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SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE FORMS

Pablo Alegre and Alfonso Carriazo

Abstract. In the present paper submanifolds of generalized Sasakian-space-
forms are studied. We focus on almost semi-invariant submanifolds, these
generalize invariant, anti-invariant, and slant submanifolds. Sectional curva-
tures, Ricci tensor and scalar curvature are also studied. The paper finishes
with some results about totally umbilical submanifolds.

1. INTRODUCTION

Recently, in [1] D. E. Blair and the authors introduced the notion of a generalized
Sasakian space form as that almost contact metric manifold (M̃, φ, ξ, η, g) whose
curvature tensor satisfies

R̃(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }
+f2{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}
+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ}

(1.1)

for all vector fields X, Y, Z and certain differentiable functions f1, f2, f3 on M̃ .
This generalizes the concept of Sasakian space form as well as generalized complex
space form did with complex space form. A generalized Sasakian space form with
functions f1, f2, f3 will be denoted by M̃(f1, f2, f3). If it is a Sasakian manifold,
then the functions are constant and f1 − 1 = f2 = f3, as it was proved in [1]. The
theory of generalized Sasakian space forms was continued by the authors in [2],
which is mainly devoted to the study of the structures on these spaces.
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On the other hand, in [4] A. Bejancu initiated the study of CR-submanifolds
of an almost Hermitian manifold generalizing invariant and anti-invariant sub-
manifolds. The extension of this concept to submanifolds of almost contact metric
manifolds was made in [5] by A. Bejancu and N. Papaghiuc; they called them semi-
invariant submanifolds. Later, the study of almost semi-invariant submanifolds of
framed metric manifolds, as a generalization of both CR-submanifolds and semi-
invariant submanifolds, was initiated by M. M. Tripathi and K. D. Singh in [18],
and followed by Tripathi and I. Mihai in [17].

Finally, in [16] almost semi-invariant submanifolds of generalized complex space
forms were studied. We now present an analysis of almost semi-invariant submani-
folds of generalized Sasakian space forms. Some results about these submanifolds
on contact geometry have been already given in [15].

After a section containing some background and many new examples of almost
semi-invariant submanifolds, we initiate the study of submanifolds of a generalized
Sasakian space form by characterizing invariant and anti-invariant submanifolds by
means of the action of the curvature tensor. Next, for an almost semi-invariant
submanifold of a generalized Sasakian space form, we introduce the notions of
Dλ-sectional curvature and (Dλ,Dµ)-sectional curvature. Moreover, we also obtain
some results about the Ricci tensor and the scalar curvature. The last part is devoted
to totally umbilical submanifolds.

2. PRELIMINARIES AND EXAMPLES

At this stage, we recall some definitions and basic formulas which we will
use later. We focus on submanifold theory’s concepts. For general background on
almost contact Riemann geometry we refer to [6]. We just recall the usual Sasakian
structure on R2m+1, (φ0, ξ, η, g), given by

η =
1
2

(
dz −

m∑
i=1

yidxi

)
, ξ = 2

∂

∂z
,

g = η ⊗ η +
1
4

m∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

φ0

(
Xi

∂

∂xi
+ Yi

∂

∂yi
+ Z

∂

∂z

)
=

m∑
i=1

(
Yi

∂

∂xi
− Xi

∂

∂yi

)
+

m∑
i=1

Yiy
i ∂

∂z
,

where {xi, yi, z}, i = 1...m are the cartesian coordinates.
Given a submanifold M of an almost contact metric manifold (M̃, φ, ξ, η, g),

we also use g for the induced Riemannian metric on M . We denote by ∇̃ the
Levi-Civita connection on M̃ and by ∇ the induced Levi-Civita connection on M .
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Thus the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + h(X, Y ), ∇̃XV = −AV X + ∇⊥
XV,

for vector fields X, Y tangent to M and a vector field V normal to M , where h

denotes the second fundamental form, ∇⊥ the normal connection and AV the shape
operator in the direction of V . The second fundamental form and the shape operator
are related by

g(h(X, Y ), V ) = g(AV X, Y ).

M is called a totally geodesic submanifold if h vanishes identically.
We denote by R̃ and R the curvature tensors of M̃ and M in the same way.

They are related by Gauss and Codazzi’s equations

R̃(X, Y, Z,W )

= R(X, Y, Z, W )− g(h(X, W ), h(Y,Z))+ g(h(X, Z), h(Y,W )),
(2.1)

(R̃(X, Y )Z)⊥ = (∇̃Xh)(Y, Z)− (∇̃Y h)(X, Z), (2.2)

respectively, where R̃(X, Y, Z)⊥ denotes the normal component of R̃(X, Y )Z and

(∇̃Xh)(Y, Z) = ∇⊥
X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ). (2.3)

The mean curvature vector H is defined by H = (1/dimM)trace h. M is said
to be minimal if H vanishes identically. Moreover it is called a totally umbilical
submanifold if

h(X, Y ) = g(X, Y )H, (2.4)

for any X , Y tangent vector fields on M .
Let V and W be differentiable distributions on M . Then, M is said to be

(i) a (V ,W)-mixed totally geodesic submanifold if h(X, Y ) = 0 for all X ∈ V
and Y ∈ W ,

(ii) a V-totally geodesic submanifold if it is (V , V)-mixed totally geodesic,
(iii) V-minimal if HV = (1/dimV)trace h|V = 0.

