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The model of a massless relativistic particle with curvature-dependent Lagrangian
is well known in �d+1�-dimensional Minkowski space. For other gravitational
fields less rigid than those with constant �zero� curvature only a few results are
known. In this paper, we give a geometric approach in order to solve the field
equations associated with that Lagrangian in the setting of an interesting three-
dimensional background, namely, a three-dimensional warped product with Lorent-
zian fibers. When some rigidity conditions are imposed to the fiber �constant Gauss
curvature�, the trajectories can be totally described. Several examples help us
clarify this. © 2007 American Institute of Physics. �DOI: 10.1063/1.2409522�

I. INTRODUCTION

A natural variational problem can be defined on a space of suitable curves � in a semi-

Riemannian manifold �M̄ , ḡ�, associated with the Lagrangian

L:� → R, L��̄� =� �̄ds , �1�

where �̄ is the Frenet first curvature of �̄, that measures the total curvature of these curves in

�M̄ , ḡ�. Concerning this, we found the following in the literature.

1. In the Euclidean plane R2, the total curvature action of any closed curve is not arbitrary, but
an integer multiple of 2�, L��̄�=2�i��̄�, where the integer number i��̄� is the rotation
number of �̄. Moreover, a classical result due to Whitney and Grauenstein ensures that the
rotation number characterizes the regular homotopy class of closed curves. Hence, the func-
tional L is constant on any regular homotopy class of closed curves. This fact also holds true
for curves connecting to fixed points of the Euclidean plane and with the same direction in
these boundary points.

2. Another classical result, due to Fenchel,9 states that the total curvature action of any closed
curve in the Euclidean space satisfies the inequality L��̄��2�, and the equality holds if, and
only if, �̄ is a convex plane curve. In particular, every minimum of the total curvature
functional, on closed curves, in the Euclidean three space is a plane curve, and so, a trivial
one. This holds not only for minima but also for critical points. In fact, the critical points of
L :�→R �where � is the space of closed curves, or curves connecting two points with given
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tangent vectors at these two points� in the Euclidean n-space are just the plane curves and so
they are again trivial.1

From a physical point of view, Lagrangians are a very powerful tool to introduce mathemati-
cal models. The following nonexhaustive, but illustrative, list displays some of the uses of
Lagrangians in physics.

1. Models of n-dimensional relativistic objects with rigidity attract considerable attention.
Some of the most remarkable examples are point particles �n=0�,15,17 strings �n=1�,8,18

membranes �n=2�,16 etc. The action functionals of these models depend on the external
curvature of the �n+1�-dimensional world surfaces swept by the n-dimensional objects in the
process of evolution. The starting point was the model of a relativistic string with rigidity
proposed by Polyakov.18 In a d-dimensional Lorentz space �Pd ,g� we have the bosonic
conformal string theory associated to the combined Nambu-Goto-Polyakov �NGP� action,3

S = W + �� dA =� ��H�2 + R + ��dA ,

where H and R are the mean and the extrinsic curvature of the surface, respectively, and
W=���H�2+R�dA is the Willmore action on surfaces. This Willmore action is invariant
under conformal changes of the metric g in Pd,25 and it was generalized to m-dimensional
submanifolds.7 The critical points of W are called the Willmore surfaces in �Pd ,g�. When
�Pd ,g� is flat, the action S is given by S=���H�2+��, and it coincides with the classical NGP
action.11

2. A �2+1�-dimensional space-time offers new possibilities which are not present in any
higher-dimensional case. In fact, thanks to the Abelian nature of the spatial rotation group
SO�2�, and the topology of many-particle configuration space, the spin of relativistic par-
ticles can be an arbitrary real number, and a generalized statistics, intermediate between Bose
and Fermi statistics, is also possible.26 The considerable interest to the field models of such
particles, called anyons, is due to their application to different planar physical phenomena:
the fractional quantum Hall effect, high-Tc superconductivity, and description of the physical
processes in the presence of cosmic strings.27 In particular, �2+1�-dimensional models of
relativistic particles described by the action A depending linearly on the world-trajectory
curvature �̄ and torsion �̄ have been studied,28

A = −� �m + ��̄ + ��̄�ds ,

where m is a parameter with the dimension of mass, whereas � and � are dimensionless
parameters. This model contains only spin internal degrees of freedom, its classical and
quantum spectra contain tachyonic states, and depending on the relation between the param-
eters � and �, may also have massive and massless states.

