Existence and regularity of the pressure for the
stochastic Navier-Stokes equations

J.A. LaNGAT* J. REALTand J. SimonN #

April 25, 2003

Abstract

We prove, on one hand, that for a convenient body force with values
in the distribution space (H~1(D))%, where D is the geometric domain
of the fluid, there exist a velocity u and a pressure p solution of the
stochastic Navier-Stokes equation in dimension 2, 3 or 4.

On the other hand, we prove that, for a body force with values in the
dual space V' of the divergence free subspace V of (Hg(D))?, in general
it is not possible to solve the stochastic Navier-Stokes equations. More
precisely, although such body forces have been considered, there is no
topological space in which Navier-Stokes equations could be meaningful
for them.

AMS Subject Classification (2000): 60H15, 60H30, 35R15, 35Q30

1 Introduction

Let D be a connected and bounded open subset of R%, where d = 2, 3
or 4, with a regular enough boundary dD. Let us fix a final time T > 0,
and consider the following system of stochastic Navier-Stokes equations with
homogeneous Dirichlet boundary condition:
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ou —vAu+ (u-V)u+ Vp = F(-,u) + G(‘,u)Wt, in D x (0,T),
V-u=0, in D x (0,7), (1)
u=0, on 9D x (0,7,

where v = (uq,...,uq) and p are unknown random fields on D x [0,T],
representing respectively the velocity and the pressure of an incompressible
fluid filling the domain D, in each point of D x [0,7] (in fact, p is the sum
of the pressure and of some potential g corresponding to the part of forces
of the form Vgq). Here, the body force F' is a given measurable sublinear
mapping from [0, T] x (L?(D))? into (H~1(D))%, W is a cylindrical K-valued
Wiener process on a complete probability space (€2, F, P), where K is a fixed
separable Hilbert space, G is a given measurable sublinear mapping from
[0,T] x (L?(D))? into I.2(K; (L?(D))?) and v > 0 is the kinematic viscosity
of the fluid, which is constant.

Existence result. As we will see in Theorem 2.2, for such data, there exist
a solution (u,p) to (1). Similar results were obtained in [1], [3], [4], [5] and
[6] among others. Our contribution here is that we obtain the pressure p
without any regularity assumption on wu, contrarily to [5] or [6] in which its
values are assumed to be in (H?(D))?, and that we get equation (1) in the
distribution sense, contrarily to the case where the body force is valued in
V' in which case no satisfactory sense can be given, see Theorem 6.1.

As in most quoted papers, we obtain the solution in two steps. First,
we consider a velocity u satisfying P-a.s. the following so called “variational
N-S equation” (in which the pressure is eliminated): for all ¢ € [0,7] and
for all v € (D(D))¢ such that V-v =0,

/Du(t) cvdr = /Du(O) cvdr — V/Ot/DVu(s) -Vudzds
[ [ e Vuts)) - vdwds + [ s us), oy ds 2

+/D/0t G(s,u(s))dWs - vdx.

The existence of such a w is proved in [6]; the first result in this direction
was given in [2] in the case of K = R and G constant; it was extended to a
multiplicative noise and to an infinite-dimensional K in [1], [3], [4], [5] and
[6] among others.

In the second step, we associate a pressure p to such a u by using a
generalization of de Rham theorem to processes, see Theorem 4.1.



Non-existence result. Various authors considered a body force F' with values
in the dual V' of the space V = {v € (H}(D))? : V-v = 0} instead of
(H~Y(D))¢ as above. Then they solve, again for all v € (D(D))? such that
V -v =0 (or equivalently for all v € V),

/u() vda:—/ vda:—z// / Vu(s) - Vudzds

/ vdxds—i—/ (s,u(s)),v)yrxv ds (3)

+/D/O G(s,u(s))dW, - vdzx,

that is (2) in which the duality H~! x H{ is replaced by the duality V' x V.

Unfortunately, as we will see in Theorem 6.1, it cannot exist any p corre-
sponding to such u, or more exactly to such F, such that the first equation
in (1) be satisfied. Indeed, F being valued in V'’ while other terms are valued
in (H71(Q))4, it would be necessary to imbed these two spaces in a same
Hausdorff space, which is impossible.

Similar existence and non-existence results for the deterministic Navier—
Stokes equations may be found in [12].

