Existence and regularity of the pressure for the stochastic Navier-Stokes equations

J.A. Langa ${ }^{\dagger *}$, J. REAL ${ }^{\dagger}$ and J. Simon ${ }^{\ddagger}$

April 25, 2003

Abstract

We prove, on one hand, that for a convenient body force with values in the distribution space $\left(H^{-1}(D)\right)^{d}$, where D is the geometric domain of the fluid, there exist a velocity u and a pressure p solution of the stochastic Navier-Stokes equation in dimension 2, 3 or 4 .

On the other hand, we prove that, for a body force with values in the dual space V^{\prime} of the divergence free subspace V of $\left(H_{0}^{1}(D)\right)^{d}$, in general it is not possible to solve the stochastic Navier-Stokes equations. More precisely, although such body forces have been considered, there is no topological space in which Navier-Stokes equations could be meaningful for them.

AMS Subject Classification (2000): 60H15, 60H30, 35R15, 35Q30

1 Introduction

Let D be a connected and bounded open subset of \mathbb{R}^{d}, where $d=2,3$ or 4 , with a regular enough boundary ∂D. Let us fix a final time $T>0$, and consider the following system of stochastic Navier-Stokes equations with homogeneous Dirichlet boundary condition:

[^0]\[

\left\{$$
\begin{array}{l}
\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u+\nabla p=F(\cdot, u)+G(\cdot, u) \dot{W}_{t}, \text { in } D \times(0, T) \tag{1}\\
\nabla \cdot u=0, \text { in } D \times(0, T) \\
u=0, \text { on } \partial D \times(0, T)
\end{array}
$$\right.
\]

where $u=\left(u_{1}, \ldots, u_{d}\right)$ and p are unknown random fields on $D \times[0, T]$, representing respectively the velocity and the pressure of an incompressible fluid filling the domain D, in each point of $D \times[0, T]$ (in fact, p is the sum of the pressure and of some potential q corresponding to the part of forces of the form ∇q). Here, the body force F is a given measurable sublinear mapping from $[0, T] \times\left(L^{2}(D)\right)^{d}$ into $\left(H^{-1}(D)\right)^{d}, W$ is a cylindrical K-valued Wiener process on a complete probability space (Ω, \mathcal{F}, P), where K is a fixed separable Hilbert space, G is a given measurable sublinear mapping from $[0, T] \times\left(L^{2}(D)\right)^{d}$ into $\mathbb{L}^{2}\left(K ;\left(L^{2}(D)\right)^{d}\right)$ and $\nu>0$ is the kinematic viscosity of the fluid, which is constant.

Existence result. As we will see in Theorem 2.2, for such data, there exist a solution (u, p) to (1). Similar results were obtained in [1], [3], [4], [5] and [6] among others. Our contribution here is that we obtain the pressure p without any regularity assumption on u, contrarily to [5] or [6] in which its values are assumed to be in $\left(H^{2}(D)\right)^{d}$, and that we get equation (1) in the distribution sense, contrarily to the case where the body force is valued in V^{\prime} in which case no satisfactory sense can be given, see Theorem 6.1.

As in most quoted papers, we obtain the solution in two steps. First, we consider a velocity u satisfying P-a.s. the following so called "variational N-S equation" (in which the pressure is eliminated): for all $t \in[0, T]$ and for all $v \in(\mathcal{D}(D))^{d}$ such that $\nabla \cdot v=0$,

$$
\begin{array}{r}
\int_{D} u(t) \cdot v d x=\int_{D} u(0) \cdot v d x-\nu \int_{0}^{t} \int_{D} \nabla u(s) \cdot \nabla v d x d s \\
-\int_{0}^{t} \int_{D}(u(s) \cdot \nabla u(s)) \cdot v d x d s+\int_{0}^{t}\langle F(s, u(s)), v\rangle_{H^{-1}(D) \times H_{0}^{1}(D)} d s \tag{2}\\
+\int_{D} \int_{0}^{t} G(s, u(s)) d W_{s} \cdot v d x
\end{array}
$$

The existence of such a u is proved in [6]; the first result in this direction was given in [2] in the case of $K=\mathbb{R}$ and G constant; it was extended to a multiplicative noise and to an infinite-dimensional K in [1], [3], [4], [5] and [6] among others.

In the second step, we associate a pressure p to such a u by using a generalization of de Rham theorem to processes, see Theorem 4.1.

Non-existence result. Various authors considered a body force F with values in the dual V^{\prime} of the space $V=\left\{v \in\left(H_{0}^{1}(D)\right)^{d}: \nabla \cdot v=0\right\}$ instead of $\left(H^{-1}(D)\right)^{d}$ as above. Then they solve, again for all $v \in(\mathcal{D}(D))^{d}$ such that $\nabla \cdot v=0$ (or equivalently for all $v \in V$),

$$
\begin{array}{r}
\int_{D} u(t) \cdot v d x=\int_{D} u(0) \cdot v d x-\nu \int_{0}^{t} \int_{D} \nabla u(s) \cdot \nabla v d x d s \\
-\int_{0}^{t} \int_{D}(u(s) \cdot \nabla u(s)) \cdot v d x d s+\int_{0}^{t}\langle F(s, u(s)), v\rangle_{V^{\prime} \times V} d s \tag{3}\\
+\int_{D} \int_{0}^{t} G(s, u(s)) d W_{s} \cdot v d x
\end{array}
$$

that is (2) in which the duality $H^{-1} \times H_{0}^{1}$ is replaced by the duality $V^{\prime} \times V$.
Unfortunately, as we will see in Theorem 6.1, it cannot exist any p corresponding to such u, or more exactly to such F, such that the first equation in (1) be satisfied. Indeed, F being valued in V^{\prime} while other terms are valued in $\left(H^{-1}(\Omega)\right)^{d}$, it would be necessary to imbed these two spaces in a same Hausdorff space, which is impossible.

Similar existence and non-existence results for the deterministic NavierStokes equations may be found in [12].

2 Existence of a solution (u, p) of the stochastic Navier-Stokes equations.

In all the sequel, let
D be a bounded, connected and Lipschitz open subset of \mathbb{R}^{d},

$$
\begin{equation*}
d \in\{2,3,4\} \tag{4}
\end{equation*}
$$

K be a separable Hilbert space.
Let F and G be two mappings such that

$$
\left\{\begin{array}{l}
F \text { is measurable from }[0, T] \times\left(L^{2}(D)\right)^{d} \text { into }\left(H^{-1}(D)\right)^{d}, \tag{7}\\
G \text { is measurable from }[0, T] \times\left(L^{2}(D)\right)^{d} \text { into } \mathbb{L}^{2}\left(K ;\left(L^{2}(D)\right)^{d}\right),
\end{array}\right.
$$

and, for all $t \in[0, T], w \in(\mathcal{D}(D))^{d}$ and $e \in K$,

$$
\left\{\begin{array}{l}
v \mapsto\langle F(t, v), w\rangle_{\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}} \text { and } v \mapsto \int_{D} G(t, v) e \cdot w d x \tag{8}\\
\text { are continuous from }\left(L^{2}(D)\right)^{d} \text { into } \mathbb{R},
\end{array}\right.
$$

and such that there exists a positive number c_{1} such that, for all $t \in[0, T]$ and $v \in\left(L^{2}(D)\right)^{d}$,

$$
\left\{\begin{array}{l}
\|F(t, v)\|_{\left(H^{-1}(D)\right)^{d}} \leq c_{1}\left(1+\|v\|_{\left(L^{2}(D)\right)^{d}}\right), \tag{9}\\
\|G(t, v)\|_{\mathbf{L}^{2}\left(K ;\left(L^{2}(D)\right)^{d}\right)} \leq c_{1}\left(1+\|v\|_{\left(L^{2}(D)\right)^{d}}\right) .
\end{array}\right.
$$