3. Plyushchay21 proved the particularity of the case of the linear dependence on the first cur-
vature,

A1 = −� �m + ��̄�ds . �2�

In fact, only spin internal degrees of freedom are present on the system, whereas any other
dependence also implies the existence of radial-like degrees of freedom. The model of a
particle described by the action A1 with m=0,4,22,29 which is essentially given by L,20 cor-
responds to a massless particle moving classically at a super-relativistic velocity. Neverthe-
less, this model has been shown not to contradict relativity.22

4. On the other hand, in �2+1� dimensions, the relativistic particle with torsion is described by
the action
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A2 = −� �m + ��̄�ds ,

and the spectrum of the model contains massive, massless, and tachyonic states.23 The
interest is the appearance of the action of this model under consideration of the problem
describing high-Tc superconductivity,19 which allows us to use it as the basis for constructing
models for the relativistic anyon �in the massive sector the spin of the quantum states can
take fractional values�.

5. The action depending quadratically on the curvature of the particle path was considered not
only in several papers,2,16,24 but also from a geometric point of view concerning the problem
of the elastic rod.5,6,12,13

A warped product M̄ =B	 fF of the semi-Riemannian manifolds �B ,gB� �the base� and �F ,gF�
�the fiber� with f :B→R a given positive smooth function �the warping function� is an interesting
geometric tool to easily model some spaces. The warped metric is defined as gM =gB+ f2gF.14 For

example, a surface of revolution M̄ in R3 can be obtained by rotation around the OZ axis of an
arclength parametrized curve in the OXZ plane, 
�t�= �x�t� ,z�t�� ,x�t��0, t� I= �−� ,��. If 
 is the

rotation angle, then the induced metric on M̄ is ds2=dt2+x2�t�d
2. But dt2 �d
2� is the standard

metric on I �the unit circle S1�, and hence M̄ can be viewed as the warped product M̄ = I	x�t�S1,
with f�t�=x�t� as the warping function. The standard space-time models of the universe are warped

products �the Robertson-Walker space-time is M̄ = I	 fS, where S is a three-dimensional connected
manifold of constant curvature�, as are the simplest models of neighborhoods of stars and black
holes.

Inspired by all this information, we have considered the problem of finding critical points of

the total curvature Lagrangian L on M̄ = I	 fM, that is, trajectories of massless particles in the
setting of three-dimensional warped products with Lorentzian fiber M, for curves contained in the
fibers.

The content of this paper is as follows. In Sec. II, we obtain the expression of the Euler-
Lagrange equation corresponding to the action L for clamped �or closed� spacelike curves �̄ in any
three-dimensional semi-Riemannian manifold, obtaining the motion equation �5�. Then, in Sec. III,
we adapt this equation to our case, bearing in mind that we are handling a manifold which is a
warped product, which means that we can use some very well-known formulas that can be found
in Ref. 14. In this way, the Euler-Lagrange equation can be reduced to a pair of ordinary differ-
ential equations whose unknown is the curvature function � of the original curve � in M. Section
IV is devoted to study the case when the Gaussian curvature of the given Lorentz surface is a
constant along the original curve, since this condition allows us to completely solve the motion
equations �14� and �15�. In particular, we remark the important case when the given Lorentz
surface �M ,g� has constant Gaussian curvature G, because we can completely describe all critical
points of the action L. In Sec. V, general methods to construct explicit examples are explained,
following some ideas that can be found in Ref. 10. Finally, in Sec. VI, we consider the situation
if timelike curves are considered instead.

II. THE EULER-LAGRANGE EQUATION

The problem of finding the critical points of the Lagrangian L can be considered in a more
general setting, namely, by considering a family of Frenet curves in a three-dimensional semi-
Riemannian manifold.

