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1 Introduction

Nonexpansive operator theory in Banach spaces has been an important topic in
Nonlinear Functional Analysis and Optimization Theory for almost fifty years now
[5, 24, 25, 26]. There are several significant classes of nonexpansive operators which
enjoy remarkable properties not shared by all such operators. We refer, for example,
to firmly and strongly nonexpansive operators [15, 16]. In particular, firmly non-
expansive operators are of utmost importance in Fixed Point, Monotone Mapping,
and Convex Optimization Theories in view of Minty’s Theorem regarding the corre-
spondence between firmly nonexpansive operators and maximal monotone mappings
[5, 24, 26, 33]. The class of strongly nonexpansive operators, which embraces firmly
nonexpansive operators, presents the advantage of its being closed under composi-
tions, whereas this property fails for firmly nonexpansive mappings [16, 34]. A related
class of operators comprises the quasi-nonexpansive operators. These operators still
enjoy relevant fixed point properties although nonexpansivity is only required for
each fixed point [22].

A basic example of a firmly nonexpansive operator is the nearest point projection
onto a closed and convex subset of a Hilbert space. It is characterized by a certain
kind of quasi-firm nonexpansivity. An extension of this nonexpansivity property to
general smooth Banach spaces characterizes the unique so-called sunny nonexpansive
retraction [15, 32]. For this reason, sunny nonexpansive retractions seem to play a
similar role in Banach spaces to that of nearest point projections in Hilbert spaces.
More information concerning (sunny) nonexpansive retractions and their applications
can be found, for example, in [26, 28] and the references therein.

In this paper, we are concerned with certain analogous classes of operators which
are, in some sense, nonexpansive not with respect to the norm, but with respect to
Bregman distances [13, 18, 21]. Since these distances are not symmetric in general, it
seems natural to distinguish between left and right Bregman nonexpansive operators.
Some left classes, so to speak, have already been studied quite intensively [4, 8, 29,
35]. In the present paper, we concentrate on the right ones.

Our paper is organized as follows. In Section 2 we discuss several pertinent facts
of Convex Analysis and Bregman Operator Theory. In Section 3, we investigate
the properties of several classes of right Bregman nonexpansive operators. Section
4 is devoted to right Bregman nonexpansive retractions. We show there that the
fixed point set of any right quasi-Bregman nonexpansive operator is a sunny right
quasi-Bregman nonexpansive retract of the ambient Banach space (Corollary 4.7).
This property of the right Bregman nonexpansive operators, not enjoyed by their left
counterparts, is an analogue of a classical result of Bruck’s [15]. We also point out
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that the corresponding right Bregman projection is consequently the unique sunny
right quasi-Bregman nonexpansive retraction, while the left Bregman projection is
not sunny, but has a sunny-like property. In Section 5, we study the conjugate resol-
vent and provide a characterization of right Bregman firmly nonexpansive operators
(Theorem 5.6). Finally, in Section 6, we present many examples of right Bregman
firmly nonexpansive operators.

2 Preliminaries

All the results in this paper are set in a real reflexive Banach space X. The norms
of X and X∗, its dual space, are denoted by ‖·‖ and ‖·‖∗, respectively. The pairing
〈ξ, x〉 is defined by the action of ξ ∈ X∗ at x ∈ X, that is, 〈ξ, x〉 := ξ (x). The set
of all real numbers is denoted by R and R = (−∞,+∞] is the extended real line,
while N stands for the set of nonnegative integers. The closure of a subset K of X
is denoted by K. The domain of a convex function f : X → R is defined to be

dom f := {x ∈ X : f (x) < +∞} .

When dom f 6= ∅ we say that f is proper. The Fenchel conjugate function of f is the
convex function f ∗ : X∗ → R defined by

f ∗ (ξ) = sup {〈ξ, x〉 − f (x) : x ∈ X} .

It is not difficult to check that when f is proper and lower semicontinuous, so is f ∗.
The function f is said to be cofinite if dom f ∗ = X∗.

In this section, we present the basic notions and facts that are needed in the
sequel. We divide this section into three parts in the following way. The first one
(Subsection 2.1) is devoted to admissible functions, while the second and the third
(Subsections 2.2 and 2.3) concern certain types of Bregman nonexpansive operators
and monotone mappings, respectively.

2.1 Admissible functions

Let x ∈ int dom f , that is, let x belong to the interior of the domain of the convex
function f : X → R. For any y ∈ X, we define the directional derivative of f at x
by

(1) f ◦(x, y) := lim
t→0+

f (x+ ty)− f (x)

t
.
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If the limit as t→ 0 in (1) exists for each y, then the function f is said to be Gâteaux
differentiable at x. In this case, the gradient of f at x is the linear function ∇f (x),
which is defined by 〈∇f (x) , y〉 := f ◦ (x, y) for all y ∈ X [31, Definition 1.3, page 3].
The function f is called Gâteaux differentiable if it is Gâteaux differentiable at each
x ∈ int dom f . When the limit as t → 0 in (1) is attained uniformly for any y ∈ X
with ‖y‖ = 1, we say that f is Fréchet differentiable at x.

Throughout this paper, f : X → R is always an admissible function, that is, a
proper, lower semicontinuous, convex and Gâteaux differentiable function. Under
these conditions we know that f is continuous in int dom f (see [3, Fact 2.3, page
619]).

The function f is said to be Legendre if it satisfies the following two conditions.

(L1) int dom f 6= ∅ and the subdifferential ∂f is single-valued on its domain.

(L2) int dom f ∗ 6= ∅ and ∂f ∗ is single-valued on its domain.

The class of Legendre functions in infinite dimensional Banach spaces was first intro-
duced and studied by Bauschke, Borwein and Combettes in [3]. Their definition is
equivalent to conditions (L1) and (L2) because the space X is assumed to be reflexive
(see [3, Theorems 5.4 and 5.6, page 634]). It is well known that in reflexive spaces
∇f = (∇f ∗)−1 (see [9, page 83]). When this fact is combined with conditions (L1)
and (L2), we obtain

ran∇f = dom∇f ∗ = int dom f ∗ and ran∇f ∗ = dom∇f = int dom f.

It also follows that f is Legendre if and only if f ∗ is Legendre (see [3, Corollary 5.5,
page 634]) and that the functions f and f ∗ are Gâteaux differentiable and strictly
convex in the interior of their respective domains. When the Banach space X is
smooth and strictly convex, in particular, a Hilbert space, the function (1/p) ‖·‖p
with p ∈ (1,∞) is Legendre (cf. [3, Lemma 6.2, page 639]). For examples and more
information regarding Legendre functions, see, for instance, [2, 3].

The bifunction Df : dom f × int dom f → [0,+∞), which is defined by

(2) Df (y, x) := f (y)− f (x)− 〈∇f (x) , y − x〉 ,

is called the Bregman distance (cf. [13, 20]).
The Bregman distance does not satisfy the well-known properties of a metric,

but it does have the following important property, which is called the three point
identity : for any x ∈ dom f and y, z ∈ int dom f ,

(3) Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f (z)−∇f (y) , x− y〉 .
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According to [18, Section 1.2, page 17] (see also [17]), the modulus of total con-
vexity of f is the bifunction υf : int dom f × [0,+∞) → [0,+∞] which is defined
by

υf (x, t) := inf {Df (y, x) : y ∈ dom f, ‖y − x‖ = t} .

The function f is said to be totally convex at a point x ∈ int dom f if υf (x, t) > 0
whenever t > 0. The function f is said to be totally convex when it is totally convex
at every point x ∈ int dom f . This property is less stringent than uniform convexity
(see [18, Section 2.3, page 92]).

Examples of totally convex functions can be found, for instance, in [11, 18, 19].
We remark in passing that f is totally convex on bounded subsets if and only if f is
uniformly convex on bounded subsets (see [19, Theorem 2.10, page 9]).

The Bregman projection (cf. [13]) with respect to f of x ∈ int dom f onto a
nonempty, closed and convex set K ⊂ int dom f is defined as the necessarily unique
vector projfK (x) ∈ K, which satisfies

(4) Df

(
projfK (x) , x

)
= inf {Df (y, x) : y ∈ K} .

Similarly to the metric projection in Hilbert spaces, the Bregman projection with
respect to totally convex and Gâteaux differentiable functions has a variational char-
acterization (cf. [19, Corollary 4.4, page 23]).

