Submitted Paper Paper 30 March 2004

AN EIGENVALUE PROBLEM FOR NON-BOUNDED QUASI-LINEAR OPERATOR

José Carmona ${ }^{1}$ and Antonio Suárez ${ }^{2}$
${ }^{1}$ Dpto. de Álgebra y Análisis Matemático, Facultad de Ciencias, Cañada de San
Urbano, Almería, Spain
e-mail: jcarmona@ual.es
${ }^{2}$ Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Sevilla, Spain
e-mail: suarez@us.es
(Received)

Abstract In this paper we study the eigenvalues associated with a positive eigenfunction of a quasilinear elliptic problem with a not necessarily bounded operator. For that, we use the bifurcation theory and obtain the existence of positive solution for a range of values of the bifurcation parameter.

AMS 2000 Mathematics subject classification: Primary 35J60, 35J25
Secondary 35D05

1. Introduction

Let Ω be a bounded open subset of \mathbb{R}^{N} with sufficiently smooth boundary $\partial \Omega$ and let $A(x, s)$ be a real symmetric matrix which coefficients, $a_{i j}: \bar{\Omega} \times \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$, are Carathéodory functions.

We assume that there exists a positive constant α satisfying for every $(x, s, \xi) \in \Omega \times$ $\mathbb{R}^{+} \times \mathbb{R}^{N}$,

$$
\begin{equation*}
A(x, s) \xi \cdot \xi \geq \alpha|\xi|^{2} \tag{1}
\end{equation*}
$$

In this paper we analyze the nonlinear eigenvalue problem

$$
\left\{\begin{array}{rlr}
-\operatorname{div}(A(x, u) \nabla u) & =\lambda u, \quad x \in \Omega \\
u & =0, \quad x \in \partial \Omega
\end{array}\right.
$$

where, we say that λ is an eigenvalue for this problem if $\left(P_{\lambda}\right)$ admits a positive and nontrivial solution, that is, if there exists $u \in H_{0}^{1}(\Omega), u \geq 0, u \not \equiv 0$, such that $A(x, u) \nabla u \in$ $\left(L^{2}(\Omega)\right)^{N}$ and

$$
\int_{\Omega} A(x, u) \nabla u \cdot \nabla v=\lambda \int_{\Omega} u v, \forall v \in H_{0}^{1}(\Omega)
$$

In addition to the interest itself in the study of $\left(P_{\lambda}\right)$, this kind of equation has been used to model a species inhabiting in Ω where its diffusion depends on the density of the species, which arises in more realistic models, see [3] and references therein.

Problem $\left(P_{\lambda}\right)$ is well known when A does not depend on s, i.e., when $A(x, s)=B(x)$ with $B=\left(b_{i j}\right)$ and $b_{i j} \in L^{\infty}(\Omega), b_{i j} \geq b_{0}>0$ in Ω. In this case, there exists the principal eigenvalue, denoted by $\lambda_{1}(B)$, for the problem:

$$
\left\{\begin{align*}
-\operatorname{div}(B(x) \nabla u) & =\lambda u, \quad x \in \Omega \tag{1.1}\\
u & =0, \quad x \in \partial \Omega
\end{align*}\right.
$$

being the unique eigenvalue with a positive eigenfunction, see for instance [5].
In [2], assuming that A satisfies $\left(A_{1}\right)$ and

$$
\begin{equation*}
|A(x, s)| \leq \beta, \quad \text { for each }(x, s) \in \Omega \times \mathbb{R} \tag{2}
\end{equation*}
$$

the author proved that for each $r>0$, there exists $\lambda_{r}>0$ and a positive solution $u_{r} \in H_{0}^{1}(\Omega)$, of $\left(P_{\lambda_{r}}\right)$ such that $\left\|u_{r}\right\|_{2}=r$. Moreover, denoting by

$$
\lambda_{0}:=\lambda_{1}(A(x, 0)),
$$

he showed that if $r \rightarrow 0$, then $\lambda_{r} \rightarrow \lambda_{0}$ and $\frac{u_{r}}{r}$ converges to a positive eigenfunction associated to λ_{0} in $H_{0}^{1}(\Omega)$. Finally, if A also verifies

$$
\begin{equation*}
\lim _{s \rightarrow \infty} A(x, s)=A_{\infty}(x), \text { uniformly in } x \in \Omega \tag{3}
\end{equation*}
$$

then $\lambda_{r} \rightarrow \lambda_{\infty}$ and $\frac{u_{r}}{r}$ goes to a positive eigenfunction associated to λ_{∞} in $H_{0}^{1}(\Omega)$ as $r \rightarrow \infty$, where

$$
\lambda_{\infty}:=\lambda_{1}\left(A_{\infty}(x)\right) .
$$

In [4], a slightly modification of $\left(P_{\lambda}\right)$ is analyzed. Under conditions $\left(A_{1-3}\right), \lambda u+h(x)$ for some $0 \leq h \in L^{2}(\Omega)$ is considered instead of λu. But the arguments used to prove the existence of solution leads to the trivial one in the case $h \equiv 0$.

