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TORSION OF RATIONAL ELLIPTIC CURVES

OVER QUADRATIC FIELDS II

ENRIQUE GONZÁLEZ–JIMÉNEZ AND JOSÉ M. TORNERO

Abstract. Let E be an elliptic curve defined over Q and let G = E(Q)tors be
the associated torsion group. In a previous paper, the authors studied, for a
given G, which possible groups G ≤ H could appear such that H = E(K)tors,
for [K : Q] = 2. In the present paper, we go further in this study and compute,
under this assumption and for every such G, all the possible situations where
G 6= H. The result is optimal, as we also display examples for every situation
we state as possible. As a consequence, the maximum number of quadratic
number fields K such that E(Q)tors 6= E(K)tors is easily obtained.

1. Introduction

Let E be an elliptic curve defined over a number field L. The Mordell-Weil
Theorem states that the set of L–rational points, E(L), is a finitely generated
abelian group. So it can be written as E(L) = E(L)tors⊕Zr, for some non-negative
integer r (called the rank of E(L)) and some finite torsion subgroup E(L)tors. It is
well known that there exist two positive integers n,m such that n|m and E(L)tors
is isomorphic to Cn × Cm, where Cn is the cyclic group of order n [20].

Through this paper, we will often write G = H (respectively G ≤ H or G < H)
for the fact that G is isomorphic to H (repectively, isomorphic to a subgroup of H
or to a proper subgroup of H) without further detail on the precise isomorphism.

We define some useful sets for the sequel:

• Let Φ(d) be the set of possible groups that can appear as the torsion sub-
group of an elliptic curve defined over a certain number field L of degree
d.

• Let ΦQ(d) be the set of possible groups that can appear as the torsion
subgroup over a number field of degree d, of an elliptic curve E defined
over the rationals.

• Let G ∈ Φ(1). We will write ΦQ(d,G) the set of possible groups that can
appear as the torsion subgroup over any number field L of degree d, of an
elliptic curve E defined over the rationals, such that E(Q)tors = G.

Connected to these sets, some known results are:

• Mazur’s landmark papers [16, 17] established that

Φ(1) = {Cn | n = 1, . . . , 10, 12} ∪ {C2 × C2m | m = 1, . . . , 4} .

• After this, in a long series of papers by Kenku, Momose and Kamienny
ending in [10, 11], the quadratic case was given a description:

Φ(2) = {Cn | n = 1, . . . , 16, 18} ∪ {C2 × C2m | m = 1, . . . , 6} ∪
{C3 × C3r | r = 1, 2} ∪ {C4 × C4} .
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• The sets ΦQ(d) have been completely described by Najman [18] for d = 2, 3:

ΦQ(2) = {Cn | n = 1, . . . , 10, 12, 15, 16}∪ {C2 × C2m | m = 1, . . . , 6} ∪
{C3 × C3r | r = 1, 2} ∪ {C4 × C4} ,

ΦQ(3) = {Cn | n = 1, . . . , 10, 12, 13, 14, 18, 21}∪ {C2 × C2m | m = 1, . . . , 4, 7} .
• The work of Fujita [5] gave the precise list (building upon previous work

of Laska and Lorenz [15]) of torsion groups over the maximal elementary
abelian 2–extension of Q, of elliptic curves defined over the rationals. The
full list of such groups will be denoted by ΦQ(2

∞):

ΦQ(2
∞) = {Cn | n = 1, 3, 5, 7, 9, 15}∪ {C2 × C2m | m = 1, ..., 6, 8} ∪

{C3 × C3} ∪ {C4 × C4r | r = 1, . . . , 4} ∪ {C2s × C2s | s = 3, 4} .
• The set ΦQ(2, G), for non–cyclic G was characterized by Kwon [14].

Finally, in [7], we gave a precise description of the set ΦQ(2, G), for all G ∈ Φ(1).

Theorem 1. For G ∈ Φ(1), the set ΦQ(2, G) is the following:

G ΦQ (2, G)
C1 {C1 , C3 , C5 , C7 , C9}
C2 {C2 , C4 , C6 , C8 , C10 , C12 , C16 , C2 × C2 , C2 × C6 , C2 × C10}
C3 {C3, C15, C3 × C3}
C4 {C4 , C8 , C12 , C2 × C4 , C2 × C8 , C2 × C12 , C4 × C4}
C5 {C5, C15}
C6 {C6, C12, C2 × C6, C3 × C6}
C7 {C7}
C8 {C8, C16, C2 × C8}
C9 {C9}
C10 {C10, C2 × C10}
C12 {C12, C2 × C12}

C2 × C2 {C2 × C2 , C2 × C4 , C2 × C6 , C2 × C8 , C2 × C12}
C2 × C4 {C2 × C4, C2 × C8, C4 × C4}
C2 × C6 {C2 × C6, C2 × C12}
C2 × C8 {C2 × C8}

Let us fix now some useful notations:

• We will use letters L and F for generic number fields, whereas K will be
reserved for proper quadratic extensions of Q.

• We will denote by Q(2∞) = Q ({√m |m ∈ Z}), the maximal elementary
abelian 2–extension of Q.

• Let E be an elliptic curve defined over a number field L. Without loss of
generality we can assume E is defined by a short Weierstrass form

E : Y 2 = X3 +AX +B; A,B ∈ L,

and we will then write,

E(L) =
{

(x, y) ∈ L2 | y2 = x3 +Ax+B
}

∪ {O},
the set of L–rational points of E, and O its point at infinity.

• For an elliptic curve E, let ∆E be, as customary, its discriminant.
• For an elliptic curve E and an integer n, let E[n] be the subgroup of all

points whose order is a divisor of n (over Q), and let E(L)[n] be the set of
points in E[n] with coordinates in L, for any number field L (including the
case L = Q).

• Under the same conditions, let Q(E[n]) be the extension generated by all
the coordinates of points in E[n].

• For an elliptic curve E defined over the rationals given by a short Weier-
strass equation E : Y 2 = X3+AX+B, and a squarefree integer D, let ED

denote its quadratic twist. That is, the elliptic curve with the Weierstrass
equation ED : DY 2 = X3 +AX +B.
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Please mind that, in the sequel, for examples and particular curves we will use
the Antwerp–Cremona tables and labels [1, 2].

Our aim in this paper is to go further than we did in [7]. More precisely, at the
end of [7] we posed three questions (named Problems 1, 2 and 3). Problems 1 and
3 are generalized in the following question:

Question.– For a given G ∈ Φ(1), let S = {H1, ..., Hn} ⊂ ΦQ(2, G). Find if there
exists a fixed elliptic curve E defined over the rationals and squarefree integers
D1, ..., Dr such that:

• E(Q)tors = G,
• E(Q(

√
Di))tors = Hi, for i = 1, ..., n,

• G = E(K)tors for every other quadratic extension K/Q.

We will answer this question, which will imply the solution to Problems 1 and 3
in [7] as a direct corollary.