Let us consider now a submanifold M of an almost contact metric manifold
(M̃, φ, ξ, η, g), tangent to the structure vector field ξ. Put φX = TX + NX for
any tangent vector field X , where TX (resp. NX) denotes the tangential (resp.
normal) component of φX . Similarly, φV = tV + nV for any normal vector field
V with tV tangent and nV normal to M .

Two well-known classes of submanifolds of an almost contact metric manifold
are invariant and anti-invariant submanifolds. In the first case, the tangent space
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of the submanifold is invariant under the action of the almost contact structure φ,
where as in the second case it is mapped into the normal space. We describe below
a sort of submanifolds that generalize these two classes:

Definition 2.1. [18]. A submanifold M of an almost contact metric manifold
M̃ , tangent to the structure vector field ξ, is said to be an almost semi-invariant
submanifold if there exists k functions λ1, ..., λk, defined on M with values in
(0, 1), such that

(i) −λ2
1(p),...,−λ2

k(p) are distinct eigenvalues of T 2|D at p ∈ M , with

TpM = D1
p ⊕D0

p ⊕Dλ1
p ⊕ · · · ⊕ Dλk

p ⊕ Span{ξp},

where Dλ
p , λ ∈ {1, 0, λ1(p), ..., λk(p)}, denotes the eigenspace associated to

the eigenvalue −λ2.
(ii) The dimensions of D1

p, D0
p, Dλ1

p , . . . ,Dλk
p are independent of p ∈ M .

If in addition, each λi is constant, then M is called a skew semi-invariant sub-
manifold.

Consequently, it is easy to verify the following equalities:

D1
p = Ker(N |D)p, Do

p = Ker(T |D)p and Dλi
p = Ker(T 2|D + λ2

i (p)I)p,

i = 1, ..., k, for all p ∈ M .
The definition enables us to consider T -invariant mutually orthogonal distribu-

tions
Dλ =

⋃
x∈M

Dλ
x , λ ∈ {1, 0, λ1, ..., λk},

on M such that TM = D1 ⊕D0 ⊕Dλ1 ⊕ · · · ⊕ Dλk ⊕ Span{ξ},
For an almost semi-invariant submanifold M of M̃ we have

T⊥M = D1 ⊕D0 ⊕ Dλ1 ⊕ · · · ⊕ Dλk,

where D1 = Ker(t), D0 = Ker(n), Dλ = NDλ, tDλ = Dλ and Dλ = Ker(n2 +
λ2I) with λ ∈ {λ1, ..., λk}. The distributions Dλ, λ �= 0, are n-invariant.

We denote by Uλ (resp. Uλ) the orthogonal projection from TM on Dλ (resp.
Dλ). Then we have:

g(TX, TY )=
∑

λ

λ2g(UλX, UλY ), g(nV, nW )=
∑
λ

λ2g(UλV, UλW ). (2.5)

Now we present some different examples of almost semi invariant submanifolds.
They are based on the fine relation between them and slant submanifolds. First we
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remember that given X ∈ TxM a tangent vector at the point x, the Wirtinger angle
θ(X) is the angle between φX and TxM . A differentiable distribution is called
slant if θ(X) is the same for all X �= 0 in the distribution at every point of M . A
submanifold of an almost contact metric manifold is called slant if for any x ∈ M
and any X ∈ TxM , linearly independent of ξx, the Wirtinger angle is a constant.
The following proposition characterizes slant submanifolds.

Proposition 2.2. [8, pg. 128] Let M be a submanifold of an almost contact
metric manifold (M̃, φ, ξ, η, g) tangent to ξ. Then, M is a slant submanifold if and
only if there is a constant µ ∈ [0, 1] such that T 2 = −µ2(I − η ⊗ ξ). In such a
case, if θ is the slant angle, µ2 = cos2 θ.

From this characterization we deduce:

Proposition 2.3. Every slant submanifold M of an almost contact metric
manifold with slant angle θ is a skew semi-invariant submanifold with TM =
Dλ ⊕ Span{ξ} such that λ = cos θ.