In [1], assuming in addition the existence of an Osgood function $\omega: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left|A\left(x, s_{1}\right)-A\left(x, s_{2}\right)\right| \leq \omega\left(\left|s_{1}-s_{2}\right|\right) \tag{4}
\end{equation*}
$$

for every $\left(x, s_{1}\right),\left(x, s_{2}\right) \in \Omega \times \mathbb{R}$, using a bifurcation analysis, the authors study a more general problem

$$
\left\{\begin{aligned}
-\operatorname{div}(A(x, u) \nabla u) & =f(\lambda, x, s), & x \in \Omega \\
u & =0, & x \in \partial \Omega
\end{aligned}\right.
$$

for $f: \mathbb{R} \times \bar{\Omega} \times \mathbb{R} \mapsto \mathbb{R}$ and A satisfying $\left(A_{1-4}\right)$. In the particular case $f(\lambda, x, s)=\lambda s$, from their results it can be deduced the existence of an unbounded continuum (closed and connected subset) of positive solutions bifurcating from the trivial solution at $\lambda=\lambda_{0}$ and
meeting with infinity at the value $\lambda=\lambda_{\infty}$. Thus, as a consequence, there exists positive solution of $\left(P_{\lambda}\right)$ for $\lambda \in\left(\lambda_{0}, \lambda_{\infty}\right)$ or $\left(\lambda_{\infty}, \lambda_{0}\right)$. In the following section we complete this study for A satisfying $\left(A_{1-4}\right)$ by giving sufficient conditions for the uniqueness of positive solution.

The main goal of this work (see Section 3) is to analyze $\left(P_{\lambda}\right)$ when A is not necessarily bounded and/or does not satisfy $\left(A_{3}\right)$. In this case, we show that there exists an unbounded continuum of positive solutions bifurcating from the trivial one at $\lambda=\lambda_{0}$. If, in addition there exists a continuous function $g: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$, with $\lim _{s \rightarrow+\infty} g(s)=+\infty$, satisfying for every $(x, s, \xi) \in \Omega \times \mathbb{R}^{+} \times \mathbb{R}^{N}$,

$$
A(x, s) \xi \cdot \xi \geq g(s)|\xi|^{2} \geq \alpha|\xi|^{2}
$$

then, the bifurcation from infinity at $\lambda=\lambda_{\infty}$ (which exists in the bounded case) "disappears". Specifically, there exists at least a positive solution u_{λ} for $\lambda \in\left(\lambda_{0}, \infty\right)$ and $\left\|u_{\lambda}\right\| \rightarrow \infty$ as $\lambda \rightarrow \infty$. However, if A is bounded in a subset of Ω, then again a bifurcation to infinity exists.

Along the work we will use the following notation:

- $H_{0}^{1}(\Omega)$ and $E=C_{0}(\bar{\Omega})$ are the usual Sobolev space and the space of the continuous functions in $\bar{\Omega}$ vanishing on $\partial \Omega$ endowed with the norms $\|u\|=\|\nabla u\|_{2}$ and $\|u\|_{0}=$ $\sup _{\Omega}|u|$, respectively.
- $\operatorname{cl}(D)$ denotes the closure of the set D.
- \mathcal{S} denotes the set

$$
\mathcal{S}=\operatorname{cl}\left\{(\lambda, u) \in \mathbb{R} \times E: u \text { is solution for }\left(P_{\lambda}\right), u \geq 0, u \not \equiv 0\right\}
$$

Any continuum subset of \mathcal{S} will be called a continuum of positive solutions of $\left(P_{\lambda}\right)$, although it may contain the trivial solution $(\lambda, 0)$ for some value of $\lambda>0$.

- I will denote both the identity matrix and the identity operator.
- Given square matrices B_{1}, B_{2} we say that $B_{1}>0$ (respect. $B_{1} \geq 0$) if the quadratic form induced by B_{1} is definite positive (respect. semidefinite positive). We say that $B_{1}<B_{2}$ (respect. $B_{1} \leq B_{2}$) if $B_{2}-B_{1}>0$ (respect. $B_{2}-B_{1} \geq 0$).
- The map $\operatorname{Proj}_{\mathbb{R}}: \mathbb{R} \times E \mapsto \mathbb{R}$ stands for the projection of the product space $\mathbb{R} \times E$ onto \mathbb{R}.

