Submitted Paper Paper 30 March 2004

AN EIGENVALUE PROBLEM FOR NON-BOUNDED QUASI-LINEAR OPERATOR

José Carmona¹ and Antonio Suárez²

 ¹ Dpto. de Álgebra y Análisis Matemático, Facultad de Ciencias, Cañada de San Urbano, Almería, Spain e-mail: jcarmona@ual.es
 ² Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Sevilla, Spain e-mail: suarez@us.es

(Received)

Abstract In this paper we study the eigenvalues associated with a positive eigenfunction of a quasilinear elliptic problem with a not necessarily bounded operator. For that, we use the bifurcation theory and obtain the existence of positive solution for a range of values of the bifurcation parameter.

AMS 2000 Mathematics subject classification: Primary 35J60, 35J25 Secondary 35D05

1. Introduction

Let Ω be a bounded open subset of \mathbb{R}^N with sufficiently smooth boundary $\partial\Omega$ and let A(x,s) be a real symmetric matrix which coefficients, $a_{ij}: \overline{\Omega} \times \mathbb{R}^+_0 \to \mathbb{R}$, are Carathéodory functions.

We assume that there exists a positive constant α satisfying for every $(x, s, \xi) \in \Omega \times \mathbb{R}^+ \times \mathbb{R}^N$,

$$A(x,s)\xi \cdot \xi \ge \alpha |\xi|^2. \tag{A1}$$

In this paper we analyze the nonlinear eigenvalue problem

$$\begin{cases} -\operatorname{div}(A(x,u)\nabla u) &= \lambda u, \quad x \in \Omega, \\ u &= 0, \quad x \in \partial\Omega, \end{cases}$$
(P_{\lambda})

where, we say that λ is an eigenvalue for this problem if (P_{λ}) admits a positive and nontrivial solution, that is, if there exists $u \in H_0^1(\Omega), u \ge 0, u \ne 0$, such that $A(x, u) \nabla u \in (L^2(\Omega))^N$ and

$$\int_{\Omega} A(x, u) \nabla u \cdot \nabla v = \lambda \int_{\Omega} uv, \, \forall v \in H_0^1(\Omega).$$

In addition to the interest itself in the study of (P_{λ}) , this kind of equation has been used to model a species inhabiting in Ω where its diffusion depends on the density of the species, which arises in more realistic models, see [3] and references therein.

Problem (P_{λ}) is well known when A does not depend on s, i.e., when A(x,s) = B(x)with $B = (b_{ij})$ and $b_{ij} \in L^{\infty}(\Omega)$, $b_{ij} \ge b_0 > 0$ in Ω . In this case, there exists the principal eigenvalue, denoted by $\lambda_1(B)$, for the problem:

$$\begin{cases} -\operatorname{div}(B(x)\nabla u) = \lambda u, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$
(1.1)

being the unique eigenvalue with a positive eigenfunction, see for instance [5].

In [2], assuming that A satisfies (A_1) and

$$|A(x,s)| \le \beta, \quad \text{for each } (x,s) \in \Omega \times \mathbb{R}, \tag{A2}$$

the author proved that for each r > 0, there exists $\lambda_r > 0$ and a positive solution $u_r \in H_0^1(\Omega)$, of (P_{λ_r}) such that $||u_r||_2 = r$. Moreover, denoting by

$$\lambda_0 := \lambda_1(A(x,0)),$$

he showed that if $r \to 0$, then $\lambda_r \to \lambda_0$ and $\frac{u_r}{r}$ converges to a positive eigenfunction associated to λ_0 in $H_0^1(\Omega)$. Finally, if A also verifies

$$\lim_{s \to \infty} A(x,s) = A_{\infty}(x), \text{ uniformly in } x \in \Omega,$$
 (A₃)

then $\lambda_r \to \lambda_\infty$ and $\frac{u_r}{r}$ goes to a positive eigenfunction associated to λ_∞ in $H_0^1(\Omega)$ as $r \to \infty$, where

$$\lambda_{\infty} := \lambda_1(A_{\infty}(x)).$$

In [4], a slightly modification of (P_{λ}) is analyzed. Under conditions (A_{1-3}) , $\lambda u + h(x)$ for some $0 \leq h \in L^2(\Omega)$ is considered instead of λu . But the arguments used to prove the existence of solution leads to the trivial one in the case $h \equiv 0$.

