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TORSION OF RATIONAL ELLIPTIC CURVES

OVER QUADRATIC FIELDS

ENRIQUE GONZÁLEZ–JIMÉNEZ AND JOSÉ M. TORNERO

Abstract. Let E be an elliptic curve defined over Q. We study the re-
lationship between the torsion subgroup E(Q)tors and the torsion subgroup
E(K)tors, where K is a quadratic number field.

1. Introduction

Let E be an elliptic curve defined over a number field K. The Mordell-Weil
Theorem states that the set of K-rational points, E(K), is a finitely generated
abelian group. So it can be written as E(K) ≃ E(K)tors ⊕ Zr, for some non-
negative integer r (rank of E(K)) and some finite torsion subgroup E(K)tors. It
is well known that there exist two positive integers n,m such that E(K)tors is
isomorphic to Cn × Cm, where Cn is the cyclic group of order n [24].

This paper focuses on a particular problem concerning the torsion part, which
we will explain now. We define sets S(d) and Φ(d) as follows:

• S(d) is the set of primes that can appear as the order of a torsion point of
an elliptic curve E defined over a number field of degree d.

• Φ(d) is the set of possible groups that can appear as the torsion subgroup
of an elliptic curve defined over a certain number field K of degree d.

Mazur’s landmark papers [17, 18] established that S(1) = {2, 3, 5, 7} and

Φ(1) = {Cn | n = 1, . . . , 10, 12} ∪ {C2 × C2m | m = 1, . . . , 4} .
After this, a long series of papers by Kenku, Momose and Kamienny ending

in [10, 12] slowly unfolded the quadratic case to finally reach a full description of
S(2) = {2, 3, 5, 7, 11, 13} and Φ(2):

Φ(2) = {Cn | n = 1, . . . , 16, 18} ∪ {C2 × C2m | m = 1, . . . , 6} ∪
{C3 × C3r | r = 1, 2} ∪ {C4 × C4} .

We do not have, as of today, such a precise description of Φ(d) for d ≥ 3 although
work by Parent [22] has obtained S(3) and Derickx, Kamienny, Stein and Stoll have
announced [4] that they have established the sets S(d) for d = 4, 5. A fundamental
result here is the celebrated Uniform Boundness Theorem, a long–standing conjec-
ture finally proved by Merel [19], which states that there exists a constant B(d)
such that |G| ≤ B(d), for all G ∈ Φ(d). Although Merel’s proof was not explicit,
further versions (an Oesterlé’s 1994 unpublished paper and Parent [23]) have given
precise values for B(d).
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Let us fix some useful notations:

• Let E be an elliptic curve defined over a number field. Without loss of
generality we can assume E is defined by a short Weierstrass form

E : Y 2 = X3 +AX +B; A,B ∈ K,

and we will write,

E(K) =
{

(x, y) ∈ K2 | y2 = x3 +Ax+B
}

∪ {O},

the set of K–rational points of E, and O its point at infinity.
• Let SQ(d) be the set of primes that can appear as the order of a torsion

point defined over a number field of degree d, on an elliptic curve E defined
over the rationals.

• Let ΦQ(d) be the set of possible groups that can appear as the torsion
subgroup over a number field of degree d, of an elliptic curve E defined
over the rationals.

• For an elliptic curve E, let ∆E be, as customary, its discriminant.
• For an elliptic curve E and an integer n, let E[n] be the subgroup of all

points whose order is a divisor of n (over Q), and let E(K)[n] be the set
of points in E[n] with coordinates in K, for any number field K (including
the case K = Q).

• Under the same conditions, let Q(E[n]) be the extension generated by all
the coordinates of points in E[n].

• For an elliptic curve E defined over the rationals given by a short Weier-
strass equation E : Y 2 = X3 + AX + B, and a square–free integer D, let
ED denote its quadratic twist. That is, the elliptic curve with a Weierstrass
equation ED : DY 2 = X3 +AX +B.