2. The case of bounded matrices \boldsymbol{A}

In order to study problem $\left(P_{\lambda}\right)$, let us recall that, for matrices A satisfying $\left(A_{1,2}\right)$, if $u \in H_{0}^{1}(\Omega)$ is solution of $\left(P_{\lambda}\right)$ then using the De Giorgi-Stampacchia Theorem ([8, Théorème 7.3] and [6, Theorem I] or [7, Theorem 8.29]), $u \in C^{0, \gamma}(\bar{\Omega})$ for some $0<\gamma<1$. Moreover, if the coefficients of the matrix A satisfy

$$
\begin{equation*}
a_{i j} \in C^{1, \gamma^{\prime}}(\bar{\Omega} \times \mathbb{R}), \text { for some } 0<\gamma^{\prime}<1 \tag{2.1}
\end{equation*}
$$

then by Theorem 15.17 in [7] we have that $u \in C_{0}^{2, \gamma \gamma^{\prime}}(\bar{\Omega})$.
We also recall that for every $(\lambda, u) \in \mathcal{S}$ with $u \in \mathcal{C}^{1}(\bar{\Omega})$ and $u \not \equiv 0$, using the Hopf maximum principle, we have that $u>0$ in Ω and the normal exterior derivative $\frac{\partial u}{\partial n_{e}}$ is negative in $\partial \Omega$.

The following lemma provides us necessary conditions in $\lambda \in \mathbb{R}$ for which $\left(P_{\lambda}\right)$ admits solution in some special cases.

Lemma 2.1. Assume $\left(A_{1,3}\right)$ and that $\left(P_{\lambda}\right)$ admits a positive solution. Then

1. $\lambda_{0} \leq \lambda$ (respect. $<, \geq,>$) if for every $s \in \mathbb{R}^{+}, A(x, 0) \leq A(x, s)$ (respect. $<, \geq,>$).
2. $\lambda_{\infty} \geq \lambda$ (respect. $>, \leq,<$) if for every $s \in \mathbb{R}^{+}, A_{\infty}(x) \geq A(x, s)$ (respect. $>, \leq,<$).

Proof. The result follows from the fact that for given symmetric matrices $B_{1}(x)$, $B_{2}(x)$ for which there exist $\lambda_{1}\left(B_{1}\right)$ and $\lambda_{1}\left(B_{2}\right)$, with $0<B_{1} \leq B_{2}$ then

$$
\lambda_{1}\left(B_{1}\right)=\inf \left\{\int_{\Omega} B_{1}(x) \nabla u \cdot \nabla u, u \in H_{0}^{1}(\Omega),\|u\|_{2}=1\right\} \leq \lambda_{1}\left(B_{2}\right)
$$

Thus, if $u \in H_{0}^{1}(\Omega)$ is a solution of $\left(P_{\lambda}\right)$, we conclude by taking into account that $\lambda=\lambda_{1}(A(x, u))$.

The main result of this section is the following:
Theorem 2.2. Assume $\left(A_{1-4}\right)$. We have that λ_{0} and λ_{∞} are the only bifurcation points from the trivial solution and from infinity, respectively, and there exists a continuum $\Sigma \subset \mathcal{S}$ of positive solutions meeting $\left(\lambda_{0}, 0\right)$ and $\left(\lambda_{\infty}, \infty\right)$, in particular, $\left(P_{\lambda}\right)$ possesses a positive solution for every $\lambda \in\left(\lambda_{0}, \lambda_{\infty}\right)$ or $\lambda \in\left(\lambda_{\infty}, \lambda_{0}\right)$. Moreover,

- the bifurcation from λ_{0} is subcritical (resp. supercritical) if there exists $s_{0}>0$ such that

$$
A(x, s)<A(x, 0),(\text { respect. } A(x, s)>A(x, 0)), \forall s \in\left(0, s_{0}\right)
$$

- the bifurcation from λ_{∞} is subcritical (resp. supercritical) if

$$
A(x, s)<A_{\infty}(x),\left(\text { resp. } A(x, s)>A_{\infty}(x)\right), \forall s \in \mathbb{R}^{+}
$$

Furthermore,

- if $A(x, 0)<A(x, s)<A_{\infty}(x)$ for every $s \in \mathbb{R}^{+}$, then there exists nontrivial solution for $\left(P_{\lambda}\right)$ if, and only if, $\lambda \in\left(\lambda_{0}, \lambda_{\infty}\right)$, in particular $\operatorname{Proj}_{\mathbb{R}} \Sigma=\left[\lambda_{0}, \lambda_{\infty}\right)$. If, in addition, $A(x, s)$ is increasing in s and it verifies (2.1), the solution is unique.
- If $A(x, 0)>A(x, s)>A_{\infty}(x)$ for every $s \in \mathbb{R}^{+}$, then there exists nontrivial solution for $\left(P_{\lambda}\right)$ if, and only if, $\lambda \in\left(\lambda_{\infty}, \lambda_{0}\right)$, in particular $\operatorname{Proj}_{\mathbb{R}} \Sigma=\left(\lambda_{\infty}, \lambda_{0}\right]$.

Proof. The existence of the continuum Σ of positive solutions follows by Theorem 5.1 in [1], and so the existence of positive solutions for every λ in $\left(\lambda_{0}, \lambda_{\infty}\right)$ or in $\left(\lambda_{\infty}, \lambda_{0}\right)$.