Proposition 2.1 (Characterization of Bregman projections). Suppose that f : X →
R is totally convex and Gâteaux differentiable in int dom f . Let x ∈ int dom f and let
K ⊂ int dom f be a nonempty, closed and convex set. If x̂ ∈ K, then the following
conditions are equivalent.

(i) The vector x̂ is the Bregman projection of x onto K with respect to f .

(ii) The vector x̂ is the unique solution of the variational inequality

〈∇f (x)−∇f (z) , z − y〉 ≥ 0 ∀y ∈ K.

(iii) The vector x̂ is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) ∀y ∈ K.
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2.2 Bregman nonexpansive operators

Let f : X → R be admissible and let K be a nonempty subset of X. The fixed
point set of an operator T : K → X is the set {x ∈ K : Tx = x}. It is denoted by
Fix (T ). Recall that a point u ∈ K is said to be an asymptotic fixed point [34] of T
if there exists a sequence {xn}n∈N in K such that xn ⇀ u (that is, {xn}n∈N is weakly
convergent to u) and ‖xn − Txn‖ → 0 as n → ∞. We denote the asymptotic fixed

point set of T by F̂ix (T ).
We next list significant types of nonexpansivity with respect to the Bregman

distance.

Definition 2.2 (Left Bregman nonexpansivity). Let K and S be nonempty subsets
of int dom f and dom f , respectively. An operator T : K → int dom f is said to be:

(i) left Bregman firmly nonexpansive (L-BFNE) if

(5) 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉

for any x, y ∈ K, or equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y)

≤ Df (Tx, y) +Df (Ty, x) .(6)

(ii) Left quasi-Bregman firmly nonexpansive (L-QBFNE) with respect to S if

(7) 0 ≤ 〈∇f (x)−∇f (Tx) , Tx− p〉

for any x ∈ K and p ∈ S, or equivalently,

(8) Df (p, Tx) +Df (Tx, x) ≤ Df (p, x) .

(iii) Left quasi-Bregman nonexpansive (L-QBNE) with respect to S if

(9) Df (p, Tx) ≤ Df (p, x) ∀x ∈ K, p ∈ S.

(iv) Left Bregman strongly nonexpansive (L-BSNE) with respect to S if it is L-
QBNE with respect to S and if whenever {xn}n∈N ⊂ K is bounded, p ∈ S,
and

(10) lim
n→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that

(11) lim
n→∞

Df (Txn, xn) = 0.
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See [4, 11, 35] for more information and examples of L-BFNE operators (operators
in this class are also calledDf -firm and BFNE). For two recent studies of the existence
and approximation of fixed points of left Bregman firmly nonexpansive operators see
[29, 35].

Recalling that the Bregman distance is not symmetric, and motivated by Defini-
tion 2.2(i)-(iv), we define the following operators by “switching places”.

Definition 2.3 (Right Bregman nonexpansivity). Let K and S be nonempty subsets
of dom f and int dom f , respectively. An operator T : K → int dom f is said to be:

(i∗) right Bregman firmly nonexpansive (R-BFNE) if

(12) 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (Tx)−∇f (Ty) , x− y〉

for any x, y ∈ K, or equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (x, Tx) +Df (y, Ty)

≤ Df (x, Ty) +Df (y, Tx) .(13)

(ii∗) Right quasi-Bregman firmly nonexpansive (R-QBFNE) with respect to S if

(14) 0 ≤ 〈∇f (p)−∇f (Tx) , Tx− x〉

for any x ∈ K and p ∈ S, or equivalently,

(15) Df (Tx, p) +Df (x, Tx) ≤ Df (x, p) .

(iii∗) Right quasi-Bregman nonexpansive (R-QBNE) with respect to S if

(16) Df (Tx, p) ≤ Df (x, p) ∀x ∈ K, p ∈ S.

(iv∗) Right Bregman strongly nonexpansive (R-BSNE) with respect to S if it is R-
QBNE with respect to S and if whenever {xn}n∈N ⊂ K is bounded, p ∈ S,
and

(17) lim
n→∞

(Df (xn, p)−Df (Txn, p)) = 0,

it follows that

(18) lim
n→∞

Df (xn, Txn) = 0.
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Remark 2.4 (Types of Bregman nonexpansivity with respect to S). As in [29], we
may distinguish between two types of Bregman nonexpansivity, depending on the set
S, in such a way that if S = Fix (T ) we say that T is properly Bregman nonexpansive,

whereas if S = F̂ix (T ) we say that T is strictly Bregman nonexpansive, according
to the different notions of Bregman nonexpansivity. The connections among all the
classes of either left or right Bregman nonexpansive operators are presented in Table
1.

strictly QBFNE ⇒ strictly BSNE ⇒ strictly QBNE
⇓ ⇓ ⇓

BFNE ⇒ properly QBFNE ⇒ properly BSNE ⇒ properly QBNE

Table 1: Connections among types of Bregman nonexpansivity

Throughout this paper, we just deal with these notions of Bregman nonexpansiv-
ity with respect to S = Fix (T ), so for the sake of simplicity, we omit the prefix
“properly” from now on. ♦

Remark 2.5 (Classical notions of nonexpansivity). Let f = (1/2) ‖·‖2 be defined
on a Hilbert space H. Then ∇f = I (the identity operator) and Df (y, x) =
(1/2) ‖x− y‖2. Thence, Definitions 2.2(i)-(iii) and 2.3(i*)-(iii*) for S = Fix (T )
say that the operator T : K → H is:

(i′) firmly nonexpansive (FNE) if

(19) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 ∀x, y ∈ K.

(ii′) Quasi-firmly nonexpansive (QFNE) if

(20) ‖Tx− p‖2 + ‖Tx− x‖2 ≤ 〈x− p〉2

for any x ∈ K, p ∈ Fix (T ), or equivalently,

(21) 0 ≤ 〈x− Tx, Tx− p〉 .

(iii′) Quasi-nonexpansive (QNE) if

(22) ‖Tx− p‖ ≤ ‖x− p‖ ∀x ∈ K, p ∈ Fix (T ) .
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The norm analogue of Bregman strong nonexpansivity (see Definitions 2.2(iv) and
2.3(iv*)) is the notion of strong nonexpansivity, first studied in [16]. We say that
T : K → H is:

(iv′) strongly nonexpansive (SNE) if T is nonexpansive and for any bounded se-
quence {xn − yn}n∈N satisfying

(23) lim
n→∞

(‖xn − yn‖ − ‖Txn − Tyn‖) = 0,

it follows that

(24) lim
n→∞

((xn − yn)− (Txn − Tyn)) = 0.

The connection between L-BSNE and SNE operators was discussed in [29], and
obviously the same connection holds for R-BSNE operators.

IfX is a uniformly smooth and uniformly convex Banach space and f = (1/2) ‖·‖2,
then ∇f = J , where J is the duality mapping of the space X. Hence inequality (12)
in Definition 2.3 (i*) becomes

(25) 〈JTx− JTy, Tx− Ty〉 ≤ 〈JTx− JTy, x− y〉

for all x, y ∈ K. An operator which satisfies (25) is called an operator of type (R)
(see [1]). ♦

Definition 2.6 (Conjugate operator). Let f : X → R be Legendre and T : K ⊂
int dom f → int dom f be an operator. We define the conjugate operator associated
with T by

T ∗f := ∇f ◦ T ◦ ∇f ∗ : ∇f (K)→ int dom f ∗.

This operator, which was previously used in [6, 8], allows us to get connections
between left and right Bregman nonexpansive operators, which are collected along
with several properties of T ∗f in the following proposition. Further analysis of the
conjugate operator and its usefulness in connecting left and right Bregman nonex-
pansive operators is provided in [30]. When there is no danger of confusion we use
the notation T ∗ for T ∗f . We also denote

(
T ∗f
)∗
f∗

by T ∗∗.

Proposition 2.7 (Properties of the conjugate operator). Let f : X → R be Legendre
and consider an operator T : K ⊂ int dom f → int dom f . Then the following
properties hold.
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(i) domT ∗ = ∇f (domT ) and ranT ∗ = ∇f (ranT ).

(ii) T is R-BFNE if and only if T ∗ is L-BFNE.

(iii) Fix (T ) = ∇f ∗ (Fix (T ∗)).

(iv) T is R-QBFNE (R-QBNE or R-BSNE) if and only if T ∗ is L-QBFNE (L-
QBNE or L-BSNE).