Let us denote by H the closure of the set

$$
\mathcal{V}=\left\{v \in(\mathcal{D}(D))^{d}: \nabla \cdot v=0 \text { in } D\right\}
$$

in $\left(L^{2}(D)\right)^{d}$, and by V the closure of \mathcal{V} in $\left(H^{1}(D)\right)^{d}$. Then, H is a Hilbert space equipped with the inner product of $\left(L^{2}(D)\right)^{d}$, and V is a Hilbert space equipped with the inner product of $\left(H^{1}(D)\right)^{d}$. Finally, let

$$
\left\{\begin{array}{c}
\mu \text { be a probability measure on } H \text { such that, for all } r \in[1, \infty), \tag{10}\\
\int_{H}\|v\|_{H}^{r} d \mu(v)<\infty
\end{array}\right.
$$

Definition 2.1 A martingale solution to (1) starting from μ is a set $\left\{(\Omega, \mathcal{F}, P),\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}, W, u, p\right\}$, such that:

$$
\begin{gather*}
(\Omega, \mathcal{F}, P) \text { is a probability space, } \\
\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]} \text { is a normal filtration on }(\Omega, \mathcal{F}, P), \\
W \text { is a cylindrical } K \text {-valued } \mathcal{F}_{t} \text {-Wiener process, } \\
u \in M_{\mathcal{F}_{t}}^{2}(0, T ; V) \cap L^{r}\left(\Omega, \mathcal{F}, P ; L^{\infty}(0, T ; H)\right), \quad \forall r \in[1, \infty), \tag{11}\\
p \in L^{1}\left(\Omega, \mathcal{F}_{t}, P ; W^{-1, \infty}\left(0, t ; L^{2}(D)\right)\right), \quad \forall t \in(0, T], \tag{12}\\
P\{u(0) \in B\}=\mu(B), \quad \forall B \in \mathcal{B}(H), \tag{13}
\end{gather*}
$$

and such that, P-a.s.:

$$
\begin{gather*}
\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u+\nabla p=F(\cdot, u)+G(\cdot, u) \dot{W}_{t}, \quad \text { in }\left(\mathcal{D}^{\prime}\left(D_{T}\right)\right)^{d}, \tag{14}\\
\nabla \cdot u=0, \quad \text { in } \mathcal{D}^{\prime}\left(D_{T}\right), \tag{15}\\
\int_{D} p d x=0, \quad \text { in } \mathcal{D}^{\prime}(0, T), \tag{16}\\
u \in \mathcal{C}\left([0, T] ; H \text {-weak } \cap\left(H^{-1}(D)\right)^{d}\right), \tag{17}
\end{gather*}
$$

where $D_{T}=(0, T) \times D$.
We are now in position to state the existence result of a solution (u, p) to the stochastic Navier-Stokes equations (1):

Theorem 2.2 Assuming (4) to (10), there exists a martingale solution to (1) starting from μ.

Remark 2.3 In view of Theorem 4.1, to any such velocity u, it corresponds a unique pressure p.

Many papers consider martingale solutions of the variational equation (2) in which p is eliminated, see for example [6]. Again in view of Theorem 4.1, assuming (4) to (10), it is equivalent to the existence of a martingale solution to (1).

3 Some definitions.

In this section, we recall the definitions of some above used properties.

3.1 Lipschitz domain, used in (4)

A non empty open subset D of \mathbb{R}^{d} is said Lipschitz if it is locally the epigraph of a Lipschitz function. Or, more precisely, if there exist two positive numbers a and κ such that, for each point $\xi \in \partial D$, there exists a system of cartesian coordinates $\left(x_{1}, \ldots, x_{d}\right)$ with origin at ξ and a real function ψ defined on $O^{\prime}=\left\{x^{\prime} \in \mathbb{R}^{d-1}:\left|x^{\prime}\right|<a\right\}$, where $x^{\prime}=\left(x_{1}, \ldots, x_{d-1}\right)$, such that, for all x^{\prime} and y^{\prime} in O^{\prime},

$$
\left|\psi\left(x^{\prime}\right)-\psi\left(y^{\prime}\right)\right| \leq \kappa\left|x^{\prime}-y^{\prime}\right|,
$$

and, for all $x \in O=\left\{x=\left(x^{\prime}, x_{d}\right) \in \mathbb{R}^{d}:\left|x^{\prime}\right|<a,\left|x_{d}\right|<a\right\}$,

$$
\begin{aligned}
x \in D & \Longleftrightarrow x_{d}<\psi\left(x^{\prime}\right) \\
x \in \partial D & \Longleftrightarrow x_{d}=\psi\left(x^{\prime}\right) .
\end{aligned}
$$

3.2 Normal filtration and Wiener process, used in Def. (2.1)

A normal filtration on a propability space (Ω, \mathcal{F}, P) is an increasing and right continuous family $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$ of sub σ-algebras of \mathcal{F}, such that \mathcal{F}_{0} contains all the P null sets of \mathcal{F}.

Given a separable Hilbert space K, a cylindrical K-valued \mathcal{F}_{t}-Wiener process is any "process" W formally defined as

$$
W_{t}=\sum_{i=1}^{\infty} \beta_{t}^{i} e_{i}
$$

where ($\beta_{t}^{i}: t \geq 0, i=1,2, \ldots$) are mutually independent standard real \mathcal{F}_{t}-Wiener processes defined on (Ω, \mathcal{F}, P), and $\left\{e_{i}: i=1,2, \ldots\right\}$ is an orthonormal basis of K. It is well known that the series defining W does not converge in K, but rather in any Hilbert space \tilde{K} such that $K \subset \tilde{K}$ and the injection of K in \tilde{K} is Hilbert-Schmidt (see e.g. [7]).

3.3 Mesurability and \mathbb{L}^{2} space, used in (7)

Let X and Y be Banach spaces and let $\mathcal{B}(X)$ and $\mathcal{B}(Y)$ be the σ-algebras of Borel subsets respectively of X and Y. A map from $h: X \rightarrow Y$ is said measurable if $h^{-1}(B) \in \mathcal{B}(X)$ for all $B \in \mathcal{B}(Y)$.

Given now another (than K) separable Hilbert space U, with inner product $(\cdot, \cdot)_{U}$, we denote by $\mathbb{L}^{2}(K ; U)$ the space of Hilbert-Schmidt operators from K into U provided with the Hilbert norm associated to the scalar product defined, for all A and B in $\mathbb{L}^{2}(K ; U)$ by

$$
(A, B)_{\mathbf{L}^{2}(K ; U)}=\sum_{k=1}^{\infty}\left(A e_{k}, B e_{k}\right)_{U}
$$

where $\left\{e_{k}\right\}_{k=1}^{\infty}$ is a Hilbert basis of K.

3.4 L^{r} and $M_{\mathcal{F}_{t}}^{2}$ spaces, used in (11)

Let again X and Y be Banach spaces. Given a σ-algebra $\mathcal{G} \subset \mathcal{F}$, we denote by $\mathcal{L}^{0}(\Omega, \mathcal{G}, P ; Y)$ the vector space of all the mappings $h: \Omega \rightarrow Y$ that are \mathcal{G}-measurables, i.e., such that $h^{-1}(B) \in \mathcal{G}$ for all $B \in \mathcal{B}(Y)$. We denote by $L^{0}(\Omega, \mathcal{G}, P ; Y)$ the vector space of equivalence classes of mappings in $\mathcal{L}^{0}(\Omega, \mathcal{G}, P ; Y)$, differing only on a P-null set. For a given $r \in[1, \infty)$, we denote

$$
\begin{equation*}
L^{r}(\Omega, \mathcal{G}, P ; Y)=\left\{h \in L^{0}(\Omega, \mathcal{G}, P ; Y): E\left(\|h\|_{Y}^{r}\right)<\infty\right\} \tag{18}
\end{equation*}
$$

where E stands for the expectation. Analogously, we denote

$$
L^{\infty}(\Omega, \mathcal{G}, P ; Y)=\left\{h \in L^{0}(\Omega, \mathcal{G}, P ; Y):\|h\|_{Y} \in L^{\infty}(\Omega, \mathcal{G}, P)\right\}
$$

In particular, as usual, given an open subset \mathcal{O} of \mathbb{R}^{n}, we denote $L^{r}(\mathcal{O} ; Y)=$ $L^{r}(\mathcal{O}, \mathcal{B}(\mathcal{O}), d x ; Y)$, where $d x$ is the Lebesgue measure, $L^{r}(\mathcal{O})=L^{r}(\mathcal{O} ; \mathbb{R})$ and $L^{r}(0, T ; Y)=L^{r}((0, T) ; Y)$.