Let �M̄ , ḡ� be a three-dimensional semi-Riemannian manifold. Let �̄ be an arclength param-

etrized spacelike curve in M̄ admitting a Frenet system �T̄= �̄� , N̄ , B̄	 with curvature and torsion
functions �̄ and �̄, respectively �the timelike case is considered in the last section�. We have the
Frenet equations

�̄T̄T̄ = �2�̄N̄ ,
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�̄T̄N̄ = − �1�̄T̄ + �3�̄B̄ ,

�̄T̄B̄ = − �2�̄N̄ , �3�

where �̄ is the Levi-Cività connection of ḡ, �1= ḡ�T̄ , T̄�=1, �2= ḡ�N̄ , N̄�, and �3= ḡ�B̄ , B̄�, �i

= ±1, i=1,2 ,3. Given a suitable space of curves �, say, clamped or closed, we are interested in
studying the critical points of the total curvature Lagrangian,

L:� → R, �̄ � L��̄� = �
�̄

�̄ . �4�

For this end, we take a tangent vector at �̄��, which is nothing but a vector field W along the

curve �̄. Also, it defines in M̄ a variation of �̄ in �. Next, if �=��t ,r� : �a ,b�	 �−� ,��→M̄ is the
corresponding variation of �̄, ��t ,0�= �̄�t�, with variational field W=W�t�= ��� /�r��t,0�, the criti-
cal points of the variational problem are those curves �̄�� such that

�L��̄��W� = 0, ∀ W � T�̄� .

Some standard arguments, involving integration by parts, let us compute the first derivative of L,

�L��̄��W� = �
�̄

ḡ����̄�,W�ds + �B��̄,W��a
b,

where ���̄� and B��̄ ,W� denote the Euler-Lagrange and the boundary operators, respectively,
which, in this case, are given by

���̄� = �̄
T̄

2
N̄ + �1�̄�T̄ + �1�̄�̄T̄T + R̄�N̄,T̄�T̄ ,

B��̄,W� = ḡ��̄T̄W,N̄� − ḡ�W,�̄T̄N̄� − �1�̄ḡ�W,T̄� ,

where R̄ stands for the curvature operator of ḡ and �̄� is the derivative of the function �̄ with

respect to the arclength parameter. Now, if we set V=�� /�t=vT̄, we have �̄T̄W=�r�log v�T̄
+�WT̄. This formula shows that if the curves in variation � are in �, then W�a�=W�b�=0,

�̄WT̄�a�= �̄WT̄�b�=0, and consequently �B��̄ ,W��a
b=0. By using Eq. �3�, the Euler-Lagrange op-

erator becomes

���̄� = − �2�3�̄2N̄ + �3�̄�B̄ + R̄�N̄,T̄�T̄ ,

where �̄� is the derivative of �̄ with respect to the arclength. Finally a curve �̄ in � is a critical
point of L if, and only if, it satisfies the Euler-Lagrange equation

R̄�N̄,T̄�T̄ = �2�3�̄2N̄ − �3�̄�B̄ . �5�

III. SOLVING THE EULER-LAGRANGE EQUATION

Now we adapt the general case of Sec. II to a warped product M̄ = I	 fM, where I is an interval
endowed with the metric �dt2 �� is 1 or −1�, �M ,g� is an oriented Lorentzian surface �the fiber�,
and f : I→R a positive smooth function. We set the warping metric ḡ=�dt2+ f2g. Thus, �M̄ , ḡ� is
a three-dimensional manifold of index 1 or 2, according to � be 1 or −1, respectively. For a given
spacelike unit speed curve ��s� in the surface M, let us denote by �T ,N	 its Frenet frame and by
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� its geodesic curvature. A positive orthonormal Frenet frame along �t�s�= �t ,��s�� in �M̄ , ḡ� is

�T̄=�t�= �1/ f�T ,�= �1/ f�N ,�t	. Note that �1= ḡ�T̄ , T̄�=1, ḡ�� ,��=−1, ḡ��t ,�t�=�, and it is easy to
see that the gradient of f is given by

�f = � ḟ�t. �6�

Next, we compute the Frenet system of �t. Let �̄ be the Levi-Cività connection of �M̄ , ḡ�. We
have

�̄T̄T̄ = �2�̄N̄ ,

�̄T̄N̄ = − �̄T̄ + �3�̄B̄ ,

�̄T̄B̄ = − �2�̄N̄ ,

where �̄ and �̄ are the curvature and torsion of �t in �M̄ , ḡ�, respectively. In our case, some

well-known formulas in warped spaces allow us to express the geometry of �M̄ , ḡ� in terms of the
the warping function f and the geometries of �I ,�dt2� and �M ,g� �Ref. 14, p. 206�. Thus, after
some computations, we obtain