More precisely, we will prove two main results. First, we will compute explicitly
how many quadratic extensions K/Q one can have with a proper extension of the
torsion group for a given curve, depending only on the rational torsion structure.
This will be done in the following result:

Theorem 2. Let be G ∈ Φ(1) and H ∈ ΦQ (2, G) such that G 6= H. Then the

number h of possible quadratic fields K such that E(Q)tors = G and E(K)tors = H
for a fixed rational elliptic curve E is given in the following table:

G H h

C1

C3 1 , 2
C5

1C7
C9

C2

C4
1 , 2C6

C8
C10

1

C12
C16

C2 × C2
C2 × C6
C2 × C10

G H h

C3 C15 1C3 × C3

C4

C8 2
C12

1
C2 × C4
C2 × C8
C2 × C12
C4 × C4

C5 C15 1

C6
C12 2

C2 × C6 1C3 × C6

G H h

C8 C16 2
C2 × C8 1

C10 C2 × C10 1

C12 C2 × C12 1

C2 × C2

C2 × C4 1, 2, 3
C2 × C6

1C2 × C8
C2 × C12

C2 × C4 C2 × C8 1, 2
C4 × C4 1

C2 × C6 C2 × C12 1

Once this is done, we will solve a more delicate problem. We will compute, for
a given G ∈ Φ(1), all the possibilities for ΦQ(2, G) that actually appear. That is,
the full set:

HQ(2, G) = {S1, ..., Sn}
satisfying, for all i = 1, ..., n, that

Si = [H1, ..., Hm]

is a list, with Hj ∈ ΦQ(2, G) \ {G}, and there exists an elliptic curve Ei defined
over Q such that:

• Ei(Q)tors = G,
• there are quadratic fields K1, ...,Km with Ei(Kj)tors = Hj , for all j =
1, ...,m,

• Ei(K)tors = G, for any other quadratic extension K/Q.

Note that we are admitting the possibility of two (or more) of the Hj being
identical. We describe explicitly HQ(2, G) in Theorem 3.

Theorem 3. Let be G ∈ Φ(1) such that ΦQ (2, G) 6= {G}. Then:
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G HQ(2, G)

C1

C3
C5
C7
C9
C3, C3
C3, C5

C2

C2 × C2
C2 × C6
C2 × C10
C2 × C2, C6
C2 × C2, C10
C2 × C6, C6
C2 × C2, C4, C4
C2 × C2, C6, C6
C2 × C2, C8, C8
C2 × C2, C4, C8
C2 × C2, C4, C12
C2 × C2, C4, C16
C2 × C6, C4, C4
C2 × C2, C4, C4, C6

G HQ(2, G)

C3 C15
C3 × C3

C4

C2 × C4
C2 × C8
C2 × C12
C4 × C4
C2 × C4, C12
C2 × C4, C8, C8
C2 × C8, C8, C8

C5 C15

C6
C2 × C6
C2 × C6, C3 × C6
C2 × C6, C12, C12

C8 C2 × C8
C2 × C8, C16, C16

C10 C2 × C10
C12 C2 × C12

G HQ(2, G)

C2 × C2

C2 × C4
C2 × C6
C2 × C8
C2 × C12
C2 × C4, C2 × C4
C2 × C4, C2 × C6
C2 × C4, C2 × C8
C2 × C4, C2 × C4, C2 × C4
C2 × C4, C2 × C4, C2 × C8

C2 × C4

C2 × C8
C4 × C4
C2 × C8, C4 × C4
C2 × C8, C2 × C8
C2 × C8, C2 × C8, C4 × C4

C2 × C6 C2 × C12

In particular, we obtain the following corollary:

Corollary 4. If E is an elliptic curve defined over Q, then there are at most four

quadratic fields Ki, i = 1, . . . , 4, such that E(Ki)tors 6= E(Q)tors. That is,

max
G∈Φ(1)

{#S |S ∈ HQ(2, G)} = 4.

We would like to mention this last result has also been proved independently by
Najman [19]. His proof uses a very different kind of argument and, in particular,
Theorems 2 and 3 do not follow from his results.

Acknowledgements. Both authors are grateful to Noam Elkies, for his insight in
the problem concerning curves with C2 × C6 torsion, and in particular for pointing
out to them the parametrization in [3]. Also, Yasutsugu Fujita was very kind to
explain to us in detail his argument for Proposition 9 and we thank him for this
here. Last, the referees this paper was sent to did a painstaking and exhaustive
work which greatly improved its overall quality, and both authors are enormously
grateful for that.

2. Some technical results

Aside from the above main results, a number of auxiliary results are needed for
our arguments.

We already mentioned this result by Fujita:

Theorem 5. [5, Theorem 2] Let E be an elliptic curve over Q. Then, the torsion

subgroup E(Q(2∞))tors is isomorphic to one of the following 20 groups:

CN for N = 1, 3, 5, 7, 9, 15;
C2 × C2N for N = 1, ..., 6, 8;
C4 × C4N for N = 1, ..., 4;
C2N × C2N for N = 3, 4;
C3 × C3 .

In the same paper one can find the following useful result:

Proposition 6. [5, Proposition 11] Let E be an elliptic curve over Q such that

E(Q)tors is cyclic. Then C8 × C8 � E(Q(2∞))tors.
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A classical result which could be found, for instance, in [20, Corollary 8.1.1] is
the following:

Proposition 7. Let E be an elliptic curve over a number field L. If Cm × Cm =
E[m] ≤ E(L), then L contains the cyclotomic field generated by the m–th roots of

unity.

In another paper by Fujita [4], the following two results can be found:

Theorem 8. [4, Theorem 1] Let E be an elliptic curve over Q such that E(Q)tors
is non-cyclic.

• If E(Q)tors = C2 × C8, then E(Q(2∞))tors = C4 × C16.
• If E(Q)tors = C2 × C6, then E(Q(2∞))tors = C4 × C12.
• If E(Q)tors = C2 × C4, then E(Q(2∞))tors ∈ {C4 × C8, C8 × C8}.
• If E(Q)tors = C2×C2, then E(Q(2∞))tors ∈ {C4 × C4, C4 × C8, C8 × C8, C4 × C12, C4 × C16}.

Proposition 9. [4, Final Remark] The minimal d for which the following groups

can be realized as E(Ld)tors with some elliptic curve E defined over Q, having non–

cyclic rational torsion, and some polyquadratic field Ld with [Ld : Q] = 2d, is:

(1) d = 4 for C4 × C16.
(2) d = 3 for C4 × C12.
(3) d = 4 for C8 × C8.
(4) For all other types, we have dm = 2.

3. On 2–divisibility

In this section we are going to use two methods that allow us to decide when there
exists a point (or where to look for it) which divides by two a given point of some
order. The first method is classical in the literature of elliptic curves [12, Theorem
4.2]. It allows us to decide if a point defined over a number field L containing
Q(E[2]) is half a point over L too.

Lemma 10. Let E be an elliptic curve defined over a number field L given by

E : Y 2 = (X − α)(X − β)(X − γ),

with α, β, γ ∈ L. For P = (x0, y0) ∈ E(L), there exists Q ∈ E(L) such that 2Q = P
if and only if x0 − α, x0 − β and x0 − γ are all squares in L.