Now, let us recall that an \mathcal{F}_{t}-progressively measurable stochastic process with values in X is any stochastic process $z: \Omega \times[0, T] \rightarrow X$ such
that, for all $t \in[0, T]$, the restriction of z to $\Omega \times[0, t]$ is $\mathcal{F}_{t} \times \mathcal{B}([0, t])-$ measurable. More generally, given $z \in L^{0}\left(\Omega, \mathcal{F}, P ; L^{1}(0, T ; X)\right)$, we say that z is \mathcal{F}_{t}-progressively measurable if there exists an \mathcal{F}_{t}-progressively measurable stochastic process \hat{z} with values in X such that $\hat{z}=z, d P \times d t$-a.e. We denote

$$
M_{\mathcal{F}_{t}}^{2}(0, T ; X)=\left\{z \in L^{2}(\Omega \times(0, T), d P \times d t ; X): z \text { is } \mathcal{F}_{t} \text {-progr. meas. }\right\} .
$$

If X is a Hilbert space, then the space $M_{\mathcal{F}_{t}}^{2}(0, T ; X)$ is a Hilbert subspace of $L^{2}(\Omega \times(0, T), d P \times d t ; X)$.

3.5 Vector-valued distributions, used in (12)

We now define distribution spaces because $W^{-1, \infty}\left(0, T ; L^{2}(D)\right)$, used in (12), will next be defined as a subspace of such a space.

Let again \mathcal{O} be an open subset of \mathbb{R}^{n}, and let \mathcal{Y} be a complete lcstvs, that is a locally convex separated topological vector space (the case where it is not a Banach space is used in (23)). The space of \mathcal{Y}-valued distributions on \mathcal{O} is defined by

$$
\mathcal{D}^{\prime}(\mathcal{O} ; \mathcal{Y})=\mathcal{L}_{c}(\mathcal{D}(\mathcal{O}) ; \mathcal{Y})
$$

where \mathcal{L}_{c} stands for linear continuous (here, it is equivalent to sequentially continuous) and $\mathcal{D}(\mathcal{O})$ is the space of indefinitely differentiable functions with a compact support included in \mathcal{O}. As usually, we denote $\mathcal{D}^{\prime}(\mathcal{O})=$ $\mathcal{D}^{\prime}(\mathcal{O} ; \mathbb{R}), \mathcal{D}^{\prime}(0, T ; \mathcal{Y})=\mathcal{D}^{\prime}((0, T) ; \mathcal{Y})$ and $\mathcal{D}(0, T)=\mathcal{D}((0, T))$. Given $f \in$ $\mathcal{D}^{\prime}(\mathcal{O} ; \mathcal{Y})$ and $\varphi \in \mathcal{D}(\mathcal{O})$, we frequently denote $\langle f, \varphi\rangle_{\mathcal{D}^{\prime}(\mathcal{O} ; \mathcal{Y}) \times \mathcal{D}(\mathcal{O})}=f(\varphi)$.

Given $f \in \mathcal{C}(\mathcal{O} ; \mathcal{Y})$ we identify it to the distribution \dot{f} defined by

$$
\begin{equation*}
\langle\dot{f}, \varphi\rangle_{\mathcal{D}^{\prime}(\mathcal{O} ; \mathcal{Y}) \times \mathcal{D}(\mathcal{O})}=\int_{\mathcal{O}} \varphi f d x, \quad \forall \varphi \in \mathcal{D}(\mathcal{O}) . \tag{19}
\end{equation*}
$$

This provides a topological imbedding $\mathcal{C}(\mathcal{O} ; Y) \subset \mathcal{D}^{\prime}(\mathcal{O} ; Y)$. The completeness (it could be relaxed in sequential completeness) of \mathcal{Y} is assumed in order to get this imbedding which is essential (else, the space $\mathcal{L}_{c}(\mathcal{D}(\mathcal{O}) ; \mathcal{Y})$ is still defined but it no longer "contains" continuous functions, and therefore it must not be denoted \mathcal{D}^{\prime} and its elements must not be named "distributions").

3.6 Sobolev spaces, used in (7) and (12)

Let again \mathcal{O} be an open subset of \mathbb{R}^{n}, Y be a Banach space, and $r \in[1, \infty]$. Given $f \in L^{r}(\mathcal{O} ; Y)$ we identify it to the distribution \dot{f} again defined by (19).

This provides a topological imbedding $L^{r}(\mathcal{O} ; Y) \subset \mathcal{D}^{\prime}(\mathcal{O} ; Y)$ and allows to define the derivatives of f to be $\partial_{i} \dot{f}$, where ∂_{i} stands for $\partial / \partial x_{i}$.

Now, we can define

$$
\begin{gathered}
W^{1, r}(\mathcal{O} ; Y)=\left\{f \in L^{r}(\mathcal{O} ; Y): \partial_{i} f \in L^{r}(\mathcal{O} ; Y), 1 \leq i \leq n\right\}, \\
W^{-1, r}(\mathcal{O} ; Y)=\left\{f \in \mathcal{D}^{\prime}(\mathcal{O} ; Y): f=f_{0}+\sum_{i=1}^{n} \partial_{i} f_{i}, f_{i} \in L^{r}(\mathcal{O} ; Y), 0 \leq i \leq n\right\} .
\end{gathered}
$$

These spaces are respectively endowed with the norms

$$
\begin{gathered}
\|f\|_{W^{1, r}(\mathcal{O} ; Y)}=\left(\left(\|f\|_{L^{r}(\mathcal{O} ; Y)}\right)^{r}+\sum_{i=1}^{n}\left(\left\|\partial_{i} f\right\|_{L^{r}(\mathcal{O} ; Y)}\right)^{r}\right)^{1 / r} \\
\|f\|_{W^{-1, r}(\mathcal{O} ; Y)}=\inf \left(\sum_{i=0}^{n}\left(\left\|f_{i}\right\|_{L^{r}(\mathcal{O} ; Y)}\right)^{r}\right)^{1 / r}
\end{gathered}
$$

where the infimum is taken for all the decompositions of f. As usual, H^{1} stands for $W^{1,2}, H^{-1}$ for $W^{-1,2}$, and $H^{s}(\mathcal{O})$ for $H^{s}(\mathcal{O} ; \mathbb{R})$.

The spaces $W^{1, r}(\mathcal{O} ; Y)$ and $W^{-1, r}(\mathcal{O} ; Y)$ are Banach spaces; they are separables if Y is separable and $r<\infty$. The spaces $H^{1}(\mathcal{O} ; Y)$ and $H^{-1}(\mathcal{O} ; Y)$ are Hilbert spaces if Y is a Hilbert space.