�̄T̄T̄ = −
�

f
� −

� ḟ

f
�t. �7�

Note that the vector �̄T̄T̄ is lightlike if, and only if, � ḟ2�t�−�2�s�=0. We will always assume that
the curve �t is a spacelike Frenet curve, and hence we have

� ḟ2�t� − �2�s� � 0 for any t � I and any s . �8�

First, let us suppose that �t is a geodesic. From Eq. �7�, we have �=0 and ḟ�t�=0, that is, � is a
geodesic and the slice Mt= �t		M is critical. In that case, the Euler-Lagrange equation reduces
trivially and �t is a critical point of L.

Now, we assume that f�t�=0 for a certain t� I. If � is a geodesic, we already know that �t is

a geodesic on M̄. Next, if ḟ�t�=0 and ��0, simple computations let us obtain

�f = 0, �̄T̄T̄ = −
�

f
�, �̄ =

�

f
,

N̄ = �, B̄ = �t, �̄T̄� = −
�

f
T̄ ,

�̄ = 0, �̄T̄�t =
ḟ

f
T̄ = 0.

In this case, the Euler-Lagrange equation reduces to R̄�N̄ , T̄�T̄=0, or equivalently �Ref. 14, p. 210�,
0=RM�N ,T�T=GN, where RM is the curvature operator of �M ,g� and G is the Gauss curvature of
M �recall that G=−g�RM�T ,N�N ,T��. As a consequence, we have the following.

Theorem 3.1: Assume that t� I is such that ḟ�t�=0. Let ��s� be a unit spacelike curve in M
such that either � is a geodesic or G���s��=0 for any s �that is, � is a curve of parabolic points�.
Then, �t is a critical point of L.
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From now on, we assume ḟ �0. After some computations, recalling O’Neill’s book �Ref. 14,
p. 206�, we obtain

N̄ =
− �2�� − ��2 ḟ�t


�2�� ḟ2 − �2�
, B̄ =

ḟ� + ��t


�2�� ḟ2 − �2�
, �9�

�̄ =

�2�� ḟ2 − �2�

f
, �̄ =

ḟ��

f�� ḟ2 − �2�
, �2�3 = − � . �10�

In order to solve the Euler-Lagrange equation �5�, we have to distinguish several cases.

Case 1: Assume that � is a geodesic in the fiber M, i.e., �=0. According to Eq. �8�, ḟ �0. If

we set �=sign� ḟ�, Eqs. �5�, �7�, �9�, and �10� become

R̄��t,T̄�T̄ = 0, T̄ =
1

f
T, �2 = �, N̄ = − ��t, B̄ = ��, �̄ =

� ḟ �
f

, �̄ = 0.

Once again, the well-known formulas in Ref. 14, p. 210, gives 0= R̄��t , T̄�T̄=�f f̈�t. Then, we have
obtained the following.

Theorem 3.2: Let � be a unit spacelike geodesic in M. Let t� I such that ḟ�t��0 and f̈�t�
=0. Then, �t is a nongeodesic critical point of L.

Case 2: Now, we suppose that ��0 is a constant. Once again, from Eqs. �9� and �10� we
obtain the following information:

N̄ =
− �� − � ḟ�t


�2�� ḟ2 − �2�
, �̄ =


�2�� ḟ2 − �2�
f

, �̄ = 0.

Thus, the Euler-Lagrange equation reduces to 0= R̄�N̄ , T̄�T̄, and by using the formulas for warped
products,

0 =
1


�2�� ḟ2 − �2�
���� ḟ2 − G���s���� − ḟ f̈�t� .

Therefore, f̈�t�=0 and G����s���−� ḟ2�t�=0. Therefore, we can state the following result.
Theorem 3.3: Let us assume that the curvature function � of � is a positive constant. Let t

� I such that ḟ�t��0 and f̈�t�=0. If in addition G���s��=� ḟ2�t� for any s, then �t is a critical point
of L.