Please mind that, in the sequel, for examples and precise curves we will use the
Antwerp–Cremona tables and labels [1, 3].

The set SQ(d) is known for d ≤ 42, and there is a conjectural description by
Lozano–Robledo [16] which encompasses both the known cases and experimental
data. For example, SQ(1) = SQ(2) = {2, 3, 5, 7}. The sets ΦQ(d) have been com-
pletely described by Najman [20] for d = 2, 3. Concretely, he proved:

ΦQ(2) = {Cn | n = 1, . . . , 10, 12, 15, 16}∪ {C2 × C2m | m = 1, . . . , 6} ∪
{C3 × C3r | r = 1, 2} ∪ {C4 × C4} ,

ΦQ(3) = {Cn | n = 1, . . . , 10, 12, 13, 14, 18, 21}∪ {C2 × C2m | m = 1 . . . , 4, 7} .

The remarkable fact is that although the set Φ(3) is still unknown, Najman has
determined the set ΦQ(3).

It is also worth noting that Fujita [6] has explicitely determined the torsion
subgroups over the maximal elementary 2–extension of Q (that is Q ({√m | m ∈ Z})
that may arise from an elliptic curve defined over Q. This classification might be
of great help in the open problems that we will pose later.

Definition 1. Let G ∈ Φ(1). We will write ΦQ(d,G) the set of possible groups that

can appear as the torsion subgroup over a certain number field K of degree d, of an

elliptic curve E defined over the rationals, such that E(Q)tors = G.
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Our aim in this paper is, first to compute and then to understand better,
ΦQ(2, G). That is, the behaviour of a particular torsion group of Φ(1) when we
enlarge the base field Q by means of a quadratic extension.

In order to guess what ΦQ(2, G) may look like, we carried out an exhaustive
computation, obtaining the groups E(K)tors, for all curves E defined over the
rationals with conductor less than 300000 from [3]. The main result of this paper
is the following:

Theorem 2. For G ∈ Φ(1), the set ΦQ(2, G) is the following:

G ΦQ (2, G)
C1 {C1 , C3 , C5 , C7 , C9}
C2 {C2 , C4 , C6 , C8 , C10 , C12 , C16 , C2 × C2 , C2 × C6 , C2 × C10}
C3 {C3, C15, C3 × C3}
C4 {C4 , C8 , C12 , C2 × C4 , C2 × C8 , C2 × C12 , C4 × C4}
C5 {C5, C15}
C6 {C6, C12, C2 × C6, C3 × C6}
C7 {C7}
C8 {C8, C16, C2 × C8}
C9 {C9}
C10 {C10, C2 × C10}
C12 {C12, C2 × C12}

C2 × C2 {C2 × C2 , C2 × C4 , C2 × C6 , C2 × C8 , C2 × C12}
C2 × C4 {C2 × C4, C2 × C8, C4 × C4}
C2 × C6 {C2 × C6, C2 × C12}
C2 × C8 {C2 × C8}

2. The set ΦQ(2, G)

A very important and partial result of our problem, concretely the case ofG being
non–cyclic, has already been completely solved by Kwon [14]. More precisely, the
result goes as follows:

(1) ΦQ(2, C2 × C2n) =















{C2 × C2m | m = 1, 2, 3, 4, 6} if n = 1,
{C2 × C2m | m = 2, 4} ∪ {C4 × C4} if n = 2,
{C2 × C2m | m = 3, 6} if n = 3,
{C2 × C8} if n = 4.

The last three cases were carefully detailed, including necessary and sufficient
conditions on the coefficients of a short Weierstrass equation of the elliptic curve and
the discriminant of the quadratic field, to determine which of the possible groups
actually happened for a given case. The first case, however, lacked of such charac-
terisation and it is determined by ruling the other possibilities out. This appears
to be a common fact in the study of torsion subgroups: the simpler the structure
is, the more difficult becomes to describe in effective terms (see, for instance, [7]).

