUQUE, CARLOS PÉREZ, AND EZEQUIEL RELA

Abstract. We present dimension-free reverse Hölder inequalities for
strong A∗

p weights, 1 ≤ p < ∞. We also provide a proof for the full
range of local integrability of A∗

1 weights. The common ingredient is a
multidimensional version of Riesz’s “rising sun” lemma. Our results are
valid for any nonnegative Radon measure with no atoms. For p = ∞, we
also provide a reverse Hölder inequality for certain product measures.
As a corollary we derive mixed A∗

p − A∗

∞ weighted estimates.

1. Introduction and Main Results

In this article we present several results regarding reverse Hölder inequal-
ities for strong A∗

p(µ) Muckenhoupt weights on R
n for a general non-atomic

Radon measure µ. Before describing these facts, a few words concerning the
family of weights considered in here are necessary.

The class A∗
p(µ) of strong weights consist of all nonnegative µ-measurable

functions on R
n such that, for 1 < p < ∞ and p′ = p/(p − 1), satisfy

(1.1) [w]A∗
p(µ)

:= sup
R

(
−

∫

R
w dµ

)(
−

∫

R
w1−p′ dµ

)p−1

< ∞,

where the supremum is taken over all rectangles R ⊂ R
n with sides parallel

to the coordinate axes. As usual, we denote by −
∫
E f dµ = fE = 1

µ(E)

∫
E f dµ

the average of f over E with respect to the measure µ.
The limiting case of (1.1), when p = 1, defines the class A∗

1(µ); that is,
the set of weights w such that

[w]A∗

1(µ)
:= sup

R

(
−

∫

R
w dµ

)
ess sup

R
(w−1) < +∞.

This is equivalent to w having the property

Msw(x) ≤ [w]A∗

1(µ)
w(x) µ a.e. x ∈ R

n.

Here Ms denotes the strong maximal function:

(1.2) Msf(x) = sup
R∋x

−

∫

R
|f | dµ,

1991 Mathematics Subject Classification. Primary: 42B25. Secondary: 43A85.
Key words and phrases. Reverse Hölder inequality; Muckenhoupt weights; Maximal

functions; Multiparameter harmonic analysis.
The first author is is supported by the Severo Ochoa Excellence Programme and the

second author is supported by the Spanish Government grant MTM2014-53850-P and the
Severo Ochoa Excellence Programme. The third author is partially supported by grants
UBACyT 20020130100403BA, and PIP (CONICET) 11220110101018.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51409739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1512.01112v2


2 TERESA LUQUE, CARLOS PÉREZ, AND EZEQUIEL RELA

where the supremum is taken over all rectangles R ⊂ R
n with sides parallel

to the coordinate axes containing the point x. Similarly, M will denote the
Hardy-Littlewood maximal function, namely when the supremum is taken
over cubes with sides paralell to the coordinate axes.

It follows from Hölder’s inequality and the definitions above that the
classes A∗

p(µ) are increasing in p ≥ 1. It is thus natural to define the limiting
class A∗

∞(µ) as

(1.3) A∗
∞(µ) :=

⋃

p≥1

A∗
p(µ).

If we only consider cubes with sides parallel to the coordinate axes, we
obtain the classical Muckenhoupt Ap(µ) classes. Throughout the paper,
we will often use the shorthand notations Ap and A∗

p since the underlying
measure will always be clear from the context.

Typically, for w ∈ Ap, 1 ≤ p ≤ ∞, one expects an inequality of the form

(1.4) −

∫

Q
w1+ε dµ ≤ C

(
−

∫

Q
w dµ

)1+ε

,

valid for any cube Q, where the constant C may depend on the Ap constant
of the weight, the value of ε and on the measure µ. Inequalities like (1.4)
are known as reverse Hölder inequalities (RHI) and its study can be traced
back to the works of Muckenhoupt [31], Coifman and Fefferman [7], within
the context of harmonic analysis, and in the work of Gehring [12], within the
context of the theory of quasiconformal mappings. Since then, these kind
of inequalities have been widely studied in many different situations with
several motivations; we refer to [3] and [18] for the applications to elliptic
PDE and quasiconformal mappings in the plane. We refer the interested
reader to the monographs [11, Chapter 4] and [2, Chapter 6 ] for a more
detailed information on these issues. More recently, RHI with good control
on the constants have become relevant in the study of sharp bounds for
some of the main operators in harmonic analysis such as singular integrals,
maximal functions, commutators with BMO functions and others. See, for
instance, [24] [25] [16] [6] for an account of this subject. More pre cisely,
within this last context, it is particularly interesting to provide a version of
such inequalities with a constant C independent of the weight. In particular,
in [17] the authors proved that, with underlying Lebesgue measure on R

n,
we can take C = 2 in the above inequality and the result is valid for any
w ∈ A∞ and 0 < ε ≤ 1

2n+1[w]A∞

, where

[w]A∞
:= sup

Q

1

w(Q)

∫

Q
M(wχQ) dx < ∞

is called the Fujii-Wilson constant. Moreover, this result can be trivially
extended to any doubling measures µ on R

n; that is a measure µ such that:

µ(2Q) ≤ Cµ µ(Q)

for every cube Q. Although the concept of doubling is affected by the family
of sets we consider, in the particular case of rectangles the above definition
remains the same. See [13, Section 5] for a more complete definition of
doubling measures on general basis.
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Most of the known proofs of RHI for classical Ap weights are based on
the Calderón-Zygmund (C-Z) decomposition lemma applied to the level set
of the Hardy-Littlewood maximal function M . This kind of stopping time
argument produces a family of maximal cubes with nice properties. But
in order to exploit the maximality, one needs to relate the average over
some cube Q to the average over the dyadic parent of Q. It the case of
doubling measures, the dilation process produces a dependence on the dou-
bling constant. In particular, it forces the dependence on the dimension for
the classical situation of the Lebesgue measure. This dependence on the
dimension appears on the range of possible values for the exponent in the
RHI.