Let $H_{0}^{1}(\mathcal{O})$ be the closure of $\mathcal{D}(\mathcal{O})$ in $H^{1}(\mathcal{O})$. Then, their dual spaces satisfy $\left(H_{0}^{1}(\mathcal{O})\right)^{\prime} \subset(\mathcal{D}(\mathcal{O}))^{\prime}$ with continuous imbedding. In fact, see for example [8] Theorem 5.1 p. 19,

$$
\begin{equation*}
\left(H_{0}^{1}(\mathcal{O})\right)^{\prime}=H^{-1}(\mathcal{O}) . \tag{20}
\end{equation*}
$$

Moreover, the duality pairing satisfies, for all $f \in H^{-1}(D)$ and $\varphi \in H_{0}^{1}(\mathcal{O})$,

$$
\begin{equation*}
\langle f, \varphi\rangle_{H^{-1}(D) \times H_{0}^{1}(D)}=\langle f, \varphi\rangle_{\mathcal{D}^{\prime}(D) \times \mathcal{D}(D)} . \tag{21}
\end{equation*}
$$

This duality property is frequently used to define H^{-1}. More generally, if $1<r<\infty$ and Y is reflexive, then $W^{-1, r}(\mathcal{O} ; Y)=\left(W_{0}^{1, r^{\prime}}\left(\mathcal{O} ; Y^{\prime}\right)\right)$, where Y^{\prime} stands the dual space of Y and $1 / r^{\prime}+1 / r=1$; it is not convenient to use this equality as a general definition for $W^{-1, r}$ because it does not provide the right space if $r=1$ or Y is not reflexive.

3.7 Linear image of a distribution, used in (16)

Let \mathcal{Y} and \mathcal{X} be two complete lcstvs and let $A \in \mathcal{L}_{c}(\mathcal{Y} ; \mathcal{X})$. Given $f \in$ $\mathcal{D}^{\prime}(\mathcal{O} ; \mathcal{Y})$, its image $A f \in \mathcal{D}^{\prime}(\mathcal{O} ; \mathcal{X})$ is defined by

$$
\begin{equation*}
(A f)(\varphi)=A(f(\varphi)), \quad \forall \varphi \in \mathcal{D}(\mathcal{O}) \tag{22}
\end{equation*}
$$

In the case of Banach spaces, A maps continuously $L^{r}(\mathcal{O} ; \mathcal{Y}), W^{1, r}(\mathcal{O} ; \mathcal{Y})$ and $W^{-1, r}(\mathcal{O} ; \mathcal{Y})$ respectively into $L^{r}(\mathcal{O} ; \mathcal{X}), W^{1, r}(\mathcal{O} ; \mathcal{X})$ and $W^{-1, r}(\mathcal{O} ; \mathcal{X})$.

Now let us examine (16). It reads $\int_{D} p(\omega) d x=0$ for P-almost all $\omega \in \Omega$. It is meaningful since, $p(\omega)$ lying in $W^{-1, \infty}\left(0, T ; L^{2}(D)\right)$ by (12), its image by the map $\int_{D} \in \mathcal{L}_{c}\left(L^{2}(D) ; \mathbb{R}\right)$ is defined by (22) and satisfies

$$
\int_{D} p(\omega) d x \in W^{-1, \infty}(0, T ; \mathbb{R}) .
$$

3.8 Separation of variables, used in (11) and (12)

The separation of variable for functions, which maps $\mathcal{C}((0, T) \times D ; \mathcal{Y})$ onto $\mathcal{C}(0, T ; \mathcal{C}(D ; \mathcal{Y}))$, extends by continuity in a one-to-one bicontinuous map from $\mathcal{D}^{\prime}((0, T) \times D ; \mathcal{Y})$ onto $\mathcal{D}^{\prime}\left(0, T ; \mathcal{D}^{\prime}(D ; \mathcal{Y})\right)$ (the surjectivity, which is the hard point, is related to Schwartz's kernel theorem, see [9] for real values). Using this map to identify the spaces, we get the topological equality

$$
\begin{equation*}
\mathcal{D}^{\prime}((0, T) \times D ; \mathcal{Y})=\mathcal{D}^{\prime}\left(0, T ; \mathcal{D}^{\prime}(D ; \mathcal{Y})\right) \tag{23}
\end{equation*}
$$

This identity allows us to consider $u(\omega)$ and $p(\omega)$ either as distributions on $(0, T) \times D$, as in (14) and (15), or as distributions on $(0, T)$ with values in a space of distributions on D, as in (11) and (12).

3.9 Nonlinear term $(u \cdot \nabla) u$, used in (14)

We denote $\nabla=\left(\partial_{1}, \ldots, \partial_{d}\right)$ the spatial gradient. Then, given $u=\left(u_{1}, \ldots, u_{d}\right)$, its divergence, used in (15), is $\nabla \cdot u=\partial_{1} u_{1}+\cdots+\partial_{d} u_{d}$.

Similarly, $u \cdot \nabla=u_{1} \partial_{1}+\cdots+u_{d} \partial_{d}$. Then, given u and v in $\left(H^{1}(D)\right)^{d}$, we define $(u \cdot \nabla) v$ to be the vector function which components are the $\sum_{j=1}^{d} u_{j} \partial_{j} v_{i}$, for $i=1, \ldots, d$. Since $d \leq 4$ and D is Lipschitz, by Sobolev theorem, $H^{1}(D) \subset L^{4}(D)$ with continuous injection. Then, by Hölder inequality, the map $(u, v) \mapsto(u \cdot \nabla) v$ is bilinear continuous from $\left(\left(H^{1}(D)\right)^{d}\right)^{2}$ into $\left(L^{4 / 3}(D)\right)^{d}$, and therefore from $\left(L^{2}(0, T ; V)\right)^{2}$ into $L^{1}\left(0, T ;\left(L^{4 / 3}(D)\right)^{d}\right)$.

3.10 Time-derivative $G \dot{W}_{t}$, used in (14)

Let U be a separable Hilbert space. Given $G \in M_{\mathcal{F}_{t}}^{2}\left(0, T ; \mathbb{L}^{2}(K ; U)\right)$, its Itô's stochastic integral with respect to the cylindrical Wiener process W, denoted $\left\{\int_{0}^{t} G_{s} d W_{s}: 0 \leq t \leq T\right\}$ is defined to be the unique continuous U-valued \mathcal{F}_{t}-martingale such that, for all $g \in U$ and $t \in[0, T]$,

$$
\begin{equation*}
\left(\int_{0}^{t} G_{s} d W_{s}, g\right)_{U}=\sum_{i=1}^{\infty} \int_{0}^{t}\left(G_{s} e_{k}, g\right)_{U} d \beta_{s}^{i} \tag{24}
\end{equation*}
$$

where each stochastic integral in the series is understood as an Itô's stochastic integral with respect to the corresponding real valued Wiener process. The series in (24) converges in $L^{2}\left(\Omega, \mathcal{F}_{t}, P ; \mathcal{C}([0, t])\right)$, for each $t \in(0, T]$, see [7] for details. Since $\int_{0} G_{s} d W_{s} \in L^{2}\left(\Omega, \mathcal{F}_{t}, P ; \mathcal{C}([0, t] ; U)\right)$, its timederivative, that formally we will denote $G \dot{W}_{t}$, satisfies

$$
G \dot{W}_{t} \in L^{2}\left(\Omega, \mathcal{F}_{t}, P ; W^{-1, \infty}(0, t ; U)\right), \quad \forall t \in(0, T]
$$

because ∂_{t} is linear continuous from \mathcal{C}, and therefore from L^{∞}, into $W^{-1, \infty}$.
This applies here with $U=\left(L^{2}(D)\right)^{d}$, because, thanks to (7), (8), (9) and (11), $G(\cdot, u) \in M_{\mathcal{F}_{t}}^{2}\left(0, T ; \mathbb{L}^{2}\left(K ;\left(L^{2}(D)\right)^{d}\right)\right)$. Then,

$$
\begin{equation*}
G(\cdot, u) \dot{W}_{t} \in L^{2}\left(\Omega, \mathcal{F}_{t}, P ; W^{-1, \infty}\left(0, t ;\left(L^{2}(D)\right)^{d}\right)\right), \quad \forall t \in(0, T] . \tag{25}
\end{equation*}
$$

4 A generalization of de Rham theorem to processes.

We will associate a pressure p to a solution u of the variational Navier-Stokes equation by the following result.