If the Wirtinger angle does not depend on the choice of X ∈ TxM but it does on
the choice of the point x ∈ M , then M is called a quasi-slant submanifold. They
were introduced in almost Hermitian geometry by F. Etayo, [13], and the same
notion can be considered in almost contact geometry just by taking X independent
of ξx. The characterization of quasi-slant submanifolds is similar to that of slant
ones, but now T 2 = −µ2(I − η ⊗ ξ), for µ a certain function. So every quasi-
slant submanifold is an almost semi-invariant one, and every almost semi-invariant
submanifold with TM = Dλ ⊕ Span{ξ} is quasi-slant.

We can construct some specific examples of quasi-slant submanifolds from the
examples of slant submanifolds in complex and contact geometry given in [11] and
[8], respectively. First, we present the following result:

Theorem 2.4. Given a quasi-slant submanifold S of C 2

x(u′, v′) = (f1(u′, v′) + if3(u′, v′), f2(u′, v′) + if4(u′, v′))

whose Wirtinger angle, θ, is different from 0 and π/2 everywhere, with ∂/∂u ′ and
∂/∂v′ non-zero and orthogonal. Then

y(u, v, t) = 2(f1(u, v), f2(u, v), f3(u, v), f4(u, v), t), (2.6)

defines an almost semi-invariant submanifold M in R 5 with its usual Sasakian
structure. Furthermore {e1, e2, ξ}, with

e1 =
∂

∂u
+
(

2f3
∂f1

∂u
+ 2f4

∂f2

∂u

)
∂

∂t
, e2 =

∂

∂v
+
(

2f3
∂f1

∂v
+ 2f4

∂f2

∂v

)
∂

∂t
,
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is an orthogonal basis of TM , and TM = D λ ⊕ Span{ξ} with λ = cos θ.

Proof. It is just a simple computation to prove that the basis is orthogonal, and
that Dλ = Span{e1, e2} is the eigenspace of T 2|D associated to −λ2.

Using this theorem we can give some examples of almost semi-invariant sub-
manifolds, by considering some different quasi-slant submanifolds of C2. All these
examples can be verified by straightforward computations.

Example 2.5. Let f(u, v) be a differentiable function, and let us consider the
submanifold M of R5 given by:

y(u, v, t) = 2(u cosf(u, v), u sin f(u, v), v, 0, t).

We ask f to be f = f(u) or f = f(v) in order for
∂f

∂u
and

∂f

∂v
to be orthogonal.

Then TM = Dλ ⊕ Span{ξ} with λ =
cos f − u sin ff ′√

1 + u2f ′2 .

Example 2.6. Given a differentiable function k(u) �= c/u, for every constant
c, the submanifold given by

y(u, v, t)

= 2(ek(u)u cosu cos v, ek(u)u sin u cos v, ek(u)u cosu sin v, ek(u)u sin u sin v, t)

is an almost semi-invariant submanifold with TM = Dλ ⊕ Span{ξ} and λ =
k′u + k√

(k′u + k)2 + 1
.

Example 2.7. We want the equation

y(u, v, t) = 2(u, k cos v, v, k sin v, t)

to define an almost semi-invariant submanifold M in R5 with TM = Dλ⊕Span{ξ}.
In order to apply Theorem , we choose either k = k(u) or k = k(v). In the first
case,

λ =
kk′ + 1√

1 + k′2√k2 + 1
,

and k(u) must be different from
√−2u + c and ceu, for any constant c, so that λ

be different from 0, 1. In the second case, λ = 1/
√

1 + k2 + k′2.

Now we give some examples with two distributions in the decomposition of the
tangent space. They are based on bi-slant submanifolds (see [9]), but with Wirtinger
angles changing from one point to other.
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Example 2.8. Let us consider R9 with its usual Sasakian structure, and its
submanifold M given by the following equation

x(u, v, w, s, t) = 2(u, 0, w, 0, vcos θ1, v sin θ1, s cos θ2, s sinθ2, t),

where θ1 =
√

3log(v) and θ2 =
√

3 log(s), v, s ∈ (1, +∞). Then M is a five
dimensional almost semi-invariant submanifold with two non-constant functions,
λ1, λ2. To prove this fact, we just take the orthogonal basis

e1 = 2
(

∂

∂x1
+ y1

∂

∂z

)
, e2 = (cos θ1−

√
3 sin θ1)

∂

∂y1
+(sin θ1+

√
3 cos θ1)

∂

∂y2
,

e3 = 2
(

∂

∂x3
+ y3

∂

∂z

)
, e4 = (cos θ2−

√
3 sin θ2)

∂

∂y3
+(sin θ2+

√
3 cos θ2)

∂

∂y4
,

e5 = 2
∂

∂z
= ξ,

and we define the distributions Dλ1 = Span{e1, e2}, and Dλ2 = Span{e3, e4}.
It is clear that TM = Dλ1 ⊕ Dλ2 ⊕ Span{ξ}, and, for i = 1, 2, Dλi is a slant
distribution with angle θi, being Dλi

p the eigenspace of T 2|D at p ∈ M associated
to the eigenvalue − cos2 θi.