2 Existence of a solution (u,p) of the stochastic
Navier—Stokes equations.

In all the sequel, let
D be a bounded, connected and Lipschitz open subset of RY,  (4)

de{2,3,4}, (5)
K be a separable Hilbert space. (6)

Let F and G be two mappings such that

F is measurable from [0, 7] x (L?(D))?¢ into (H~1(D))4, 7
G is measurable from [0, 7] x (L?(D))? into I.2(K; (L?(D))%), (7)

and, for all t € [0,T], w € (D(D))? and e € K,

V= <F(t, 1)), w>(D’(D))d><(’D(D))d and v +— /D G(t, v)e -wdx (8)
are continuous from (L?(D))? into R,
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and such that there exists a positive number ¢; such that, for all ¢ € [0, T
and v € (L%(D))4,

{ 1)l (-1(pyya < er(1+ o]l z2(py)e), (©)

G 0) 2k 2pyyey < (L +[[vll2(py)a)-
Let us denote by H the closure of the set
V={ve(DD)?:V-v=0in D}

in (L?(D))¢, and by V the closure of V in (H'(D))¢. Then, H is a Hilbert
space equipped with the inner product of (L2(D))¢, and V is a Hilbert space
equipped with the inner product of (H'(D))?. Finally, let

{ i be a probability measure on H such that, for all r € [1, 00),
(10)

[ ol dutv) < ox.
H

Definition 2.1 A martingale solution to (1) starting from p is a set
{(Q7f7 P)? {ft}tE[O,T]a VVau7p}7 such that:

(Q, F, P) is a probability space,
{Fi}iejo,r) Is a normal filtration on (Q, F, P),
W is a cylindrical K-valued F;-Wiener process,
u € M%_t(O,T; VYNL"(Q,F,P; L>(0,T;H)), Vrell,o0), (11)
p € LY(Q,F, PyW=1°°(0,¢; L*(D))), Vt € (0,T), (12)
P{u(0) € B} = u(B), VBeB(H), (13)

and such that, P-a.s.:

o —vAu+ (u-V)u+ Vp = F(,u) + G(-,u)W;, in (D'(Dr))%, (14)
V-u=0, inD(Dr), (15)

/Dpda: =0, inD'(0,7), (16)

u € C([0,T]; H-weak N (H~1(D))%), (17)

where Dy = (0,T) x D.

We are now in position to state the existence result of a solution (u,p)
to the stochastic Navier-Stokes equations (1):



Theorem 2.2 Assuming (4) to (10), there exists a martingale solution to
(1) starting from p.

Remark 2.3 In view of Theorem 4.1, to any such velocity u, it corresponds
a UNIQUE Pressure p.

Many papers consider martingale solutions of the variational equation
(2) in which p is eliminated, see for example [6]. Again in view of Theorem
4.1, assuming (4) to (10), it is equivalent to the existence of a martingale
solution to (1).

3 Some definitions.

In this section, we recall the definitions of some above used properties.

3.1 Lipschitz domain, used in (4)

A non empty open subset D of R¢ is said Lipschitz if it is locally the epi-
graph of a Lipschitz function. Or, more precisely, if there exist two positive
numbers a and k such that, for each point £ € 0D, there exists a system
of cartesian coordinates (x1,...,x4) with origin at £ and a real function 1
defined on O’ = {2/ € R4! : |2/| < a}, where 2/ = (x1,...,24_1), such
that, for all z’ and 3’ in O/,

(') = ()] < Kl2’ -y,
and, for all x € O = {x = (2/,24) € R?: |2'| < a, |z4| < a},

re€D = z4<y(a'),

€ 0D < xq=1(2).

3.2 Normal filtration and Wiener process, used in Def. (2.1)

A normal filtration on a propability space (€2, F, P) is an increasing and right
continuous family {F;},c(o,m) of sub o-algebras of F, such that Fy contains
all the P null sets of F.

Given a separable Hilbert space K, a cylindrical K-valued F;-Wiener
process is any “process” W formally defined as

(o]
7
We=>_Bie,
=1



where (8f : t > 0, i = 1,2,...) are mutually independent standard real
Fi-Wiener processes defined on (2, F, P), and {e; : i = 1,2,...} is an or-
thonormal basis of K. It is well known that the series defining W does not
converge in K, but rather in any Hilbert space K such that K ¢ K and the
injection of K in K is Hilbert-Schmidt (see e.g. [7]).