For our concerns, this will apply specifically to the following situation:

Proposition 11. Assume we have an elliptic curve

E : Y 2 = X(X −A)(X −B), A,B ∈ Q

and C2×C2 ≤ E(Q)tors and there are no points of order 4 in E(Q). Then, there are

1, 2 or 3 quadratic fields K with C2 × C4 ≤ E(K)tors. All three cases can appear.

Proof. Assume that the elliptic curve has C2 × C4 ≤ E(K)tors, with K = Q(
√
D).

Let us first assume that the point who gets divided by two is (0, 0). That is, there
is a certain Q ∈ E(K) such that 2Q = (0, 0). By the previous lemma 0,−A,−B
are then squares in K. This amounts to the existence of a, b ∈ Q such that one of
the mutually exclusive pairs of equalities holds:

{−A = a2D, −B = b2} or {−A = a2, −B = b2D} or {−A = a2D, −B = b2D}.
Of these cases, there is only one possible squarefree D satisfying the conditions.

The same goes if the divided point is (A, 0) (change {A,B} for {A,A−B}) and if
it is (B, 0). All in all there can be 1, 2 or 3 quadratic extensions where the torsion
contains C2 × C4.

In Table 1 (see the appendix for an explanation of the table) one can find an
example for each of the three circumstances. �
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The second technique is taken from Jeon et al. [9]. This method allows to find,
given a point defined over a number field F , an extension L/F and a point defined
over L such that it is half of the given point.

Proposition 12. Let E be an elliptic curve defined over a number field F given

by the Weierstrass equation:

E : Y 2 = X3 +AX2 +BX + y20 ,

and P = (0, y0) ∈ E(F ). Let α be a root of the quartic polynomial

q(x) = x4 − 2Ax2 − 8y0x+A2 − 4B.

Then the point Q = ((α2 −A)/2, α(α2 −A)/2− y0) ∈ E(L), where L = F (α), and

2Q = P .

It is not difficult to check that the elliptic curve E and the one defined by the
quartic polynomial q(x), v2 = q(u), are isomorphic over F . Then, thanks to [6,
Appendix A.2], we know that q(x) splits over a quadratic extension of F for each
2–torsion point of E defined over F .

We will apply this procedure to points of even order N . Note that if E(Q)tors
is cyclic and P, P ′ are two generators of this cyclic group, then if there exist a
number field L and a point Q ∈ E(L) with 2Q = P , then there must also be some
Q′ ∈ E(L) with 2Q′ = P ′. That is, the 2–divisibility holds for either all generators
or for none of them.

3.1. The case N = 2.

Lemma 13. Let

E : Y 2 = X(X2 +AX +B)

be an elliptic curve defined over Q with E(Q)tors = C2. Then, there exists a qua-

dratic field K with C4 ≤ E(K)tors if and only if B = s2 for some s ∈ Q.

Moreover, K = K± := Q(
√
A± 2s) in this situation and K+ 6= K−.

Proof. Using Proposition 12, with the point (0, 0), we get the roots of the corre-
sponding quartic polynomial q(x) which are

±
√

A± 2
√
B.

A necessary and sufficient condition then for a point Q to exist over a quadratic
field, with 2Q = (0, 0), is B = s2 for a certain s ∈ Q. Should this be the case,
Q ∈ E(K)[4], with K = Q(

√
A± 2s).

Please note that we have implicitly assumed that there are no points of order
2 in E(K ′) other than (0, 0) that could be divided by 2 over any quadratic field
K ′. In fact, this must always be the case, as from [7, Thm. 5 (ii)], G = C2 implies
C2 × C4 6≤ E(K ′)tors for any quadratic field K ′.

Let us check K+ 6= K− for all s. Assume K+ = K−. Then, A2 − 4s2 is a
rational square. Therefore, X2+AX + s2 has two different rational roots. That is,
C2 × C2 ≤ E(Q), which is a contradiction. �

3.2. The cases N = 4, 6, 8.

Let N ≥ 4 be an integer. We are given a curve E defined over a number field L
(for our purposes it will mostly be Q, but the result is more general) and a point
P ∈ E(L) of order N , and then we take the Tate normal form of E:

Tb,c : Y 2 + (1− c)XY − bY = X3 − bX2,

where P = (0, 0). Changing coordinates by means of

X 7−→ X , Y 7−→ Y +
c− 1

2
x+

b

2
;

we obtain a Weierstrass model:

Tb,c : Y 2 = X3 +AX2 +BX + C,
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with

A =
(c− 1)2 − 4b

4
, B =

b(c− 1)

2
, C =

b2

4
.

In particular P = (0,−b/2). Then the quartic polynomial q(x) which characterizes
the existence of Q such that 2Q = P (see Proposition 12) is now:

(1)
q(x) = x4 + 1

2 (−1 + 4b+ 2c− c2)x2 + 4bx+

+ 1
16 (1 + 24b+ 16b2 − 4c− 16bc+ 6c2 − 8bc2 − 4c3 + c4).

The Tate normal form also has an important feature, as it parametrizes the
different curves defined over the rationals with a common torsion structure [8].
Precisely, if CN ≤ E(Q), there exists t ∈ Q such that E is Q-isomorphic to Tb,c
where:

• c = 0 and b = t if N = 4;
• c = t and b = t2 + t if N = 6;
• c = (2t− 1)(t− 1)/t and b = (2t− 1)(t− 1) if N = 8.

Lemma 14. Let E be an elliptic curve defined over Q with E(Q)tors = C4. Let

t ∈ Q such that E is Q–isomorphic to Tt,0. Then, there exists a quadratic field K
with E(K)tors = C8 if and only if t = −s2 for some s ∈ Q.

Moreover, K = K± := Q(
√
1± 4s) in this situation and K+ 6= K−.

Proof. In this case, the roots of the quartic polynomial given at (1) are

√
−t± 1

2

√

1 + 4
√
−t , −

√
−t± 1

2

√

1− 4
√
−t

A necessary and sufficient condition then for a point Q to exist over a quadratic
field, with 2Q = (0, 0), is t = −s2 for a certain s ∈ Q. Should this be the case,
Q ∈ E(K±)[8], with K± = Q(

√
1± 4s).

As above, it must be (0, 0) the point in E[4] who gets divided by 2. If there
were a non–rational point P ∈ E(K ′) of order 4 over some quadratic field K ′ such
that there exists Q ∈ E(K ′) with 2Q = P , then E(K ′)tors must be a group with an
element Q of order 8 which does not generate the whole group (it does not generate
(0, 0) in particular), which contradicts our assumption E(K ′)tors = C8.

If K+ = K−, then (1 + 4s)(1 − 4s) is a rational square. Therefore, ∆E is a
rational square. That is, C2 × C2 ≤ E(Q), which is a contradiction. �

Remark.– Note that the assumption E(K)tors = C8 is indeed necessary. Since if
we relax this hypothesis to E(K)tors ≤ C8, Lemma 14 is false: the elliptic curve
240d6 has torsion subgroup C4 (resp. C2 × C8, C8, C8) over Q (resp. Q(

√
−1),

Q(
√
6), Q(

√
−6)) (see Table 1).