Theorem 4.1 Let D satisfy (4), (Ω, \mathcal{G}, P) be a complete probability space and, given $r_{0} \in[1, \infty], r_{1} \in[1, \infty]$ and $s_{1} \in \mathbb{Z}$, let

$$
\begin{equation*}
h \in L^{r_{0}}\left(\Omega, \mathcal{G}, P ; W^{s_{1}, r_{1}}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)\right) \tag{26}
\end{equation*}
$$

be such that, for all $v \in(\mathcal{D}(D))^{d}$ such that $\nabla \cdot v=0$, P-a.s.,

$$
\begin{equation*}
\langle h, v\rangle_{\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}}=0, \quad \text { in } \mathcal{D}^{\prime}(0, T) . \tag{27}
\end{equation*}
$$

Then, there exists a unique

$$
\begin{equation*}
p \in L^{r_{0}}\left(\Omega, \mathcal{G}, P ; W^{s_{1}, r_{1}}\left(0, T ; L^{2}(D)\right)\right) \tag{28}
\end{equation*}
$$

such that, P-a.s.,

$$
\begin{gather*}
\nabla p=h, \quad \text { in }\left(\mathcal{D}^{\prime}((0, T) \times D)\right)^{d} \tag{29}\\
\int_{D} p d x=0, \quad \text { in } \mathcal{D}^{\prime}(0, T) \tag{30}
\end{gather*}
$$

Moreover, there exists a positive number $c_{2}(D)$, independent of h, such that, P-a.s.,

$$
\begin{equation*}
\|p\|_{W^{s_{1}, r_{1}}\left(0, T ; L^{2}(D)\right)} \leq c_{2}(D)\|h\|_{W^{s_{1}, r_{1}}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)} \tag{31}
\end{equation*}
$$

Proof. Let

$$
E=\left\{w \in\left(H^{-1}(D)\right)^{d}:\langle w, v\rangle_{\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}}=0, \forall v \in \mathcal{V}\right\}
$$

be equipped with the norm of $\left(H^{-1}(D)\right)^{d}$. Given $w \in E$, there exists a unique $q \in L^{2}(D)$ such that $\nabla q=w$ and $\int_{D} q d x=0$ and there exists a positive number $c_{2}(D)$, independent of w, such that

$$
\begin{equation*}
\|q\|_{L^{2}(D)} \leq c_{2}(D)\|w\|_{\left(H^{-1}(D)\right)^{d}} . \tag{32}
\end{equation*}
$$

Indeed, by de Rham theorem, see for example [10], there exists $q_{1} \in L^{2}(D)$ such that $\nabla q_{1}=w$. Moreover, see for example Theorem 14 in [11], thanks to hypothesis (4) on $D, \nabla q_{1} \in\left(H^{-1}(D)\right)^{d}$ implies that $q_{1} \in L^{2}(D)$ and $\left\|q_{1}-\frac{1}{|D|} \int_{D} q_{1}\right\|_{L^{2}(D)} \leq c_{2}(D)\|w\|_{\left(H^{-1}(D)\right)^{d}}$. Then, $q=q_{1}-\frac{1}{|D|} \int_{D} q_{1}$ satisfies (32). Its uniqueness is obvious since D is connected.

Then, we define a continuous linear map A from E into $L^{2}(D)$ by $A w=$ q. It satisfies, for all $w \in E$,

$$
\begin{equation*}
\nabla A w=w, \quad \int_{D} A w d x=0 \tag{33}
\end{equation*}
$$

Now, let us give two properties that hold for P-almost all $\omega \in \Omega$. First, (27) gives, by definition (22), for all $\varphi \in \mathcal{D}(0, T)$,

$$
\langle(h(\omega))(\varphi), v\rangle_{\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}}=0,
$$

that is, $(h(\omega))(\varphi) \in E$. Second, by $(26), h(\omega) \in W^{s_{1}, r_{1}}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)$. Since E is closed in $\left(H^{-1}(D)\right)^{d}$, these two properties give, by the first property of the following Lemma 4.2, for P-almost all $\omega \in \Omega$,

$$
\begin{equation*}
h(\omega) \in W^{s_{1}, r_{1}}(0, T ; E) \tag{34}
\end{equation*}
$$

Since $W^{s_{1}, r_{1}}(0, T ; E)$ is closed in $W^{s_{1}, r_{1}}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)$, (26) and (34) give, now by the second property of Lemma 4.2,

$$
h \in L^{r_{0}}\left(\Omega, \mathcal{G}, P ; W^{s_{1}, r_{1}}(0, T ; E)\right) .
$$

Then, thanks to (32) and (33), its image $p=A h$ satisfies (28) to (31), see Section 3.7.

To complete the proof, it remains to check the following properties.

Lemma 4.2 Given a closed subspace F of a Banach space $Y, r \in[1, \infty]$ and $s \in \mathbb{Z}$,

$$
\begin{gather*}
L^{r}(\Omega, \mathcal{G}, P ; F)=\left\{h \in L^{r}(\Omega, \mathcal{G}, P ; Y): h(\omega) \in F, \quad P \text {-a.s. } \omega \in \Omega\right\}, \tag{35}\\
W^{s, r}(0, T ; F)=\left\{h \in W^{s, r}(0, T ; Y): h(\varphi) \in F, \quad \text { for all } \varphi \in \mathcal{D}(0, T)\right\} . \tag{36}
\end{gather*}
$$

Proof. In view of definition (18), (35) follows from the fact that, if $h(\omega) \in F$, then it belongs to Y and $\|h(\omega)\|_{Y}=\|h(\omega)\|_{F}$ and from the identity

$$
\mathcal{L}^{0}(\Omega, \mathcal{G}, P ; F)=\left\{h: \Omega \rightarrow Y, h \in \mathcal{L}^{0}(\Omega, \mathcal{G}, P ; Y)\right\}
$$

This identity is a consequence of the two following properties:

- First, if h is measurable into Y, it is measurable into F since $\mathcal{B}(F) \subset \mathcal{B}(Y)$ (this imbedding holds because the σ-algebra \mathcal{B} is generated by closed sets, and every closed set of F is closed in Y).
- Second, if h is measurable into F, it is measurable into Y since, given $B \in \mathcal{B}(Y)$, then $h^{-1}(B)=h^{-1}(B \cap F)$ and $B \cap F \in \mathcal{B}(F)$ (this holds because, if B is closed in Y, then $B \cap F$ is closed in F).

Let us now prove (36) in three steps.

- First,

$$
\begin{equation*}
\mathcal{D}^{\prime}(0, T ; F)=\left\{h \in \mathcal{D}^{\prime}(0, T ; Y): h(\varphi) \in F, \forall \varphi \in \mathcal{D}(0, T)\right\} \tag{37}
\end{equation*}
$$

This is obvious since $\mathcal{D}^{\prime}(0, T ; Y)=\mathcal{L}_{c}(\mathcal{D}(0, T) ; Y)$.

- Second,

$$
\begin{equation*}
L^{r}(0, T ; F)=L^{r}(0, T ; Y) \cap \mathcal{D}^{\prime}(0, T ; F) . \tag{38}
\end{equation*}
$$

Indeed, given mollifiers $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ and a localizing sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ (that is $\alpha_{n} \in \mathcal{C}^{\infty}, \alpha_{n}=0$ outside $(1 / n, T-1 / n), \alpha_{n}=1$ in $\left.[2 / n, T-2 / n]\right)$, let $h_{n}=\left(\alpha_{n} h\right) \star \rho_{n}$. Then, $h_{n} \in \mathcal{D}(0, T ; F)$, and therefore $\left\|h_{n}-h_{m}\right\|_{L^{r}(0, T ; F)}=$ $\left\|h_{n}-h_{m}\right\|_{L^{r}(0, T ; Y)}$, and $h_{n} \rightarrow h$ in $L^{r}(0, T ; Y)$. Therefore $\left(h_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{r}(0, T ; F)$ which is complete, and then $h \in L^{r}(0, T ; F)$. The converse being obvious, (38) holds.