Example 2.9. The equation x(u, v, s, t) = 2(u, v, s, 0, t), defines an almost
semi-invariant submanifold in R5 with its usual almost contact structure. In this
case, TM = D1⊕D0⊕Span{ξ}, just taking D1 = Span

{
2
(

∂

∂x1
+y1

∂

∂z

)
, 2

∂

∂y1

}
and D0 = Span

{
2
(

∂

∂x2
+ y2

∂

∂z

)}
.

Example 2.10. Let us consider R7 with its usual Sasakian structure, and its
submanifold M given by

x(u, v, s, t) = 2(u, 0, 0, v, s cosθ, s sin θ, t),

with θ =
√

3 logs, where s ∈ (1, +∞). Then M is an almost semi-invariant
submanifold whose tangent space admits the following decomposition

TM = D0 ⊕Dλ ⊕ Span{ξ},
where D0 = Span{e3}, Dλ = Span{e1, e2}, with λ = cos θ, and

e1 = 2
(

∂

∂x1
+ y1

∂

∂z

)
, e2 = 2

∂

∂y1
,

e3 = (cos θ −√
3 sin θ)

∂

∂y2
+ (sin θ +

√
3 cos θ)

∂

∂y3
, e4 = 2

∂

∂z
= ξ.
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Since sections 3 and 6 will be more concerned with the invariant and anti-
invariant cases of semi-invariance, it seems to be helpful to include illustrative
examples of such kinds of submanifolds. Actually, we can get examples of invariant
submanifolds just by taking f = 0 in Example 2.5 or k = ceu in Example 2.7. Simi-
larly, we obtain anti-invariant submanifolds with f = π/2 or f = arccos(1/u) in
Example 2.5, k = 0 or k = c/u in Example 2.6 and k =

√−2u + c in Example 2.7.

3. SUBMANIFOLDS OF A GENERALIZED SASAKIAN SPACE FORM

In this section, we first state some results characterizing invariant and anti-
invariant submanifolds of a generalized Sasakian space form by means of the cur-
vature tensor.

Lemma 3.1. Let M be a submanifold of a generalized Sasakian space form
M̃(f1, f2, f3). If M is either invariant or anti-invariant, then R̃(X, Y )Z is tangent
and R̃(X, Y )V is normal to M , for any X, Y, Z tangent to M and any V normal
to M .

Proof. Let us first notice that both statements above are equivalent because
R̃(X, Y, Z, V ) = −R̃(X, Y, V, Z). Therefore, we must only prove the first one.

On the one hand, if M is invariant, then

R̃(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }
+f2{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}

+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ}
is tangent to M because so are X, Y, φX and φY .

And on the other hand, if M is anti-invariant, then g(X, φZ) = g(Y, φZ) =
g(X, φY ) = 0, so

R̃(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }
+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ}

wich is tangent, concluding the proof.

Even more, if X, Y are orthogonal to ξ then R̃(X, Y )Z also is, for all Z tangent
to M .

Since both conditions of the proposition above are equivalent, from now on we
will only refer to the first one.

With some additional conditions we can prove a kind of converse:
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Lemma 3.2. Let M be a connected submanifold of a generalized Sasakian
space form M̃ (f1, f2, f3). If f2(p) �= 0, for each p ∈ M , and TM is invariant
under the action of R̃(X, Y ), X, Y tangent to M , then M is either invariant or
anti-invariant.

Proof. For X, Y tangent to M ,

R̃(X, Y )X = f1{g(Y, X)X − g(X, X)Y} − 3f2g(Y, φX)φX

+f3{η(X)2Y − η(Y )η(X)X + g(X, X)η(Y )ξ − g(Y, X)η(X)ξ}
should be tangent, so f2g(Y, φX)φX is tangent. As f2 �= 0 at any point, either φX

is tangent or g(Y, φX) = 0, for all Y tangent to M , and then φX is normal to M .
Taking into account that M is a connected submanifold, for each point p ∈ M , one
of the two conditions holds: either Np = 0 or Tp = 0. Finally, using an argument
of continuity, either N ≡ 0 or T ≡ 0, i.e. M is either invariant or anti-invariant.

Actually, it is enough for TM to be invariant by the action of R̃(X, Y ) when
X, Y are orthogonal to ξ.

Joining both lemmas we arrive to:

Theorem 3.3. Let M be a connected submanifold of a generalized Sasakian
space form M̃(f1, f2, f3) with f2 �= 0 everywhere. Then, M is either invariant or
anti-invariant if and only if TM is invariant under the action of R̃(X, Y ), for any
X, Y tangent to M .