3.3 Mesurability and IL? space, used in (7)

Let X and Y be Banach spaces and let B(X) and B(Y') be the o-algebras
of Borel subsets respectively of X and Y. A map from A : X — Y is said
measurable if h~1(B) € B(X) for all B € B(Y).

Given now another (than K) separable Hilbert space U, with inner prod-
uct (-,-)y, we denote by IL2(K;U) the space of Hilbert-Schmidt operators
from K into U provided with the Hilbert norm associated to the scalar
product defined, for all A and B in IL.?(K;U) by

o

(A, B)LQ(K;U) = Z(Aek, Bek)U
k=1

where {ex}7; is a Hilbert basis of K.

3.4 L" and M3 spaces, used in (11)

Let again X and Y be Banach spaces. Given a o-algebra G C F, we denote
by £%(Q,G, P;Y) the vector space of all the mappings h :  — Y that are
G-measurables, i.e., such that h=1(B) € G for all B € B(Y). We denote
by L%(Q,G,P;Y) the vector space of equivalence classes of mappings in
£0(9,G, P;Y), differing only on a P-null set. For a given r € [1,00), we
denote

L"(Q,G,P;Y) = {h e L°(Q,G, P;Y) : E(|hl[}) < oo} (18)
where E stands for the expectation. Analogously, we denote
L¥(Q.G,P;Y) = {h € L%2,G. P;Y) : |[hlly € L®(2,G, P)}.

In particular, as usual, given an open subset O of R", we denote L"(O;Y) =
L"(0,B(0),dz;Y), where dz is the Lebesgue measure, L"(O) = L"(O;R)
and L"(0,7;Y) = L"((0,T);Y).

Now, let us recall that an F;-progressively measurable stochastic pro-
cess with values in X is any stochastic process z : © x [0,7] — X such



that, for all t € [0,T], the restriction of z to Q x [0,¢] is F; x B([0,¢])-
measurable. More generally, given z € LY(Q, F, P; L'(0,T; X)), we say that
z is Fs-progressively measurable if there exists an F;-progressively measur-
able stochastic process Z with values in X such that 2 = z, dP x dt-a.e. We
denote

Mz (0,T;X) = {z € L*(Q x (0,T),dP x dt; X) : z is Fy-progr. meas.}.

If X is a Hilbert space, then the space M 72-} (0,7;X) is a Hilbert subspace
of L2(Q x (0,T),dP x dt; X).

3.5 Vector-valued distributions, used in (12)

We now define distribution spaces because W~=1°°(0, T; L?(D)), used in (12),
will next be defined as a subspace of such a space.

Let again O be an open subset of IR™, and let ) be a complete lcstvs,
that is a locally convex separated topological vector space (the case where it
is not a Banach space is used in (23)). The space of Y-valued distributions
on O is defined by

D/(0;Y) = L(D(O); V)

where £, stands for linear continuous (here, it is equivalent to sequentially

continuous) and D(Q) is the space of indefinitely differentiable functions

with a compact support included in Q. As usually, we denote D'(Q) =

D'(O;R), D'(0,T;Y) = D'((0,T);Y) and D(0,T) = D((0,T)). Given f €

D'(0;Y) and ¢ € D(0), we frequently denote (f, ©)p/(0)xp0) = f(¥)-
Given f € C(O;)) we identify it to the distribution f defined by

(f,0)p(0)xD(0) = /o ofdr, Yo e D). (19)

This provides a topological imbedding C(O;Y) C D'(O;Y). The complete-
ness (it could be relaxed in sequential completeness) of ) is assumed in order
to get this imbedding which is essential (else, the space L.(D(O); DY) is still
defined but it no longer ”contains“ continuous functions, and therefore it
must not be denoted D’ and its elements must not be named “distribu-
tions”).

3.6 Sobolev spaces, used in (7) and (12)

Let again O be an open subset of R™, Y be a Banach space, and r € 1, 00].
Given f € L"(O;Y) we identify it to the distribution f again defined by (19).



This provides a topological imbedding L"(O;Y) C D'(0;Y) and allows to
define the derivatives of f to be 0;f, where 0; stands for 0/0z;.
Now, we can define

Wh(0;Y) ={f e L'(O;Y) : if € L"(0;Y), 1 <i < n},

W (0;Y) = {f eD(O;Y): f = fotY 0ifi, i e L"(O;Y), 0<i < n}
i=1
These spaces are respectively endowed with the norms

n 1/r
£ w0 = ((1Fl-00) + S0 o))

=1

n 1/r

[flw-1r0;yy = inf (Z(Hfi”LT(O;Y))T> ;

i=0
where the infimum is taken for all the decompositions of f. As usual, H!
stands for W2, H=! for W12 and H*(O) for H*(O;R).