The next auxiliary result is a particular case of Lemma 1.1 in [15]. However, we
need some details from the proof (see [2]).

Theorem 3. Let E be an elliptic curve defined over Q, D a square-free integer and

K = Q(
√
D). There exists a pair of homomorphisms

E(K)
Ψ−→ E(Q)× ED(Q)

Ψ−→ E(K)
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such that Ψ ◦Ψ = [2] and Ψ ◦Ψ = [2]× [2].
Moreover, ker(Ψ) ⊂ E(K)[2], ker(Ψ) ⊂ E(Q)[2] × ED(Q)[2] and coker(Ψ),

coker(Ψ) are groups where every non–zero element has order 2.

Proof. Let σ be the non–trivial element of Gal(K/Q) and α ∈ K. Let us write, for
any P = (x, y),

σP = (σ(x), σ(y)) and φ(P, α) = (x, αy).

Recall the canonical K–isomorphisms between E and its D–twist ED:

E(K)
φ( · ,1/

√
D)

ED(K)
φ( · ,

√
D)

E(K)

Let P ∈ E(K). As σ(P + σP ) = P + σP , we have P + σP ∈ E(Q). Consider
now P − σP . We have that, either σ(P − σP ) = O, in which case P = σP and
P ∈ E(Q), or σ(P − σP ) = −(P − σP ) 6= O. Should this be the case, if we write

R = P − σP = (xR, yR) we have σ(xR, yR) = (xR,−yR). Therefore, yR = zR
√
D

for some zR ∈ Q, and in this case it is clear that

φ
(

(xR, yR), 1/
√
D
)

= (xR, zR) ∈ ED(Q).

So we define Ψ as follows:

Ψ : E(K) −→ E(Q)× ED(Q)

P 7−→
(

P + σP, φ
(

P − σP, 1/
√
D
))

Ψ is clearly a homomorphism: it is straightforward if we write it

Ψ : E(K) −→ E(K)× ED(K),

and we have just shown Im(Ψ) ⊂ E(Q)× ED(Q).
On the other hand, let us consider a point R = (xR, yR) ∈ ED(Q). Clearly

φ(R,
√
D) =

(

xR, yR
√
D
)

∈ E(K),

and we define then

Ψ : E(Q)× ED(Q) −→ E(K)

(P,R) 7−→ P + φ(R,
√
D).

Analogously, it is not difficult to see Ψ is a homomorphism. We could have de-
fined (exactly the same way) Ψ : E(K) × ED(K) −→ E(K); which is clearly a
homomorphism, and then we have it restricted to the subgroup E(Q)× ED(Q).

With these definitions, the results from the theorem can be easily deduced. �

Corollary 4. Let E be an elliptic curve defined over Q, D an square-free integer

and K = Q(
√
D). If n is odd, then there exists an isomorphism

E(K)[n] ≃ E(Q)[n]× ED(Q)[n].

Our description of ΦQ(2, G), for the eleven cyclic groups in Φ(1), will rest in the
following result:

Theorem 5. Let E be an elliptic curve defined over Q, K a quadratic number field,

G ∈ ΦQ(1) and H ∈ ΦQ(2) such that E(Q)tors ≃ G and E(K)tors ≃ H.

(i) If Q(E[3]) = Q
(√

−3
)

, then C3 ⊂ G.

(ii) If C2 6⊂ G, then C2 6⊂ H.



TORSION OF RATIONAL ELLIPTIC CURVES OVER QUADRATIC FIELDS 5

(iii) If G is cyclic, C2 ⊆ G and C4 6⊂ G, then C2 × C4 6⊂ H.

(iv) If G = C4, then H 6= C16.
(v) If G = C3, then H 6= C9.
(vi) If H = C15, then G = C3 or G = C5.

Proof. (i) is Proposition 2.1 from [21]. Note (see Section 3) that if E(K) has full
3–torsion, then K = Q

(√
−3

)

.