The description $\operatorname{Proj}_{\mathbb{R}} \Sigma$, in the cases $A(x, 0)<A(x, s)<A_{\infty}(x)$ or $A(x, 0)<A(x, s)<$ $A_{\infty}(x)$ for every $s \in \mathbb{R}^{+}$, follows directly from Lemma 2.1. Moreover, arguing as in that lemma we get the laterality of the bifurcations.

Now, assume that $A(x, s)$ is increasing in s and (2.1) is satisfied. In order to prove the uniqueness of solution for $\left(P_{\lambda}\right)$, let us suppose that there exist $\lambda \in\left(\lambda_{0}, \lambda_{\infty}\right)$ and $u_{1}, u_{2} \in E$, solutions of $\left(P_{\lambda}\right)$ with $u_{1} \not \equiv u_{2}$. We claim that u_{1}, u_{2} can be chosen such that $u_{1} \leq u_{2}$. Indeed, this is a consequence of the existence of a sequence $\left(\lambda_{n}, u_{n}\right)$ with $\lambda_{n} \rightarrow \lambda_{0}$ and $u_{n} \rightarrow 0$ in E. In fact, by regularity results, $u_{n} \rightarrow 0$ in $\mathcal{C}^{1}(\bar{\Omega})$. Thus, for $\lambda_{n}<\lambda, u_{n}$ is a subsolution for $\left(P_{\lambda}\right)$ and for large $n, u_{n} \leq \min \left\{u_{1}, u_{2}\right\}$. Then, by the sub and supersolution method, there exits $w \in E$ solution of $\left(P_{\lambda}\right)$ with

$$
u_{n} \leq w \leq u_{1}, \quad u_{n} \leq w \leq u_{2}
$$

This implies that $w \not \equiv u_{1}$ or $w \not \equiv u_{2}$, and the claim is proved by taking $u_{1}=w$ and $u_{2}=u_{i}$ for some $i=1,2$.

Now we take $v=\frac{u_{2}^{2}}{u_{1}}$ as test function in the equation satisfied by u_{1} and $v=u_{2}$ in that satisfied by u_{2}. Thus, subtracting both equalities we have that:

$$
\begin{aligned}
0= & \int_{\Omega} A\left(x, u_{1}\right) \nabla u_{1} \cdot \nabla\left(\frac{u_{2}^{2}}{u_{1}}\right)-\int_{\Omega} A\left(x, u_{2}\right) \nabla u_{2} \cdot \nabla u_{2} \\
= & -\int_{\Omega} A\left(x, u_{1}\right)\left(\frac{u_{2}}{u_{1}} \nabla u_{1}-\nabla u_{2}\right) \cdot\left(\frac{u_{2}}{u_{1}} \nabla u_{1}-\nabla u_{2}\right) \\
& -\int_{\Omega}\left(A\left(x, u_{2}\right)-A\left(x, u_{1}\right)\right) \nabla u_{2} \cdot \nabla u_{2}<0 .
\end{aligned}
$$

This contradiction gives the uniqueness.

3. The case of unbounded matrices A

In this section, we study $\left(P_{\lambda}\right)$ when A is not necessarily bounded and does not satisfy $\left(A_{3}\right)$. We prove firstly that every solution of $\left(P_{\lambda}\right)$ is bounded. More precisely we have

Lemma 3.1. Let $A(x, s)$ satisfy $\left(A_{1}\right)$ and $u \in H_{0}^{1}(\Omega)$ be a solution of $\left(P_{\lambda}\right)$, then $u \in E$. Moreover, there exist positive constants $c_{1}, c_{2}, \gamma_{1}, \gamma_{2}$ such that

$$
\begin{equation*}
\|u\|_{0}^{\gamma_{1}} \leq c_{1}+c_{2}\|u\|^{\gamma_{2}} . \tag{3.1}
\end{equation*}
$$

Proof. Once we know that $u \in L^{\infty}(\Omega)$, and $\|u\|_{\infty}^{\gamma_{1}} \leq c_{1}+c_{2}\|u\|^{\gamma_{2}}$ for some positive constants $c_{1}, c_{2}, \gamma_{1}, \gamma_{2}$, then the result follows directly from the De Giorgi-Stampacchia Theorem. Let us prove the $L^{\infty}(\Omega)$-estimate. We consider for every $k \in \mathbb{R}^{+}$the function $G_{k}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$given by

$$
G_{k}(s)=\left\{\begin{array}{lr}
0 & 0 \leq s \leq k \\
s-k & s>k
\end{array}\right.
$$