(v) T ∗∗ = T .

(vi) If, in addition, ∇f and ∇f ∗ are uniformly continuous on bounded subsets of
int dom f and int dom f ∗, respectively, then

F̂ix (T ∗) = ∇f
(

F̂ix (T )
)
.

Proof. Since (∇f)−1 = ∇f ∗, it is easy to check that

(26) Df∗ (∇f (y) ,∇f (x)) = Df (x, y) .

Hence (i) and (iii) can be readily proved. As a consequence, (ii), (iv) and (v) also
hold. The proof of (vi) follows from the definition of the asymptotic fixed point set
of an operator.

At this point, it would be natural to define the right analog of the classical
Bregman projection (hereafter called the left Bregman projection and denoted by
←−−
proj) in the following way. Given a set K ⊂ int dom f , the right Bregman projection

onto K is the operator
−−→
projfK : int dom f → K defined by

(27)
−−→
projfK (x) := argminy∈K {Df (x, y)} = {z ∈ K : Df (x, z) ≤ Df (x, y) ∀y ∈ K}

for each x ∈ int dom f . However, since Df is not convex in the second variable, it
is not clear a priori that the right Bregman projection is well defined. Fortunately,
this difficulty has already been overcome by Bauschke et al. (cf. [8, Proposition 7.1,
page 9]), who proved that

(28)
−−→
projfK = ∇f ∗ ◦←−−projf

∗

∇f(K) ◦ ∇f

and established several other properties of
−−→
projfK .
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2.3 Monotone mappings

Let A : X → 2X
∗

be a set-valued mapping. Recall that the (effective) domain of the
mapping A is the set domA = {x ∈ X : Ax 6= ∅}. We say that A is monotone if for
any x, y ∈ domA we have

(29) ξ ∈ Ax and η ∈ Ay =⇒ 0 ≤ 〈ξ − η, x− y〉 .

A monotone mapping A is said to be maximal if the graph of A is not a proper
subset of the graph of any other monotone mapping.

Let K ⊂ domA and T : K → X. We say that a mapping A is monotone with
respect to the mapping T , or T -monotone [11], if

(30) 0 ≤ 〈ξ − η, Tx− Ty〉

for any x, y ∈ K, where ξ ∈ Ax and η ∈ Ay. Clearly, when T = I the classes of
monotone and I-monotone operators coincide.

3 Properties of classes of right Bregman nonex-

pansive operators

Using the analogy between various classes of L-BNE and R-BNE operators we present
in this section several properties of R-BNE operators, the analogues of which are
already known for L-BNE operators (see [4] for results regarding L-BNE operators).

We begin by recalling the following result regarding the fixed point set of a left
Bregman nonexpansive operator (cf. [35, Lemma 15.5, page 307]). Although it was
established for L-BFNE operators, the proof also holds for L-QBNE operators.

Proposition 3.1 (Fix (T ) of an L-QBNE operator is closed and convex). Let f :
X → R be a Legendre function, and let K ⊂ int dom f be nonempty, closed and
convex. If T : K → int dom f is an L-QBNE operator, then Fix (T ) is closed and
convex.

We now present two properties of the fixed point set Fix (T ) of R-QBNE opera-
tors. We first show that Fix (T ) is closed when f is Legendre and Fréchet differen-
tiable.

Proposition 3.2 (Fix (T ) of R-QBNE is closed). Let f : X → R be a Legendre and
Fréchet differentiable function. Let K be a nonempty and closed subset of int dom f ,
and let T : K → int dom f be an R-QBNE operator. Then Fix (T ) is closed.
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Proof. It is sufficient to consider the case where Fix (T ) is nonempty. Let {xn}n∈N
be a sequence in Fix (T ) ⊂ K such that xn → x̄ as n→∞, where x̄ ∈ K ⊂ int dom f
because K is assumed to be closed. Since T is R-QBNE, it follows from (16) that

(31) Df (T x̄, xn) ≤ Df (x̄, xn)

for each n ∈ N. Since f is Fréchet differentiable, the gradient ∇f is norm-to-norm
continuous (see [31, Proposition 2.8, page 19]). Since f is continuous in int dom f
and xn → x̄ as n→∞, it now follows that

lim
n→∞

Df (T x̄, xn) = lim
n→∞

[f (T x̄)− f (xn)− 〈∇f (xn) , T x̄− xn〉]

= [f (T x̄)− f (x̄)− 〈∇f (x̄) , T x̄− x̄〉] = Df (T x̄, x̄) .

On the other hand, replacing T x̄ with x̄, one gets

lim
n→∞

Df (x̄, xn) = Df (x̄, x̄) = 0.

Thus (31) implies that Df (T x̄, x̄) = 0 and therefore it follows from [3, Lemma
7.3(vi), page 642] that x̄ = T x̄. Hence x̄ ∈ Fix (T ) and this means that Fix (T ) is
closed, as claimed.

We next prove that ∇f (Fix (T )) is closed and convex when T is R-QBNE, and
f is Legendre and cofinite.

Proposition 3.3 (∇f (Fix (T )) of an R-QBNE operator is closed and convex). Let
f : X → R be a Legendre and cofinite function, and let T : int dom f → int dom f be
an R-QBNE operator. Then ∇f (Fix (T )) is a closed and convex subset of X∗.

Proof. We first show that ∇f (Fix (T )) is convex. Let x, y ∈ Fix (T ), t ∈ (0, 1), and
set s = 1− t. If we denote z = ∇f ∗ (t∇f (x) + s∇f (y)), it is sufficient to prove that
z ∈ Fix (T ). Indeed from the definition of the Bregman distance (see (2)) it follows
that

Df (Tz, z) = f (Tz)− f (z)− 〈∇f (z) , T z − z〉
= t [f (Tz)− f (x)− 〈∇f (x) , T z − x〉]
+ s [f (Tz)− f (y)− 〈∇f (y) , T z − y〉]
+ tf (x)− t 〈∇f (x) , x〉+ sf (y)− s 〈∇f (y) , y〉
+ 〈∇f (z) , z〉 − f (z)

= tDf (Tz, x) + sDf (Tz, y) + t (f (x)− 〈∇f (x) , x〉)
+ s (f (y)− 〈∇f (y) , y〉)− (f (z)− 〈∇f (z) , z〉) .
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It is known that f (x) + f ∗ (∇f (x)) = 〈∇f (x) , x〉. Therefore

Df (Tz, z) = tDf (Tz, x) + sDf (Tz, y)− tf ∗ (∇f (x))

− sf ∗ (∇f (y)) + f ∗ (∇f (z)) .

Since T is R-QBNE and x, y ∈ Fix (T ), we see that

Df (Tz, z) ≤ tDf (z, x) + sDf (z, y)− tf ∗ (∇f (x))

− sf ∗ (∇f (y)) + f ∗ (∇f (z))

= t [f (z)− f (x)− 〈∇f (x) , z − x〉] +

s [f (z)− f (y)− 〈∇f (y) , z − y〉]
− tf ∗ (∇f (x))− sf ∗ (∇f (y)) + f ∗ (∇f (z))

= t [〈∇f (x) , x〉 − f (x)− f ∗ (∇f (x))]

+ s [〈∇f (y) , y〉 − f (y)− f ∗ (∇f (y))]

+ f (z) + f ∗ (∇f (z))− t 〈∇f (x) , z〉 − s 〈∇f (y) , z〉
= f (z) + f ∗ (∇f (z))− 〈t∇f (x) + s∇f (y) , z〉
= f (z) + f ∗ (∇f (z))− 〈∇f (z) , z〉 = 0.

It now follows from [3, Lemma 7.3(vi), page 642] that Tz = z. That is, z ∈ Fix (T ).
Therefore ∇f (Fix (T )) is convex, as claimed.

Now we prove that ∇f (Fix (T )) is closed. Let {xn}n∈N be a sequence in Fix (T )
such that ∇f (xn) → ξ ∈ X∗ as n → ∞. Since f is cofinite, ran∇f = dom∇f ∗ =
int dom f ∗ = X∗. Hence there exists x ∈ X such that ξ = ∇f (x). It is sufficient to
prove that x ∈ Fix (T ). Since {xn}n∈N ⊂ Fix (T ) and T is R-QBNE, we have

Df (Tx, xn) ≤ Df (x, xn) = f (x)− f (xn)− 〈∇f (xn) , x− xn〉
= f (x)− 〈∇f (xn) , x〉+ f ∗ (∇f (xn)) .