In the context of non-doubling measures, [32, Lemma 2.3] presents a char-
acterization of the class A∞ =

⋃
p≥1Ap in terms of several equivalent prop-

erties, and the RHI is among them. The only requirement imposed to the
measure µ is the “polynomial growth” condition; that is, there exists some
0 < α ≤ n such that, for any x ∈ R

n, and for any r > 0,

(1.5) µ(B(x, r)) ≤ Crα.

The relevant consequence of this condition is that µ does not concentrate
positive measure on hyperplanes parallel to the coordinate axes of some
system of coordinates. By changing variables, we can assume that this
conditions is fulfilled for the canonical coordinates). Moreover, this latter
condition is in fact a consequence of the absence of atoms (see [29]). In that
case, the lack of doubling is solved in [32, Lemma 2.1] by using a suitable
version of the Besicovitch’s covering theorem. This result provides a family
of quasi-disjoint cubes with controlled average that covers the level set of
the maximal function. The overlap is controlled by a dimensional constant
B(n), known as the Besicovitch constant. Tracking the constants in [32,
Lemma 2.3], the following inequality holds

−

∫

Q
w1+ε dµ ≤ 2

(
−

∫

Q
w dµ

)1+ε

for any 0 < ε ≤ 1
2p+1B(n)[w]Ap

, p > 1. Then, in this case, we observe that the

RHI depends on the dimension via the Besicovitch constant.
In this paper, we focus our attention in the reverse Hölder property for

strong weights. In the case of the Lebesgue measure, a simple change of vari-
ables produces a RHI for rectangles since it is known for cubes (the details
can be found in [9]). However, this argument produces the same range for
the exponent, and therefore it will appear a dependence on the dimension.
This clashes with the somehow intuitive idea that, in many circumstances,
strong weights behave like one dimensional objects; see [22] for further de-
tails on this issue. In addition, our purpose here is to investigate (1.4) for
arbitrary non-atomic measures for which it is (in general) not possible to
apply a change of variables argument.

We present a proof of a dimension-free RHI avoiding the use of C–Z type
lemmas. We use instead what is known as a multidimensional form of the
classical F. Riesz’s “Rising Sun” lemma. The following lemma is from [21],
and can be understood as a more precise version of the classic C–Z lemma.
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Lemma 1.1 (Multidimensional F. Riesz’s lemma). Let R ⊂ R
n be a rec-

tangle and let µ be any non-atomic, nonnegative Radon measure on R. Let

f ∈ L1
R(µ) and fR ≤ λ. Then there is a finite or countable set of pairwise

disjoint rectangles {Rj}j for which

−

∫

Rj

f dµ = λ,

and f(x) ≤ λ for µ-almost all points x ∈ R \ (∪jRj).

We remark that in [21] the above lemma is formulated for absolutely
continuous measures. But an inspection of the proof shows that it is suffi-
cient that the measure satisfies µ(L) = 0 for any hyperplane parallel to the
coordinate axes.

Our first main result is the following.

Theorem 1.2. Consider a non-negative, non-atomic Radon measure µ. Let
w ∈ A∗

p, 1 < p < ∞, and let R be a rectangle. Then

−

∫

R
w1+ε dµ ≤ 2

(
−

∫

R
w dµ

)1+ε

.

for any 0 < ε ≤ 1
2p+2[w]A∗

p

.

For the particular case of the A∗
1 weights, we also address other questions

regarding the sharp local integrability range for the weight w. In dimension
1 (for the Lebesgue measure), it is known that if a weight w is in A∗

1 ≡ A1

then for any finite interval I ⊂ R we have that

(1.6) −

∫

I
w(x)s dx ≤ Cs,w

(
−

∫

I
w(x) dx

)s

for all s such that 1 < s <
[w]A1

[w]A1
−1 = ([w]A1)

′. This result is from [4,

Corollary 1] and there is also a sharp estimate on Cs,w (see also [27] and
[28]). In higher dimensions the known result is due to Kinnunen. In [19]
the author proved the analogue of (1.6) for A∗

1 weights, also with sharp
constants. His proof relies strongly on the fact that the Lebesgue measure
is a product measure. Therefore, an induction argument on the dimension
can be carried out. For the particular case of cubes, the best known result
is in [20, Theorem 1.3].

In the case of dyadic A1 weights, the sharp result can be found in [30].
For the case of doubling measures in metric spaces, some results are in [1]
but without sharp constants.

Our second main result is the extension of Kinnunen’s result to general
measures:

Theorem 1.3. Let µ be a non-atomic Radon measure on R
n. Let w ∈ A∗

1.

Then

−

∫

R
ws dµ ≤

s

1− (s − 1)([w]A∗

1
− 1)

(
−

∫

R
w dµ

)s

,

for any 1 < s <
[w]A∗

1
[w]A∗

1
−1 .
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We present here a short and simple proof based on the multidimensional
Riesz’s lemma to obtain the result for general measures with mild conditions.
With this argument we are able to obtain the same optimal range for the
exponent s. Moreover, Theorem 5.1 describes a different version of these
results with the range s depending on the norm of the strong maximal
operator Ms on the dual space, namely Lp′(w1−p′). In fact the case p = 1
can be seen as a limiting case of Theorem 5.1.