Lemma 15. Let E be an elliptic curve defined over Q with E(Q)tors = C6. Let

t ∈ Q such that E is Q–isomorphic to Tt2+t,t. Then, there exists a quadratic field

K with C12 ≤ E(K)tors if and only if t = −s2 for some s ∈ Q.

Moreover, K = K± := Q(
√

(1± s)(1 ∓ 3s)) in this situation and K+ 6= K−.

Proof. In this case, the roots of the polynomial given at (1) are

√
−t± 1

2

√

(1 + t)(1 − 4
√
−t− 3t) , −

√
−t± 1

2

√

(1 + t)(1 + 4
√
−t− 3t)

A necessary and sufficient condition then for a point Q to exist over a quadratic
field, with 2Q = P , is t = −s2 for a certain s ∈ Q. Should this be the case:
Q ∈ E(K±)[12], with K± = Q(

√

(1± s)(1 ∓ 3s)).
Again, the point in E[6] who gets divided by 2 must be rational. This time it

is easier, as the only group in ΦQ(2, C6) with elements of order 12 is precisely C12,
so the only two available points are (0, 0) and its inverse, which yield the same
situation.

If K+ = K− for some s, there exists r ∈ Q with

(1 + s)(1 − 3s) = r2(1 − s)(1 + 3s).
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That is to say, the equation

C : z2 = (1− s2)(1 − 9s2)

has a non–trivial rational solution, s 6= 0,±1,±1/3 (these solutions correspond to
Tate models which do not yield elliptic curves). C defines then an elliptic curve
with at least 8 rational points: 6 trivial ones, and 2 more at infinity. But C is
Q–isomorphic to 24a1, whose Mordell group is C2×C4. Therefore, the affine points
in C(Q) correspond to the trivial points. �

Lemma 16. Let E be an elliptic curve defined over Q with E(Q)tors = C8. Let

t ∈ Q such that E is Q–isomorphic to T(2t−1)(t−1),(2t−1)(t−1)/t. Then, there exists

a quadratic field K with C16 ≤ E(K)tors if and only if t = s2/(s2 + 1) for some

s ∈ Q.

Moreover, K = K± := Q(
√

(s4 − 1)(−1± 2s+ s2)) in this situation and K+ 6=
K−.

Proof. In this case, the roots of the polynomial given at (1) are

√

t(1 − t)± 1
2t

√

(1 − 2t)(1− 6t+ 4t2 − 4t
√

t(1 − t)),

−
√

t(1 − t)± 1
2t

√

(1 − 2t)(1− 6t+ 4t2 − 4t
√

t(1 − t)).

A necessary and sufficient condition then for a point Q to exist over a quadratic
field, with 2Q = P , is t(1 − t) = s2 for a certain s ∈ Q. This equation is a genus
zero curve again, parametrized by:

t =
r2

r2 + 1
, s =

r

r2 + 1
,

for some r ∈ Q. Should this be the case, Q ∈ E(K±)[12], with

K± = Q(
√

(r4 − 1)(−1± 2r + r2)).

Once more, the point in E[8] who gets divided by 2 must be rational, as the only
group in ΦQ(2, C8) with elements of order 16 is C16.

Finally, let us check K+ 6= K− for all s. If not, there is some r ∈ Q with

(s4 − 1)(−1 + 2s+ s2) = r2(s4 − 1)(−1− 2s+ s2)

for a certain s. That implies the equation

C : z2 = (−1 + 2s+ s2)(−1− 2s+ s2)

has a non–trivial rational solution (non–trivial meaning s 6= 0), as the trivial so-
lutions match the Tate models which do not yield elliptic curves. C defines an
elliptic curve with at least 4 rational points (2 trivial, 2 at infinity), but in fact it
is isomorphic to the curve 32a2 whose Mordell group is C2 × C2. Hence the affine
points in C(Q) are just the trivial points and we are done. �

4. Proof of theorem 2

For a given G ∈ Φ(1) and H ∈ ΦQ (2, G), we calculate the number h of possible
quadratic fields K such that, for a given rational elliptic curve E with E(Q)tors = G,
we have E(K)tors = H .

4.1. The cyclic case.

• Clearly, if H = C2 × C2m for some integer m, this can only happen over the
quadratic field K = Q(

√
∆E). Note that K is actually always a quadratic extension,

as Q(E[2]) 6= Q. This rules out the cases:

◦ G = C2, H = C2 × C2m, with m = 1, 3, 5;
◦ G = C4, H = C2 × C4m, with m = 1, 2, 3;
◦ G = Cr, H = C2 × Cr, with r = 6, 8, 10, 12.
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• Assume G = C2 and H ≤ C4n. Lemma 13 shows that there can be 1 or 2
quadratic fields in which this situation holds. When H = C4, C8 in fact both things
can happen (see examples in Table 1 at the appendix).

However, for the remaining cases, the situation can only hold in one quadratic
field. Let us do with a little detail the case H = C12, as the case H = C16 is
analogous. So we are assuming G = C2 and H = C12 for two different quadratic
fields. Then, as we also have a quadratic field where the full 2–torsion appears,
C6 × C12 should be a subgroup of one of the groups in ΦQ(2

∞), and that is not
possible from Theorem 5.

• If G = C2n and H = C4n for n = 2, 3, 4, Lemmas 14,15,16 (respectively) show
that there are exactly two quadratic fields where the appropriate torsion extension
occurs.

• If H = C4 × C4 (resp. H = C3 × C3n, n = 1, 2) the quadratic field must be
K = Q(

√
−1) (resp. K = Q(

√
−3)) by 7. This proves the cases

◦ G = C4, H = C4 × C4;
◦ G = C3, H = C3 × C3;
◦ G = C6, H = C3 × C6.

• For any given G = Cn, H = G × Cm with gcd(n,m) = 1 can appear at most
twice, since E[m] = Cm×Cm. More precisely, if m = 5, 7, 9 then only one quadratic
field may extend the torsion in this way since, if there were two such quadratic
fields, the cyclotomic field generated by the m–th roots of unity, Q(ζm), should be
a subfield of the corresponding biquadratic case from Proposition 7, and that is not
possible. This proves the cases:

◦ G = C1, H = Cm, with m = 5, 7, 9;
◦ G = C2, H = C10.
◦ G = C3, H = C15.

Now if m = 3 then H may appear once or twice. It actually happens twice in the
following cases (see examples in Table 1 at the appendix):

◦ G = C1, H = C3.
◦ G = C2, H = C6.

• There are only two cases remaining: G = Cn, H = C3n for n = 4, 5. Only
one quadratic field is possible in these instances. If there were two quadratic fields
where H appears, then Cn × C3 × C3 should be a subgroup of one of the groups in
ΦQ(2

∞) for n = 4, 5; and that is impossible from Theorem 5.

4.2. The non–cyclic case.

Let E be an elliptic curve defined over Q such that E(Q)tors = G where G is the
following:

• G = C2 × C2. If H = C2 × C4 there might be 1, 2 or 3 quadratic extensions,
following Proposition 11 in the previous section.

If H = C2 × C2n with n = 3, 6 appears in two different quadratic extensions,
then there are two independent points of order 3 in Q(2∞). As a result, C6 × C6 ≤
E(Q(2∞))tors, which contradicts Theorem 8.