Case 3: Finally, we assume that the curvature � is not a constant and the current slice is not

critical, that is, ḟ�t��0 for t� I. By using some formulas in O’Neill’s book14, we obtain

R̄�N̄,T̄�T̄ =
�2��� ḟ2 − G � ��

f2
�2�� ḟ2 − �2�
� +

�2 ḟ f̈


f�2�� ḟ2 − �2�
�t, �11�

where G �� means the Gauss curvature of M along �. From Eqs. �9�–�11� we obtain the equations

�2��� ḟ2 − G � ��
f2 = − �3��̄2 − �3 ḟ �̄�,

�2 ḟ f̈

f
= − ��3 ḟ �̄2 − �3��̄�.

Since −�2�3=�, we easily obtain the following equations:
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�̄2 =
�2� ḟ2 − �G � �� − �f ḟ2 f̈

f2��2 − � ḟ2�
, �12�

�̄� =
�� ḟ�f f̈ − ḟ2 + �G � ��

f2��2 − � ḟ2�
. �13�

By recalling the expression of �̄, bearing in mind Eq. �10�, we have

����2 = � ḟ2 − �G � �

ḟ2
�2 − �f f̈
��2 − � ḟ2� . �14�

Now, we compute the derivative of �̄, and by Eqs. �13� and �14�, we have

k� = 2
ḟ2 − �G � �

ḟ2
�3 + �� ḟ2 − G � �

f
− � f̈ − 2�f f̈
� . �15�

IV. RIGIDITY CONDITIONS

We first assume that the Gaussian curvature of M along � is a constant. Then, Eq. �15� can be
integrated by multiplying by 2��,

�k��2 =
ḟ2 − �G � �

ḟ2
�4 + �� ḟ2 − G � �

f
− � f̈ − 2�f f̈
�2 + A , �16�

where A is an integration constant. Now, Eq. �14� compared with Eq. �16� gives

A = f ḟ2 f̈ , �17�

�G � � = ḟ2 − f f̈ . �18�

Next, we insert Eq. �18� into Eq. �14�, obtaining

�k��2 =
f f̈

ḟ2
��2 − � ḟ2�2. �19�

Since we are assuming that the curvature function � of � is not constant, then f̈ �0. Next, we
solve Eq. �19� by discussing the value of �.

� = 1, ��s� = ḟ tanh�s
f f̈ + ḟc� , �20�

� = − 1, ��s� = ḟ tan�s
f f̈ + ḟc� , �21�

where c is an integration constant. Therefore, we have proved the following.
Theorem 4.1: Fix a point t� I. We assume

1. ḟ�t��0, f̈�t��0;

2. G �� is a constant function and �G ��= ḟ2�t�− f�t� f̈�t�; and
3. the curvature of � is given by either Eq. (20) or Eq. (21).

Then, the curve �t is a critical point of L.
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Next, we assume that the Gaussian curvature G of the whole surface M is constant. There is
no loss of generality if we assume G=0,1 ,−1. We recall that dS2�1� is the two-dimensional de
Sitter space of Gaussian curvature G=1, and AdS2�−1� is the two-dimensional anti de Sitter space
of Gaussian curvature G=−1. We denote by M� the space dS2�1� or AdS2�−1� according to �

= ±1, respectively. Now, let M̄� be the warped product of an open interval and M�. From Theo-
rems 3.1, 3.2, 3.3, and 4.1 we have the following.

Corollary 4.1: A unit spacelike curve �t�� in M̄� is a critical point of L if, and only if, one
of the following statements holds:

1. ḟ�t�=0 and � is a geodesic;

2. ḟ�t��0, f̈�t�=0, and � is a geodesic;

3. ḟ2�t�=���0, f̈�t�=0, and ��0 is constant; and

4. ḟ�t��0, f̈�t��0, ��= ḟ2�t�− f�t� f̈�t�, and the curvature function is given by Eq. (20) or Eq.
(21), according to �=1 or �=−1, respectively.

Next, let L2 be the Lorentz-Minkowski 2-plane.

Corollary 4.2: A unit spacelike curve �t�� in M̄ = I	 fL2 is a critical point of L if, and only
if, one of the following statements holds:

1. ḟ�t�=0 and � is any smooth function;

2. ḟ�t��0, f̈�t�=0, and � is a geodesic;

3. 0� ḟ2�t�= f�t� f̈�t�, f̈�t��0, and the curvature function is given by Eq. (20) or Eq. (21),
according to �=1 or �=−1, respectively.