In [1], assuming in addition the existence of an Osgood function $\omega : \mathbb{R}^+_0 \to \mathbb{R}$ such that

$$|A(x,s_1) - A(x,s_2)| \le \omega(|s_1 - s_2|), \tag{A4}$$

for every $(x, s_1), (x, s_2) \in \Omega \times \mathbb{R}$, using a bifurcation analysis, the authors study a more general problem

$$\begin{cases} -\operatorname{div}(A(x,u)\nabla u) &= f(\lambda,x,s), \quad x \in \Omega, \\ u &= 0, \quad x \in \partial\Omega, \end{cases}$$

for $f : \mathbb{R} \times \overline{\Omega} \times \mathbb{R} \mapsto \mathbb{R}$ and A satisfying (A_{1-4}) . In the particular case $f(\lambda, x, s) = \lambda s$, from their results it can be deduced the existence of an unbounded continuum (closed and connected subset) of positive solutions bifurcating from the trivial solution at $\lambda = \lambda_0$ and

meeting with infinity at the value $\lambda = \lambda_{\infty}$. Thus, as a consequence, there exists positive solution of (P_{λ}) for $\lambda \in (\lambda_0, \lambda_{\infty})$ or $(\lambda_{\infty}, \lambda_0)$. In the following section we complete this study for A satisfying (A_{1-4}) by giving sufficient conditions for the uniqueness of positive solution.

The main goal of this work (see Section 3) is to analyze (P_{λ}) when A is not necessarily bounded and/or does not satisfy (A_3) . In this case, we show that there exists an unbounded continuum of positive solutions bifurcating from the trivial one at $\lambda = \lambda_0$. If, in addition there exists a continuous function $g : \mathbb{R}^+_0 \to \mathbb{R}$, with $\lim_{s \to +\infty} g(s) = +\infty$, satisfying for every $(x, s, \xi) \in \Omega \times \mathbb{R}^+ \times \mathbb{R}^N$,

$$A(x,s)\xi \cdot \xi \ge g(s)|\xi|^2 \ge \alpha |\xi|^2. \tag{A_{\infty}}$$

then, the bifurcation from infinity at $\lambda = \lambda_{\infty}$ (which exists in the bounded case) "disappears". Specifically, there exists at least a positive solution u_{λ} for $\lambda \in (\lambda_0, \infty)$ and $||u_{\lambda}|| \to \infty$ as $\lambda \to \infty$. However, if A is bounded in a subset of Ω , then again a bifurcation to infinity exists.

Along the work we will use the following notation:

- $H_0^1(\Omega)$ and $E = C_0(\overline{\Omega})$ are the usual Sobolev space and the space of the continuous functions in $\overline{\Omega}$ vanishing on $\partial\Omega$ endowed with the norms $||u|| = ||\nabla u||_2$ and $||u||_0 = \sup_{\Omega} |u|$, respectively.
- cl(D) denotes the closure of the set D.
- ${\mathcal S}$ denotes the set

$$\mathcal{S} = \operatorname{cl}\{(\lambda, u) \in \mathbb{R} \times E : u \text{ is solution for } (P_{\lambda}), u \ge 0, u \not\equiv 0\}.$$

Any continuum subset of S will be called a continuum of positive solutions of (P_{λ}) , although it may contain the trivial solution $(\lambda, 0)$ for some value of $\lambda > 0$.

- *I* will denote both the identity matrix and the identity operator.
- Given square matrices B_1, B_2 we say that $B_1 > 0$ (respect. $B_1 \ge 0$) if the quadratic form induced by B_1 is definite positive (respect. semidefinite positive). We say that $B_1 < B_2$ (respect. $B_1 \le B_2$) if $B_2 B_1 > 0$ (respect. $B_2 B_1 \ge 0$).
- The map $\operatorname{Proj}_{\mathbb{R}} : \mathbb{R} \times E \mapsto \mathbb{R}$ stands for the projection of the product space $\mathbb{R} \times E$ onto \mathbb{R} .