Hence, for an almost semi-invariant submanifold we deduce the following result:

Corollary 3.4. Let M be a connected almost semi-invariant submanifold of a
generalized Sasakian space form M̃(f1, f2, f3), such that D0 �= {0} �= D1⊕Dλ1 ⊕
· · · ⊕ Dλk . If TM is invariant under the action of R̃(X, Y ), then f2 must vanish
along the submanifold.

We can prove a similar result to Lemma 3.1 for R̃(U, V ), U, V ∈ T⊥M .

Proposition 3.5. Let M be a submanifold of a generalized Sasakian space
form M̃ (f1, f2, f3). If M is invariant, then TM and T ⊥M are invariant under
the action of R̃(U, V ) for any U, V normal to M .

Proof. Let us first notice that both statements are equivalent because R̃(U, V,
W, X) = −R̃(U, V, X,W ), so we only prove the first one.

As M is invariant, given U normal to M , g(X, φU) = −g(φX, U) = 0, for
any tangent vector field X . Hence, φU is normal to M .
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Therefore,

R̃(U, V )X = f1{g(V, X)U − g(U, X)V }
+f2{g(U, φX)φV − g(V, φX)φU + 2g(U, φV )φX}
+f3{η(U)η(X)V −η(V )η(X)U+g(U,X)η(V )ξ−g(V, X)η(U)ξ}

= 2f2g(U, φV )φX,

which is tangent.

Since from being anti-invariant we can not deduce that φV is normal, we do not
give a similar result for anti-invariant submanifolds. But we can prove a converse.

Proposition 3.6. Let M be a connected submanifold of a generalized Sasakian
space form M̃(f1, f2, f3). If f2(p) �= 0, for each p ∈ M , and T⊥M is invariant
under the action of R̃(U, V ), U, V normal to M , then M is either invariant or
anti-invariant.

Proof. It is similar to Lemma 3.2’s proof, just imposing that R̃(U, V )U must
be normal for any U, V normal to M .

4. SECTIONAL CURVATURES

Let M be an almost semi-invariant submanifold of an almost contact metric
manifold M̃ . For a unit vector X ∈ Dλ, λ �= 0, we define the Dλ-sectional
curvature of X as:

Hλ(X) = KM

(
X,

1
λ

TX

)
. (4.1)

Let {E1, . . . , En(λ)} and {F1, . . . , Fn(µ)} be local orthonormal references of Dλ

and Dµ respectively. We define the (Dλ,Dµ)-sectional curvature as:

�λµ =
n(λ)∑
i=1

n(µ)∑
j=1

KM(Ei ∧ Fj). (4.2)

The analogous definitions in complex geometry were introduced by Tripathi in [16]
and Ronsse in [14]. Obviously the definition above does not depend on the basis.

Now we study the Dλ-sectional curvatures for submanifolds of a generalized Sa-
sakian space form. First, we remind the reader that T is called W-commutative, for
a certain distribution W , if h(X, TY ) = h(TX, Y ), for any X, Y ∈ W . Secondly,
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let us notice that, in such a case, the sectional curvature of the plane described by
two orthogonal unit vector fields, X, Y tangent to M , is given by

KM (X ∧ Y ) = R(X, Y, Y,X) = f1 + 3f2g
2(X, TY )

−f3{η2(X) + η2(Y )} − ‖h(X, Y )‖2 + g(h(X, X), h(Y, Y )),
(4.3)

where we have used (1.1) and Gauss’ equation (2.1).

Theorem 4.1. Let M be an almost semi-invariant submanifold of a generalized
Sasakian space form M̃(f1, f2, f3). If T is Dλ-commutative, λ �= 0, then for all
unit X ∈ Dλ:

Hλ(X) = f1 + 3λ2f2 − ‖h(X, X)‖2 − 1
λ2

‖h(X, TX)‖2. (4.4)

Therefore
Hλ(X) ≤ f1 + 3λ2f2, (4.5)

and the equality holds if M is D λ-totally geodesic.

Proof. By using (4.3), we see that

Hλ(X) = f1 + 3f2g
2 (X, φ (1/λTX)) − f3

{
η2(X) + η2 (1/λTX)

}
−‖h (X, 1/λTX)‖2 + g (h(X, X), h (1/λTX, 1/λTX)) ,

for any vector field X ∈ Dλ.
Moreover, g (X, φ (1/λTX)) = g

(
X, 1/λT 2X

)
= g

(
X,−λ2/λX

)
= −λ, so

Hλ(X) = f1 + 3f2λ
2 − 1

λ2
{‖h(X, TX)‖2− g(h(X, X), h(TX, TX))}. (4.6)

Finally, as T is Dλ-commutative

h(TX, TX) = h(X, T 2X) = h(X,−λ2X) = −λ2h(X, X), (4.7)

which used in (4.6) gives (4.4).