Thus, we can take $v=G_{k}(u)$ as test function in the weak equation satisfied by u and using $\left(A_{1}\right)$ we have

$$
\begin{equation*}
\alpha\left\|\nabla G_{k}(u)\right\|_{2}^{2} \leq \int_{\Omega} A(x, u) \nabla u \nabla G_{k}(u) \leq \lambda \int_{\Omega_{k}} u G_{k}(u) \tag{3.2}
\end{equation*}
$$

where $\Omega_{k} \equiv\{x \in \Omega: u(x)>k\}$.
Using the Sobolev and Hölder inequalities, in the case $N>2$, by (3.2) we yield, for $u \in L^{r}(\Omega)$ with $r>\frac{2^{*}}{2^{*}-1}$, and some positive constant c,

$$
\begin{equation*}
\left\|G_{k}(u)\right\|_{2^{*}}^{2} \leq c\|u\|_{r}\left\|G_{k}(u)\right\|_{2^{*}}\left(\text { meas } \Omega_{k}\right)^{\left(1-1 / r-1 / 2^{*}\right)} \tag{3.3}
\end{equation*}
$$

Taking into account that, for every $h>k, G_{k}(u) \geq h-k$ in Ω_{h}, (3.3) implies that

$$
(h-k)\left(\text { meas } \Omega_{h}\right)^{1 / 2^{*}} \leq c\|u\|_{r}\left(\text { meas } \Omega_{k}\right)^{\left(1-1 / r-1 / 2^{*}\right)}
$$

or equivalently

$$
\begin{equation*}
\text { meas } \Omega_{h} \leq \frac{c\|u\|_{r}^{2^{*}}\left(\text { meas } \Omega_{k}\right)^{2^{*}-1-2^{*} / r}}{(h-k)^{2^{*}}} \tag{3.4}
\end{equation*}
$$

We can now apply the Stampacchia Lemma ([8, Lemma 4.1]) to deduce that:
i) if $u \in L^{r}(\Omega)$ with $r>\frac{N}{2}$, then $u \in L^{\infty}(\Omega)$ and $\|u\|_{\infty} \leq c\|u\|_{r}$,
ii) if $u \in L^{r}(\Omega)$ with $r=\frac{N}{2}$, then $u \in L^{t}(\Omega)$ for $t \in[1, \infty)$ and $\|u\|_{t}^{t} \leq c+c^{\prime}\|u\|_{r}^{t}$,
iii) if $u \in L^{r}(\Omega)$ with $r<\frac{N}{2}$, then $u \in L^{t}(\Omega)$ for $t=\frac{2^{*} r}{\left(2-2^{*}\right) r+2^{*}}-\delta$ and $\delta>0$ arbitrarily small. Moreover, $\|u\|_{t}^{t} \leq c+c^{\prime}\|u\|_{r}^{t+\delta}$.
Since $u \in L^{2^{*}}(\Omega)$ and $2^{*}>\frac{2^{*}}{2^{*}-1}$, we can argue as before for $r_{0}=2^{*}$. Thus, if $2^{*}>\frac{N}{2}$ we conclude by item i). In the case $2^{*}=\frac{N}{2}$ we use item ii) in order to take $r_{1}>\frac{N}{2}$ and conclude again by item i). Finally, in the case $2^{*}<\frac{N}{2}$ we can take

$$
r_{1}=\frac{2^{*} r_{0}}{\left(2-2^{*}\right) r_{0}+2^{*}}-\delta_{1}>r_{0}
$$

As before, if $r_{1} \geq \frac{N}{2}$ we easily conclude. In other case we take

$$
r_{2}=\frac{2^{*} r_{1}}{\left(2-2^{*}\right) r_{1}+2^{*}}-\delta_{2}
$$

By an iterative argument we conclude after a finite number of steps. Indeed, in other case, we have that r_{n} is bounded, where r_{n} is defined recurrently by

$$
\left\{\begin{array}{l}
r_{0}=2^{*} \\
r_{n+1}=\frac{2^{*} r_{n}}{\left(2-2^{*}\right) r_{n}+2^{*}}-\delta_{n+1}
\end{array}\right.
$$

where $\lim _{n \rightarrow \infty} \delta_{n}=0$. Moreover, r_{n} is non decreasing and so it converges to $r \in\left(2^{*}, \frac{N}{2}\right]$ that satisfies

$$
r=\frac{2^{*} r}{\left(2-2^{*}\right) r+2^{*}}
$$

that is, $2^{*}=\left(2-2^{*}\right) r+2^{*}$, which implies that $r=0$ and this is a contradiction.
Observe that the estimate (3.1) follows, after this finite number of steps, from estimates in items i)-iii), and the Sobolev embedding.

Finally, in the case $N=2$ we can choose $r>\frac{q}{q-2}$ for any $q>2$ and argue as before with 2^{*} replaced by q. In this case we finish by item i).