(ii) Direct, as the hypothesis implies the irreducibility of X3 + AX + B over Q

(hence over K).
(iii) With no loss of generality, assume E to have the form

E : Y 2 = X(X2 +AX +B).

If C2 × C2 ⊂ E(K), it must then be K = Q(
√
∆E), with ∆E = A2 − 4B, which

we will call D from now on. The full set of points with order two is

(0, 0),

(

−1

2
(A−

√
D), 0

)

,

(

−1

2
(A+

√
D), 0

)

.

Let us assume there is a point of order 4. Then one of the previous points is
the double of such a point, hence (see [13] Thm. 4.2.) one of the following pairs
consists of two squares in K:
{

1

2
(A−

√
D),

1

2
(A+

√
D)

}

,

{

1

2
(−A+

√
D),

√
D

}

,

{

−
√
D, −1

2
(A+

√
D)

}

.

Only the first possibility can hold. Now an element a+b
√
D ∈ (K∗)2 if and only

if there exist x, y ∈ Q such that

a = x2 +Dy2, b = 2xy;

so we must have
{

A/2 = x2 +Dy2

1 = 4xy

{

A/2 = t2 +Dz2

−1 = 4tz

Clearly both systems have a solution if and only if one of them has. The first
gives rise to

y =
1

4x
, x2 =

A

4
±

√
B

2
,

so we must assume B = C2 and then x2 = A/4 ± C/2. Therefore, our curve must
have the form (renaming x and C as α/2 and β, purely for aesthetic purposes):

E : Y 2 = X(X2 + (α2 + 2β)X + β2),

but for every E in this familiy of curves we have C4 ⊂ E(Q), as the point (−β, αβ)
has order 4. Note that the non–vanishing of ∆E is equivalent here to α2(α+4β) 6= 0.

(iv) Assume we have K = Q(
√
D) and E, with E(Q)tors ≃ C4, E(K) ≃ C16.

Then, from Ψ,

0 → ker(Ψ)
i−→ E(K)

Ψ−→ E(Q)× ED(Q)
π−→ coker(Ψ) → 0,

and considering the torsion part, we have ker(Ψ) is either trivial or C2 andED(Q)tors ≃
C2n, with n = 1, . . . , 6. So the only possibility is ker(Ψ) ≃ C2, ED(Q)tors ≃ C8. But
then coker(Ψ) ≃ C4, which contradicts Theorem 3.

(v) Direct from Corollary 4, with n = 9.
(vi) If H = C15, then Najman [20, Theorem 2, c)] has shown that E is the elliptic

curve 50b1 or 50a3 with K = Q(
√
5); and 50b2 or 450b4 with K = Q(

√
−15).
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Both 50b1 and 50b2 have G = C5, while 50a3 and 450b4 have G = C3. Therefore,
H = C15 will only appear in ΦQ(2, G) for G = C3, C5. �

Proof. (Theorem 2) The sets ΦQ(2, G) were first conjectured by the computations
mentioned above. The relevant results can be found in Table 2. In particular, this
shows that all groups said to be in ΦQ(2, G) belong to this set.

Table 1. The cases not treated in [14]. The table displays either
if the case happens (X), if it is impossible because G 6⊂ H (−) or
if it is ruled out by Theorem 5 ((i)–(vi)).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C12
C1 X − − − − − − − − − −
C2 (ii) X − − − − − − − − −
C3 X − X − − − − − − − −
C4 (ii) X − X − − − − − − −
C5 X − − − X − − − − − −
C6 (ii) X (ii) − − X − − − − −
C7 X − − − − − X − − − −
C8 (ii) X − X − − − X − − −
C9 X − (v) − − − − − X − −
C10 (ii) X − − (ii) − − − − X −
C12 (ii) X (ii) X − X − − − − X