In particular, as every Sasakian space form is a generalized Sasakian space form
we can prove the following corollary. This is related to one given by M. Barros and
F. Urbano in [3]: for a nearly Kaehler generalized complex space form M2n(µ, α),
given W an integrable distribution and X ∈ W , we have H(X) ≤ µ.

Corollary 4.2. Let M be an almost semi-invariant submanifold of a Sasakian
space form M̃(c). Then, the φ-sectional curvature H(X) of M satisfies H(X) ≤ c,
for any X tangent to M .
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Proof. From the definition of D1-sectional curvature, for an unit X ∈ D1 we
have H(X) = KM (X, φX) = KM(X, TX) = H1(X), and

H(X) ≤ f1 + 3f2 =
c + 3

4
+ 3

(
c − 1

4

)
= c,

follows from (4.5).

Now we are interested on the (Dλ,Dµ)-sectional curvature in a generalized
Sasakian space form, depending on the values of λ and µ.

Theorem 4.3. Let M be an almost semi-invariant submanifold of a generalized
Sasakian space form M̃(f1, f2, f3). Let {E1, . . . , En(λ)} and {F1, . . . , Fn(µ)} be
local orthonormal references of D λ and Dµ respectively. The following equations
hold:

(1) If λ �= µ, then:

�λµ = n(λ)n(µ)f1 + g(Hλ, Hµ) −
n(λ)∑
i=1

n(µ)∑
j=1

‖h(Ei, Fj)‖2.

(2) If λ = µ = 0, then:

�00 = n(0)2f1 + ‖H0‖2 −
n(0)∑
i=1

n(0)∑
j=1

‖h(Ei, Ej)‖2.

(3) If λ �= 0, then:

�λλ = n(λ)2f1 + 3f2n(λ)λ2 + ‖Hλ‖2 −
n(λ)∑
i=1

n(λ)∑
j=1

‖h(Ei, Ej)‖2.

Proof.

(1) Since Dµ is T -invariant, Ei ∈ Dλ and TFj ∈ Dµ, and g(Ei, φFj) =
g(Ei, TFj) = 0. Then, computing �λµ by (4.3) we have:

�λµ =
n(λ)∑
i=1

n(µ)∑
j=1

{f1 − ‖h(Fj, Ei)‖2 + g(h(Ei, Ei), h(Fj, Fj))}

= n(λ)n(µ)f1 + g(Hλ, Hµ) −
n(λ)∑
i=1

n(µ)∑
j=1

‖h(Ei, Fj)‖2.

(2) It can be proved by using the same method.
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(3) Now we choose an adapted local orthonormal basis, {E1, . . . , En(λ)
2

, . . . ,

En(λ)}, for Dλ with E n(λ)
2

+i
= 1

λTEi, 1 ≤ i ≤ n(λ)/2. By using this
basis,

n(λ)∑
i=1

n(λ)∑
j=1

g(Ei, TEj)
2 = n(λ)λ2,

because g(Ei, TEj) = 0 always but for j =
n(λ)

2
+ i and j =

n(λ)
2

− i. For
such values we have

g(Ei, TEj) = g

(
Ei,

1
λ

T 2Ei

)
= g

(
Ei,

−λ2

λ
Ei

)
= −λ.

Thus, by virtue of (4.3), we conclude the proof.

We finish this section by connecting these curvatures with the notions of (Dλ,Dµ)-
totally geodesic and Dλ-totally geodesic submanifolds. From the above theorem we
deduce immediately this one:

Theorem 4.4. Let M be an almost semi-invariant submanifold of a generalized
Sasakian space form M̃(f1, f2, f3).

(1) If Hλ is orthogonal to Hµ, λ �= µ, then �λµ ≤ n(λ)n(µ)f1 and the equality
holds if and only if M is (D λ,Dµ)-mixed totally geodesic.

(2) If M is Dλ-minimal then �λλ ≤ n(λ)2f1+3f2n(λ)λ2, and the equality holds
if and only if M is Dλ-totally geodesic.

Thereare examples satisfying each of the above theorem’s items. InExample 2.8,
Hλ1 andHλ2 are orthogonal,andM is(Dλ1,Dλ2)-mixedtotally geodesic. Example 2.9
is totally geodesic, so it satisfies both items. Finally, Example 2.10 is Dλ-totally
geodesic and (D0,Dλ)-mixed totally geodesic but not D0-totally geodesic.

5. RICCI TENSOR AND SCALAR CURVATURE

Let M be a (m + 1)-dimensional submanifold of a (2m + 1)-dimensional ge-
neralized Sasakian space form M̃(f1, f2, f3), with ξ tangent to M . We consider
{E1, ..., Em, Em+1 = ξ} and {N1, ..., N2n−m} local orthonormal basis of TM and
T⊥M respectively, and denote ANν = Aν .