The spaces W (O;Y) and W~17(O;Y) are Banach spaces; they are
separables if Y is separable and 7 < co. The spaces H'(O;Y) and H~1(0;Y)
are Hilbert spaces if Y is a Hilbert space.

Let H}(O) be the closure of D(O) in H'(O). Then, their dual spaces
satisfy (HE(O)) C (D(O)) with continuous imbedding. In fact, see for
example [8] Theorem 5.1 p. 19,

(Ho(0)) = H 1(0). (20)
Moreover, the duality pairing satisfies, for all f € H=*(D) and ¢ € H(O),
(fs0)a-1(Dyxmp(p) = (f> @)/ (D)xD(D)- (21)

This duality property is frequently used to define H~'. More generally, if
1 <r <ooandY is reflexive, then W=17(0;Y) = (Wol’rl((’); Y’)), where Y’
stands the dual space of Y and 1/r’ + 1/r = 1; it is not convenient to use
this equality as a general definition for W 1" because it does not provide
the right space if r =1 or Y is not reflexive.

3.7 Linear image of a distribution, used in (16)

Let Y and X be two complete lestvs and let A € L.(Y;X). Given f €
D'(0;)), its image Af € D'(O; X) is defined by

(Af) () = A(f(9)), Ve € D(O). (22)



In the case of Banach spaces, A maps continuously L"(0;Y), W17(O;))
and W17 (0; Y) respectively into L"(O; X), WL (O; X) and W17 (0; X).

Now let us examine (16). It reads [, p(w) dz = 0 for P-almost all w € Q.
It is meaningful since, p(w) lying in W=1°°(0,T; L?(D)) by (12), its image
by the map [, € L.(L*(D);R) is defined by (22) and satisfies

/M@MeWAm&ﬂR)
D

3.8 Separation of variables, used in (11) and (12)

The separation of variable for functions, which maps C((0,7') x D;)) onto
C(0,T;C(D;Y)), extends by continuity in a one-to-one bicontinuous map
from D'((0,7T) x D; Y) onto D'(0,T; D'(D;))) (the surjectivity, which is the
hard point, is related to Schwartz’s kernel theorem, see [9] for real values).
Using this map to identify the spaces, we get the topological equality

D'((0,T) x D;Y) =D'(0,T;D'(D;))) (23)

This identity allows us to consider u(w) and p(w) either as distributions
on (0,7) x D, as in (14) and (15), or as distributions on (0,7) with values
in a space of distributions on D, as in (11) and (12).

3.9 Nonlinear term (u - V)u, used in (14)

We denote V = (01, . . ., ;) the spatial gradient. Then, given u = (uq, ..., uq),
its divergence, used in (15), is V- u = 01ug + - - - + Jqug.

Similarly, v -V = u109; + - - - + ug0g. Then, given v and v in (H'(D)),
we define (u - V)v to be the vector function which components are the
2?11 ujojv;, for i = 1, ..., d. Since d < 4 and D is Lipschitz, by Sobolev
theorem, H!'(D) C L*(D) with continuous injection. Then, by Hélder in-
equality, the map (u,v) — (u- V)v is bilinear continuous from ((H'(D))%)?
into (L*3(D))%, and therefore from (L2(0,T;V))? into L' (0, T; (L*/3(D))%).

3.10 Time-derivative GW,, used in (14)

Let U be a separable Hilbert space. Given G € M%t(O,T; L2(K;U)), its
Itd’s stochastic integral with respect to the cylindrical Wiener process W,
denoted {fj GsdWs : 0 < t < T} is defined to be the unique continuous
U-valued Fi-martingale such that, for all g € U and t € [0, T7,

(/Ot Gs dWS’g)U = i/ﬂt(Gsek,g)U dgt, (24)
=1
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where each stochastic integral in the series is understood as an It6’s stochas-
tic integral with respect to the corresponding real valued Wiener process.
The series in (24) converges in L2(Q, F;, P;C([0,1])), for each t € (0,71,
see [7] for details. Since [;GsdWs € L?(Q,Fy, P;C([0,t];U)), its time-
derivative, that formally we will denote GW;, satisfies

GW, € L3(Q, F;, P;W=1°°(0,t;U)), Vte (0,17,

because 0 is linear continuous from C, and therefore from L>, into W1,
This applies here with U = (L?(D))?, because, thanks to (7), (8), (9)
and (11), G(-,u) € M%, (0, T; L2(K; (L*(D))%)). Then,

G(-,u)W; € L2(Q, Fy, P, W=5(0,t; (L2(D))?)), Vte (0,T].  (25)

4 A generalization of de Rham theorem to pro-
cesses.

We will associate a pressure p to a solution u of the variational Navier—Stokes
equation by the following result.