V. EXAMPLES

Some of the ideas of Examples 5.1, 5.2, and 5.3 can be found in Ref. 10.
Example 5.1: In L3 with usual metric ds2=dx2+dy2−dz2, let 
 : �a ,b��R→L3, 
�u�

= �x�u� ,0 ,z�u�� be a timelike unit curve with x�u��0 for any u� �a ,b�. Let M be the revolution
surface around the z axis whose profile curve is 
. A local parametrization of M is given by

X:�a,b� 	 S1 → L3, X�u,
� = �x�u�cos 
,x�u�sin 
,z�u�� ,

for any �u , ei
�� �a ,b�	S1. A unit spacelike normal vector field to M is

N�u,
� = �z��u�cos 
,z��u�sin 
,x��u�� for any �u,ei
� � �a,b� 	 S1.

Since 
 is timelike, we have a Lorentzian surface whose Gaussian curvature is not a constant, in
general. In fact, it is easy to obtain the following expression for the Gaussian curvature of M:

G�u,
� =
z��u��z��u�x��u� − x��u�z��u��

x�u�
for any �u,ei
� � �a,b� 	 S1.

Now, we pick a point u� �a ,b�. The curve � given by ei
�S1���
�=X�u ,
� is nothing but the
orbit of point 
�u� by a subgroup of orthocronal isometries of L3. Therefore, both the Gaussian
curvature of M along � and the geodesic curvature � of � are constant functions. Now, we choose
f : I→R a positive smooth function such that there is a point t� I and suitable �= ±1 satisfying

ḟ�t� � 0, f̈�t� = 0, ḟ2�t� = �
z��u��z��u�x��u� − x��u�z��u��

x�u�
.

According to Theorem 3.3, the curve �t is a critical point of the action L defined on M̄ = I	 fM.
As a remark, the surface dS2�1� can be obtained in this way by choosing the curve 
 :R

→L3 defined by 
�u�= �cosh�u� ,0 , sinh�u��.
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Example 5.2: In L3 with usual metric ds2=dx2+dy2−dz2, let 
 : �a ,b��R→L3, 
�u�
= �x�u� ,y�u� ,0� be a spacelike unit curve with x�u��0 for any u� �a ,b�. We consider the surface
M in L3 given by the local parametrization

X:�a,b� 	 R → L3, X�u,
� = �x�u�cosh 
,y�u�,x�u�sinh 
� ,

for any �u ,
�� �a ,b�	R. Clearly, we are using the subgroup of isometries H of L3 defined by
H= �f
 :
�R	, where each f
 is given by

f
�x,y,z� = �x,y,z��cosh 
 0 sinh 


0 1 0

sinh 
 0 cosh 

� .

The unit spacelike normal vector field to M is

N�u,
� = �y��u�cosh 
,− x��u�,y��u�sinh 
� for any �u,
� � �a,b� 	 R .

Since 
 is spacelike, we have a Lorentzian surface whose Gaussian curvature is not constant in
general. The Gaussian curvature of M is given by

G�u,
� =
y��u��x��u�y��u� − y��u�x��u��

x�u�
for any �u,
� � �a,b� 	 R .

Now, we pick a point u� �a ,b�. The timelike curve � given by ��
�=X�u ,
� is nothing but the
orbit of point 
�u� by the group H. Therefore, both the Gaussian curvature of M along � and the
geodesic curvature � of � are constant functions. Now, we choose f : I→R a positive smooth
function such that there is a point t� I and suitable �= ±1 satisfying

ḟ�t� � 0, f̈�t� = 0, ḟ2�t� = �
y��u��x��u�y��u� − y��u�x��u��

x�u�
.

But as it will be noticed in the next section, Theorem 3.3 can be rewritten for timelike curves �.
Therefore, the curve �t is a critical point of L.

As a remark, the surface dS2�1� can be obtained by choosing the curve 
 :R→L3, 
�u�
= �cos�u� , sin�u� ,0�.

Example 5.3: In L3 with usual metric ds2=dx2+dy2−dz2, we consider a unit timelike curve

 : �a ,b�→L3, 
�u�= �0,y�u� ,z�u��, with y�u��z�u� for any u� �a ,b�. We define the surface M in
L3 given by

X:�a,b� 	 R → L3,

X�u,
� = �
�y�u� − z�u��,y�u� −

2

2
�y�u� − z�u��,z�u� −


2

2
�y�u� − z�u��
 ,

for any �u ,
�� �a ,b�	R. Clearly, the surface M is a revolution surface around the axis L of
equations x=0 and y=z, whose profile curve is 
. The group H= �f
 :
�R	 of rotations around
axis L consists of the isometries given by

f
�x,y,z� = �x,y,z�� 1 − 
 − 



 1 − 
2/2 − 
2/2

− 
 
2/2 1 + 
2/2
� .