2. The case of bounded matrices A

In order to study problem (P_{λ}) , let us recall that, for matrices A satisfying $(A_{1,2})$, if $u \in H_0^1(\Omega)$ is solution of (P_{λ}) then using the De Giorgi-Stampacchia Theorem ([8, Théorème 7.3] and [6, Theorem I] or [7, Theorem 8.29]), $u \in C^{0,\gamma}(\overline{\Omega})$ for some $0 < \gamma < 1$. Moreover, if the coefficients of the matrix A satisfy

$$a_{ij} \in C^{1,\gamma'}(\overline{\Omega} \times \mathbb{R}), \text{ for some } 0 < \gamma' < 1,$$

$$(2.1)$$

J. Carmona and A. Suárez

then by Theorem 15.17 in [7] we have that $u \in C_0^{2,\gamma\gamma'}(\overline{\Omega})$.

We also recall that for every $(\lambda, u) \in S$ with $u \in C^1(\overline{\Omega})$ and $u \neq 0$, using the Hopf maximum principle, we have that u > 0 in Ω and the normal exterior derivative $\frac{\partial u}{\partial n_e}$ is negative in $\partial\Omega$.

The following lemma provides us necessary conditions in $\lambda \in \mathbb{R}$ for which (P_{λ}) admits solution in some special cases.

Lemma 2.1. Assume $(A_{1,3})$ and that (P_{λ}) admits a positive solution. Then

- 1. $\lambda_0 \leq \lambda$ (respect. \langle , \geq , \rangle) if for every $s \in \mathbb{R}^+$, $A(x,0) \leq A(x,s)$ (respect. \langle , \geq , \rangle).
- 2. $\lambda_{\infty} \ge \lambda$ (respect. >, \le , <) if for every $s \in \mathbb{R}^+$, $A_{\infty}(x) \ge A(x, s)$ (respect. >, \le , <).

Proof. The result follows from the fact that for given symmetric matrices $B_1(x)$, $B_2(x)$ for which there exist $\lambda_1(B_1)$ and $\lambda_1(B_2)$, with $0 < B_1 \leq B_2$ then

$$\lambda_1(B_1) = \inf\left\{\int_{\Omega} B_1(x)\nabla u \cdot \nabla u, \ u \in H_0^1(\Omega), \ \|u\|_2 = 1\right\} \le \lambda_1(B_2).$$

Thus, if $u \in H_0^1(\Omega)$ is a solution of (P_λ) , we conclude by taking into account that $\lambda = \lambda_1(A(x, u))$.

The main result of this section is the following:

Theorem 2.2. Assume (A_{1-4}) . We have that λ_0 and λ_{∞} are the only bifurcation points from the trivial solution and from infinity, respectively, and there exists a continuum $\Sigma \subset S$ of positive solutions meeting $(\lambda_0, 0)$ and $(\lambda_{\infty}, \infty)$, in particular, (P_{λ}) possesses a positive solution for every $\lambda \in (\lambda_0, \lambda_{\infty})$ or $\lambda \in (\lambda_{\infty}, \lambda_0)$. Moreover,

• the bifurcation from λ_0 is subcritical (resp. supercritical) if there exists $s_0 > 0$ such that

A(x,s) < A(x,0), (respect. $A(x,s) > A(x,0)), \forall s \in (0,s_0),$

• the bifurcation from λ_{∞} is subcritical (resp. supercritical) if

$$A(x,s) < A_{\infty}(x), \text{ (resp. } A(x,s) > A_{\infty}(x)), \forall s \in \mathbb{R}^+.$$

Furthermore,

- if $A(x,0) < A(x,s) < A_{\infty}(x)$ for every $s \in \mathbb{R}^+$, then there exists nontrivial solution for (P_{λ}) if, and only if, $\lambda \in (\lambda_0, \lambda_{\infty})$, in particular $Proj_{\mathbb{R}}\Sigma = [\lambda_0, \lambda_{\infty})$. If, in addition, A(x,s) is increasing in s and it verifies (2.1), the solution is unique.
- If $A(x,0) > A(x,s) > A_{\infty}(x)$ for every $s \in \mathbb{R}^+$, then there exists nontrivial solution for (P_{λ}) if, and only if, $\lambda \in (\lambda_{\infty}, \lambda_0)$, in particular $Proj_{\mathbb{R}}\Sigma = (\lambda_{\infty}, \lambda_0]$.