Theorem 4.1 Let D satisfy (4), (2,G, P) be a complete probability space
and, given rg € [1,00], r1 € [1,00] and sy € Z, let

he L™(Q,G, P;W* (0, T; (H (D)%) (26)
be such that, for allv € (D(D))? such that V -v =0, P-a.s.,

(hyv) (D (Dy)ax(p(pye = 0, in D'(0,T). (27)

Then, there exists a unique

peL™(Q,G, P; W (0,T; L*(D))) (28)

such that, P-a.s.,
Vp=h, in(D'((0,T)x D))<, (29)
/D pdz =0, inD(0,T). (30)

Moreover, there exists a positive number ca(D), independent of h, such
that, P-a.s.,

[pllws1r10.1;02(D)) < €2(D) |Bllws1m1 (0,11 (DY)2)- (31)
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Proof. Let
E = {w S (Hil(D))d : <wav>(D’(D))d><(D(D))d = 0, Yu € V}

be equipped with the norm of (H~!(D))¢. Given w € FE, there exists a
unique ¢ € L?(D) such that Vg = w and [, ¢dz = 0 and there exists a
positive number c3(D), independent of w, such that

lgll2(py < c2(D) [wll(g-1(py)a- (32)

Indeed, by de Rham theorem, see for example [10], there exists ¢; € L?(D)
such that V¢ = w. Moreover, see for example Theorem 14 in [11], thanks
to hypothesis (4) on D, Vg € (H~'(D))? implies that ¢; € L?*(D) and
llg1 — ﬁ Ip aillz2py < c2(D) |wll(gr-1(pyya- Then, ¢ = g1 — ﬁ Jp a1 satisfies
(32). Its uniqueness is obvious since D is connected.

Then, we define a continuous linear map A from E into L?(D) by Aw =
q. It satisfies, for all w € F,

VAw = w, / Awdx = 0. (33)
D

Now, let us give two properties that hold for P-almost all w € ). First,
(27) gives, by definition (22), for all ¢ € D(0,T),

((R(w))(©); V) (D (Dy)yax DDyt = 0,

that is, (h(w))(¢) € E. Second, by (26), h(w) € Wt (0,T; (H~1(D))%).
Since E is closed in (H~!(D))%, these two properties give, by the first prop-
erty of the following Lemma 4.2, for P-almost all w € 2,

h(w) € W3 (0, T; E). (34)

Since W*1m(0,T; F) is closed in W*v(0,T; (H~1(D))%), (26) and (34)
give, now by the second property of Lemma 4.2,

heL™(Q,G P;W"(0,T; E)).

Then, thanks to (32) and (33), its image p = Ah satisfies (28) to (31), see
Section 3.7. O

To complete the proof, it remains to check the following properties.
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Lemma 4.2 Given a closed subspace F of a Banach space Y, r € [1,00]
and s € 7,

L"(Q,G,P;F)={he L"(Q,G,P;Y) : h(w) € F, P-a.s.weQ}, (35)

W0, T, F) = {h € W (0, T;Y) : h(p) € F, for all ¢ € D(0,T)}. (36)

Proof. In view of definition (18), (35) follows from the fact that, if h(w) € F,
then it belongs to Y and ||h(w)|ly = ||h(w)||F and from the identity

LY9Q,G,P;F)={h:Q—Y, he£'Q,G,P;Y)}.

This identity is a consequence of the two following properties:
— First, if h is measurable into Y, it is measurable into F since B(F') C B(Y')
(this imbedding holds because the o-algebra B is generated by closed sets,
and every closed set of F is closed in Y).
— Second, if h is measurable into F', it is measurable into Y since, given
B € B(Y), then h}(B) = h~Y(BNF) and BNF € B(F) (this holds because,
if B is closed in Y, then BN F is closed in F).