Since 
 is timelike, the unit normal vector field
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N�u,
� = �
�y��u� − z��u��,− z��u� +

2

2
�− y��u� + z��u��,− y��u� +


2

2
�− y��u� + z��u��


is spacelike for any �u ,
�. Hence, the surface M is Lorentzian, with Gaussian curvature

G�u,
� =
�z��u� − y��u���y��u�z��u� − y��u�z��u��

y�u� − z�u�
,

for any �u ,
�� �a ,b�	R.
Now, we pick a point u� �a ,b�. The curve � in M defined by ��
�=X�u ,
� is nothing but the

orbit of point 
�u� by the group H. Therefore, both the Gaussian curvature of M along � and the
geodesic curvature � of � are constant functions. Now, we choose f : I→R a positive smooth
function such that there is a point t� I and suitable �= ±1 satisfying

ḟ�t� � 0, f̈�t� = 0, ḟ2�t� = �
�z��u� − y��u���y��u�z��u� − y��u�z��u��

y�u� − z�u�
.

According to Theorem 3.3, the curve �t is a critical point of L.
Example 5.4: We consider the above Example 5.1, 5.2, or 5.3.
Case 1: Let 
 : �a ,b�→L3 be a unit timelike curve, 
�u�= �x�u� ,0 ,z�u��. Assume that at u0

� �a ,b�z��uo�x��uo�−x��uo�z��uo�=0 holds.
Case 2: Let 
 : �a ,b�→L3 be a unit spacelike curve, 
�u�= �x�u� ,y�u� ,0�, and suppose that

x��uo�y��uo�−y��uo�x��uo�=0 holds at a suitable point uo� �a ,b�.
Case 3: Let 
 : �a ,b�→L3 be a unit timelike curve, 
�u�= �0,y�u� ,z�u��, such that

y��uo�z��uo�−y��uo�z��uo�=0 is satisfied at the point uo� �a ,b�.
Then, in all three cases, we have that the Gauss curvature satisfies G�u0 ,
�=0. Now, we

consider the curve � given by ��
�=X�uo ,
�. We choose a positive function f : I→R admitting a
critical point to� I. Given �= ±1, according to Theorem 3.1, the curve �t0

is a critical point of L.
Example 5.5: Define f1 , f2 , f3 to be the smooth functions given by f1 : �0,��→R, f1�t�

=sinh�t�, f2 : �0,��→R, f2�t�=cosh�t�, and f3 :R→R, f3�t�=eat+b, where a ,b�R with a�0. It is
easy to check the following identities:

� ḟ1�t��2 − f1�t� f̈1�t� = 1, � ḟ2�t��2 − f2�t� f̈2�t� = − 1, � ḟ3�t��2 − f3�t� f̈3�t� = 0,

ḟ i�t� � 0, f̈ i�t� � 0,

for any i=1,2 ,3 and any t. Now, we consider the following particular cases:

• for �=1, M =dS2�1�, or �=−1 and M =AdS2�−1�, warping function f1;
• for �=−1, M =dS2�1�, or �=1 and M =AdS2�−1�, warping function f2; and
• for �= ±1, M =L2, warping function f3.

Then, all slices Mt in the warped product M̄ =R	 fM with metric ḡ=�dt2+ f2gM contain critical
points �t of L coming from curves � whose curvature functions � are given by Eq. �20� or Eq.
�21�.