Along this section, we assume, instead of $\left(A_{2}\right)$, that for each $s_{0} \in \mathbb{R}^{+}$there exists $\beta\left(s_{0}\right)$ such that

$$
\begin{equation*}
|A(x, s)| \leq \beta\left(s_{0}\right) \tag{A}
\end{equation*}
$$

for $(x, s) \in \bar{\Omega} \times\left[0, s_{0}\right]$.
We consider the truncated problems

$$
\left\{\begin{aligned}
-\operatorname{div}\left(A\left(x, T_{n}(u)\right) \nabla u\right) & =\lambda u, \quad x \in \Omega, \\
u & =0, \quad x \in \partial \Omega
\end{aligned} \quad\left(P_{\lambda, n}\right)\right.
$$

being $T_{n}(s)$ the map defined, for each $n \in \mathbb{N}$, by

$$
T_{n}(s)=\left\{\begin{array}{lr}
s & 0 \leq s \leq n \\
n & s>n
\end{array}\right.
$$

By Theorem 2.2, there exist Σ_{n} unbounded maximal continua of positive solutions such that $\left(\lambda_{0}, 0\right) \in \Sigma_{n}$ for each $n \in \mathbb{N}$. Now, we can prove

Theorem 3.2. Suppose that A satisfies $\left(A_{1,4}\right)$ and $\left(\tilde{A}_{2}\right)$. Then, there exists an unbounded continuum $\Sigma \subset \mathcal{S}$ such that $\left(\lambda_{0}, 0\right) \in \Sigma$.

Proof. Firstly, we denote by Σ_{k}^{n} the connected component of $\Sigma_{k} \cap\left(\mathbb{R} \times \bar{B}_{n}(0)\right)$ containing $\left(\lambda_{0}, 0\right)$. We claim that

$$
\begin{equation*}
\Sigma_{k}^{n}=\Sigma_{n}^{n} \quad \text { for } k \geq n \tag{3.5}
\end{equation*}
$$

Indeed, if $k \geq n$ and $(\lambda, u) \in \Sigma_{k}^{n}$ then u is solution of $\left(P_{\lambda, n}\right)$. Thus, Σ_{k}^{n} is a closed and connected subset of

$$
\operatorname{cl}\left\{(\lambda, u) \in \mathbb{R} \times E: u \text { is solution non-trivial of }\left(P_{\lambda, n}\right)\right\}
$$

containing $\left(\lambda_{0}, 0\right)$. So, $\Sigma_{k}^{n} \subset \Sigma_{n}$, whence we deduce that $\Sigma_{k}^{n} \subset \Sigma_{n}^{n}$. We can reason similarly and obtain that $\Sigma_{n}^{n} \subset \Sigma_{k} \cap\left(\mathbb{R} \times \bar{B}_{n}(0)\right)$, and so it follows (3.5). So, we get

$$
\Sigma_{n}^{n}=\lim _{k} \Sigma_{k}^{n}
$$

Therefore, for each $n \in \mathbb{N}$ we have a continuum

$$
\Sigma_{n}^{n} \subset \operatorname{cl}\left\{(\lambda, u) \in \mathbb{R} \times E: u \text { is a non-trivial solution of }\left(P_{\lambda}\right)\right\}
$$

containing $\left(\lambda_{0}, 0\right)$ and if $(\lambda, u) \in \Sigma_{n}^{n}$ then $\|u\|_{0} \leq n$.
Now, we are going to prove that

$$
\begin{equation*}
\Sigma_{n}^{n} \subset \Sigma_{n+1}^{n+1} \quad \text { for each } n \in \mathbb{N} \tag{3.6}
\end{equation*}
$$

Indeed, observe that

$$
\Sigma_{n}^{n}=\Sigma_{n+1}^{n} \subset \Sigma_{n+1} \cap\left(\mathbb{R} \times \bar{B}_{n}(0)\right) \subset \Sigma_{n+1} \cap\left(\mathbb{R} \times \bar{B}_{n+1}(0)\right)
$$

so, since Σ_{n+1}^{n+1} is the connected component of $\Sigma_{n+1} \cap\left(\mathbb{R} \times \bar{B}_{n+1}(0)\right)$ containing $\left(\lambda_{0}, 0\right)$ and Σ_{n}^{n} is a connected of such subset containing it, (3.6) follows.

Finally, we show that the set

$$
\Sigma=\bigcup_{n=1}^{\infty} \Sigma_{n}^{n}
$$

satisfies the theorem. Firstly, observe that since Σ_{n} is unbounded, Σ is also unbounded. Indeed, since $\operatorname{Proj}_{\mathbb{R}} \Sigma_{n}$ is bounded, so there exists a connected subset of $\Sigma_{n} \cap\left(\mathbb{R} \times \bar{B}_{n}(0)\right)$ containing $\left(\lambda_{0}, 0\right)$ and intersecting with $\mathbb{R} \times \partial \bar{B}_{n}(0)$ for each $n \in \mathbb{N}$; i.e., for each $n \in \mathbb{N}$ there exists $\left(\lambda_{n}, u_{n}\right) \in \Sigma_{n}^{n}$, with $\left\|u_{n}\right\|_{0}=n$.