If H = C2 × C8 for two different quadratic extensions, we must have two differ-
ent points of order 8. Let us call L the composition field of these two quadratic
extensions. There are two groups in ΦQ(2

∞) with more than one element of order
8: C4 × C8 and C8 × C8. But the first one is not our case: looking at the lattice of
subgroups of C4 × C8 one can realize that both C2 × C8 have a common subgroup
C2×C4, while the intersection (in our case) should only be G = C2×C2. This implies
E(L)tors had to be C8×C8 and Proposition 9 tells us that under these circumstances
[L : Q] ≥ 16. Hence only one quadratic extension with H = C2 × C8 can occur.

• G = C2×C4. As we mentioned above, if H = C4×C4 the only possible extension
is Q(

√
−1)/Q.
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When H = C2 × C8 the first part of Lemma 14 can be applied verbatim and it
shows that 1 or 2 extensions can appear (both things occur).

• G = C2×C6. The only group extension, by Theorem 1 is H = C2×C12. Lemma
15 tells us (the first part) that either one or two relevant quadratic extensions may
appear.

Also, from Theorem 8 we know that E(Q(2∞))tors = C4×C12, and by Proposition
9 that E(L)tors = C4 × C12 implies [L : Q] ≥ 8.

But, if there were two quadratic extensions, K1,K2 with E(Ki)tors = C2 × C12,
let us write F the composite of K1 and K2 (in particular, [F : Q] = 4). Then
clearly E(F )tors = C4 × C12, because it must be contained in E(Q(2∞))tors and it
should be strictly bigger than both E(Ki)tors.

This is a contradiction and therefore, only one quadratic extension K can appear
with E(K)tors = H = C2 × C12.

Remark.– These two last cases can also be found in [14], but the proofs there
are longer, as we can take advantage of the many results which have appeared
concerning this matter since (specially those in [4, 5]).

5. Proof of theorem 3

Now we are going to prove Theorem 3. For this purpose, for a given G ∈ Φ(1)
let us build a set S(G) consisting of the groups H ∈ ΦQ(2, G) \ {G}, repeated as
many times as the number of possible quadratic fields where H appears in Theorem
2. Our task is checking, for any subset S ∈ S(G) if S belongs to HQ(2, G) or not.

Example.– As

ΦQ(2, C1) = { C1, C3, C5, C7, C9 }
and Theorem 2 tells us that two quadratic extensions can appear with torsion group
C3, we have

S (C1) =
{

[C3] ; [C5] ; [C7] ; [C9] ; [C3, C3] ; [C3, C5] ; [C3, C7] ; [C3, C9] ;
[C5, C7] ; [C5, C9] ; [C7, C9] ; [C3, C3, C5] ; [C3, C3, C7] ; [C3, C3, C9] ;
[C3, C5, C7] ; [C3, C5, C9] ; [C3, C7, C9] ; [C5, C7, C9] ; [C3, C3, C5, C7] ;
[C3, C3, C5, C9] ; [C3, C3, C7, C9] ; [C3, C5, C7, C9] ; [C3, C3, C5, C7, C9]

}

.

Mind that at Table 1 we have (for all G ∈ Φ(1)) examples of elliptic curves over
Q satisfying the conditions in Theorem 3, for any S ∈ HQ(2, G). Therefore, now
we have to prove that there does not exist any other possible S ∈ S(G).

Remark.– Let be G ∈ Φ(1) cyclic and of even order. Then, for any S ∈ HQ(2, G)
there always exists a unique non-cyclic H ∈ S, the one corresponding to Q(E[2])
(a quadratic extension in this case), where E is the elliptic curve associated to S.

5.1. The groups C7, C9, C2 × C8.

These are the easiest cases, since by Theorem 1 we have that these groups are
stable under all quadratic extensions. Therefore, in these cases,

HQ(2, G) = ∅.

5.2. The groups C5, C10, C12, C2 × C6.

Using Theorem 2, these cases are almost as easy as the previous ones, since we
have that S(G) has only one element and we have examples in Table 1 for any of
those cases, we obtain that

HQ(2, G) = S(G).
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5.3. The group C1.

Consider the groups in ΦQ(2, C1). Mind that the intersection of two groups must
be trivial in this case, hence we must look for (two or more) elements in ΦQ(2, C1),
other than C1, such that their product lies in ΦQ(2

∞). From that, we easily deduce
that

HQ(2, C1) =
{

[C3]; [C5]; [C7]; [C9]; [C3, C3]; [C3, C5]
}

.

5.4. The group C3.

From all cases in S(C3), the only case to discard is S = [C3 × C3, C15]. In that
case, C3 × C15 should be a subgroup of some group in ΦQ(2

∞). But this does not
happen.

HQ(2, C3) =
{

[C3 × C3]; [C15]
}

.

5.5. The group C8.

By the previous remark, Theorem 2 and Lemma 16 we have that the only possible
subsets in S(C8) are [C2 × C8] and [C2 × C8, C16, C16]. Mind that C16 appears twice
or it does not appear at all, from Lemma 16. Since we have examples in Table 1
for those cases, we have proved:

HQ(2, C8) =
{

[C2 × C8]; [C2 × C8, C16, C16]
}

.

5.6. The group C2 × C4.

As previously, we have examples in Table 1 for any subset in S(C2 × C4), which
proves:

HQ(2, C2 × C4) =
{

[C2 × C8]; [C4 × C4]; [C2 × C8, C2 × C8]; [C2 × C8, C4 × C4];

[C2 × C8, C2 × C8, C4 × C4]
}

.

5.7. The group C6.

From the examples in Table 1 the only case to discard is S = [C2 × C6, C3 ×
C6, C12, C12] (as above, Lemma 15 implies that C12 appears twice if it does). But if
there exists an elliptic curve E over Q such that over four quadratic fields has those
torsion subgroups, then C3 × C12 is a subgroup of E(Q(2∞))tors. But no group of
ΦQ(2

∞) has such subgroups from Theorem 5. Therefore we have proved:

HQ(2, C6) =
{

[C2 × C6]; [C2 × C6, C3 × C6]; [C2 × C6, C12, C12]
}

.

5.8. The group C4.

There must always be exactly one non–cyclic group, and Lemma 14 tells us
that C8, if it appears in a quadratic extension, then it appears in two quadratic
extensions. So, a quick comparison between S(C4) and HQ(2, C4) in Theorem 3
tells us that it suffices to prove two assertions.