In fact, this proof does not hold if $r=\infty$; in this case, it suffices to remark that $L^{\infty}(0, T ; Y)=\left\{f \in L^{1}(0, T ; Y):\|f\|_{Y} \in L^{\infty}(0, T)\right\}$.

- Third,

$$
\begin{equation*}
W^{s, r}(0, T ; F)=W^{s, r}(0, T ; Y) \cap \mathcal{D}^{\prime}(0, T ; F) \tag{39}
\end{equation*}
$$

For $s=0$, it is (38).
For $s>0$, it follows from (38) since $W^{s, r}=\left\{h: \partial_{t}^{n} h \in L^{r}, n \leq s\right\}$.

For $s=-1$, let $h \in W^{-1, r}(0, T ; Y) \cap \mathcal{D}^{\prime}(0, T ; F)$. By definition, $h=$ $h_{0}+\partial_{t} h_{1}$ where $h_{i} \in L^{r}(0, T ; Y)$, and then $h=\partial_{t} g$ where $g=h_{1}+\int_{0}^{0} h_{0} \in$ $L^{r}(0, T ; Y)$. Let $\xi \in \mathcal{D}(0, T)$ be such that $\int_{0}^{T} \xi=1$, and let $k=g-\int_{0}^{T} g \xi$. Obviously, $k \in L^{r}(0, T ; Y)$. Assume for a moment that

$$
\begin{equation*}
k \in \mathcal{D}^{\prime}(0, T ; F) \tag{40}
\end{equation*}
$$

Then, $k \in L^{r}(0, T ; F)$ by (38) and, since $\partial_{t} k=\partial_{t} g=h$, it follows that $k \in W^{-1, r}(0, T ; Y)$. The converse being obvious, (39) holds for $s=-1$.

Now, let us check (40). Given $\varphi \in \mathcal{D}(0, T)$,

$$
\begin{aligned}
\langle k, \varphi\rangle_{\mathcal{D}^{\prime} \times \mathcal{D}} & =\int_{0}^{T}\left(g(t)-\int_{0}^{T} g(s) \xi(s) d s\right) \varphi(t) d t \\
& =\int_{0}^{T} g(t)\left(\varphi(t)-\xi(t) \int_{0}^{T} \varphi(s) d s\right) d t \\
& =\int_{0}^{T} g(t) \partial_{t} \psi(t) d t
\end{aligned}
$$

where $\psi=\int_{0}\left(\varphi-\xi \int_{0}^{T} \varphi\right)$. But ψ lies in $\mathcal{D}(0, T)$ since it is differentiable, it cancels at 0 and T, and it is constant on a neighbourhood of these two points. Then,

$$
\langle k, \varphi\rangle_{\mathcal{D}^{\prime} \times \mathcal{D}}=\left\langle g, \partial_{t} \psi\right\rangle_{\mathcal{D}^{\prime} \times \mathcal{D}}=-\left\langle\partial_{t} g, \psi\right\rangle_{\mathcal{D}^{\prime} \times \mathcal{D}}=-\langle h, \psi\rangle_{\mathcal{D}^{\prime} \times \mathcal{D}}
$$

which lies in F since $h \in \mathcal{D}^{\prime}(0, T ; F)$. With (37), this proves (40).
Finally, a similar proof may be given for $s \leq-2$. It is left to the reader since this case is not used in the present work.
Remark 4.3 In view of the proof of Theorem 4.1, $\left(H^{-1}(D)\right)^{d}$ may be replaced by any Sobolev space $\left(W^{s_{2}, r_{2}}(D)\right)^{d}$ or by $\left(\mathcal{D}^{\prime}(D)\right)^{d}$ in (26), provided that $L^{2}(D)$ be replaced by $W^{s_{2}+1, r_{2}}(D)$ or by $\mathcal{D}^{\prime}(D)$ in (28) and that \int_{D} be replaced by any linear form on this space in (30).

Moreover, Theorem 4.1 extends to any open subset D of \mathbb{R}^{d}, instead of assumptions (4), provided that $L^{2}(D)$ be replaced by $L_{\mathrm{loc}}^{2}(D)$ in (28) and that (30) be replaced, for any connected component D_{i} of D, by $\int_{d_{i}} p d x=0$, where d_{i} is a non-empty open bounded set in \mathbb{R}^{d} such that $\overline{d_{i}} \subset D_{i}$.

Finally, Theorem 4.1 extends to all $s_{1} \in \mathbb{R}$ by interpolation.

5 Proof of Theorem 2.2.

Let us remind, see for example [6], that there exists a process u satisfying (11) and (17) - and therefore

$$
\begin{equation*}
u \in L^{2}\left(\Omega, \mathcal{F}_{t}, P ; L^{2}(0, t ; V) \cap L^{\infty}(0, t ; H)\right), \quad \forall t \in(0, T] \tag{41}
\end{equation*}
$$

- (13) and, P-a.s., the variational equation (2) for all $t \in[0, T]$ and $v \in \mathcal{V}$. Differentiating (2) with respect to t ($\omega \in \Omega$ being fixed), we get, in $\mathcal{D}^{\prime}(0, T)$,

$$
\begin{array}{r}
-\int_{D} \partial_{t} u \cdot v d x-\nu \int_{D} \nabla u \cdot \nabla v d x-\int_{D}((u \cdot \nabla) u) \cdot v d x \\
+\langle F(\cdot, u), v\rangle_{\left.\left.\left(H^{-1}(D)\right)^{d}\right) \times\left(H_{0}^{1}(D)\right)^{d}\right)}+\int_{D} G(\cdot, u) \dot{W}_{t} \cdot v d x=0 .
\end{array}
$$

Since $v \in(\mathcal{D}(D))^{d}$, thanks to (19), (21) and $\langle\nabla u, \nabla v\rangle=-\langle\Delta u, v\rangle$, this reads

$$
\begin{equation*}
\left\langle-\partial_{t} u+\nu \Delta u-(u \cdot \nabla) u+F(\cdot, u)+G(\cdot, u) \dot{W}_{t}, v\right\rangle_{\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}}=0 . \tag{42}
\end{equation*}
$$

Let us denote $h=-\partial_{t} u+\nu \Delta u-(u \cdot \nabla) u+F(\cdot, u)+G(\cdot, u) \dot{W}_{t}$. As we will check next, (41) implies

$$
\begin{equation*}
h \in L^{1}\left(\Omega, \mathcal{F}_{t}, P ; W^{-1, \infty}\left(0, t ;\left(H^{-1}(D)\right)^{d}\right)\right), \quad \forall t \in(0, T] \tag{43}
\end{equation*}
$$

therefore Theorem 4.1 provides p satisfying (12), (16) and $\nabla p=h$, that is the Navier-Stokes equation (14).

By (41), P-a.s., $u \in L^{2}(0, T ; V)$. Since $\nabla \cdot v=0$ for all $v \in \mathcal{V}$ and therefore, by continuity, for all $v \in V$, this implies $\nabla \cdot u=0$, that is (15).

It only remains to check (43). Denoting \mathcal{E} the space in its right-hand side, let us check that all the terms of h belong to it.

- First, ∂_{t} is linear continuous from $L^{\infty}(0, T ; H)$ into $W^{-1, \infty}(0, T ; H)$ and then into $W^{-1, \infty}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)$, and therefore (41) implies $\partial_{t} u \in \mathcal{E}$.
- Next, Δ being linear continuous from $\left(H^{1}(D)\right)^{d}$, and then from V, into $\left(H^{-1}(D)\right)^{d}$, (41) implies $\nu \Delta u \in L^{2}\left(\Omega, \mathcal{F}_{T}, P ; L^{2}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)\right)$ which is included in \mathcal{E} due to the topological imbedding

$$
\begin{equation*}
L^{1}(0, T ; Y) \subset W^{-1, \infty}(0, T ; Y) . \tag{44}
\end{equation*}
$$

To get this imbedding it suffices to notice that every $f \in L^{1}(0, T ; Y)$ satisfies $f=\partial_{t} \int_{0} f$ and $\int_{0} f \in L^{\infty}(0, T ; Y)$, and therefore $f \in W^{-1, \infty}(0, T ; Y)$ thanks to its definition in Section 3.6.