Finally, we also study reverse Hölder inequalities for strong A∗
∞ weights

where the previous approach using the Riesz’s Lemma cannot be extended
for general measures. For the particular case of the Lebesgue measure, [14]
presents also a different nice approach using Solyanik estimates.

This article is organized as follows. In Section 2 we prove Theorem 1.2.
In Section 3 we show that a similar argument can be used to derive Theorem
1.3 and obtain the full range of local integrability for A∗

1 weights. In Section
4 we study this problem for A∗

∞ weights. Finally, in Section 5 we study
different formulations of RHI for A∗

p weights.

2. Dimension-free RHI for A∗
p, 1 ≤ p < ∞

In this section we prove Theorem 1.2. We start with the following lemma,
valid for A∗

p weights for p ∈ (1,∞).

Lemma 2.1. Let µ be a non-atomic Radon measure µ. Let w ∈ A∗
p, 1 <

p < ∞. Then, for any rectangle R and any λ > wR, we have that

(2.1) w({x ∈ R : w(x) > λ}) ≤ 2λµ({x ∈ R : w(x) >
1

2p−1[w]A∗

p

wR}).

Proof. Using Hölder’s inequality with p and its conjugate p′, we have that
for every rectangle R and every f ≥ 0,

(
−

∫

R
f dµ

)p

w(R) ≤ [w]A∗

p

∫

R
fpw dµ.

In particular, for any µ-measurable set E ⊂ R we can rewrite the last
inequality for f ≡ χE

(2.2)

(
µ(E)

µ(R)

)p

≤ [w]A∗

p

w(E)

w(R)
.

For a given rectangle R, define

ER = {x ∈ R : w(x) ≤
1

2p−1[w]A∗
p

wR}.

Hence, since ER is a µ-measurable subset of R, (2.2) gives
(
µ(ER)

µ(R)

)p

≤ [w]A∗

p

w(ER)

w(R)
≤ [w]A∗

p

wR

w(R)
µ(ER)

1

2p−1[w]A∗

p

=
1

2p−1

µ(ER)

µ(R)
.

Then,

(2.3) µ(ER) ≤
1

2
µ(R).
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Now we apply Lemma 1.1 to the rectangle R to obtain a countable set of
pairwise disjoint rectangles Rj ∈ R satisfying

−

∫

Rj

w dµ = λ

for each j, and w(x) ≤ λ for µ-a.e. points x ∈ R\
(⋃

j≥1Rj

)
. This decom-

position together with (2.3) yields

w({x ∈ R : w(x) > λ}) ≤ w(
⋃

j≥1

Rj) ≤
∑

j

w(Rj) = λ
∑

j

µ(Rj)

≤ 2λ
∑

j

µ({x ∈ Rj : w(x) >
1

2p−1[w]A∗
p

wRj
})

≤ 2λµ({x ∈ R : w(x) >
1

2p−1[w]A∗

p

λ}),

since wRj
= λ. Since λ > wR, this yields (2.1).

�

We now present the proof of the dimension-free RHI for A∗
p weights.

Proof of Theorem 1.2. Define Ωλ := {x ∈ R : w(x) > λ}. Then for arbitrary
positive ε we have

−

∫

R
w(x)εw(x) dµ =

ε

µ(R)

∫ ∞

0
λεw(Ωλ)

dλ

λ

=
ε

µ(R)

∫ wR

0
λεw(Ωλ)

dλ

λ
+

ε

µ(R)

∫ ∞

wR

λεw(Ωλ)
dλ

λ

= I + II.

Observe that I ≤ (wR)
ε+1. To estimate II, we use Lemma 2.1

II =
ε

µ(R)

∫ ∞

wR

λεw(Ωλ)
dλ

λ

≤
2ε

µ(R)

∫ ∞

wR

λ1+εµ({x ∈ R : w(x) >
1

2p−1[w]A∗

p

λ})
dλ

λ

= (2p−1[w]A∗
p
)1+ε 2ε

µ(R)

∫ ∞

wR
2p−1[w]A∗

p

λε+1µ(Ωλ)
dλ

λ

≤ (2p−1[w]A∗

p
)1+ε2

ε

1 + ε
−

∫

R
w1+ε dµ.

Setting 0 < ε ≤ 1
2p+2[w]A∗

p

, we obtain

II ≤
1

2
−

∫

R
w1+ε dµ.

where we have used that t1/t ≤ 2 whenever t ≥ 1. Therefore we obtain

−

∫

R
w1+ε dµ ≤ 2

(
−

∫

R
w dµ

)1+ε

,

which is the desired estimate.
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�

Remark 2.2. Clearly, Lemma 2.1 above does not hold for A∗
1 weights. But

any A∗
1 weight w can be viewed as an A∗

p weight for any p > 1. Therefore we

have that w satisfies a RHI for any exponent ε such that 0 < ε < 1
2p[w]A∗

p

.

Since the quantity [w]A∗
p
increases to [w]A∗

1
, we conclude that the same result

of Theorem 1.2 is valid for A∗
1 weights with 0 < ε < 1

2η [w]A∗

1

for any η > 3.

3. Full range of local integrability for strong A∗
1 weights

In this section we show how to apply Lemma 1.1 to prove the full range
of local integrability for A∗

1 weights. The key is to obtain a sort of self-
improving property for the operator Ms defined in (1.2).