C15 (vi) − X − X − − − − − −
C16 (ii) X − (iv) − − − X − − −

C2 × C2 (ii) X − − − − − − − − −
C2 × C4 (ii) (iii) X − − − − − − − −
C2 × C6 (ii) X (ii) − − X − − − − −
C2 × C8 (ii) (iii) − X − − − X − − −
C2 × C10 (ii) X − − (ii) − − − − X −
C2 × C12 (ii) (iii) (ii) X − (iii) − − − − X

C3 × C3 (i) − X − − − − − − − −
C3 × C6 (i), (ii) (i) (ii) − − X − − − − −
C4 × C4 (ii) (iii) − X − − − − − − −

The groups H from ΦQ(2) that do not appear in some ΦQ(2, G), with G < H
can be ruled out from ΦQ(2, G) most of the times using the previous theorem.

Table 1 (row = H , column = G) deals with the case G 6= C2 × C2m. The
non–cyclic case being treated in (1) (cf. [14]).

�

3. Real vs. imaginary quadratic extensions

A natural question might be if there is any substantial difference between the
real and imaginary quadratic case. Our computations (see Section 5) show it is not
so, except for some well–known cases.

In fact, from the Weil pairing [24] we know that, for a number field K, if Cm ×
Cm ⊂ E(K), then K contains the cyclotomic field generated by the m–th roots of
unity. In the quadratic case, that implies:
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• C3 × C3 and C3 × C6 can only appear in the imaginary extension Q
(√

−3
)

.

• C4 × C4 can only appears in the imaginary extension Q
(√

−1
)

.

For all the remaining cases, groups in ΦQ(2) appear in both real and imaginary
cases. This is shown in Table 2. Consider all elliptic curves, defined over the
rationals with:

• E(Q)tors as given in the first column

• E(Q(
√
D))tors as given in the second column, for some D as given in the

fourth (resp. sixth) column for the real case (resp. imaginary case).

Then

• The seventh (penultimate) column is the number of curves with conductor
less than 300000 which meet this situation, for a real extension Q ⊂ K.

• The eighth (last) column is is the number of curves with conductor less
than 300000 which meet this situation, for an imaginary extension Q ⊂ K.

Notice that the only cases where "−" appears are the ones remarked above.

4. On the number of quadratic extensions with proper extension of

the torsion subgroup

Consider the following problem, closely related to our original one. Take an
elliptic curve, defined over the rationals, and allow the base field to be extended to
a quadratic number field. How many cases of proper extension in the corresponding
torsion groups can we predict to appear?

To begin with, for a fixed curve E, then only a small amount of quadratic
extensions will be interesting from the point of view of the torsion subgroup. This
is a known result; see for instance, [14, Corollary 2] for a different approach or
[9, Lemma 3.4] for a similar proof than the one presented here, which we include
because it suits our forthcoming arguments.

Theorem 6. Let E be an elliptic curve defined over the rationals. Then, for all

but finitely many quadratic extensions K/Q, E(K)tors = E(Q)tors.

Proof. The proof is actually the method used in our computations above.
The order of a torsion point defined over a quadratic extension must be m ∈

T = {1, . . . , 10, 12, 15, 16}. Therefore, for a given curve E defined over Q, one only
has to compute the m–th division polynomials ψm(X) (m odd) or ψm(X)/(2Y ) (m
even) [24], for all m ∈ T , and look for irreducible quadratic and linear factors in
Q[X ].

For quadratic factors, we must consider their splitting fields. For linear factors
X − α, we must take the extension (maybe trivial) Q

(√
α3 +Aα+B

)

, where

E : y2 = x3 + Ax + B. These extensions, which are obviously finitely many,
are the only quadratic ones where the torsion subgroup may grow. �

One might in fact give an upper bound for the number of quadratic extensions
where E(K)tors 6= E(Q)tors, simply considering the number of linear factors that
may appear in ψm(X) or ψm(X)/(2Y ), with m ∈ T being a prime power.