By assumption, f ∗ is continuous and ∇f (xn)→ ∇f (x) as n→∞. Hence

lim
n→∞

Df (Tx, xn) ≤ lim
n→∞

(f (x)− 〈∇f (xn) , x〉+ f ∗ (∇f (xn)))

= f (x)− lim
n→∞

(〈∇f (xn) , x〉+ f ∗ (∇f (xn)))

= f (x)− 〈∇f (x) , x〉+ f ∗ (∇f (x)) = 0.

On the other hand,

Df (Tx, x) = f (Tx)− f (x)− 〈∇f (x) , Tx− x〉
= Df (Tx, xn) + f (xn)− f (x) + 〈∇f (xn) , Tx− xn〉 − 〈∇f (x) , Tx− x〉
= Df (Tx, xn)− f ∗ (∇f (xn)) + f ∗ (∇f (x)) + 〈∇f (xn)−∇f (x) , Tx〉 .

13



Therefore, taking the limit as n tends to ∞, we obtain that Df (Tx, x) = 0. It now
follows from [3, Lemma 7.3(vi), page 642] that Tx = x. That is, x ∈ Fix (T ), as
claimed. This completes the proof.

Now we present another proof of this fact by using the conjugate operator.

Proposition 3.4 (∇f (Fix (T )) of an R-QBNE operator is closed and convex). Let
f : X → R be a Legendre function and let K be a nonempty subset of int dom f such
that ∇f (K) is closed and convex. If T : K → int dom f is an R-QBNE operator,
then ∇f (Fix (T )) is closed and convex.

Proof. Since T is R-QBNE, the conjugate operator T ∗ is L-QBNE with respect to f ∗

(see Proposition 2.7(iv)). Moreover, f ∗ is Legendre, and the domain of T ∗ is ∇f (K),
which is closed and convex by assumption. Applying Propositions 3.1 and 2.7(iii),
we get that Fix (T ∗) = ∇f (Fix (T )) is closed and convex, as asserted.

Nevertheless, it is not always possible to deduce results for right Bregman non-
expansive mappings by means of the conjugate operator. An example of this is
Proposition 3.6, as it is pointed out in Remark 3.7.

Recall that a mapping B : X → X∗ is said to be weakly sequentially continuous if
the weak convergence of {xn}n∈N ⊂ X to x implies the weak convergence of {Bxn}n∈N
to Bx. The following result brings out a consequence of weak sequential continuity.

Proposition 3.5. Let B : X → X∗ be a weakly sequentially continuous mapping.
Then B is bounded on bounded subsets of domB.

Proof. Let K be a bounded subset of domB. We have to show that B (K) is bounded
too. Suppose by the way of contradiction that B (K) is not bounded. Then there is a
sequence {xn}n∈N in K such that limn→∞ ‖B (xn)‖ = +∞. On the other hand, there
exists a subsequence {xnk

}k∈N which converges weakly to some x as k → ∞. From
the weak sequential continuity of B it follows that the sequence {Bxnk

}k∈N converges
weakly to Bx. Hence this sequence is bounded. The contradiction we have reached
shows that B is indeed bounded on bounded subsets of domB, as asserted.

Next we show that if f is Legendre and uniformly continuous on bounded subsets
of X, ∇f is weakly sequentially continuous, and T is an R-BFNE operator, then the
fixed point set of T coincides with the set of its asymptotic fixed points. This means
that the operator I − T has a certain demi-closedness property.

Proposition 3.6 (Asymptotic fixed point set of R-BFNE operators). Let f : X → R
be Legendre and uniformly continuous on bounded subsets of X, and let ∇f be weakly
sequentially continuous. Let K be a nonempty subset of X and let T : K → X be an
R-BFNE operator. Then Fix (T ) = F̂ix (T ).
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Proof. The inclusion Fix (T ) ⊂ F̂ix (T ) is obvious. To show that F̂ix (T ) ⊂ Fix (T ),

let u ∈ F̂ix (T ) be given. Then there is a sequence {xn}n∈N in K such that xn ⇀ u
and xn − Txn → 0 as n →∞. Since f is uniformly continuous on bounded subsets
of X, it follows that f (xn) − f (Txn) → 0 as n → ∞. In addition, since ∇f is
weakly sequentially continuous, xn ⇀ u and xn − Txn → 0 as n → ∞, we know
that ∇f (Txn)−∇f (u) ⇀ 0 as n→∞. On the other hand, since T is an R-BFNE
operator, we have

(32) 0 ≤ Df (u, Txn)−Df (Txn, Tu) +Df (xn, Tu)−Df (Tu, Txn) .

From the three point identity (see (3)) and (32) we now obtain

Df (Tu, u) = Df (Tu, Txn)−Df (u, Txn) + 〈∇f (Txn)−∇f (u) , Tu− u〉
≤ Df (xn, Tu)−Df (Txn, Tu) + 〈∇f (Txn)−∇f (u) , Tu− u〉
= [f (xn)− f (Tu)− 〈∇f (Tu) , xn − Tu〉]−
[f (Txn)− f (Tu)− 〈∇f (Tu) , Txn − Tu〉]
+ 〈∇f (Txn)−∇f (u) , Tu− u〉
= f (xn)− f (Txn) + 〈∇f (Tu) , Txn − xn〉
+ 〈∇f (Txn)−∇f (u) , Tu− u〉 .

Since f (xn)− f (Txn)→ 0, ∇f (Txn)−∇f (u) ⇀ 0, and xn − Txn → 0 as n→∞,
it follows that Df (Tu, u) ≤ 0. Consequently, Df (Tu, u) = 0 and from [3, Lemma
7.3(vi), page 642] it now follows that Tu = u. That is, u ∈ Fix (T ), as required.

Remark 3.7. Since an analogous result holds for L-BFNE operators (cf. [35, Lemma
15.6, page 308]), it is natural to wonder whether Proposition 3.6 could be obtained
by means of the conjugate operator T ∗ (see Definition 2.6 and Proposition 2.7). In
fact, to this end, according to the former result, we would need f to be Legendre,
and f ∗ to be uniformly Fréchet differentiable and bounded on bounded subsets of
int dom f ∗. In addition, if we required ∇f to be uniformly continuous on bounded
subsets of int dom f ∗, then it would follow from Proposition 2.7(iii) and (vi) that

F̂ix (T ∗) = ∇f
(

F̂ix (T )
)

and Fix (T ) = F̂ix (T ). However, note that these conditions are seemingly different
from the ones required in Proposition 3.6. ♦

Finally, we present a characterization of R-BFNE operators which emphasizes the
strong connection between the nonexpansivity of T and the monotonicity of ∇f ◦T .
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Proposition 3.8 (Characterization of R-BFNE operators). Let f : X → R be an
admissible function, K ⊂ dom f and T : K → int dom f . Then T is R-BFNE if and
only if ∇f ◦ T is (I − T )-monotone.

Proof. According to Definition 2.3(i*), T is R-BFNE if and only if

0 ≤ 〈∇f (Tx)−∇f (Ty) , (I − T )x− (I − T ) y〉

for all x, y ∈ K. Therefore T is R-BFNE if and only if ∇f ◦ T is (I − T )-monotone.

We use this proposition in Section 6 in our discussion of various examples of
R-BFNE operators.

We refer the interested reader to [30] for a thorough discussion of R-BSNE oper-
ators.

4 Right Bregman nonexpansive retractions

Given two subsets K ⊂ C ⊂ X, an operator R : C → K is said to be a retraction of
C onto K if Rx = x for each x ∈ K. A retraction R : C → K is said to be sunny
(see [26, 32]) if

R (Rx+ t (x−Rx)) = Rx

for each x ∈ C and any t ≥ 0, whenever Rx+ t (x−Rx) ∈ C.
Sunny nonexpansive retractions have been studied in several contexts; we men-

tion, for example, extension problems for accretive operators, iterative methods for
solving variational inequalities, and the convex feasibility problem. See, for instance,
[26, 28] and the references therein.

In this section, we study sunny nonexpansive retractions with respect to Breg-
man distances. Our main aim is to provide a characterization of sunny R-QBNE
retractions when f is Legendre, totally convex and cofinite (see Theorem 4.5 below).
To this end, the following proposition will be essential.