Proof of Theorem 1.3: Set Ωt := {x ∈ R : Msw(x) ≥ t}. Then for any
arbitrary positive ε we have

−

∫

R
(Msw)

εw dx ≤
ε

µ(R)

∫ ∞

0
tε−1w(Ωt) dt

=
ε

µ(R)

∫ wR

0
tε−1w(Ωt) dt+

ε

µ(R)

∫ ∞

wR

tε−1w(Ωt) dt

≤ (wR)
ε+1 +

ε

µ(R)

∫ ∞

wR

tε−1w(Ωt) dt.

To estimate the last integral, we use Lemma 1.1 to obtain a collection of
disjoint rectangles {Rj} contained in R such that

−

∫

Rj

w dx = t and w(x) ≤ t for a.e. x ∈ R \ ∪jRj.

Set E := R \
⋃

j Rj . Then,

w(Ωt) = w (Ωt ∩ ∪jRj) + w (Ωt ∩ E)

≤ t
∑

j

|Rj|+ t |Ωt ∩ E| .

Note that for any x ∈ ∪jRj, we have that Msw(x) ≥ t, and therefore we
obtain

∑
j |Rj | ≤ |Ωt ∩ (∪jRj)|. Hence,

w(Ωt) ≤ t|Ωt ∩ (∪jRj)|+ t |Ωt ∩ E|

≤ t|Ωt|.

And then
ε

µ(R)

∫ ∞

wR

tε−1w(Ωt) dt ≤
ε

µ(R)

∫ ∞

wR

tε|Ωt| dt

≤
ε

1 + ε
−

∫

R
(Msw)

1+ε dµ

≤
ε[w]A∗

1

1 + ε
−

∫

R
(Msw)

εw dµ.

Collecting all estimates, we have that

(3.1) −

∫

R
(Msw)

εw dµ ≤ (wR)
ε+1 +

ε[w]A∗

1

1 + ε
−

∫

R
(Msw)

εw dµ.
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Setting 0 < ε < 1
[w]A∗

1
−1 , (3.1) yields

−

∫

R
(Msw)

εw dµ ≤
1 + ε

1− ε([w]A∗

1
− 1)

(
−

∫

R
w dµ

)1+ε

.

To finish, we take 1 < s <
[w]A∗

1
[w]A∗

1
−1 and let ε = s− 1. Then

−

∫

R
ws dµ ≤ −

∫

R
(Msw)

(s−1)w dµ ≤
s

1− (s− 1)([w]A∗

1
− 1)

(
−

∫

R
w dµ

)s

,

which is the desired estimate. �

4. The case of A∗
∞ weights

Until now, we have been focused on A∗
p weights with 1 ≤ p < ∞. The

aim of this section is to investigate a quantitative reverse Hölder property
for the A∗

∞ class in terms of its constant. First, we remark here that in this
case there are several possible definitions of [w]A∗

∞
. Apart from the natural

definition (1.3), a classical definition of the A∗
∞ constant is the one obtained

by taking the limit in the A∗
p condition:

(4.1) [w]expA∗

∞

:= sup
R

(
1

µ(R)

∫

R
w dµ

)
exp

(
1

µ(R)

∫

R
logw−1 dµ

)
< ∞

where the supremum is taken over all rectangles R ∈ R
n with sides parallel

to the coordinate axes. See [15] for more details on this definition. However,
the current tendency is to use a different A∞ constant (implicitly introduced
by Fujii in [10]), which seems to be better suited:

(4.2) [w]A∗
∞

:= sup
R

1

w(R)

∫

R
Ms(wχR) dµ < ∞.

If the measure µ is doubling, definitions (4.1),(4.2) and (1.3) define the same
class of weights. However, for general measures some extra conditions need
to be imposed to establish the equivalence. For further details in the case
of A∞ weights, see [32, Remark 2.4].

Below, we consider separately the cases of dimension n = 1 and n > 1.

4.1. A∞ for the line. In this case clearly there is no difference between
cubic and rectangular weights and both definitions are equivalent when µ
is doubling. It makes sense also in this one-dimensional case to use the
centered maximal function M c instead of M in definition (4.2):

[w]cA∞
:= sup

I

1

w(I)

∫

I
M c(wχI) dµ.

Note that this other definition is again equivalent to the others whenever µ
is doubling. However, as we remark before, when the underlying measure
µ is non doubling, the equivalence is not clear. It can be shown, as in
[16, Proposition 2.2], that [w]A∞

≤ cn[w]
exp
A∞

. This inequality relies on the
fact that M is bounded on Lp(µ) for any measure µ. Also It is obvious
that [w]cA∞

≤ [w]A∞
but the finiteness of [w]cA∞

does not characterize A∞.
Indeed in [32, p. 2021] there is an example of a weight w which is not in
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A∞ satisfying that M cw . w for µ-a.e. x ∈ R. In other words, the centered
maximal operator is too small to characterize A∞.

The following result in this section shows that in fact [w]A∞
characterizes

A∞.

Theorem 4.1. Let µ be any non atomic Radon measure on R and let w be

a weight such that [w]A∞
< ∞. Then it satisfies the following RHI. For any

0 < ε < 1
4[w]A∞

−1 and for any interval I, we have that

(4.3) −

∫

I
w1+ε dµ ≤ 2

(
−

∫

I
w dµ

)1+ε

.

Remark 4.2. Using the characterization from [32, Lemma 2.3], we deduce
from this theorem that w ∈ A∞.