If we want to be more precise we can use Theorem 2 to reduce the number of the
division polynomials that must be taken into account. For instance, if E(Q)tors =
C3, we know that E(K)tors ∈ {C3, C5, C15, C3 × C3}, hence both torsion subgroups
are different if and only if E(K) has either a point of order 5 or a non–rational
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point of order 3. As deg(ψ3) = 4 and deg(ψ5) = 12 there are, at most, 16 quadratic
extensions where the torsion grows.

Corollary 7. For any elliptic curve E defined over the rational field, G = E(Q)tors.
The number of quadratic extensions K verifying E(K)tors 6= G is bounded by a

constant kG that only depends on G, and is given by:

G kG G kG G kG G kG G kG

C1 80 C4 43 C7 0 C10 1 C2 × C4 38
C2 182 C5 4 C8 128 C12 1 C2 × C6 7
C3 16 C6 12 C9 0 C2 × C2 42 C2 × C8 0

The result is by no means accurate. In fact, it is not very complicated to sharpen
the bound for odd-order groups, the even-order ones being much less understood
(in practical terms). Our experimental data suggests that, in fact, the bound might
well be 4 quadratic extensions for all cases.

Example.– The elliptic curve 30a7 has minimal Weierstrass equation:

E : Y 2 +XY + Y = X3 − 5334X − 150368

and E(Q)tors = C2. Even more:

D −5 −3 −2 −10

E(Q(
√
D))tors C4 C6 C4 C2 × C2

Theorem 6 allows us to give a different proof of the following result mentioned
by Gouvêa and Mazur [8].

Theorem 8. Given an elliptic curve E, defined over Q, there is a finite amount

of quadratic twists ED(Q) such that ED(Q) has points of order greater than 2.
The number of such quadratic twists is bounded in terms of G = E(Q)tors as in

the previous result.

Proof. Let us consider K = Q(
√
D) and the morphism ω : E(K) −→ ED(Q), given

by the composition

E(K)
Ψ−→ E(Q)× ED(Q)

π2−→ ED(Q),

where Ψ is the mapping given in Theorem 3. That is,

ω(P ) = φ(P − σP, 1/
√
D).

It is clear that ker(ω) = E(Q) and, as in Theorem 3, if we consider the long
exact sequence

0 → E(Q) −→ E(K)
ω−→ ED(Q) −→ coker(ω) → 0,

One can see that, for all P ∈ ED(Q), [2]P = ω(φ(P,
√
D)). That is, any non–

zero element of coker(ω) has order 2. Now, looking at the finite part, Theorem 6
shows that for almost all D, we have E(Q)tors = E(K)tors, so Img(ω) is trivial, and
ED(Q)tors ≃ coker(ω), which has only elements of order at most 2. �

However, some questions arise in this context which we have not yet an answer
to.
Problem 1.– Let us fix G ∈ Φ(1). Consider the set of all elliptic curves E, defined
over Q, with G = E(Q)tors and, when E varies in this set, give a sharp bound for
the maximal number of quadratic extensions K/Q with G 6= E(K)tors.
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Problem 2.– Is there a precise (and easy) description of which are the possible
extensions K/Q with E(Q)tors 6= E(K)tors, ideally in terms of some invariant(s) of
the curve?
Problem 3.– For a given G ∈ Φ(1), one can see experimentally that not all subsets
of ΦQ(2, G) appear when one considers an arbitrary curve E with G = E(Q)tors and
all quadratic extensions K/Q. Find a precise description of all the combinations
that may occur.

In connection to the last problem, one can prove that there are curves with stable
torsion:

Proposition 9. Let G ∈ Φ(1), with G 6= C2n. Then there exists an elliptic curve

E such that, for all quadratic extensions K/Q,

G = E(Q)tors = E(K)tors.

Proof. Clearly the groups G = C2n do not satisfy this property, as there is a qua-
dratic extension where full 2–torsion is achieved.