Let us now prove (36) in three steps.
— First,

D(0,T;F) ={h € D'(0,T;Y) : h(¢) € F, Yo € D(0,T)}. (37

This is obvious since D'(0,T;Y) = L(D(0,T);Y).
— Second,
L"(0,T; F) = L"(0,T;Y) N D'(0, T; F). (38)

Indeed, given mollifiers (p,)nenN and a localizing sequence (ap)new (that is
ap € C®, ap, = 0 outside (1/n,T — 1/n), a, = 1 in [2/n,T — 2/n]), let
hn = (anh)* pn. Then, hy, € D(0,T; F'), and therefore ||hn — hi| 1r0.1;7) =
lhn = hmllzro1v), and hy, — hin L7(0,7;Y). Therefore (hn)nen is a
Cauchy sequence in L"(0,T'; F') which is complete, and then h € L"(0,T; F).
The converse being obvious, (38) holds.

In fact, this proof does not hold if » = oco; in this case, it suffices to
remark that L>(0,7;Y) = {f € L*(0,T;Y) : || flly € L*>(0,T)}.
— Third,

W (0,T; F) = W (0,T;Y) N D/(0,T; F). (39)

For s = 0, it is (38).
For s > 0, it follows from (38) since W*" = {h: 0fh € L", n < s}.
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For s = —1, let h € W=L7(0,7;Y) N D'(0,T; F). By definition, h =
ho 4+ O;h1 where h; € L"(0,T;Y), and then h = d,g where g = hy + [y ho €
L(0,T;Y). Let £ € D(0,T) be such that f] & =1, and let k = g — [ g€.
Obviously, k € L"(0,7;Y). Assume for a moment that

keD(0,T;F). (40)

Then, k£ € L"(0,T; F) by (38) and, since d;k = Og = h, it follows that
k€ W=bLT(0,T;Y). The converse being obvious, (39) holds for s = —1.
Now, let us check (40). Given ¢ € D(0,7),

(k,o)pixp = /OT (g(t)—/()Tg(8)§(8)d8)<p(t)dt
= [T (w0 - €0 [ o) ds)

OT
= | oo d

where ¢ = [5(p — ff(;f ¢). But 9 lies in D(0,T) since it is differentiable,
it cancels at 0 and T, and it is constant on a neighbourhood of these two
points. Then,

(k, @)prxp = (9, 000)prxp = —(0cg, V) p'xp = —(h, ¥)prxD
which lies in F since h € D'(0,T; F'). With (37), this proves (40).
Finally, a similar proof may be given for s < —2. It is left to the reader
since this case is not used in the present work. 0O

Remark 4.3 In view of the proof of Theorem 4.1, (H~Y(D))¢ may be re-
placed by any Sobolev space (W*272(D))? or by (D'(D))¢ in (26), provided
that L*(D) be replaced by W*2t1m2(D) or by D'(D) in (28) and that [;, be
replaced by any linear form on this space in (30).

Moreover, Theorem 4.1 extends to any open subset D of R%, instead of
assumptions (4), provided that L*(D) be replaced by L% (D) in (28) and
that (30) be replaced, for any connected component D; of D, by fdi pdx =0,
where d; is a non-empty open bounded set in R¢ such that d; C D;.

Finally, Theorem 4.1 extends to all s1 € IR by interpolation.

5 Proof of Theorem 2.2.

Let us remind, see for example [6], that there exists a process u satisfying
(11) and (17) — and therefore

u € L3(Q, F, P;L2(0,t; V)N L™®(0,t; H)), Vt € (0,T), (41)
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— (13) and, P-a.s., the variational equation (2) for all ¢t € [0, 7] and v € V.
Differentiating (2) with respect to t (w € Q being fixed), we get, in D'(0,T),

—/ &gu'vdm—v/ Vu-Vvdx—/((u‘V)u)-vdx
D D D
+ <F('7u)?U>(H*1(D))’1)><(H5(D))d) +~/DG(.7U)Wt -vdx = 0.