Proof. We use an specific stopping time argument adapted to the µ-dyadic
grid for a given interval I. We begin with a similar idea as in [29, p. 536],
where a proof of John-Nirenberg’s inequality for non-atomic measures in the
real line is presented. We sketch here the construction. The first generation
G1(I) of the dyadic grid consists of the two disjoint subintervals I+, I−
of I satisfying µ(I+) = µ(I−) = µ(I)/2. The second generation G2(I) is
G1(I+)∪G1(I−). Next generations are defined recursively. Since the measure
has no atoms, we can take closed intervals sharing the endpoints. Let Dµ

I
be the family of all the dyadic intervals generated with this procedure. A
collection of nested intervals from this grid will be called a chain. More
precisely, a chain C will be of the form C = {Ji}i∈N such that Ji ∈ Gi(I),
and Ji+1 ⊂ Ji for all i ≥ 1.

If we define C∞ :=
⋂

J∈C J as the limit set of the chain C, we have that
C∞ could be a single point or a closed interval of positive length. In any
case, we clearly have that µ(C∞) = 0. We will say that those limit sets C∞
of positive length are removable. Since we are in the real line, there are at
most a countable many of them and the whole union is also a µ-null set. We
denote by R the set of all chains with removable limits. If we define

(4.4) E := I \
⋃

C∈R

C∞,

we conclude that µ(I) = µ(E) and, in addition, for any x ∈ E, there exists
a chain of nested intervals shrinking to x. Therefore the grid Dµ

I forms a
differential basis on E. Moreover, the dyadic structure of the basis guar-
antees the Vitali covering property (see [8, Ch.1] ) and therefore this basis
differentiates L1(E).

Associated to this grid we define a dyadic maximal operator as follows.
For any x ∈ E,

MDµ
I f(x) = sup

J∈Dµ
I

−

∫

J
|f | dµ,

By a standard differentiation argument, we have that this maximal function
satisfies that f ≤ MDµ

I f , f ≥ 0, almost everywhere on E.
Now the proof of the main inequality (4.3) follows the same steps as in

[17, Lemma 2.2]. First, we prove the following inequality for the maximal



10 TERESA LUQUE, CARLOS PÉREZ, AND EZEQUIEL RELA

operator. We claim that, for any 0 < ε ≤ 1
4[w]A∞

−1 , we have that

(4.5) −

∫

I
(MDµ

I (χIw))
1+ε dµ ≤ 2[w]A∞

(
−

∫

I
w dµ

)1+ε

.

To simplify the notation throughout the proof of this inequality, we will
denote w := wχI , M := MDµ

I and Ωλ := I ∩ {Mw > λ}. We start with the
following identity:

∫

I
(Mw)1+ε dµ ≤

∫ wI

0
ελε−1

∫

I
Mwdµ dλ+

∫ ∞

wI

ελε−1Mw(Ωλ) dλ.

Now, for λ ≥ wI , there is a family of maximal nonoverlapping µ-dyadic
intervals {Ij}j for which

Ωλ =
⋃

j

Ij and −

∫

Ij

w dµ > λ.

Therefore, by using this decomposition and the definition of the A∞ con-
stant, we can write

(4.6)

∫

I
(Mw)1+ε dµ ≤ wε

I [w]A∞
w(I) +

∫ ∞

wI

ελε−1
∑

j

∫

Ij

Mw dµdλ.

By maximality of the intervals in {Ij}j , it follows that the dyadic maximal
function M can be localized:

Mw(x) = M(wχIj )(x),

for any x ∈ Ij , for all j ∈ N. Now, if we denote by Ĩ the dyadic parent of a
given interval I, then we have that

∫

Ij

M(wχIj )dµ ≤ [w]A∞
w(Ij) ≤ [w]A∞

wĨj
µ(Ĩj) ≤ [w]A∞

λ2µ(Ij).

Therefore, after averaging over I, we have that (4.6) becomes

−

∫

I
(Mw)1+ε dµ ≤ w1+ε

I [w]A∞
+

ε2[w]A∞

1 + ε
−

∫

I
(Mw)1+ε dµ.

We conclude with the proof of inequality (4.5) by absorbing the last term
into the left, since 0 < ε ≤ 1

4[w]A∞
−1 .

Now we argue in a similar way to obtain, by using that w ≤ Mw, the
following estimate

∫

I
w1+ε dµ ≤

∫ ∞

0
ελε−1w(Ωλ) dλ ≤ wε

Iw(I) +

∫ ∞

wI

ελε−1
∑

j

w(Ij) dλ,

where the cubes {Ij}j are from the decomposition of Ωλ above. Therefore,
using again that w(Ij) ≤ 2λµ(Ij), we get

∫

I
w1+ε dµ ≤ wε

Iw(I) + 2ε

∫ ∞

wI

λεµ(Ωλ) dλ

≤ wε
Iw(I) +

2ε

1 + ε

∫

I
(Mw)1+ε dµ.

Averaging over I and using (4.5) we obtain
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−

∫

I
w1+ε dµ ≤ w1+ε

I +
4ε[w]A∞

1 + ε

(
−

∫

I
w dµ

)1+ε

≤ 2

(
−

∫

I
w dx

)1+ε

,

where in the last step we have used that
ε2[w]A∞

1+ε ≤ 1
2 .

�

There are two immediate consequences of this result. Firstly, we have the
following precise open property for one-dimensional Ap weights (compare
this to (5.6)).