Proof. The existence of the continuum Σ of positive solutions follows by Theorem 5.1 in [1], and so the existence of positive solutions for every λ in $(\lambda_0, \lambda_\infty)$ or in $(\lambda_\infty, \lambda_0)$.

The description $Proj_{\mathbb{R}}\Sigma$, in the cases $A(x,0) < A(x,s) < A_{\infty}(x)$ or $A(x,0) < A(x,s) < A_{\infty}(x)$ for every $s \in \mathbb{R}^+$, follows directly from Lemma 2.1. Moreover, arguing as in that lemma we get the laterality of the bifurcations.

Now, assume that A(x, s) is increasing in s and (2.1) is satisfied. In order to prove the uniqueness of solution for (P_{λ}) , let us suppose that there exist $\lambda \in (\lambda_0, \lambda_{\infty})$ and $u_1, u_2 \in E$, solutions of (P_{λ}) with $u_1 \not\equiv u_2$. We claim that u_1, u_2 can be chosen such that $u_1 \leq u_2$. Indeed, this is a consequence of the existence of a sequence (λ_n, u_n) with $\lambda_n \to \lambda_0$ and $u_n \to 0$ in E. In fact, by regularity results, $u_n \to 0$ in $\mathcal{C}^1(\overline{\Omega})$. Thus, for $\lambda_n < \lambda, u_n$ is a subsolution for (P_{λ}) and for large $n, u_n \leq \min\{u_1, u_2\}$. Then, by the sub and supersolution method, there exist $w \in E$ solution of (P_{λ}) with

$$u_n \le w \le u_1, \quad u_n \le w \le u_2.$$

This implies that $w \neq u_1$ or $w \neq u_2$, and the claim is proved by taking $u_1 = w$ and $u_2 = u_i$ for some i = 1, 2.

Now we take $v = \frac{u_2^2}{u_1}$ as test function in the equation satisfied by u_1 and $v = u_2$ in that satisfied by u_2 . Thus, subtracting both equalities we have that:

$$0 = \int_{\Omega} A(x, u_1) \nabla u_1 \cdot \nabla \left(\frac{u_2^2}{u_1}\right) - \int_{\Omega} A(x, u_2) \nabla u_2 \cdot \nabla u_2$$
$$= -\int_{\Omega} A(x, u_1) \left(\frac{u_2}{u_1} \nabla u_1 - \nabla u_2\right) \cdot \left(\frac{u_2}{u_1} \nabla u_1 - \nabla u_2\right)$$
$$- \int_{\Omega} \left(A(x, u_2) - A(x, u_1)\right) \nabla u_2 \cdot \nabla u_2 < 0.$$

This contradiction gives the uniqueness.

In this section, we study (P_{λ}) when A is not necessarily bounded and does not satisfy (A_3) . We prove firstly that every solution of (P_{λ}) is bounded. More precisely we have

Lemma 3.1. Let A(x,s) satisfy (A_1) and $u \in H_0^1(\Omega)$ be a solution of (P_{λ}) , then $u \in E$. Moreover, there exist positive constants $c_1, c_2, \gamma_1, \gamma_2$ such that

$$\|u\|_0^{\gamma_1} \le c_1 + c_2 \|u\|^{\gamma_2}. \tag{3.1}$$

Proof. Once we know that $u \in L^{\infty}(\Omega)$, and $||u||_{\infty}^{\gamma_1} \leq c_1 + c_2 ||u||^{\gamma_2}$ for some positive constants $c_1, c_2, \gamma_1, \gamma_2$, then the result follows directly from the De Giorgi-Stampacchia Theorem. Let us prove the $L^{\infty}(\Omega)$ -estimate. We consider for every $k \in \mathbb{R}^+$ the function $G_k : \mathbb{R}^+_0 \to \mathbb{R}^+_0$ given by