Since v € (D(D))?, thanks to (19), (21) and (Vu, Vo) = —(Au,v), this
reads

(=0 + vAu — (u-V)u+ F(-,u) + G(-, u) Wi, V) (p/(D))ex (D(Dy)d = 0. (42)

Let us denote h = —du + vAu — (u-V)u + F(-,u) + G(-,u)W;. As we will
check next, (41) implies

he LYQ, F, PyWw—b2(0,t; (H-Y(D)Y), vte (0,T), (43)

therefore Theorem 4.1 provides p satisfying (12), (16) and Vp = h, that is
the Navier—Stokes equation (14).
By (41), P-as., u € L%*(0,T;V). Since V-v = 0 for all v € V and
therefore, by continuity, for all v € V| this implies V - 4 = 0, that is (15).
It only remains to check (43). Denoting £ the space in its right-hand
side, let us check that all the terms of h belong to it.
— First, 0y is linear continuous from L°°(0,7T; H) into W~1°°(0,T; H) and
then into W~1°(0,T; (H~1(D))?), and therefore (41) implies d;u € .
— Next, A being linear continuous from (H'(D))?, and then from V, into
(H=Y(D))4, (41) implies vAu € L?(Q, Fr, P; L?(0,T; (H~'(D))%)) which is
included in € due to the topological imbedding

LY0,T;Y) c W 1(0,T;Y). (44)

To get this imbedding it suffices to notice that every f € L'(0,T;Y) satis-
fies f = 9y fy f and [y f € L>(0,T;Y), and therefore f € W~1°(0,T;Y)
thanks to its definition in Section 3.6.

— As seen in Section 3.9, the map v — (v - V)v is bilinear continuous from
V x V into (L*?3(D))¢, and then into (H~(D))¢ by Sobolev theorem since
d < 4. Therefore, (41) implies (u - V)u € LY(Q, Fr, P; L' (0, T; (H~1(D))%))
which is included in £ by (44).

— Next, F(-,u) € € thanks to (7), (8), (9) and (11).

— Finally, G(-,u)W; € £ by (25). This ends the proof of (43).
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Remark 5.1 This proof shows that there exists a positive number c3(D,T)
such that any pair (u,p) satisfying (11) to (14) satisfies, in addition, P-a.s.,

[pllw 100 0,1:22(D)) < 03(DvT)(HUHLOO(O,T;(L?(D))d)
+ (v + en)llull 2o,y (o) + (Il 2oz oyyn)?)
<c3(D,T) (HUHLOO(O,T;(LQ(D))‘Z) +(1+ ¥+ Cl)HUHLQ(O,T;(Hl(D))d))Q)-
It follows that
1PNl 1,7, P; w10 0,122 (DY) < €3(D,T) (Hu”Ll(Q,]-',P;LOC(QT;(L?(D))d))
+(1+ @+ Cl)”UHL?(Q,f,P;LQ(o,T;(Hl(D))d)))2>-
6 Nonexistence result for a body force valued in
V.

From now, the assumptions on the body force F' in (7), (8) and (9) are
replaced by

F is measurable from [0, 7] x (L?(D))? into V',
v (F(t,v), )y« is continuous from (L2(D))¢ into R, (45)
[EE0)lve < et + ol z2(pyye)-

Then, with all others assumptions (4) to (10), the proof of the existence of
a variational solution given in [6] provides a solution u of (3) instead of (2).
It again satisfies (41) and then f = F(-,u) satisfies

feL*Q,F P;L*0,T;V"). (46)

Let g = —0u + vAu — (u- V)u + G(-,u)W;. Proceeding as in the proof of
Theorem 2.2, we get

g € LNQ,F, P;Wh(0,T; (H'(D))")) (47)
and, instead of (42),
(9,0) >/ (D))ex(D(Dy)e T (fsv)vixy =0, Vo e V. (48)

The existence of a corresponding pressure is ruled out by the following result.
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Theorem 6.1 There is no Hausdorff locally convex topological vector space
in which, for arbitrary f and g satisfying (46), (47) and (48), the equation

g+ f=Vp (49)
might hold.
Remark 6.2 With the above definitions of f and g, (49) reads
o+ vAu — (u-V)u+ G(-, u)Wt + F(-,u) = Vp,

that is Navier—Stokes equation (1). Since it cannot hold, (3) should not be
named “variational Navier—Stokes equation”; this name should be reserved
to (2), the equivalence with (1) being lost as (H~*(D))? is replaced by V.

Remark 6.3 Equation (48) equivalently reads, thanks to (21),

(9, V) (r-1(Dyyax (mr oy + (s v)vrxy = 0.

Remark 6.4 The reader may be surprised since, in contradiction with The-
orem 6.1, various papers contain proofs of the existence of pressure for V'-
valued body forces. These proofs are wrong, the mistake generally lying in
the use of a de Rham type theorem to equation (48), as if it was

{9+ £, 0)(Dy)ix (D))t =0

or (g + J,v) (-1 (pyax (i) = 0-

The confusion follows from the use, in these proofs, of the same nota-
tion (-,-) for the duality products in (D'(D))* x (D(D))%, in (H~Y(D))¢ x
(HY (D) and in V' x V.