Proposition 4.1 (Characterization of R-QBFNE retractions). Let a totally convex
f : X → R be Gâteaux differentiable in int dom f 6= ∅. Let K ⊂ C ⊂ int dom f be
two nonempty subsets. If C is convex and R is a retraction of C onto K, then R is
both sunny and R-QBNE if and only if it is R-QBFNE.
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Proof. First we assume that R is a sunny R-QBNE operator. Let x ∈ C and y ∈
K = Fix (R). Denote xt := Rx+t (x−Rx) for each t ∈ [0, 1]. Since R is a retraction
and R-QBNE, we have

Df (Rx, y) = Df (Rxt, y) ≤ Df (xt, y) .

Thus
Df (Rx, y) = min {Df (z, y) : z ∈ [x,Rx]} ;

in other words, Rx =
←−−
projf[x,Rx] (y). Using Proposition 2.1(ii), we see that

0 ≤ 〈∇f (Rx)−∇f (y) , xt −Rx〉

for each t ∈ [0, 1]. Setting t = 1, we get

0 ≤ 〈∇f (Rx)−∇f (y) , x−Rx〉

for any x ∈ C and y ∈ K, that is, R is R-QBFNE.
Conversely, from the three point identity (see (3)), for any x ∈ C and y ∈ K =

Fix (R), we have

Df (x, y) = Df (x,Rx) +Df (Rx, y) + 〈∇f (Rx)−∇f (y) , x−Rx〉 .

Hence, we obtain from (15) that

Df (x, y) ≥ Df (x,Rx) +Df (Rx, y) ≥ Df (Rx, y)

for any x ∈ C and y ∈ Fix (R). This means that R is an R-QBNE operator. Now we
prove that R is sunny. To this end, for any x ∈ C and t > 0, set xt := Rx+t (x−Rx).
From (15) we have

0 ≤ 〈∇f (Rxt)−∇f (Rx) , xt −Rxt〉
and

0 ≤ 〈∇f (Rx)−∇f (Rxt) , x−Rx〉 .
Since xt −Rx = t (x−Rx), we get

0 ≤ t 〈∇f (Rx)−∇f (Rxt) , x−Rx〉 = 〈∇f (Rx)−∇f (Rxt) , xt −Rx〉

and hence
0 ≤ 〈∇f (Rxt)−∇f (Rx) , Rx−Rxt〉 .

This implies that
〈∇f (Rxt)−∇f (Rx) , Rx−Rxt〉 = 0.

Since f is totally convex, f is strictly convex, and therefore ∇f is strictly monotone.
Thus Rxt = Rx, that is, R is sunny, as claimed.
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A nonempty subset K ⊂ int dom f is said to be a right quasi-Bregman non-
expansive retract (sunny right quasi-Bregman nonexpansive retract) of C if there
exists an R-QBNE retraction (sunny R-QBNE retraction) R of C onto K, where
K ⊂ C ⊂ int dom f .

Corollary 4.2. Let a totally convex f : X → R be Gâteaux differentiable in int dom f
6= ∅. If K ⊂ int dom f is a sunny R-QBNE retract of C, then the sunny R-QBNE
retraction of C onto K is uniquely defined.

Proof. Assuming that there exist two sunny R-QBNE retractions R and S of C onto
K, we know by Proposition 4.1 that both these operators are R-QBFNE. Therefore,
for any x ∈ C, since Rx, Sx ∈ K, we have

〈∇f (Rx)−∇f (Sx) , x−Rx〉 ≥ 0

and
〈∇f (Sx)−∇f (Rx) , x− Sx〉 ≥ 0.

Thus
〈∇f (Sx)−∇f (Rx) , Sx−Rx〉 ≤ 0,

which implies that Sx = Rx because ∇f is strictly monotone.

Under appropriate conditions on f , if R is an R-QBNE retraction of X onto K,
then ∇f (K) is closed and convex.

Corollary 4.3. Let f : X → R be Legendre and cofinite. If K ⊂ X is an R-QBNE
retract of X, then ∇f (K) is closed and convex in X∗.

Proof. Let R : X → K be an R-QBNE retraction. Then Fix (R) = K. Since f
takes values in R, int dom f = X, and hence it now follows from Proposition 3.3 that
∇f (K) is closed and convex.

We next prove that for any closed and convex set K∗ ⊂ X∗ , ∇f ∗ (K∗) is a sunny
R-QBNE retract.

Proposition 4.4 (∇f ∗ (K∗) is a sunny R-QBNE retract). Let f : X → R be Leg-
endre. Assume that f and f ∗ are totally convex. Let K∗ be a nonempty, closed and

convex subset of int dom f ∗. Then the operator R defined by R = ∇f ∗ ◦←−−projf
∗

K∗ ◦ ∇f
is a sunny R-QBNE retraction of X onto ∇f ∗ (K∗).
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Proof. For any x ∈ ∇f ∗ (K∗), we have
←−−
projf

∗

K∗ (∇f (x)) = ∇f (x) because ∇f (x) ∈
K∗. This implies that

Rx =
(
∇f ∗ ◦←−−projf

∗

K∗ ◦ ∇f
)

(x) = ∇f ∗ (∇f (x)) = x

for any x ∈ ∇f ∗ (K∗). Thus R is onto ∇f ∗ (K∗) and Rx = x for all x ∈ ∇f ∗ (K∗),
that is, R is a retraction. Since R is a retraction of X onto ∇f ∗ (K∗), it follows
that Fix (R) = ∇f ∗ (K∗). Since f ∗ is Gâteaux differentiable and totally convex,
Proposition 2.1(iii), when applied to the left Bregman projection with respect to f ∗

onto K∗, implies that

Df∗

(
ξ,
←−−
projf

∗

K∗ (η)
)

+Df∗

(←−−
projf

∗

K∗ (η) , η
)
≤ Df∗ (ξ, η)

for all η ∈ int dom f ∗ and ξ ∈ K∗. Therefore, for all x ∈ X and y ∈ ∇f ∗ (K∗),

Df∗

(
∇f (y) ,

←−−
projf

∗

K∗ (∇f (x))
)

+Df∗

(←−−
projf

∗

K∗ (∇f (x)) ,∇f (x)
)

≤ Df∗ (∇f (y) ,∇f (x)) ,

or equivalently, by (26),

Df

(
∇f ∗ ◦←−−projf

∗

K∗ (∇f (x)) , y
)

+Df

(
x,∇f ∗ ◦←−−projf

∗

K∗ (∇f (x))
)
≤ Df (x, y) .

That is,
Df (Rx, y) +Df (x,Rx) ≤ Df (x, y)

for all x ∈ X and y ∈ ∇f ∗ (K∗). In other words, R is R-QBFNE. It now follows
from Proposition 4.1 that R is a sunny R-QBNE retraction of X onto ∇f ∗ (K∗).

The following theorem summarizes the previous results regarding sunny R-QBNE
retractions. Earlier results in this spirit can be found in [14, Theorem 11.3, page 103]
and [27, Theorem 3.3, page 203]. Recall that a mapping B : X → X∗ is said to be
demi-closed (weak-to-norm) if whenever a sequence {xn}n∈N converges weakly to x
and Bxn → ξ, it follows that Bx = ξ.

Theorem 4.5 (Characterization of sunny and R-QBNE retractions). Let f : X → R
be a Legendre, cofinite and totally convex function, and assume that f ∗ is totally con-
vex. Let K be a nonempty subset of X. Then the following statements are equivalent.

(i) K is a sunny R-QBNE retract of X.
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(ii) K is an R-QBNE retract of X.

(iii) ∇f (K) is closed and convex.

Furthermore, if any of these statements holds, then K is closed.

Proof. It is obvious that (i) implies (ii). From Corollary 4.3 it follows that (ii)
implies (iii). Proposition 4.4 ensures that if ∇f (K) is closed and convex, then R =

∇f ∗ ◦←−−projf
∗

∇f(K) ◦ ∇f is a sunny R-QBNE retraction of X onto K = ∇f ∗ (∇f (K)).

Thus (iii) implies (i).
If any of these statements holds, ∇f (K) is closed and convex, so it is weakly

closed. Since ∇f is norm-to-weak continuous, ∇f ∗ is demi-closed. Thus we get that
∇f ∗ (∇f (K)) = K is closed.