On the other hand, since Σ_{n}^{n} is connected and $\left(\lambda_{0}, 0\right) \in \Sigma_{n}^{n}$ for each $n \in \mathbb{N}$, it follows that Σ is connected.

Finally, we will prove that Σ is closed. Let $(\lambda, u) \in \bar{\Sigma}$. Since $\bar{\Sigma}$ is connected, there exists a connected and bounded set $\Sigma^{\prime} \subset \bar{\Sigma}$ containing $\left(\lambda_{0}, 0\right)$ and (λ, u). Thus, there exists $n \in \mathbb{N}$ such that

$$
\Sigma^{\prime} \subset \operatorname{cl}\left\{(\lambda, u) \in \mathbb{R} \times E:\|u\|_{0} \leq n, u \text { is non-trivial solution of }\left(P_{\lambda, n}\right)\right\}
$$

In particular, $\Sigma^{\prime} \subset \Sigma_{n} \cap\left(\mathbb{R} \times \bar{B}_{n}(0)\right)$ whence $\Sigma^{\prime} \subset \Sigma_{n}^{n}$ and so, $(\lambda, u) \in \Sigma_{n}^{n} \subset \Sigma$.

Remark 3.3. 1. We would like to point out that the above result is true even in the case that the limit of $A(x, s)$ does not exist as $s \rightarrow \infty$.
2. In the case A bounded in some subset of Ω, then we can conclude that $\operatorname{Proj}_{\mathbb{R}} \Sigma$ is bounded. Indeed, assume that $|A(x, s)| \leq \gamma$ if $x \in B$, where B is a ball such that $B \subset \Omega$, then using the monotony of the principal eigenvalue with respect to the domain, we obtain

$$
\lambda=\lambda_{1}(A(x, u)) \leq \lambda_{1}^{B}(A(x, u)) \leq \lambda_{1}^{B}(\gamma I)=\gamma \lambda_{1}^{B}(I)
$$

3. In this case we can obtain a similar result to the main one in [2]. Indeed, for each $r>0$ there exists $\lambda_{r}>0$ and $u_{r} \in H_{0}^{1}(\Omega)$ solution of $\left(P_{\lambda}\right)$ with $\|u\|_{0}=r$.

In the next result we show that when $A(x, s)$ tends to infinity as $s \rightarrow \infty$ in the sense of $\left(A_{\infty}\right)$, then the bifurcation at infinity disappears, in some sense $\lambda_{\infty} \rightarrow+\infty$ when $A(x, s)$ tends to infinity.

Theorem 3.4. Assume that A satisfies $\left(A_{4}\right),\left(\tilde{A}_{2}\right)$ and $\left(A_{\infty}\right)$. Then, there exists a continuum $\Sigma \subset \mathcal{S}$ such that $\left(\lambda_{0}, 0\right) \in \Sigma$. Moreover, the interval $\left(\lambda_{0},+\infty\right) \subset \operatorname{Proj}_{\mathbb{R}} \Sigma$ and

$$
\lim _{\substack{\lambda \rightarrow+\infty \\\left(\lambda, u_{\lambda}\right) \in \Sigma}}\left\|u_{\lambda}\right\|_{0}=+\infty
$$

Proof. The existence of the continuum unbounded Σ bifurcating from $\left(\lambda_{0}, 0\right)$ follows by Theorem 3.2. Since $\lambda=\lambda_{1}(A(x, u)) \geq \lambda_{1}(\alpha I)=\alpha \lambda_{1}(I)$, there do not exist positive solutions for λ small. So, it suffices to prove that it is not possible bifurcation from infinity. In order to do that we observe that problem $\left(P_{\lambda}\right)$ can be written as

$$
\left\{\begin{array}{rlr}
-\operatorname{div}(B(x, u) g(u) \nabla u) & =\lambda u, \quad x \in \Omega \\
u & =0, \quad x \in \partial \Omega
\end{array}\right.
$$

where g is given by hypothesis $\left(A_{\infty}\right)$ and

$$
B(x, u):=\frac{A(x, u)}{g(u)}
$$

Moreover, if we perform the change of variable

$$
w=\tilde{g}(u)=\int_{0}^{u} g(t) d t
$$

problem $\left(P_{\lambda}\right)$ is equivalent to

$$
\left\{\begin{align*}
-\operatorname{div}(C(x, w) \nabla w) & =\lambda f(w), & x \in \Omega \\
w & =0, & x \in \partial \Omega
\end{align*}\right.
$$

where

$$
C(x, w):=B\left(x, \tilde{g}^{-1}(w)\right) \quad \text { and } \quad f(w):=\tilde{g}^{-1}(w)
$$