Proof of Theorem 6.1. Would such a space, say X, exist, it should contain
L*(Q,F, P; L2(0,T; V")) and L' (Q, F, P; W=1°°(0, T; (H~1(D))?)), at least
in the sense that there should be two linear injective maps ¢ and j from
these spaces into X. Then a linear injective map 7 from V' into X would be
defined by iy = i where ($(w))(t) = ¢ for all w and ¢. Similarly, we would
define a linear injective map j from (H~(D))% into X.

Since each ¢ € (H~1(D))? defines a unique Qv € V' by

(QU, v)vrixv = (0, 0)(g-1(Dy)yixm(pyyds Y0 EV, (50)
then ¢ and Qv should correspond to the same element of X, that is
¥ =iQy.
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Consider now ¢ = Vg, for a given non constant ¢ € L?(D). Then, ¢ €
(HTH(D)% ¢ # 0, and Q¢ = 0 since ($,0)g-1(pyyix(mi) =

—(q,V - U>(D/( D))dx(D(D)) = = 0 for all v € V and thus by continuity, for
all v € V. Then, qub =0 and therefore jqb = 0 would hold, in contradiction
with the injectivity of j j. O

The map @ defined by (50) is “canonical” since Qv is the restriction to
V of the map ¢ € L.((HS(D))% R). Let us summarize its properties.

Lemma 6.5 The map Q is linear continuous from (H~'(D))% onto V' and
15 not one to one.

Proof. Continuity holds since, by (50) and (20), [|Q|lv: < [¥l[((z1(pyyay <
1%l (-1 (py)e (thanks to the definition of H~1!, this holds for ¢ = 1).

The range of Q is V'’ since by Hann—Banach theorem, any ¢ € V' pos-
sesses an extension ¢ € ((HY(D))?), and then Qv = ¢.

It is not one to one since, in the proof of Theorem 6.1, we built ¢ # 0
such that Q¢ = 0. O

Let us now give strong equations that, instead of Navier—Stokes one, are
satisfied by solutions of (3). First, in V/, we have, P-a.s.,

Q(Ou — vAu+ (u - Vu) = F(-,u) + Q(G(-, u)Wy) (51)

in D'(0,T;V’). This is not totally satisfactory since pressure disappeared.

The other possibility is to give an equation in (H~1(D))4. There exist in-
finitely many ® € L'(Q, F, P; L'(0,T; (H~1(D))%)) such that Q® = F(-,u)
(for example, a solution is ® = AS(F(-,u)) where Sf is, for a given f € V/,
the solution of [, VSf-Vuv = (f,v)yr« <V for all v € V). For such a @, there
exists p € LY(Q, F, P;W=5%°(0,T; (H~(D))%)) such that, P-a.s.,

o — vAu~+ (u-V)u+ Vp = & + Q(G(-, u)Wy) (52)

in D'(0,T; (H~1(D))%). This again is not satisfactory, now since ® and p are
not unique (even if p is normalized by [, p = 0); worst, all p in the above
space can be associated to a given u. Indeed, given a pair (®g, pg) satisfying
(52), the pair (®o+V(p—po), p) is another solution since Q(Po+V (p—po)) =
QPy = F(-,u) because, as seen in the proof of Theorem 6.1, QVq = 0 for
all q.
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Remark 6.6 The set spanned by u is the same, wether forces span V' or
(H=Y(D))?, since Q defined by (50) maps (H~1(D))¢ onto V'. (Surjectivity
follows from V C (H}(D))? since their topologies coincide on V; a strict
imbedding V' € W' holds when W is a dense subset of V' equipped with a
strictly finer topology, that is not the case here).

The only effect of choosing forces in V' instead of (H~1(D))? is to sup-
press information on pression, since Q™' may be viewed as a one to one map
from V' onto (H=Y(D))?/VL?(D). Indeed, given f € V' and go € Q7' f,

Q' f={g e (H D))" : (g~ 90,v)(5r-1(p)yix (113 Dy for all v e V}
={90+Vq:qe L*(D)}.

This explains why Navier—Stokes equation, which contains information on
pressure, cannot contain terms lying in V'.
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