Theorem 4.5, when combined with Corollary 4.2, shows that under the same
assumptions, the unique sunny R-QBNE retraction of X onto K is given by the

conjugate operator ∇f ∗ ◦←−−projf
∗

∇f(K) ◦ ∇f , which is the right Bregman projection by

(28). Thus we arrive at the following result.

Corollary 4.6. Let f : X → R be a Legendre, cofinite and totally convex function,
and assume that f ∗ is totally convex. Let K be a nonempty subset of X.

(i) If ∇f (K) is closed and convex, then the right Bregman projection,

−−→
projfK = ∇f ∗ ◦←−−projf

∗

∇f(K) ◦ ∇f,

is the unique sunny R-QBNE retraction of X onto K.

(ii) If K is a sunny R-QBNE retract of X, then ∇f (K) is closed and convex, and
−−→
projfK is the unique sunny R-QBNE retraction of X onto K.

Now we are able to establish one of our most significant results, which guarantees
that, under certain conditions on f , the fixed point set of any R-QBNE operator is
a sunny R-QBNE retract of X and, in particular, that the corresponding retraction
is uniquely defined by the right Bregman projection onto the fixed point set, even if
it is not necessarily closed or convex.

Corollary 4.7 (Fix (T ) is a sunny R-QBNE retract). Let f : X → R be a Legendre,
cofinite and totally convex function, and assume that f ∗ is totally convex. If T : X →
X is an R-QBNE operator, then there exists a unique sunny R-QBNE retraction of
X onto Fix (T ), and this is the right Bregman projection onto Fix (T ).
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Proof. Since f is Legendre and cofinite, and T is R-QBNE, it follows from Proposition
3.3 that ∇f (Fix (T )) is closed and convex in X∗. Corollary 4.6(i) now ensures that
the right Bregman projection is the unique sunny R-QBNE retraction of X onto
Fix (T ).

On the other hand, the left Bregman projection,
←−−
projfK , is not sunny, as can be

seen in the following example.

Example 4.8 (Left Bregman projection is not sunny). Let X = R2 and consider the
function f (x1, x2) = x1 ln (x1)−x1+x2 ln (x2)−x2 with dom f = (0,+∞)×(0,+∞).
Denote by PK the left Bregman projection onto the closed and convex set K =
{(y1, y1) : 0 < α ≤ y1}. Calculations show that PK (x1, x2) =

(√
x1x2,

√
x1x2

)
when

x1x2 ≥ α2. Hence it is clear that for any t ∈ [0, 2], we have

PK (x1, 4x1) + t ((x1, 4x1)− PK (x1, 4x1)) = 2 (x1, x1) + t (−x1, 2x1)
= ((2− t)x1, 2 (1 + t)x1)

and therefore for t 6= 0, 1, we have

2 (x1, x1) = PK (x1, 4x1) 6= PK ((2− t)x1, 2 (1 + t)x1) =
√

2− t
√

2
√

1 + t (x1, x1) .

This shows that PK is not sunny.

Thanks to the relation between the right Bregman projection and the left Breg-
man projection it does have a sunny-like property.

Definition 4.9 (∇f -sunny). Given K ⊂ C ⊂ int dom f , we say that a retraction R
of C onto K is ∇f -sunny if for any x ∈ C, we have Rxt = Rx whenever xt ∈ C,
where xt = ∇f ∗ (t∇f (x) + (1− t)∇f (Rx)), t > 0.

Proposition 4.10 (Characterization of L-QBFNE operators). Let f : X → R be
Legendre with f ∗ totally convex and K ⊂ int dom f . If R : int dom f → K is a
retraction, then R is both ∇f -sunny and L-QBNE if and only if R is L-QBFNE.

Proof. Given a retraction R : int dom f → K, we define the conjugate operator

T ∗ := ∇f ◦R ◦ ∇f ∗ : int dom f ∗ → ∇f (K) ⊂ int dom f ∗.

It is easy to check that T ∗ is a retraction of int dom f ∗ onto ∇f (K). On the other
hand, R is ∇f -sunny if and only if T ∗ is sunny. Now Propositions 2.7 and 4.1 yield
the desired equivalence.
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It follows from this result and Proposition 2.1 that the left Bregman projection←−−
projfK is an ∇f -sunny L-QBNE retraction of int dom f onto K.

Finally, we present an analogue of Proposition 2.1 (which concerns left Bregman
projections).

Proposition 4.11 (Characterization of right Bregman projections). Let f : X → R
be a function such that f ∗ is admissible and totally convex. Let x ∈ X and let K
be a subset in int dom f such that ∇f (K) is closed and convex. If x̂ ∈ K, then the
following conditions are equivalent.

(i) The vector x̂ is the right Bregman projection of x onto K with respect to f .

(ii) The vector x̂ is the unique solution of the variational inequality

〈∇f (z)−∇f (y) , x− z〉 ≥ 0 ∀y ∈ K.

(iii) The vector x̂ is the unique solution of the inequality

Df (z, y) +Df (x, z) ≤ Df (x, y) ∀y ∈ K.

Proof. Since ∇f (K) is closed and convex, the left Bregman projection onto ∇f (K)
with respect to the totally convex function f ∗ is well defined and characterized in
Proposition 2.1. It is clear from (28) that (i) is equivalent to the fact that the vector
∇f (x̂) is the left Bregman projection of ∇f (x) onto ∇f (K) with respect to f ∗.
Thence, from Proposition 2.1(ii), we get that (i) is equivalent to x̂ being the unique
solution of the inequality

〈∇f ∗ (∇f (x))−∇f ∗ (∇f (z)) ,∇f (z)− ξ〉 ≥ 0 ∀ξ ∈ ∇f (K) .

But this is equivalent to

〈∇f (z)−∇f (y) , x− z〉 ≥ 0 ∀y ∈ K.

Using the three point identity (see (3)), we can also prove that (ii) is equivalent to
(iii).
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5 The conjugate resolvent

We begin by recalling the definition and several basic properties of ∇f -resolvents as
established in [4, Proposition 3.8, page 604], where they were called D-resolvents. It
is worth mentioning that this concept was generalized to F -resolvents in [7].

Definition 5.1 (∇f -resolvent). Let A : X → 2X
∗

be a set-valued mapping. The
resolvent of A with respect to f is the operator ResfA : X → 2X which is defined by

(33) ResfA := (∇f + A)−1 ◦ ∇f.

Proposition 5.2 (Properties of ∇f -resolvents). Let f : X → R be an admissible
function and let A : X → 2X

∗
be an operator such that int dom f ∩ domA 6= ∅. The

following statements hold.

(i) dom ResfA ⊂ int dom f .

(ii) ran ResfA ⊂ int dom f .

(iii) Fix
(

ResfA

)
= int dom f ∩ A−1 (0∗).

(iv) Suppose, in addition, that A is a monotone mapping. Then the following as-
sertions also hold.

(a) If f |int dom f is strictly convex, then the operator ResfA is single-valued on
its domain and L-BFNE.

(b) If f : X → R is such that ran∇f ⊂ ran (∇f + A), then dom ResfA = X.

Motivated by Definition 2.6, we now define the conjugate ∇f -resolvent in the
dual space X∗.

Definition 5.3 (Conjugate ∇f -resolvent). Let A : X → 2X
∗

be a set-valued map-
ping. The conjugate resolvent of A with respect to f , or the conjugate ∇f -resolvent,
is the operator CResfA : X∗ → 2X

∗
defined by

(34) CResfA := (I + A ◦ ∇f ∗)−1 .

Indeed, the conjugate ∇f -resolvent is the conjugate operator of the ∇f -resolvent,
as we show in the following lemma.
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Lemma 5.4. Let A : X → 2X
∗

be a set-valued mapping and let f : X → R be an
admissible function. Then

CResfA = ∇f ◦ ResfA ◦ ∇f
∗.

Thus, dom CResfA = ∇f
(

dom ResfA

)
and ran CResfA = ∇f

(
ran ResfA

)
.

Proof. Indeed, since (∇f)−1 = ∇f ∗, it follows that

∇f ◦ ResfA ◦ ∇f
∗ = ∇f ◦

(
(∇f + A)−1 ◦ ∇f

)
◦ ∇f ∗

= ∇f ◦ (∇f + A)−1

= ((∇f + A) ◦ ∇f ∗)−1

= (I + A ◦ ∇f ∗)−1 .

The remaining statements follow from Proposition 2.7(i).

This connection between the ∇f -resolvent and its conjugate allows us to deduce
the following properties.