First, there does not exist S ∈ HQ(2, C4) such that one of the following facts
happens:

• H1, H2 ∈ S such that C8 ≤ H1 and C12 ≤ H2;
• H1, H2 ∈ S such that H1 = H2 = C12;

Note that there does not exist H ∈ ΦQ(2
∞) with elements of order 8 and 12. This

proves the first point. On the other hand, C12 cannot appear twice in an element
in S, since that would imply there should exist H ∈ ΦQ(2

∞) with C3 × C12 ≤ H .
But that is impossible too from Theorem 5.
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Second and last, we need to prove that if C4 × C4 ∈ S, then S = [C4 × C4]. That
is, we have to discard the following elements in S(C4):

[C4 × C4, C12] , [C4 × C4, C8, C8] .
Let us prove first [C4 × C4, C12] /∈ S(C4). Suppose that there exists an elliptic

curve E over Q and a squarefree integer D such that E(Q(
√
D))tors = C12 and

E(Q(
√
−1))tors = C4 × C4. Let us denote by L = Q(

√
D,

√
−1). In our situation

C6 ≤ ED(Q)tors from [7, Cor. 4] and C2 × C6 ≤ ED(Q(
√
−1))tors. Let t ∈ Q be

the relevant parameter in the Tate model of ED (the one we recalled in subsection
3.2). That is, we can find a Q-isomorphism such that a model for ED is:

Y 2 = (X − t)

(

X2 − 1

4
(3t2 + 2t− 1)X − t

4
(t2 + 2t+ 1)

)

.

Now, since C2 × C2 < ED(Q(
√
−1))tors, this means the discriminant of ED is a

square in Q(
√
−1) (and not in Q), which implies (1 + t)(1 + 9t) = −r2 for some

r ∈ Q. Parametrizing this conic we obtain

t = − 81m2 + 1

9(9m2 + 1)

for some m ∈ Q. Taking this back to the equation above we have the points of
order 2: (A±B

√
−1, 0), (t, 0) where

(2) A = −4(1 + 36m2 + 243m4)

27(1 + 9m2)3
and B = − 24(m+ 9m3)

27(1 + 9m2)3
.

Using

E(Q(
√
D))tors = C12, E(Q(

√
−1))tors = C4 × C4,

we have E(L)tors = C4 × C12 from Theorem 5. Therefore

ED(L)tors = C4 × C12,

since E and ED are isomorphic over Q(
√
D). Let us prove that this is impossible.

Assume that all the points of order 2 can be divided by two in L. In particular,
there should exist γ ∈ L such that A±B

√
−1 = γ2. If

γ = a0 + a1
√
−1 + a2

√
D + a3

√
−D,

then it is a straightforward computation to check that a necessary condition is that
γ = a+ b

√
−1 or γ = a

√
D + b

√
−D for some a, b ∈ Q. Assuming that γ is of one

of the forms above, the equality A±B
√
−1 = γ2 holds if and only if A = (a2− b2)r

and B = 2abr, where r = 1 or r = D. Solving this equations on the variables a and
b and using the definition of A and B from (2) we obtain

a = ± 2m

1 + 9m2

√

2

3r

(

1 + 27m2 ±
√

(1 + 9m2)(1 + 81m2)
)− 1

2

.

Then a necessary condition for a ∈ Q is that (1 + 9m2)(1 + 81m2) = s2 for some
s ∈ Q. This equation defines an elliptic curve (48a1) over Q, whose Mordell group
is C2 ×C2. But apart form the points at infinity, these points correspond to m = 0,
and this value gives us a Tate model which does not yield an elliptic curve (it
corresponds to t = −1/9). This proves [C4 × C4, C12] /∈ S(C4).

Finally then, let us prove [C4 × C4, C8, C8] /∈ S(C4). That is, we have to prove
that, if an elliptic curve E over Q has E(Q)tors = C4 then there does not exist a

squarefree integer D such that E(Q(
√
D))tors = C8 and E(Q(

√
−1))tors = C4 × C4.

If C8 = E(K)tors for some quadratic field K then t = −s2 for some s ∈ Q from
Lemma 14; where t is the relevant parameter in the Tate model of E. That is:

E : Y 2 = X3 +
1

4

(

1 + 4s2
)

X2 +
s2

2
X +

s4

4
.
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As E(Q(
√
−1))tors = C4 × C4 it must have full 2–torsion over Q(

√
−1) and that

means ∆E is a square in Q(
√
−1). This implies 1 − 16s2 is a square in Q(

√
−1)

(and not in Q), and hence we can write

1− 16s2 = −r2,

for some r ∈ Q. Parametrizing this conic we obtain

s =
m2 + 4m+ 5

4(m+ 1)(m+ 3)
, r =

2(2 +m)

(m+ 1)(m+ 3)
,

for some m ∈ Q. Taking this back to the equation of E we find that the full
2–torsion is given by points (αi, 0), i = 1, 2, 3, where

α1 = − (m+ 2 +
√
−1)2

8(m+ 1)(m+ 3)
, α2 = − (m+ 2−

√
−1)2

8(m+ 1)(m+ 3)
, α3 = − (5 + 4m+m2)2

16(m+ 1)2(m+ 3)2
.

As E(Q(
√
−1))tors = C4 × C4, all these points can be halved in Q(

√
−1), so, by

Lemma 13, αi−αj must be a square in Q(
√
−1) for all i, j ∈ {1, 2, 3}. In particular

α1 − α2 = − (m+ 2)

2(m+ 1)(m+ 3)

√
−1.

That is α1−α2 = r
√
−1 where r ∈ Q. So, if α1−α2 = β2 for some β = a+b

√
−1 ∈

Q(
√
−1), it must be b = ±a, and β = a± a

√
−1. Then

− (m+ 2)

2(m+ 1)(m+ 3)
= ±2a2,

otherwise said,

(m+ 1)(m+ 2)(m+ 3) = ±z2,

for some z ∈ Q. These two equations define elliptic curves over Q and in fact both
are isomorphic to 32a2, whose Mordell group is C2 × C2. So, the only available
solutions are the trivial ones (z = 0) given by m = −1,−2,−3. But m = −1,−3
are not available in the parametrization above (as they divide the numerator of
s), while m = −2 gives us a Tate model which does not yield an elliptic curve (it
corresponds to t = −1/16).

Therefore we have proved:

HQ(2, C4) =
{

[C2 × C4]; [C2 × C8]; [C2 × C12], [C4 × C4];

[C2 × C4, C12]; [C2 × C4, C8, C8]; [C2 × C8, C8, C8]
}

.

5.9. The group C2 × C2.
As before, a comparison between S(C2 ×C2) and HQ(2, C2×C2) (shown in Table

1 at the appendix) tells us that the proof for this case amounts to proving that, for
any S ∈ S(C2 × C2):
(1) If C2 × C12 ∈ S, then S = [C2 × C12]: Suppose that there exists another
H ∈ ΦQ(2, C2 × C2) such that H ∈ S. Then there exists an elliptic curve de-

fined over Q and two squarefree integers D,D′ such that E(Q(
√
D))tors = C2 ×C12

and E(Q(
√
D′))tors = H .

• Suppose that H = C2 × C4. Then there is a point of order 12 and a point
of order 4 in different fields, and therefore they generate different rational
points of order 4. That implies we may have C4 × C12 over the biquadratic
field Q(

√
D,

√
D′), but Proposition 9 tells us that this group can only ap-

pear at degree 23 or larger.
• Suppose that H = C2 × C6. Then we would have C6 × C6 ≤ E(Q(2∞))tors.

This contradicts Theorem 8.
• Finally, assume that H = C2 × C8. Then C8 × C12 ≤ E(Q(2∞))tors. This

again contradicts Theorem 8.
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(2) [C2 × C6 , C2 × C8] 6⊂ S. Were this the case we would have C6×C8 ≤ E(Q(2∞))tors
which is not possible (Theorem 8).