VI. TIMELIKE CURVES

Now, we assume that � is a unit timelike curve with curvature � in the Lorentzian surface
�M ,g�. Then, the Frenet equations associated with � are now given by

�TT = �N, �TN = �T �22�

�the normal vector N is now spacelike�. Also, given �= ±1, the metric ḡ is formally the same as in

Sec. III, and for the rest of the geometric tools we keep the same notation �R̄, N̄, and so on�. In
particular, the Euler-Lagrange equation �5� is formally the same.
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Next, we consider the Lorentzian metric go=−g on M. Obviously, � is a spacelike curve for
go. Let �o, No, �o, and Go denote the Levi-Cività connection of go, the normal vector along the
curve, the curvature function of the curve, and the Gaussian curvature of the surface, respectively.
Simple computations show

�o = �, No = N, �o = − �, Go = − G . �23�

Next, we consider the warped product manifold as in Sec. III, but taking −� and calling the warped
metric ḡo. Thus, ḡo=−ḡ, and therefore, the Levi-Cività connections of ḡo and ḡ coincide. As a

consequence, the curvature operator is the same. Moreover, the Frenet systems of �t in �M̄ , ḡ� and

in �M̄ , ḡo� also agree. In this way we reduce the case of timelike curves to that of spacelike curves.
This readily proves Theorems 3.1, 3.2, 3.3, and 4.1 for a timelike curve �.

Next, we assume that the Gaussian curvature G of the surface M is constant. As in Sec. IV, we

denote M� the spaces dS2�1� or AdS2�−1� according to �= ±1, respectively. Now, let M̄� be the
warped product of an open interval and M�. We have the following.

Corollary 6.1: A unit timelike curve �t�� in M̄� is a critical point of L if, and only if, one of
the following statements holds:

1. ḟ�t�=0 and � is a geodesic;

2. ḟ�t��0, f̈�t�=0, and � is a geodesic;

3. ḟ2�t�=���0, f̈�t�=0, and ��0 is constant; and

4. ḟ�t��0, f̈�t��0, ��= ḟ2�t�− f�t� f̈�t�, and the curvature function is given by

� = 1, ��s� = − ḟ tan�s
f f̈ + ḟc� , �24�

� = − 1, ��s� = − ḟ tanh�s
f f̈ + ḟc� , �25�

where c is an integration constant.

Next, let L2 be the Lorentz-Minkowski 2-plane.

Corollary 6.2: A unit timelike curve �t�� of L in M̄ = I	 fL2 is a critical point of L if, and
only if, one of the following statements holds:

1. ḟ�t�=0 and � is any smooth function;

2. ḟ�t��0, f̈�t�=0, and � is a geodesic; and

3. 0� ḟ2�t�= f�t� f̈�t�, f̈�t��0, and the curvature function is given by Eq. (24) or Eq. (25),
according to �=1 or �=−1, respectively.

Remark 6.1: In case the fiber M is a Riemannian surface and �=−1, then Eqs. (14) and (15)
are also obtained up to some minor sign changes. Nevertheless, in such a space-time Einstein’s
equations for gravitational field in three-dimensional space-time have only trivial solutions unless
one introduces some complicated matter density.

VII. CONCLUSIONS

In this paper we have considered the dynamics associated with the total curvature of a particle
path, which is described by the action L given by Eq. �4� in three-dimensional warped spaces with
Lorentzian fiber. First, in Sec. II we have obtained the Euler-Lagrange equation of motion �5� in
more general backgrounds, namely, three-dimensional semi-Riemannian spaces. Then, in Sec. III,
we have particularized to the case of warped spaces with a Lorentzian fiber, and there we have
obtained solutions to the motion equation which lie in a critical slice when the particle path of the
fiber is a geodesic, or a curve constituted by parabolic points �Theorem 3.1�. If we assume that the
slice is not critical, but corresponds to an inflection value t of the warping function f , then we
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obtain a trajectory of the model in two cases: when � in the fiber M is a geodesic �Theorem 3.2�,
or it is a curve of constant curvature ��0 �i.e., a circle� and the Gauss curvature of the fiber

satisfies G=� ḟ2�t� along � �Theorem 3.3�. In Sec. IV, we consider the case when the slice is
neither critical nor corresponding to an inflexion value of the warping function. When the Gauss
curvature of the fiber along � satisfies Eq. �18�, we obtain the particle path by means of its
curvature given by Eq. �20� or Eq. �21�. In a higher rigidity case �when the Gauss curvature G of
the fiber is a constant�, the fiber can be considered one of the classical spaces L2, dS2, or AdS2, and
the particle paths can be completely characterized �Corollaries 4.1 and 4.2�. We have included also
several examples to easily show particle trajectories. In Sec. VI we have seen that timelike curves
in the fiber can be considered instead of spacelike ones.
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