Proposition 5.5 (Properties of conjugate ∇f -resolvents). Let f : X → R be an
admissible function and let A : X → 2X

∗
be a mapping such that int dom f∩domA 6=

∅. The following statements hold.

(i) dom CResfA ⊂ int dom f ∗.

(ii) ran CResfA ⊂ int dom f ∗.

(iii) ∇f ∗
(

Fix
(

CResfA

))
= int dom f ∩ A−1 (0∗).

(iv) Suppose, in addition, that A is a monotone mapping. Then the following as-
sertions also hold.

(a) If f |int dom f is strictly convex, then the operator CResfA is single-valued on
its domain and R-BFNE.

(b) If f : X → R is such that ran∇f ⊂ ran (∇f + A), then dom CResfA =
int dom f ∗.

Proof. Basically all these properties are consequence of Propositions 2.7 and 5.2,
because CResfA is the conjugate operator of ResfA (see Lemma 5.4).
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The previous proposition provides sufficient conditions for the conjugate ∇f -
resolvent to be R-BFNE. Next we prove that to be the conjugate ∇f -resolvent of a
monotone mapping is also a necessary condition for an operator to be R-BFNE. See
[7, Proposition 5.1, page 7] for the analogous result regarding L-BFNE operators.

Theorem 5.6 (Characterization of R-BFNE operators by means of the conjugate
∇f -resolvent). Let f : X → R be an admissible function. Then the operator T : K ⊂
int dom f → int dom f is R-BFNE if and only if the mapping A : X → 2X

∗
, defined

by A = (T−1 − I) ◦ ∇f , is monotone.

Proof. By definition, it readily follows that T = CResfA. So the converse implication
was already proved in Proposition 5.5(iv)(a). Now assume that T is R-BFNE. In
order to prove that A is monotone, we denote the graph of A by

gra A := {(z, z∗) ∈ X ×X∗ : z∗ ∈ A (z)} .

Then, for any (z, z∗) ∈ gra A, we have

z∗ ∈ A (z)⇔ z∗ ∈ T−1 (∇f (z))−∇f (z)

⇔ T (z∗ +∇f (z)) = ∇f (z)(35)

⇔ z = ∇f ∗ (T (z∗ +∇f (z))) .(36)

Given (x, x∗) , (y, y∗) ∈ gra A, denote

u∗ = x∗ +∇f (x) and v∗ = y∗ +∇f (y).

Since T is R-BFNE, using equalities (35) and (36), we see that

〈x− y, x∗ − y∗〉 = 〈∇f ∗ (Tu∗)−∇f ∗ (Tv∗) , x∗ − y∗〉
= 〈∇f ∗ (Tu∗)−∇f ∗ (Tv∗) , u∗ − v∗〉 − 〈x− y,∇f (x)−∇f (y)〉
≥ 〈x− y, Tu∗ − tv∗〉 − 〈x− y,∇f (x)−∇f (y)〉
= 0,

which concludes the proof.

Note that in the case of a Hilbert space, if f = (1/2) ‖·‖2, then both resolvents
ResfA and CResfA coincide with the classical resolvent

RA := (I + A)−1 ,

and both Proposition 5.2 and Proposition 5.5, along with Theorem 5.6 and its left
counterpart, recapture some of its well-known properties.
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Recall that, in the setting of Hilbert spaces, we know by Minty’s Theorem [5,
Theorem 21.1, page 311] (see also [23]), that under the assumption of monotonicity,
if A is maximal monotone, then RA has full domain, and vice versa. In fact, Bauschke
et al. [7] proved that, under suitable conditions on f , if A is monotone, then A is
maximal monotone if and only if ran (A+∇f) = X∗. On the one hand, since

dom ResfA = ∇f ∗ (ran (A+∇f)) ,

this result recovers Minty’s Theorem in the framework of a Hilbert space. On the

other hand, by Lemma 5.4 we know that dom CResfA = ∇f
(

dom ResfA

)
, that is,

dom CResfA = ran (A+∇f),

so the conjugate ∇f -resolvent seems to be more appropriate for establishing a coun-
terpart of Minty’s Theorem in the context of the Bregman distance, resulting in the
following characterization.

Theorem 5.7. Let f : X → R be a strictly convex and cofinite admissible function,
and let A : X → 2X

∗
be a set-valued monotone mapping. Then A is maximal

monotone if and only if dom CResfA = X∗.

Next, we note that Corollary 4.7 and the fact that the conjugate∇f -resolvent of a
monotone mapping is R-BFNE imply that the set ∇f (A−1 (0∗)) is a sunny R-QBNE
retract of X∗.

Corollary 5.8. Let f : X → R be Legendre, cofinite and totally convex, and as-
sume that ran∇f ⊂ ran (∇f + A). Let A : X → 2X

∗
be a monotone mapping

with domA 6= ∅. Then there exists a unique sunny R-QBNE retraction of X onto
∇f (A−1 (0∗)), and this is the right Bregman projection onto ∇f (A−1 (0∗)).

Remark 5.9. Given a nonempty, closed and convex subset K of X, let A = ∂ιK ,

where ιK is the indicator function of K. Then, since we know that ResfA =
←−−
projfK , it

follows from Lemma 5.4 that

CResfA = ∇f ◦←−−projfK ◦ ∇f
∗ =
−−→
projf

∗

∇f(K),

which, under suitable conditions on f , is the unique sunny R-QBNE retraction of X
onto ∇f (K). ♦
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6 Examples of R-BFNE operators

In this section we use conjugation, T -monotonicity and the conjugate∇f -resolvent to
present various examples of R-BFNE operators. Indeed, we have already seen that R-
BFNE operators can be generated from L-BFNE operators (Proposition 2.7), as well
as from T -monotone (Proposition 3.8) and monotone mappings (Proposition 5.5).
We begin with one-dimensional examples for several choices of the function f . These
examples are followed by examples in infinite dimensional spaces constructed by
means of the conjugate ∇f -resolvents of the identity operator and the right Bregman
projection, for a particular type of functions f .

6.1 The case of the real line

Assume that X = R. In this case the notion of T -monotonicity can be simplified
and a simpler characterization of R-BFNE operators can be obtained as follows.

Lemma 6.1. Let f : R → R be a differentiable function and consider an operator
T : K ⊂ int dom f → R. The functions f ′◦T and I−T are increasing (decreasing) if
and only if T is R-BFNE. Therefore, whenever one of the following conditions holds,
T is R-BFNE.

(i) f ′ is increasing and

(a) T and I − T are increasing functions;

(b) in particular, T is differentiable on int domT and its derivative T ′ satisfies
0 ≤ T ′ ≤ 1.

(ii) f ′ is decreasing and either T or I − T is decreasing.

Using Lemma 6.1, in Subsection 6.1.2 we generate examples of R-BFNE operators
defined on the real line. An analogous argument has recently been used in [11] to
produce L-BFNE operators with respect to the Boltzmann-Shannon entropy

(37) BS (x) := x log (x)− x, 0 < x < +∞,

and the Fermi-Dirac entropy

(38) FD (x) := x log (x) + (1− x) log (1− x) , 0 < x < 1,

two important functions with many applications (see [11] and the references therein).
Each of these two entropies is defined to be zero, by its limit, at the end points of
their domains.
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Bearing in mind the definition of the conjugate operator T ∗ and its properties in
relation to the original operator T (see Proposition 2.7), we may get examples of R-
BFNE operators by computing the conjugate operator of known L-BFNE operators.
Indeed, we know that

T is L-BFNE wrt f on K ⊂ R ⇔ T ∗ is R-BFNE wrt f ∗ on f ′ (K) ⊂ R.