The curvature tensors of M and M̃ are related by means of Gauss’ equation,
(2.1). Therefore, from (1.1) we obtain the following result:
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Lemma 5.1. The Ricci tensor S of a (m + 1)-dimensional submanifold M of
a generalized Sasakian space form M̃(f1, f2, f3) is given by

S(X, Y ) = mf1g(X, Y ) + 3f2g(TX, TY ) + f3{(1 − m)η(X)η(Y ) − g(X, Y )}

+
2n−m∑
ν=1

{(m + 1)(trace Aν)g(AνX, Y ) − g(AνX, AνY )},

for any X, Y vector fields on M .

Hence, for an almost semi-invariant submanifold, using the decomposition (2.5),
we are able to state:

Lemma 5.2. The Ricci tensor S of a (m+1)-dimensional almost semi-invariant
submanifold M of a generalized Sasakian space form M̃(f1, f2, f3) is given by

S(X, Y ) =
∑

λ

(mf1+3f2λ
2−f3)g(UλX, UλY )+m(f1−f3)η(X)η(Y )

+
2n−m∑
ν=1

{(m + 1)(trace Aν)g(AνX, Y )− g(AνX, AνY )},
(5.1)

for any X, Y vector fields on M .

For an almost semi-invariant submanifold of a Sasakian space form M̃2n+1(c),
we get

S(X, Y ) =
∑

λ

(m − 1 + 3λ2)c + 3(m − λ2) + 1
4

g(UλX, UλY )

+mη(X)η(Y ) +
2n−m∑
ν=1

{(m+1)(traceAν)g(AνX, Y )−g(AνX, AνY )},

just by putting f1 =
c + 3

4
and f2 = f3 =

c − 1
4

in (5.1).

Now we will study the scalar curvature.

Lemma 5.3. The scalar curvature τ of a (m + 1)-dimensional almost semi-
invariant submanifold M of a generalized Sasakian space form M̃ (f1, f2, f3) is
given by

τ = f1 +
1

(m + 1)m
{3f2

∑
λ

n(λ)λ2 − 2mf3 + (m + 1)2‖H‖2 − ‖h‖2}, (5.2)

with λ ∈ {0, 1, λ1, ..., λk}.
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Proof. Considering an adapted local orthonormal basis in Dλ, as in Lemma 4.3,
a direct computation of

τ =
1

(m + 1)m

m+1∑
i,j=1

R(Ei, Ej, Ej, Ei)

concludes the proof.

Once again, we can settle this result for a Sasakian space form:

τ =
c + 3

4
+

1
(m + 1)m

{
3c−3

4

∑
λ

n(λ)λ2 − 2m
c−1
4

+ (m + 1)2‖H‖2−‖h‖2

}
.

From the results above the following statements can be argued.

Theorem 5.4. Let M be a (m+1)-dimensional, minimal almost semi-invariant
submanifold of a generalized Sasakian space form M̃(f1, f2, f3). Then:

(1) S −
∑

λ

{mf1 + 3f2λ
2 − f3}g ◦ (Uλ ⊗ Uλ) − m(f1 − f3)η ⊗ η,

with λ ∈ {0, 1, λ1, ..., λk}, is negative semi-definite in TM .

(2) τ ≤ f1 +
1

(m + 1)m
{
3f2

∑
λ

n(λ)λ2 − 2mf3

}
, λ ∈ {0, 1, λ1, ..., λk}.

Proof. By virtue of Lemma 5.2,

S(X, X) −
∑

λ

(mf1 + 3f2λ
2 − f3)g(UλX, UλX)− m(f1 − f3)η(X)η(X)

= −
2n−m∑
ν=1

g(AνX, AνX) ≤ 0,

where we take into account that

2n−m∑
ν=1

(trace Aν)g(AνX, X) =
m+1∑
i=1

g(h(X, X), h(Ei, Ei)) = (m+1)g(h(X, X),H),

and that H = 0, because M is minimal.
The second part comes directly from Lemma 5.3.

Totally geodesic, minimal almost semi-invariant submanifolds can be characte-
rized by means of either the Ricci tensor or the scalar curvature.
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Theorem 5.5. Let M be a (m+1)-dimensional, minimal almost semi-invariant
submanifold of generalized Sasakian space form M̃(f1, f2, f3). The following con-
ditions are equivalent:

(i) M is totally geodesic,

(ii) τ = f1 +
1

(m + 1)m
{3f2

∑
λ

n(λ)λ2 − 2mf3},

(iii) S(X, Y ) =
∑
λ

(mf1 + 3f2λ
2 − f3)g(UλX, UλY ) + m(f1 − f3)η(X)η(Y ),

for all X, Y tangent to M .

Proof. Conditions (i) and (ii) are equivalent because of Lemma 5.3 and the
assumption of M being a minimal submanifold.