- As seen in Section 3.9, the map $v \mapsto(v \cdot \nabla) v$ is bilinear continuous from $V \times V$ into $\left(L^{4 / 3}(D)\right)^{d}$, and then into $\left(H^{-1}(D)\right)^{d}$ by Sobolev theorem since $d \leq 4$. Therefore, (41) implies $(u \cdot \nabla) u \in L^{1}\left(\Omega, \mathcal{F}_{T}, P ; L^{1}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)\right)$ which is included in \mathcal{E} by (44).
- Next, $F(\cdot, u) \in \mathcal{E}$ thanks to (7), (8), (9) and (11).
- Finally, $G(\cdot, u) \dot{W}_{t} \in \mathcal{E}$ by (25). This ends the proof of (43).

Remark 5.1 This proof shows that there exists a positive number $c_{3}(D, T)$ such that any pair (u, p) satisfying (11) to (14) satisfies, in addition, P-a.s.,

$$
\begin{aligned}
& \|p\|_{W^{-1, \infty}\left(0, T ; L^{2}(D)\right)} \leq c_{3}(D, T)\left(\|u\|_{L^{\infty}\left(0, T ;\left(L^{2}(D)\right)^{d}\right)}\right. \\
& \left.\quad+\left(\nu+c_{1}\right)\|u\|_{L^{2}\left(0, T ;\left(H^{1}(D)\right)^{d}\right)}+\left(\|u\|_{L^{2}\left(0, T ;\left(H^{1}(D)\right)^{d}\right)}\right)^{2}\right) \\
& \leq c_{3}(D, T)\left(\|u\|_{L^{\infty}\left(0, T ;\left(L^{2}(D)\right)^{d}\right)}+\left(1+\left(\nu+c_{1}\right)\|u\|_{\left.\left.L^{2}\left(0, T ;\left(H^{1}(D)\right)^{d}\right)\right)^{2}\right)}\right) .\right.
\end{aligned}
$$

It follows that

$$
\begin{array}{r}
\|p\|_{L^{1}\left(\Omega, \mathcal{F}, P ; W^{-1, \infty}\left(0, T ; L^{2}(D)\right)\right)} \leq c_{3}(D, T)\left(\|u\|_{L^{1}\left(\Omega, \mathcal{F}, P ; L^{\infty}\left(0, T ;\left(L^{2}(D)\right)^{d}\right)\right)}\right. \\
+\left(1+\left(\nu+c_{1}\right)\|u\|_{\left.\left.L^{2}\left(\Omega, \mathcal{F}, P ; L^{2}\left(0, T ;\left(H^{1}(D)\right)^{d}\right)\right)\right)^{2}\right)} .\right.
\end{array}
$$

6 Nonexistence result for a body force valued in V^{\prime}.

From now, the assumptions on the body force F in (7), (8) and (9) are replaced by

$$
\left\{\begin{array}{l}
F \text { is measurable from }[0, T] \times\left(L^{2}(D)\right)^{d} \text { into } V^{\prime}, \tag{45}\\
v \mapsto\langle F(t, v), \phi\rangle_{V^{\prime} \times V} \text { is continuous from }\left(L^{2}(D)\right)^{d} \text { into } \mathbb{R}, \\
\|F(t, v)\|_{V^{\prime}} \leq c_{1}\left(1+\|v\|_{\left(L^{2}(D)\right)^{d}}\right) .
\end{array}\right.
$$

Then, with all others assumptions (4) to (10), the proof of the existence of a variational solution given in [6] provides a solution u of (3) instead of (2). It again satisfies (41) and then $f=F(\cdot, u)$ satisfies

$$
\begin{equation*}
f \in L^{2}\left(\Omega, \mathcal{F}, P ; L^{2}\left(0, T ; V^{\prime}\right)\right) . \tag{46}
\end{equation*}
$$

Let $g=-\partial_{t} u+\nu \Delta u-(u \cdot \nabla) u+G(\cdot, u) \dot{W}_{t}$. Proceeding as in the proof of Theorem 2.2, we get

$$
\begin{equation*}
g \in L^{1}\left(\Omega, \mathcal{F}, P ; W^{-1, \infty}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)\right) \tag{47}
\end{equation*}
$$

and, instead of (42),

$$
\begin{equation*}
\langle g, v\rangle_{\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}}+\langle f, v\rangle_{V^{\prime} \times V}=0, \quad \forall v \in V . \tag{48}
\end{equation*}
$$

The existence of a corresponding pressure is ruled out by the following result.

Theorem 6.1 There is no Hausdorff locally convex topological vector space in which, for arbitrary f and g satisfying (46), (47) and (48), the equation

$$
\begin{equation*}
g+f=\nabla p \tag{49}
\end{equation*}
$$

might hold.
Remark 6.2 With the above definitions of f and g, (49) reads

$$
-\partial_{t} u+\nu \Delta u-(u \cdot \nabla) u+G(\cdot, u) \dot{W}_{t}+F(\cdot, u)=\nabla p,
$$

that is Navier-Stokes equation (1). Since it cannot hold, (3) should not be named "variational Navier-Stokes equation"; this name should be reserved to (2), the equivalence with (1) being lost as $\left(H^{-1}(D)\right)^{d}$ is replaced by V^{\prime}.

Remark 6.3 Equation (48) equivalently reads, thanks to (21),

$$
\langle g, v\rangle_{\left(H^{-1}(D)\right)^{d} \times\left(H_{0}^{1}(D)\right)^{d}}+\langle f, v\rangle_{V^{\prime} \times V}=0 .
$$

Remark 6.4 The reader may be surprised since, in contradiction with Theorem 6.1, various papers contain proofs of the existence of pressure for V^{\prime} valued body forces. These proofs are wrong, the mistake generally lying in the use of a de Rham type theorem to equation (48), as if it was

$$
\langle g+f, v\rangle_{\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}}=0
$$

or $\langle g+f, v\rangle_{\left(H^{-1}(D)\right)^{d} \times\left(H_{0}^{1}(D)\right)^{d}}=0$.
The confusion follows from the use, in these proofs, of the same notation $\langle\cdot, \cdot\rangle$ for the duality products in $\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}$, in $\left(H^{-1}(D)\right)^{d} \times$ $\left(H_{0}^{1}(D)\right)^{d}$ and in $V^{\prime} \times V$.

Proof of Theorem 6.1. Would such a space, say X, exist, it should contain $L^{2}\left(\Omega, \mathcal{F}, P ; L^{2}\left(0, T ; V^{\prime}\right)\right)$ and $L^{1}\left(\Omega, \mathcal{F}, P ; W^{-1, \infty}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)\right)$, at least in the sense that there should be two linear injective maps i and j from these spaces into X. Then a linear injective map \widehat{i} from V^{\prime} into X would be defined by $\hat{i} \varphi=i \widehat{\varphi}$ where $(\widehat{\varphi}(\omega))(t)=\varphi$ for all ω and t. Similarly, we would define a linear injective map \widehat{j} from $\left(H^{-1}(D)\right)^{d}$ into X.