The fact that, for all other groups, there are curves with stable torsion for all
quadratic extensions can be checked in Table 2. �

Finally, some comments about the other possible strategy mentioned at the
beginning of the section. If we fix the field, then a thorough study of possible
groups is possible [11] studying the non–cuspidal points of certain modular curves.

This technique was in fact the main tool in the search (and hunt) for the most
unusual group appearing in ΦQ(2), which is C15. As we mentioned before, it only
appears in 4 very specific cases [20].

5. Computations

Table 2 is the result of our computations with the curves in the Antwerp–
Cremona tables, with conductor less than 300000 (a total of 1887909 elliptic curves)
must be read as follows:

(1) The first column is G ∈ Φ(1).
(2) The second column is H ∈ Φ2(Q, G).
(3) Columns 3rd to 6th display specific examples:

• The third column is the elliptic curve E with minimal conductor such
that E(Q)tors ≃ G, E(K)tors ≃ H , with K = Q(

√
D), D > 0 being

the integer in the fourth column.
• Columns 5th and 6th are analogous, with D < 0.
• When these four colums are merged, H = G and the curve in the cell

verifies E(Q)tors = E(K)tors for all quadratic extensions K/Q.
(4) Columns 7th and 8th indicate the total amount of curves found verifying the

corresponding situation (7th for real extensions, 8th for complex, merged
for stable torsion groups).
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Table 2. (See Section 5 for a precise explanation)

C1

C1 11a2 898000
C3 50b3 5 19a2 -3 38916 72257
C5 50a4 5 99d1 -3 1581 2261
C7 338f1 13 208d1 -1 229 295
C9 432e3 3 54a2 -3 87 105

C2

C4 15a6 5 15a5 -1 105300 119253
C6 80b3 3 14a3 -3 10594 15658
C8 72a5 3 24a6 -1 1026 1014
C10 150b3 5 198e1 -3 202 234
C12 240b3 3 30a3 -3 99 119
C16 22050eo1 105 3150bk1 -15 3 1

C2 × C2 14a5 2 14a3 -7 488583 256109
C2 × C6 100a1 5 36a3 -3 322 257
C2 × C10 2178m1 33 450a3 -15 6 4

C3
C3 19a3 33340
C15 50a3 5 450b4 -15 1 1

C3 × C3 − − 19a1 -3 − 1710

C4

C8 15a7 3 15a8 -3 2403 1244
C12 150c1 5 90c1 -3 56 72

C2 × C4 15a7 15 15a8 -15 13990 9271
C2 × C8 1344m5 2 192c6 -2 11 18
C2 × C12 112710cj1 17 150c3 -15 3 2
C4 × C4 − − 40a4 -1 − 56

C5 C5 11a1 1127
C15 50b1 5 50b2 -15 1 1

C6
C12 30a1 5 30a1 -3 157 167

C2 × C6 14a2 2 14a1 -7 3431 1652
C3 × C6 − − 14a1 -3 - 64

C7 C7 26b1 66

C8 C16 210e1 105 210e1 -15 12 6
C2 × C8 21a3 7 15a4 -1 85 64

C9 C9 54b3 17
C10 C2 × C10 66c1 33 66c2 -2 25 11
C12 C2 × C12 2730bd1 65 90c3, -15 10 5

C2 × C2

C2 × C2 120b2 36913
C2 × C4 15a2 5 15a2 -1 17911 12914
C2 × C6 150c2 5 30a6 -3 370 459
C2 × C8 72a4 3 63a2 -3 61 47
C2 × C12 960o6 6 167310w2 -39 4 1

C2 × C4
C2 × C4 24a1 1054
C2 × C8 15a1 5 21a1 -3 146 61
C4 × C4 − − 15a1 -1 − 64

C2 × C6 C2 × C6 30a2 71
C2 × C12 90c6 6 2730bd2 -14 8 7

C2 × C8 C2 × C8 210e2 6
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