Condition (i) implies (iii). Conversely if iii) holds, from Lemma 5.2 it follows
that AV X = 0 for any normal vector V and therefore it is totally geodesic.

Similar results to Theorems 5.4 and 5.5 could be given for almost semi-invariant
submanifolds of a Sasakian space form, M̃(c), just by putting f1 =

c + 3
4

and

f2 = f3 =
c − 1

4
.

6. TOTALLY UMBILICAL SUBMANIFOLDS

In [10], B.-Y Chen studied umbilical submanifolds in the case of spaces of
constant curvature. Also Chen and K.Ogiue, [12], considered such immersions in
complex space forms, and D. E. Blair and L. Vanhecke, [7], in Sasakian space forms.
Finally, Vanhecke, in [19], dealt with those submanifolds in generalized complex
space forms. Our purpose is to give similar results in almost contact geometry, this
is, for totally umbilical submanifolds of generalized Sasakian space forms.

We first need the following lemma.

Lemma 6.1. Let M be an m-dimensional, connected, totally umbilical sub-
manifold (m > 2) of a generalized Sasakian space form M̃(f1, f2, f3) with f2 �= 0.
Then M is either an invariant or an anti-invariant submanifold.

Proof. From (2.3) and (2.4) we arrive at

(∇̃Xh)(Y, Z) = g(Y, Z)∇⊥
XH.

Hence Codazzi’s equation (2.2) becomes

(R̃(X, Y )Z)⊥ = g(Y, Z)∇⊥
XH − g(X, Z)∇⊥

Y H. (6.1)
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We can choose unit vector fields, X, Y with Y orthogonal to X and φX . Therefore,
from (6.1) we obtain:

(R̃(X, Y )Y )⊥ = ∇⊥
XH. (6.2)

In fact,

R̃(X, Y )Y = f1g(Y, Y )X + f3(η(X)η(Y )Y − η(Y )η(Y )X − g(Y, Y )η(X)ξ)

is tangent to M and then (R̃(X, Y )Y )⊥ = 0. Thus from (6.2) we get ∇⊥
XH = 0,

for any X . From (6.1), (R̃(X, Y )Z)⊥ = 0, for any tangent fields X, Y, Z, which
means that TM is invariant under the action of R(X, Y ). Therefore, M is either
an invariant or an anti-invariant submanifold by virtue of Lemma 3.2.

Theorem 6.2. Let M be a connected, totally umbilical submanifold of a ge-
neralized Sasakian space form M̃(f1, f2, f3) with f2 �= 0. Then, M is one of the
following submanifolds:

(i) a space with sectional curvatures given by the function

KM(X ∧ Y ) = f1 − f3{η2(X) + η2(Y )} + g(H, H),

immersed in M̃ as an anti-invariant submanifold,

(ii) a generalized Sasakian space form M(f 1 +g(H, H), f2, f3), immersed in M̃
as an invariant submanifold.

Proof. For a totally umbilical submanifold the equation of Gauss (2.1) becomes:

R(X, Y, Z, W ) = R̃(X, Y, Z, W )

+{g(Y, Z)g(X,W )− g(X, Z)g(Y,W )}g(H,H),
(6.3)

for any vector fields X, Y, Z,W tangent to M . Hence, if the ambient space is a
generalized Sasakian space form, and X, Y are unit vector fields in M , the sectional
curvature of the plane section spanned by X and Y is given by:

KM(X ∧ Y ) = f1 + 3f2g
2(X, TY ) − f3{η2(X) + η2(Y )}+ g(H, H).

Thus, as we work under the hypothesis of Lemma 6.1, M is either anti-invariant
or invariant. In the first case, the above sectional curvature is given by:

KM(X ∧ Y ) = f1 − f3{η2(X) + η2(Y )} + g(H, H).
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Otherwise, if M is an invariant submanifold, an almost contact structure (φ, ξ,

η, g), could be given to M . And from (6.3), it follows

R(X, Y )Z = (f1 + g(H, H)){g(Y, Z)X − g(X, Z)Y }
+f2{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}
+f3{η(X)η(Z)Y −η(Y )η(Z)X+g(X,Z)η(Y )ξ−g(Y, Z)η(X)ξ},

for any X, Y, Z tangent to M , so M is a generalized Sasakian space form M(f1 +
g(H, H), f2, f3).

Finally, from Theorem 6.2 we directly obtain

Corollary 6.3. Let M be a connected totally geodesic submanifold of a ge-
neralized Sasakian space form M̃(f1, f2, f3) with f2 �= 0. Then, M is one of the
following submanifolds:

(i) a space with sectional curvatures given by the function

KM(X ∧ Y ) = f1 − f3{η2(X) + η2(Y )},

immersed in M̃ as an anti-invariant submanifold,
(ii) a generalized Sasakian space form M(f 1, f2, f3), immersed in M̃ as an

invariant submanifold.
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