In Table 2 we exhibit the conjugate operator of T with respect to certain functions
f . So, on the one hand, the existing examples of L-BFNE operators with respect
to f allow us to obtain R-BFNE operators with respect to f ∗ (Subsection 6.1.1).
On the other hand, by using the notion of T -monotonicity (Subsection 6.1.2), we
provide examples of R-BFNE operators, which lead, in their turn, to new examples
of L-BFNE operators.

f (x) f ∗ (x) T ∗ (x) D∗

BS (x) ex log (T (ex)) R

ex BS (x) eT (log x) (0,+∞)

xp/p, p ∈ (0,+∞) xq/q T (xp−1)
q−1 R

FD (x) log (1 + ex) log

(
T( ex

1+ex )
1−T( ex

1+ex )

)
R

log (1 + ex) FD (x) e
T(log( x

1−x))

1+e
T(log( x

1−x))
(0, 1)

− log x −1− log (−x) − 1

T( 1
x)

R\{0}

−1− log (−x) − log x 1

T(− 1
x)

R\{0}

Table 2: Conjugate operators of T with respect to f

Remark 6.2 (R-BFNE operators in Rn). Denote I = {1, 2, . . . , n}. Let fi : R→ R
(∀i ∈ I) be an admissible function, and define the function F : Rn → R by

F (x1, . . . , xn) =
∑
i∈I

fi (xi) ,
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with int dom F =
∏

i∈I int dom fi. Let Ki (∀i ∈ I) be a nonempty subset of int dom fi
and K :=

∏
i∈I Ki. We define the operator T : K→ int dom F by

T (x1, . . . , xn) = (T1 (x1) , . . . , Tn (xn)) ,

where Ti : Ki → int dom fi (∀i ∈ I). If each Ti is R-BFNE with respect to fi on Ki,
then it is easy to prove that the operator T is R-BFNE with respect to F on K. ♦

6.1.1 Examples generated by conjugation

By using the examples presented in [11, Example 4.14, page 174] and Table 2, and
applying Proposition 2.7, we can provide more examples of R-BFNE operators. More
precisely, Table 3 contains R-BFNE operators T ∗ with respect to f ∗ on D∗, which
are generated by conjugation of L-BFNE operators T with respect to f on D.

L-BFNE wrt f on D R-BFNE wrt f ∗ on D∗

T (x) f (x) D T ∗ (x) f ∗ (x) D∗

αx+ β

α, β ∈ (0,+∞)
(0,+∞) log (αex + β) R

xp

p ∈ (0, 1]
BS (x) (0,+∞) px ex R

log x [e,+∞) log x [1,+∞)

ex (0, 1] ex (−∞, 0)

sinx (0, π/2] log (sin ex) (−∞, log (π/2)]

α

α ∈ (0, 1)
(0, 1)

α

α ∈ R
R

αx

α ∈ (0, 1)
FD(x) (0, 1) log

(
αex

1+(1−α)ex

)
log (1 + ex) R

xp

p ∈ (0, 1)
(0, 1) log

((
1+ex

ex

)
+ 1
)

R

Table 3: R-BFNE operators generated by conjugation
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6.1.2 Examples generated by T -monotonicity

Using the connections with T -monotonicity (Lemma 6.1), one is able to prove easily
that the operators T shown in Table 4 are R-BFNE with respect to f on D. We

T (x) f (x) D

αx+ β α ∈ [0, 1] , β ∈ R (0,+∞)

xp p ∈ (0, 1] BS (x)
(

0, (1/p)1/(p−1)
)

α log x α ∈ (0,+∞) [α,+∞)

cosx [π, 2π]

αex α ∈ R (0,+∞)

sinx log x [π/2, 3π/2]

cotx (0, π]

αx+ β α ∈ [0, 1] , β ∈ R (0, 1)

xp p ∈ (0, 1] FD (x)
(

0, (1/p)1/(p−1)
)

α log x α ∈ (0,+∞) [α, 1)

sinx (0, 1)

αx+ β α ∈ [0, 1] , β ∈ R R

ex ex (−∞, 0)

log x [1,+∞)

Table 4: R-BFNE operators wrt f on D generated by monotonicity

provide another example which requires a bit more details.

Example 6.3. The Lambert function, W , is defined to be the inverse of x 7→ xex.
Its principal branch on the real axis is concave and increasing, and its domain is
(−1/e,+∞) (cf. [10, 12]). Then T (x) = W (x) is R-BFNE with respect to BS and
ex on (0,+∞) and with respect to FD on (0, 1).

Proof. Given x ∈ (−1/e,+∞), we compute T ′ (x). Set W (x) = y, which means
that yey = x. Then we differentiate both sides and get that y′ey + yy′ey = 1. Since

30



yey = x, we obtain that y′ = 1/ (x+ ey). Therefore, as ey = x/y = x/W (x), it
follows that

W ′ (x) =
W (x)

x+ xW (x)
.

Since
W (x)

x+ xW (x)
=

y

yey + y2ey
=

1

ey + yey
,

it is easy to see that 0 < T ′ (x) ≤ 1 if y ≥ 0, that is, if W (x) ≥ 0 and this happens
when x ≥ 0. Therefore, since the derivatives BS ′ and FD′ are increasing functions,
it follows from Lemma 6.1(i)(b) that T (x) = W (x) is a R-BFNE with respect to
BS and ex on any nonempty subset of (0,+∞), and with respect to FD on any
nonempty subset of (0, 1).

6.1.3 Examples of conjugate ∇f-resolvents

Example 6.4. Let f (x) = BS (x). Recall that f ∗ (y) = ey. Thus, for any operator
A : R→ R, the conjugate BS-resolvent is

CResBSA (x) = y, with y + A (ey) = x.

Using this, one is able to compute CResBSA for different choices of the operator A.
See Table 5, where W stands for the Lambert function.

A (x) f (x) CResfA (x)

α α ∈ (−1/2,+∞) log
(
1
α
W (αex)

)
αx+ β α ∈ (0,+∞) , β ∈ R BS (x) log

(
1
α
W
(
αex−β

))
α log x α 6= −1 x

1+α

xp

p
p ∈ R \ {0} 1

p
log (W (epx))

Table 5: Conjugate ∇f -resolvents of A

6.2 The infinite dimensional case

6.2.1 The right Bregman projection with respect to ‖·‖p

In uniformly convex and smooth Banach spaces, the left Bregman projection onto a
half-space with respect to fp := ‖·‖p, p ∈ (1,+∞), was computed in [19].
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Proposition 6.5 (Left Bregman projection onto a hyperplane). Let X be a uniformly
convex and smooth Banach space and let

K = {z ∈ X : 〈a, z〉 = b} ,

where a ∈ X∗\ {0} and b ∈ R. For any x ∈ X and for all p ∈ (1,+∞), the following
statements hold.

(i) The equation

(39)
〈
a,∇f ∗p (sa+∇fp (x))

〉
= b

has solutions s such that sign s = sign b− 〈a, x〉.

(ii) The left Bregman projection (4) with respect to fp is given by

(40)
←−−
proj

fp
K (x) = ∇f ∗p (sa+∇fp (x)) ,

where s ∈ R is a solution of (39).

(iii) Formula (40) remains true when K is the half-space {z ∈ X : 〈a, z〉 ≥ b} and
s is a nonnegative solution of (39).

This result allows us to get a nice formula for the right Bregman projection onto
∇fp (K) with respect to f ∗p , for any half-space K in X. Indeed, we know from (28)
that −−→

projf
∗

∇f(K) = ∇f ◦←−−projfK ◦ ∇f
∗.

Then, from Proposition 6.5(ii), we have, for any ξ ∈ X∗,
−−→
proj

f∗p
∇fp(K) (ξ) =

(
∇fp ◦

←−−
proj

fp
K ◦ ∇f

∗
p

)
(ξ) =

(
sa+∇fp

(
∇f ∗p (ξ)

))
= sa+ ξ,

where s ∈ R is a solution of (39).

6.2.2 The conjugate 1
p
‖ · ‖p-resolvent of the identity operator

Following [7, Example 9.6], we consider the function f : H → R, f (x) = 1
p
‖x‖p,

where H is a Hilbert space and p ∈ (1,+∞). So the conjugate of f is the function
f ∗ (y) = 1

q
‖y‖q, where q is the conjugate exponent of p, that is, 1

p
+ 1

q
= 1. Then, for

any y 6= 0, ∇f ∗ (y) = ‖y‖q−2 y. Consider A = I, the identity operator, and denote
the conjugate ∇f -resolvent of A by

Tq = CResfA := (I +∇f ∗)−1 .
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Then

Tq (x) =

{
0 if x = 0
α (x)x if x 6= 0,

(41)

where α (x) ∈ (0, 1) is the unique solution to the equation

(42) α + αq−1 ‖x‖q−2 = 1.

Indeed, given x ∈ H,

Tq (x) = y ⇔ y +∇f ∗ (y) = x⇔ y
(
1 + ‖y‖q−2

)
= x.

So we can write y = α (x)x, where α (x) ∈ (0, 1) solves equation (42). It is easy to
check that this equation indeed has a unique solution in (0, 1).
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