Now we argue by contradiction, and assume that there exists a sequence of solutions $\left(\lambda_{n}, u_{n}\right)$ of $\left(P_{\lambda_{n}}\right)$ such that $\lambda_{n} \rightarrow \bar{\lambda}>0$ and $\left\|u_{n}\right\|_{0} \rightarrow \infty$. Then, by (3.1) we have that $\left\|u_{n}\right\| \rightarrow \infty$ and taking $w_{n}=\tilde{g}\left(u_{n}\right)$, it is clear that $\left\|w_{n}\right\|_{0} \rightarrow \infty$. In addition, since $\left(A_{\infty}\right)$ implies that $\alpha^{2}\left\|u_{n}\right\|^{2} \leq\left\|w_{n}\right\|^{2}$, we also have that $\left\|w_{n}\right\| \rightarrow \infty$. For the normalized sequence $z_{n}:=\frac{w_{n}}{\left\|w_{n}\right\|}$ we know the existence of $z \in H_{0}^{1}(\Omega)$, such that

$$
z_{n} \rightarrow z \quad \text { strongly in } L^{2}(\Omega), \text { and a.e. in } \Omega .
$$

and so, taking $w_{n} /\left\|w_{n}\right\|^{2}$ as a test function in $\left(Q_{\lambda_{n}}\right)$, we obtain that

$$
\begin{equation*}
\alpha \leq \int_{\Omega} C\left(x, w_{n}\right) \nabla z_{n} \cdot \nabla z_{n}=\lambda_{n} \int_{\Omega} \frac{f\left(w_{n}\right)}{\left\|w_{n}\right\|} z_{n} \tag{3.7}
\end{equation*}
$$

Now, taking into account that

$$
\frac{f(s)}{s} \rightarrow 0 \quad \text { as } s \rightarrow \infty
$$

and that $f(s) \leq \frac{1}{\alpha} s$ for each $s \in \mathbb{R}^{+}$, we can argue as Theorem 5.5 in [1] and conclude that

$$
\int_{\Omega} \frac{f\left(w_{n}\right)}{\left\|w_{n}\right\|} z_{n} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Indeed, we can write for every $n \in \mathbb{N}$

$$
\begin{aligned}
\int_{\Omega} \frac{f\left(w_{n}\right)}{\left\|w_{n}\right\|} z_{n} & =\int_{\Omega} \frac{f\left(w_{n}\right)}{\left\|w_{n}\right\|}\left(z_{n}-z\right)+\int_{\Omega} \frac{f\left(w_{n}\right)}{\left\|w_{n}\right\|} z \\
& \leq \frac{1}{\alpha}\left\|z_{n}\right\|_{2}\left\|z_{n}-z\right\|_{2}+\int_{\Omega_{0}} \frac{f\left(w_{n}\right)}{\left\|w_{n}\right\|} z
\end{aligned}
$$

where $\Omega_{0}=\{x \in \Omega: z(x) \neq 0\}$. Thus, we only have to prove that

$$
\lim _{n \rightarrow \infty} \int_{\Omega_{0}} \frac{f\left(w_{n}\right)}{\left\|w_{n}\right\|} z=0
$$

which is a direct consequence of the Lebesgue Theorem, since for a.e. $x \in \Omega_{0}, w_{n}(x)=$ $z_{n}(x)\left\|w_{n}\right\| \rightarrow+\infty$ and then

$$
\frac{f\left(w_{n}(x)\right)}{\left\|w_{n}\right\|} z(x) \rightarrow 0, \text { a.e. } x \in \Omega_{0}
$$

Thus, taking limits in (3.7), we have that $\alpha \leq 0$, which is a contradiction.

This work was developed while the first author was visiting the Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla. He gratefully acknowledges the whole department for the warm hospitality and the friendly atmosphere. First author partially supported by D.G.E.S. Ministerio de Educación y Ciencia (Spain) n. PB98-1283. The second supported by the Spanish Ministry of Science and Technology under Grant BFM2000-0797.

References

1. Arcoya, D., Carmona, J., Pellacci, B.: Bifurcation for Quasilinear Operator, Proc. Roy. Soc. Edinb. 131 A, (2001), 733-765.
2. Boccardo, L.: Positive eigenfunctions for a class of quasili-linear operator, Bollettino B. M. I. 18-B (1981), 951-959.
3. Cantrell R.S., Cosner C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments, Part I and II, Proc. R. Soc. Edinb., 112A, 293-318 (1989) and SIAM J. Math. Anal., 22, 1043-1064 (1991).
4. Chabrowski, J.: Some Existence Theorems for the Dirichlet Problem for Quasilinear Elliptic Equations, Annali di Matematica pura ed applicata., 158, 391-398 (1991).
5. De Figueiredo D.G.: Positive solutions of semilinear elliptic problems, Lectures Notes in Math., 957, (1982).
6. De Giorgi, E. : Sulla Differenziabilità e l'Analiticità degli Estremali degli Integrali Multipli Regolari. Mem. Accad. Sci. Torino (1957), 25-43.
7. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, 1983.
8. Stampacchia, G.: Le Problème de Dirichlet pour les Équations Elliptiques du Second Ordre À Coefficients Discontinus. Ann. Inst. Fourier Grenoble. 117 (1965), 138-152.