Corollary 4.3. Let µ be any non atomic measure on R. For 1 < p < ∞
and w ∈ Ap, define the quantity r(w) = 1 + 1

4[w]A∞

. Then w ∈ Ap−ε where

ε =
p− 1

r(σ)′
=

p− 1

1 + 4[σ]A∞

and σ = w1−p′ . Furthermore, [w]Ap−ε ≤ 2p−1[w]Ap .

We omit the proof of this corollary because, since it does not depend on
further properties of the measure, it is exactly the same as in [17].

The next corollary is a mixed Ap–A∞ estimate for the H–L maximal
operator M . The result for spaces of homogeneous type can be found in
[17]. Further improvements based on a different approach avoiding the RHI
property has been obtained in [33].

Corollary 4.4. Let µ be any non atomic Radon measure on R and let M
be the Hardy-Littlewood maximal function. For 1 < p < ∞ and w ∈ Ap,

define as above σ = w1−p′. Then there is a constant C > 0 such that

‖M‖Lp(w) ≤ c
(
p′[w]Ap [σ]A∞

)1/p
.

Recall that as in the rest of the paper ‖M‖Lp(w) is the Lp operator norm
of M with respect to wdµ.

Proof. For the proof of the corollary we need the following weak weighted
norm estimate for the maximal function.

(4.7) ‖M‖Lq,∞(w) ≤ 5 [w]
1
q

Aq
, 1 < q < ∞.

Consider, for any nonnegative measurable function f and λ > 0, the level
set Ωλ = {x ∈ R : Mf(x) > λ}. Since we are in the real line, we can
proceed by using a covering lemma specific for 1 dimensional intervals (see
the details in [34], p. 1232). We can obtain a countable family of disjoint
intervals {Ij}j such that

1

µ(Ij)

∫

Ij

f dµ > λ and Ωλ ⊂
⋃

j

I∗j
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where Ij ⊂ I∗j and µ(I∗j ) ≤ 5µ(Ij). Therefore

λqw(Ωλ) ≤
∑

j

w(I∗j )

(
1

µ(Ij)

∫

Ij

fw
1
qw

− 1
q dµ

)q

≤ 5q
∑

j

w(I∗j )

µ(I∗j )

(
1

µ(I∗j )

∫

I∗j

σ dµ

)q−1 ∫

Ij

f qw dµ

≤ 5q[w]Aq‖f‖
q
Lq(w)

and then (4.7) follows. The next steps are the same as in [17, Theorem 1.3];
we sketch the proof for completeness. Indeed, by a change of variables an
using the above relation between the level sets, we write

‖Mf‖pLp(w) ≤ p2p
∫ ∞

0
tpw{y ∈ R : M(fχf>t)(y) > t}

dt

t
.

Using the weak norm estimate for Ap−ε (4.7), we obtain

‖Mf‖pLp(w) ≤ p10p
[w]Ap

ε

∫

R

fpw dµ.

The desired inequality follows chosing ε = p−1
1+4[σ]A∞

, from Corollary 4.3.

�

4.2. Higher dimensions: A∗
∞ for R

n.

The first observation is that in higher dimensions and for any doubling
measure we can easily adapt the result from [17] to strong weights.

Theorem 4.5. Let µ be a doubling measure on R
n and let w ∈ A∗

∞. Then

for any rectangle R,

−

∫

R
w1+ε dµ ≤ 2

(
−

∫

R
w dµ

)1+ε

,

for any ε > 0 such that 0 < ε ≤ 1
2Cµ[w]A∗

∞
−1 . Here Cµ depends on the

doubling constant of the measure.

The key is to consider a local dyadic version of the maximal operator. For
a fixed rectangle R0, we also consider the dyadic local maximal operatorMd

R0

defined by averages over dyadic children of R0. More precisely, we consider
R0 as a part of a dyadic grid and the family D(R0) will be obtained by
successive dyadic subdivisions of the rectangle R0. Then, define

Md
R0

f(x) = sup
R∋x,R∈D(R0)

−

∫

R
|f | dµ.

Now, for general measures, we can track carefully the constants through
the proof from [32] and obtain the analogue of Theorem 4.5 for cubes and
the constant [w]expA∞

. More precisely, it can be proved that for any w ∈ A∞,
there exists a constant C such that

−

∫

Q
w1+ε dµ ≤ C

(
−

∫

Q
w dµ

)1+ε
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holds whenever

0 < ε ≤
cn

2[w]expA∞

(
e2[w]expA∞ − 1

) .

Here cn denotes a dimensional constant. Clearly, this range for ε is worse
than the one obtained in Theorem 4.5 or Theorem 4.1.

The main result of this section involves the (strong) Fujii-Wilson constant
[w]A∗

∞
defined in (4.2). A first problem that we can consider is to determine

the validity of the inequality [w]A∗

∞
≤ cn[w]

exp
A∗

∞

. This estimate in dimension

1 is consequence of the Lp(µ) boundedness of M which is always true for
any measure µ. However, the corresponding question in higher dimensions is
still open since it could be the case that the maximal function M is bounded
only on L∞, and not in any Lp, 1 < p < ∞ even for the centered case (see
for example [35] for recent developments on this subject).

Going back to rectangles, we are able to describe a rather abstract theo-
rem for strong weights than Theorem 4.1. The general standing assumption
on the measure µ will be the absence of atoms. As we already mentioned, we
can then assume that the measure of hyperplanes parallel to the coordinates
axes is zero. Therefore, we can define the same µ-dyadic grid by splitting
any fixed rectangle R into 2n sub-rectangles {Ri : 1 ≤ i ≤ 2n} such that
µ(Ri) = 2−nµ(R) (note that there is not a unique way of doing this). Start
with a given rectangle R0 and define recursively the the dyadic grid Dµ

R0
.