(3) S 6= [C2 × C6, C2 × C4, C2 × C4]. We will not give full details here, as they are
similar to those in the previous subsection.

Let E be an elliptic curve defined over Q such that E(Q)tors = C2×C2 and there
exist three squarefree integers D1, D2, D such that

E(Q(
√

Di))tors = C2 × C4 for i = 1, 2,

E(Q(
√
D))tors = C2 × C6.

We are going to prove that this is impossible. In other words, C4×C12 ≤ E(L)tors is
not possible for any triquadratic field L. This is equivalent to the same statement,
but for the elliptic curve ED, since E and ED are isomorphic over Q(

√
D). For this

purpose, we are going to use the general curve with torsion C2 × C6 by Kubert [13]
in the form given by Elkies [3]:

E′ : Y 2 =
(

X + t2
) (

X + (t+ 1)2
) (

X + (t2 + t)2
)

with 3-torsion points at X = 0. Now mind that, if the curve Y 2 = X(X2+aX+ b)
has a 4-torsion point T such that 2T = (0, 0), then the first coordinate of T is a
square root of b. For E′, there are three choices of b, all equivalent. This is because,
projectively, E′ can be written as

Y 2 =
(

X + (tu)2
) (

X + (tv)2
) (

X + (uv)2
)

with t+ u+ v = 0. In our case the three possible b’s are:

t3(2 + t)(1 + 2t), −(−1 + t)(1 + t)3(1 + 2t), (−1 + t)t3(1 + t)3(2 + t).

Once ED has full 4–torsion over some number field L then L must contain
√
−1

from Proposition 7; so there are really only two other square roots that one needs
to specify to determine the triquadratic field. If two of the b’s yield points defined
over the same quadratic field then either one of these b’s is a square or two of them
multiply to a square. But this is already enough because each possibility yields an
elliptic curve of rank zero (24a1 and 48a1) and the torsion points on both curves
correspond to singular curves in the equation E′.
(4) If [C2 × C4, C2 × C4, C2 × C4] ⊂ S, then S = [C2 × C4, C2 × C4, C2 × C4]. A group
C2 × C6 cannot appear in S from the argument above. And C2 × C8 cannot appear
either because there would be a point of order 8 in a quadratic extension, coming
from halving a point of order 4, but we have already obtained all possible quadratic
extension where the torsion grows (3, in fact, from Proposition 11).

All the remaining cases do happen, as shown in Table 1. Therefore we have
proved:

HQ(2, C2 × C2) =
{

[C2 × C4] ; [C2 × C6] ; [C2 × C8] ; [C2 × C12] ;
[C2 × C4, C2 × C4] ; [C2 × C4, C2 × C6] ; [C2 × C4, C2 × C8] ;
[C2 × C4, C2 × C4, C2 × C4] ; [C2 × C4, C2 × C4, C2 × C8]

}

.

5.10. The group C2.
Some quick remarks on HQ(2, C2) beforehand:
First, no element of HQ(2, C2) can contain both C10 (or C2 × C10) and Cm with

some m ≥ 4. The reason for this is that no element in ΦQ(2
∞) has points of order

10 and points of order m. This, together with the remark at the beginning of the
section, shows that:

• C2 × C10 can only appear in an element of HQ(2, C2) as [C2 × C10].
• C10 can only appear as [C10, C2 × C2].

Second, there are some pairs which cannot appear together in an element of
HQ(2, C2):
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• C6 (or C2 × C6) and C8, as there is no H ∈ ΦQ(2
∞) with points of order 6

and points of order 8.
• C8 and C16. Assume C8 = 〈P 〉 and C16 = 〈Q〉 are the torsion subgroups in

two different quadratic extensions. Consider the group homomorphism

ϕ : C8 × C16 −→ E(Q(2∞))

(nP,mQ) 7−→ nP +mQ

which verifies ker(ϕ) = 〈(4P, 8Q)〉, as the rational point of order 2 is the
only one who has its inverse in both quadratic extensions.

So E(Q(2∞))tors contains a group of 64 elements with (at least) an ele-
ment of order 8 and no elements of order 16. From Theorem 5 this would
imply there exists an elliptic curve E defined over Q such that E(Q)tors = C2
and C8 × C8 ≤ E(Q(2∞))tors and this contradicts Proposition 6.

Another important remark here is the following: let E be an elliptic curve defined
over Q such that there is a quadratic extension K/Q with Cn = E(K)tors, and 4|n,
then there must be another quadratic extension K ′/Q with Cm = E(K ′)tors with
4|m. Moreover, there are no more extensions where the torsion grows, apart from
the splitting field of X3+AX+B which gives a non–cyclic torsion group. This can
be deduced from Lemma 13 as there are either 2 or no quadratic extension where
one can get points of order 4 and, therefore, groups Cn and Cm with n,m ∈ 4Z.
The following pairs may then appear:

{C4, C4}, {C4, C8}, {C4, C12}, {C4, C16}, {C8, C8}, {C8, C12}, {C8, C16}, {C12, C16},
although the last three ones can already be ruled out from the arguments above.

Let us then construct the elements S ∈ HQ(2, C2) in ascending order of #S:

• #S = 1: In this case S ∈ {[C2 × C2], [C2 × C6], [C2 × C10]}. All of these
cases can occur (see examples in Table 1).

• #S = 2: In Table 1 we can find examples of:

[C2 × C2, C6], [C2 × C2, C10], [C2 × C6, C6].
These are all the possibilities, from Theorem 1 and the previous remarks.

• #S = 3 with C2×C2 ∈ S. We have example for all the possible cases (after
taking into account the preliminary remarks), which are:

[C2 × C2, C4, C4], [C2 × C2, C4, C8], [C2 × C2, C4, C12],
[C2 × C2, C4, C16], [C2 × C2, C8, C8], [C2 × C2, C6, C6].

• #S = 3 with C2 × C6 ∈ S. We have examples for [C2 × C6, C4, C4] and the
rest can be ruled out. Precisely:

[C2 × C6, C4, C8], [C2 × C6, C4, C16], [C2 × C6, C8, C8]
cannot appear because there is no H ∈ ΦQ(2

∞) with points of order 6 and
points of order 8. Also

[C2 × C6, C4, C12]
is not an option, as that would imply C3 × C12 is a subgrup of some H ∈
ΦQ(2

∞). Finally,

[C2 × C6, C6, C6]
is not an option. Were this the case, we would have three C3 subgroups
(different pairwise, as they appear in different quadratic extensions) of some
H ∈ ΦQ(2

∞), which is not possible.
• #S = 4 with C2 × C2 ∈ S. We have examples (see Table 1 as usual) for

S = [C2 × C2, C4, C4, C6],
and the remaining possibilities do not happen, in a similar way as the
previous case. In fact,

[C2 × C2, C4, C8, C6], [C2 × C2, C4, C16, C6], [C2 × C2, C8, C8, C6]
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all have points of order 6 and points of order 8, while

[C2 × C2, C4, C12, C6],
would imply C3 × C12 ≤ H for some group H ∈ ΦQ(2

∞).
• #S = 4 with C2×C6 ∈ S. The only case would be S = [C2×C6, C4, C4, C6]

and in fact it does not occur, as it would imply C3 × C12 is a subgroup for
a certain H ∈ ΦQ(2

∞).
• #S = 5. The only possible case would be S = [C2 × C2, C4, C4, C6, C6],

which would imply, again, C3 × C12 ≤ H , for some H ∈ ΦQ(2
∞).