Since each $\psi \in\left(H^{-1}(D)\right)^{d}$ defines a unique $Q \psi \in V^{\prime}$ by

$$
\begin{equation*}
\langle Q \psi, v\rangle_{V^{\prime} \times V}=\langle\psi, v\rangle_{\left(H^{-1}(D)\right)^{d} \times\left(H_{0}^{1}(D)\right)^{d}}, \quad \forall v \in V, \tag{50}
\end{equation*}
$$

then ψ and $Q \psi$ should correspond to the same element of X, that is

$$
\widehat{j} \psi=\widehat{i} Q \psi .
$$

Consider now $\phi=\nabla q$, for a given non constant $q \in L^{2}(D)$. Then, $\phi \in$ $\left(H^{-1}(D)\right)^{d}, \quad \phi \neq 0$, and $Q \phi=0$ since $\langle\phi, v\rangle_{\left(H^{-1}(D)\right)^{d} \times\left(H_{0}^{1}(D)\right)^{d}}=$ $-\langle q, \nabla \cdot v\rangle_{\left(\mathcal{D}^{\prime}(D)\right)^{d} \times(\mathcal{D}(D))^{d}}=0$ for all $v \in \mathcal{V}$ and thus, by continuity, for all $v \in V$. Then, $\widehat{i} Q \phi=0$ and therefore $\widehat{j} \phi=0$ would hold, in contradiction with the injectivity of \widehat{j}.

The map Q defined by (50) is "canonical" since $Q \psi$ is the restriction to V of the map $\psi \in \mathcal{L}_{c}\left(\left(H_{0}^{1}(D)\right)^{d} ; \mathbb{R}\right)$. Let us summarize its properties.

Lemma 6.5 The map Q is linear continuous from $\left(H^{-1}(D)\right)^{d}$ onto V^{\prime} and is not one to one.

Proof. Continuity holds since, by (50) and (20), $\|Q \psi\|_{V^{\prime}} \leq\|\psi\|_{\left(\left(H_{0}^{1}(D)\right)^{d}\right)^{\prime}} \leq$ $\|\psi\|_{\left(H^{-1}(D)\right)^{d}}$ (thanks to the definition of H^{-1}, this holds for $c=1$).

The range of Q is V^{\prime} since by Hann-Banach theorem, any $\varphi \in V^{\prime}$ possesses an extension $\psi \in\left(\left(H_{0}^{1}(D)\right)^{d}\right)^{\prime}$, and then $Q \psi=\varphi$.

It is not one to one since, in the proof of Theorem 6.1, we built $\phi \neq 0$ such that $Q \phi=0$.

Let us now give strong equations that, instead of Navier-Stokes one, are satisfied by solutions of (3). First, in V^{\prime}, we have, P-a.s.,

$$
\begin{equation*}
Q\left(\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u\right)=F(\cdot, u)+Q\left(G(\cdot, u) \dot{W}_{t}\right) \tag{51}
\end{equation*}
$$

in $\mathcal{D}^{\prime}\left(0, T ; V^{\prime}\right)$. This is not totally satisfactory since pressure disappeared.
The other possibility is to give an equation in $\left(H^{-1}(D)\right)^{d}$. There exist infinitely many $\Phi \in L^{1}\left(\Omega, \mathcal{F}, P ; L^{1}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)\right)$ such that $Q \Phi=F(\cdot, u)$ (for example, a solution is $\Phi=\Delta S(F(\cdot, u))$ where $S f$ is, for a given $f \in V^{\prime}$, the solution of $\int_{D} \nabla S f \cdot \nabla v=\langle f, v\rangle_{V^{\prime} \times V}$ for all $\left.v \in V\right)$. For such a Φ, there exists $p \in L^{1}\left(\Omega, \mathcal{F}, P ; W^{-1, \infty}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)\right)$ such that, P-a.s.,

$$
\begin{equation*}
\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u+\nabla p=\Phi+Q\left(G(\cdot, u) \dot{W}_{t}\right) \tag{52}
\end{equation*}
$$

in $\mathcal{D}^{\prime}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)$. This again is not satisfactory, now since Φ and p are not unique (even if p is normalized by $\int_{D} p=0$); worst, all p in the above space can be associated to a given u. Indeed, given a pair (Φ_{0}, p_{0}) satisfying (52), the pair $\left(\Phi_{0}+\nabla\left(p-p_{0}\right), p\right)$ is another solution since $Q\left(\Phi_{0}+\nabla\left(p-p_{0}\right)\right)=$ $Q \Phi_{0}=F(\cdot, u)$ because, as seen in the proof of Theorem 6.1, $Q \nabla q=0$ for all q.

Remark 6.6 The set spanned by u is the same, wether forces span V^{\prime} or $\left(H^{-1}(D)\right)^{d}$, since Q defined by (50) maps $\left(H^{-1}(D)\right)^{d}$ onto V^{\prime}. (Surjectivity follows from $V \subset\left(H_{0}^{1}(D)\right)^{d}$ since their topologies coincide on V; a strict imbedding $V^{\prime} \subset W^{\prime}$ holds when W is a dense subset of V equipped with a strictly finer topology, that is not the case here).

The only effect of choosing forces in V^{\prime} instead of $\left(H^{-1}(D)\right)^{d}$ is to suppress information on pression, since Q^{-1} may be viewed as a one to one map from V^{\prime} onto $\left(H^{-1}(D)\right)^{d} / \nabla L^{2}(D)$. Indeed, given $f \in V^{\prime}$ and $g_{0} \in Q^{-1} f$,

$$
\begin{gathered}
Q^{-1} f=\left\{g \in\left(H^{-1}(D)\right)^{d}:\left\langle g-g_{0}, v\right\rangle_{\left(H^{-1}(D)\right)^{d} \times\left(H_{0}^{1}(D)\right)^{d}} \text { for all } v \in V\right\} \\
=\left\{g_{0}+\nabla q: q \in L^{2}(D)\right\} .
\end{gathered}
$$

This explains why Navier-Stokes equation, which contains information on pressure, cannot contain terms lying in V^{\prime}.

Acknowledgements. The authors acknowledge E. Fernández Cara for pointing out the necessity of clarifying the existence of the pressure in the solution of the stochastic Navier-Stokes equations.

References

[1] Bensoussan A (1995) - Stochastic Navier-Stokes equations, Acta Appl. Math. 38, 3: 267-304
[2] Bensoussan A, Temam R (1973) - Equations stochastiques du type Navier-Stokes, J. Funct. Anal. 13: 195-222
[3] Brzeźniak Z, Capiński M, Flandoli F (1992) - Stochastic Navier-Stokes equations with multiplicative noise, Stochastic Anal. Appl. 10, 5: 523532
[4] Capiński M, Cutland N (1991) - Stochastic Navier-Stokes equations, Acta Appl. Math. 25: 59-85
[5] Capiński M, Cutland N (1993) - Navier-Stokes equations with multiplicative noise, Nonlinearity 6: 71-77
[6] Capiński M, Peszat S (2001) - On the existence of solution to stochastic Navier-Stokes equations, Nonlinear Anal. Theory Methods Appl. 44: 141-177
[7] DaPrato G, Zabczyk J (1992) - Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge
[8] Lions JL (1965) - Problèmes aux limites dans les équations aux dérivées partielles, Presses de l'Université de Montreal
[9] Schwartz L (1973) - Théorie des distributions, Hermann, 1961, new edition, Paris.
[10] Simon J (1993) - Démonstration constructive d'un théorème de G. de Rham, C. R. Acad. Sci. Paris, sér. I 316: 1167-1172
[11] Simon J (1993) - Representation of distributions and explicit antiderivatives up to the boundary, in Progress in partial differential equations: the Metz surveys 2, M. Chipot ed., Longman, 201-205
[12] Simon J (1999) - On the existence of the pressure for solutions of the variational Navier-Stokes equations, J. Math. Fluid Mech. 1: 225-234

[^0]: *Corresponding author
 ${ }^{\dagger}$ Department of Differential Equations and Numerical Analysis, University of Sevilla, Tarfia s/n, E-41012 Sevilla, Spain. e-mail: langa@numer.us.es; real@numer.us.es Fax: 95 4552898 Partially supported by MCYT (Feder), Proyecto BFM2002-03068
 ${ }^{\ddagger}$ Laboratoire de Mathématiques Appliquées, CNRS and Université Blaise Pascal, 63177 Aubière cedex, France. e-mail: Jacques.Simon@math.univ.bp-clermont.fr