As before, the corresponding local maximal operator is

M
Dµ

R0f(x) = sup
R∈Dµ

R0

−

∫

R
|f | dµ.

We have the following theorem. Since the proof follows the same steps as
in the one dimensional case, we left details to the reader.

Theorem 4.6. Let µ be a non-atomic Radon measure on R
n and let w ∈

A∗
∞. Suppose, in addition, that there is a constant C such that, for any

rectangle R, w(x) ≤ CMDµ
Rw(x) µ-a.e on R. Then for any rectangle R,

−

∫

R
w1+ε dx ≤ 2C

(
−

∫

R
w dx

)1+ε

,

for any ε > 0 such that 0 < ε ≤ 1
2n+1[w]A∗

∞
−1 .

It would be interesting to characterize those measures fulfilling the hy-
pothesis of the above theorem. First, in order to have a new and better
estimate, we need the HL maximal operator to be bounded on Lp(µ) for
some p < ∞. In addition, although it could seem trivial, it is not always
true that the local maximal operator defined in terms of the dyadic grid
majorizes the function. This will depend on the geometry of the grid.

Example 4.7. A family of measures for which we can solve both problems is
the family of tensor product measures. A classical example of a nondoubling
measure of this type is the Gaussian measure µδ with density dµδ(x) =

e−|x|δdx. We will assume that the measure µ on R
n can be written as

µ =
⊗n

i=1 µi, where µ1, µ2, . . . , µn are defined on R and none of them has
atoms. In this case, by iterating the result for the real line, we know that the
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HL maximal function over rectangles (and, a fortiori, over cubes) is bounded
on Lp(µ) and therefore the constant [w]A∗

∞
provides better estimates. To

verify that w ≤ MDµ
R(w) a.e. µ, we need to perform the dyadic partition

on each direction separately. Suppose that the rectangle R is of the form
R =

∏n
i=1 Ii. We perform the partition on each direction to obtain the

dyadic grid Dµ
i =

⋃
j≥1Gj(Ii). Following the same idea as in the linear case,

we call Ri the family of all chains with removable limits on each direction.
After removing all of them, we can assume that any chain C = {Jm}m∈N in
Dµ

i verifies that limm→∞ diam(Jm) = 0. Define in a similar way as in (4.4)
the sets

Ei := Ii \
⋃

C∈Ri

C∞, 1 ≤ i ≤ n

and

E := E1 × · · · ×En.

We can build the dyadic grid for R taking the products elements of each
Dµ

i of the same level. More precisely, the k-th level dyadic grid is

Dµ
k = {R = J1 × · · · × Jn : Ji ∈ Gk(Ii), 1 ≤ i ≤ n} ,

and the complete grid is the union of all levels:

Dµ =
⋃

k

Dµ
k .

The grid Dµ
k defined in this way is a differential basis on E as in the

1-dimensional case satisfying the Vitali covering property. Hence, the same

reasoning used before allows us to conclude that w ≤ M
dµ
s w for µ-almost

all x in E.

As a remark related to Theorem 4.6 and the above example, we can derive
a result in the spirit of Corollary 4.4 for the strong maximal function Ms

associated to a n-product of non-atomic Radon measures on R µ =
⊗n

i µi

be any n-product of non-atomic Radon measures on R:

(4.8) ‖Ms‖Lp(wdµ) ≤ c (p′)n[w]
1
p
+2n−1

p−1

A∗

p
[σ]

1
p

A∗

∞

1 < p < ∞

where as usual σ = w1−p′ . Unfortunately this result is far from being sharp
since it can be shown that the expected consequence, namely

(4.9) ‖Ms‖Lp(wdµ) ≤ c (p′)n[w]
n

p−1

A∗

p

cannot be derived. For this reason we omit the proof of (4.8) which is based
on similar arguments as before, namely combining an appropriate weak norm
estimate

(4.10) ‖Ms‖Lq(wdµ)→Lq,∞(wdµ) ≤ Cn(q
′)n−1[w]

1
q
+n−1

q−1

A∗

q
1 < q < ∞,

together with the open property derived from the RHI property from The-
orem 4.6.
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5. Further variants of RHI for A∗
p weights

We include here some additional versions of the RHI related to the oper-
ator norm of the maximal function. For the sake of clarity, in this section
we restrict ourselves to the case of the Lebesgue measure, although some of
the results are valid in a wider scenario.

Let us recall that Buckley’s result from [5] states that the maximal func-
tion M (over cubes) satisfies

(5.1) ‖M‖Lp(w) ≤ cp[w]
1

p−1

Ap
, w ∈ Ap(dx)

This result can be obtained using the following result from [23]: if w ∈ Ap,
p > 1. Then for each cube Q

−

∫

Q
w1+ε dx ≤ 2

(
−

∫

Q
w dx

)1+ε

.

for any 0 < ε ≤ 1
2n+2‖Ms‖

Lp′ (σ)

, where σ = w1−p′ . This results implies the

open property, namely if w ∈ Ap implies w ∈ Ap−ε with ε = p−1
1+2n+2‖M‖Lp(w)

and [w]Ap−ε ≤ 2p−1[w]Ap . Now, using the same argument as in the proof
Corollary 4.4 based on [17, Theorem 1.3], it follows easily the following result

(5.2) ‖M‖Lp(w) ≤ cnp
′ ‖M‖Lp(w)→Lp,∞(w) ‖M‖

1/p
Lp(w) w ∈ Ap.