Therefore we have proved:

HQ (2, C2 × C2) =
{

[C2 × C2] ; [C2 × C6] ; [C2 × C10] ; [C2 × C2, C6] ; [C2 × C2, C10] ;
[C2 × C6, C6] ; [C2 × C2, C4, C4] ; [C2 × C2, C6, C6] ;
[C2 × C2, C8, C8] ; [C2 × C2, C4, C8] ; [C2 × C2, C4, C12] ;
[C2 × C2, C4, C16] ; [C2 × C6, C4, C4] ; [C2 × C2, C4, C4, C6]

}

.

This finishes the proof of Theorem 3.

Appendix: Computations

Let G ∈ Φ(1), S = [H1, ..., Hm] ∈ HQ(2, G), E an elliptic curve defined over Q
such that E(Q)tors = G and let D1, . . . , Dm ∈ Z, squarefree, such that

E(Q(
√

Di))tors = Hi for i = 1, ...,m.

Let us write

FS = Q
(

√

D1, . . . ,
√

Dm

)

.

Table 1 shows an example of every possible situation, where at

• the first column is S,
• the second column is S ∈ HQ(2, G),
• the third column is #S,
• the fourth column is E(FS)tors,
• the fifth column is the degree of FS over Q,
• the sixth column is the label of the elliptic curve E with minimal conductor

satisfying the conditions above,
• the seventh column displays the D′s corresponding to the respective H ′s

in S.

Remark.– With the previous notation, we have computed for any curve in the
Antwerp–Cremona tables [2]: G, S and E(FS)tors. Interestingly, for a given S, the
group E(FS)tors seem to be fully determined, except for the cases

G = C2; S = [C2 × C2, C4, C4] ;

G = C2 × C2; S = [C2 × C4, C2 × C4]
where two different E(FS) appear as we run through the entire set of curves in
[2]. Given the amount of computations we have carried out, we think it is safe to
conjecture that this is precisely the case

Remark.– Comparing the results in Table 1 with the set ΦQ (2∞) we can conclude
that the only groups in ΦQ(2

∞) which do not appear if we consider the groups
E(FS)tors are:

C4 × C12, C4 × C16, C8 × C8.
These are, precisely, the groups discussed at Proposition 9. Our computations
suggest that this is in fact the case, but we have not proved this in detail.
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Table 1. h = #S for S ∈ HQ(2, G), d = [FS : Q]

G HQ(2, G) h E(FS)tors d label D′s

C1

C3
1

C3
2

19a2 −3
C5 C5 75a2 5
C7 C7 208d1 −1
C9 C9 54a2 −3
C3, C3 2

C3 × C3 4
175b2 5,−15

C3, C5 C15 50a4 −3, 5

C2

C2 × C2
1

C2 × C2
2

46a1 −23
C2 × C6 C2 × C6 36a3 −3
C2 × C10 C2 × C10 450a3 −15
C2 × C2, C6

2
C2 × C6

4

14a3 −7,−3
C2 × C2, C10 C2 × C10 150b3 −15, 5
C2 × C6, C6 C6 × C6 98a3 −7, 21

C2 × C2, C4, C4

3

C2 × C4 15a5 5,−1,−5
C4 × C4 64a4 −1, 2,−2

C2 × C2, C8, C8 C4 × C8 2880r6 −1, 6,−6
C2 × C2, C4, C8 C2 × C8 24a6 −2, 2,−1
C2 × C2, C4, C12 C2 × C12 30a3 −15, 5,−3
C2 × C2, C4, C16 C2 × C16 3150bk1 −7, 105,−15
C2 × C6, C4, C4 C2 × C12 450g1 −15,−3, 5
C2 × C2, C6, C6 C6 × C6 8

98a4 2,−7, 21
C2 × C2, C4, C4, C6 4 C2 × C12 30a7 10,−5,−2,−3

C3 C15 1
C15 2

50a3 5
C3 × C3 C3 × C3 19a1 −3

C4

C2 × C4
1

C2 × C4
2

17a1 −1
C2 × C8 C2 × C8 192c6 −2
C2 × C12 C2 × C12 150c3 −15
C4 × C4 C4 × C4 40a4 −1
C2 × C4, C12

2
C2 × C12

4
90c1 −15,−3

C2 × C4, C8, C8 C2 × C8 15a7 15, 3, 5
C2 × C8, C8, C8 C4 × C8 240d6 −1, 6,−6

C5 C15 1 C15 2 50b1 5

C6
C2 × C6 1 C2 × C6 2 14a4 −7
C2 × C6, C3 × C6 2 C6 × C6 4

14a1 −7,−3
C2 × C6, C12, C12 3 C2 × C12 30a1 −15,−3, 5

C8 C2 × C8 1 C2 × C8 2 15a4 −1
C2 × C8, C16, C16 3 C2 × C16 4 210e1 −7, 105,−15

C10 C2 × C10 1 C2 × C10 2 66c1 33

C12 C2 × C12 1 C2 × C12 2 90c3 −15

C2 × C2

C2 × C4
1

C2 × C4
2

33a1 −11
C2 × C6 C2 × C6 30a6 −3
C2 × C8 C2 × C8 63a2 −3
C2 × C12 C2 × C12 960o6 6

C2 × C4, C2 × C4
2

C4 × C4

4

17a2 17,−1
C4 × C8 1200j4 −5, 5

C2 × C4, C2 × C6 C2 × C12 90c2 6,−3
C2 × C4, C2 × C8 C4 × C8 75b3 −5, 5
C2 × C4, C2 × C4, C2 × C4 3

C4 × C4 15a2 −5, 5,−1
C2 × C4, C2 × C4, C2 × C8 C4 × C8 510e5 −34, 34,−1

C2 × C4

C2 × C8 1
C2 × C8 2

15a3 5
C4 × C4 C4 × C4 195a3 −1
C2 × C8, C4 × C4 2

C4 × C8
4

15a1 5,−1
C2 × C8, C2 × C8 C4 × C8 1230f2 41,−1
C2 × C8, C2 × C8, C4 × C4 3 C4 × C8 210e3 −6, 6,−1

C2 × C6 C2 × C12 1 C2 × C12 2 90c6 6


	1. Introduction
	2. Some technical results
	3. On 2–divisibility
	3.1. The case N=2
	3.2. The cases N=4,6,8

	4. Proof of theorem ??
	4.1. The cyclic case
	4.2. The non–cyclic case

	5. Proof of theorem ??
	5.1. The groups C7,C9,C2C8
	5.2. The groups C5, C10, C12, C2C6
	5.3. The group C1
	5.4. The group C3
	5.5. The group C8
	5.6. The group C2 C4
	5.7. The group C6
	5.8. The group C4
	5.9. The group C2 C2
	5.10. The group C2

	Appendix: Computations
	References