This gives another proof of (5.1) although the constant cp is not the correct

one, namely cp ≈ p′p
′

instead of cp ≈ p′.
Concerning the strong maximal function Ms, a still not answer question

is whether (5.1) holds with the same exponent or not.
We do not know if (5.2) holds for the strong maximal function. However,

if this estimate were true it seems that it is not of so much interest since
the scheme just sketched breaks down. Indeed, the combination of (5.2)
and (4.10) does not lead to the expected result (4.9). Of course this is
related to the question of the precise dependence of the weighted norm
‖Ms‖Lp(w)→Lp,∞(w) in terms of [w]A∗

p
which is still an open problem. In

particular, for product weights there are sharp estimates for both the weak
and strong norms (see inequality (5.7) below, details can be found in the
forthcoming paper [26]) If we combine the sharp estimate for the weak norm
(5.7) for product weights together with (5.2) we still do not recover the
known sharp estimate for the strong norm for product weights. Anyway, we
can prove a similar open property as in the cubic case as a consequence of
the first part of the following result.

Theorem 5.1. Let w ∈ A∗
p, p > 1. Then for each rectangle R

(5.3) −

∫

R
w1+ε dx ≤ 2

(
−

∫

R
w dx

)1+ε

for any 0 < ε ≤ 1
2‖Ms‖

Lp′ (σ)

, where σ = w1−p′.

Similarly,

(5.4) −

∫

R
ws dµ ≤

s

1− (s− 1)(‖Ms‖Lp′ (σ) − 1)

(
−

∫

R
w dµ

)s
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for any 1 < s <
‖Ms‖

Lp′ (σ)

‖Ms‖
Lp′ (σ)

−1 .

Proof. It follows from the same argument as in the proof of Theorem 1.3,
inequality (3.1), that for any arbitrary positive ε we have

−

∫

R
(Msw)

εw dx ≤ (wR)
ε+1 +

ε

1 + ε
−

∫

R
(Msw)

ε+1dx.

Following [23], by Hölder’s inequality and the trivial bound w ≤ Msw we
obtain∫

R
(Msw)

ε+1 dx =

∫

R
(Msw)

ε
p w1/p (Msw)

1+ ε
p′ w−1/p dx

≤

(∫

R
(Msw)

ε wdx

)1/p (∫

R
(Msw)

p′+εw1−p′ dx

)1/p′

≤ ‖Ms‖Lp′ (σ)

∫

R
(Msw)

ε wdx

In the last inequality we use that

‖Ms‖
p1
Lp1 (µ) ≤ ‖Ms‖

p2
Lp2 (µ) for p1 ≥ p2.

Hence,

(5.5)
1

|R|

∫

R
(Msw)

εwdx ≤ (wR)
ε+1 +

ε

ε+ 1
‖Ms‖Lp′ (σ)

1

|R|

∫

R
(Msw)

ε wdx

and letting ε = 1
2‖M‖

Lp′ (σ)

we get

1

|R|

∫

R
(Msw)

εwdx ≤ 2 (wR)
ε+1

This last estimate clearly yields (5.3).
Simliarly, setting 0 < ε < 1

‖M‖
Lp′ (σ)

−1 , we have that

−

∫

R
(Msw)

εw dµ ≤
1 + ε

1− ε(‖M‖Lp′ (σ) − 1)

(
−

∫

R
w dµ

)1+ε

,

which yields (5.4)
�

In a similar way as in Corollary 4.3, we can derive also an alternative
version of the open property for A∗

p classes; more precisely, if w ∈ A∗
p and

r(w) = 1 + 1
2‖Ms‖Lp(w)

then w ∈ A∗
p−ε where

(5.6) ε =
p− 1

r(σ)′
=

p− 1

1 + 2‖Ms‖Lp′ (σ)

.

Now we want to collect all the estimates for the RHI. We have Theorem
1.2 and Theorem 5.1. In addition, we also have Theorem 4.5 or Theorem 4.6
since we are considering µ as the Lebesgue measure which is both doubling
and a product measure. Then, we have that any w ∈ A∗

p satisfies a RHI
with exponent 1 + ε for any



REVERSE HÖLDER FOR GENERAL A∗

p(µ) 17

0 ≤ ε < max

{
1

2p+2[w]A∗

p

,
1

2‖Ms‖Lp′ (σ)

,
1

2n+1[w]A∗

∞
− 1

}

Which of these estimates is better, will depend on what is the best bound
for the weighted norm of the strong maximal function. It is clear that we
have ‖Ms‖Lp′ (σ) ≤ cnp

n[w]nA∗

p
. But it is not known in general if the exponent

on the constant of the weight can be smaller than n.
Note for example that in the case of strong product weights, [26, Theorem

3.7] shows that 2‖Ms‖Lp′ (σ) ≤ 2p+2[w]A∗
p
and therefore Theorem 5.1 would

provide a better result than Theorem 1.2 in this case. Moreover in this
particular case, [26, Theorem 3.1] also assures the next sharp result:

(5.7) ‖Msf‖Lp,∞(w) .n,p [w]
1

p−1
(1− 1

np
)

A∗
p

‖f‖Lp(w).

This combined with Theorem 5.1 yield the multiparameter version of
(5.2). However, we do not recover the sharp result in this particular case of
product weights.
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