$$G_k(s) = \begin{cases} 0 & 0 \le s \le k, \\ s-k & s > k. \end{cases}$$

Thus, we can take $v = G_k(u)$ as test function in the weak equation satisfied by u and using (A_1) we have

$$\alpha \|\nabla G_k(u)\|_2^2 \le \int_{\Omega} A(x, u) \nabla u \nabla G_k(u) \le \lambda \int_{\Omega_k} u G_k(u),$$
(3.2)

where $\Omega_k \equiv \{x \in \Omega : u(x) > k\}.$

Using the Sobolev and Hölder inequalities, in the case N > 2, by (3.2) we yield, for $u \in L^{r}(\Omega)$ with $r > \frac{2^{*}}{2^{*}-1}$, and some positive constant c,

$$||G_k(u)||_{2^*}^2 \le c||u||_r ||G_k(u)||_{2^*} (\text{meas } \Omega_k)^{(1-1/r-1/2^*)}.$$
(3.3)

Taking into account that, for every h > k, $G_k(u) \ge h - k$ in Ω_h , (3.3) implies that

$$(h-k)(\max \Omega_h)^{1/2^*} \le c ||u||_r (\max \Omega_k)^{(1-1/r-1/2^*)},$$

or equivalently

meas
$$\Omega_h \le \frac{c \|u\|_r^{2^*} (\text{meas } \Omega_k)^{2^* - 1 - 2^*/r}}{(h - k)^{2^*}}.$$
 (3.4)

We can now apply the Stampacchia Lemma ([8, Lemma 4.1]) to deduce that:

- i) if $u \in L^r(\Omega)$ with $r > \frac{N}{2}$, then $u \in L^{\infty}(\Omega)$ and $||u||_{\infty} \le c ||u||_r$,
- ii) if $u \in L^r(\Omega)$ with $r = \frac{N}{2}$, then $u \in L^t(\Omega)$ for $t \in [1, \infty)$ and $||u||_t^t \le c + c' ||u||_r^t$,

iii) if $u \in L^r(\Omega)$ with $r < \frac{N}{2}$, then $u \in L^t(\Omega)$ for $t = \frac{2^*r}{(2-2^*)r+2^*} - \delta$ and $\delta > 0$ arbitrarily small. Moreover, $\|u\|_t^t \le c + c' \|u\|_r^{t+\delta}$.

Since $u \in L^{2^*}(\Omega)$ and $2^* > \frac{2^*}{2^*-1}$, we can argue as before for $r_0 = 2^*$. Thus, if $2^* > \frac{N}{2}$ we conclude by item i). In the case $2^* = \frac{N}{2}$ we use item ii) in order to take $r_1 > \frac{N}{2}$ and conclude again by item i). Finally, in the case $2^* < \frac{N}{2}$ we can take

$$r_1 = \frac{2^* r_0}{(2-2^*)r_0 + 2^*} - \delta_1 > r_0.$$

As before, if $r_1 \geq \frac{N}{2}$ we easily conclude. In other case we take

$$r_2 = \frac{2^* r_1}{(2-2^*)r_1 + 2^*} - \delta_2.$$

By an iterative argument we conclude after a finite number of steps. Indeed, in other case, we have that r_n is bounded, where r_n is defined recurrently by

$$\left\{ \begin{array}{l} r_0 = 2^* \\ r_{n+1} = \frac{2^* r_n}{(2-2^*)r_n + 2^*} - \delta_{n+1}. \end{array} \right. \label{eq:r0}$$

where $\lim_{n\to\infty} \delta_n = 0$. Moreover, r_n is non decreasing and so it converges to $r \in (2^*, \frac{N}{2}]$ that satisfies

$$r = \frac{2^* r}{(2 - 2^*)r + 2^*}$$

that is, $2^* = (2 - 2^*)r + 2^*$, which implies that r = 0 and this is a contradiction.

Observe that the estimate (3.1) follows, after this finite number of steps, from estimates in items i)-iii), and the Sobolev embedding.

Finally, in the case N = 2 we can choose $r > \frac{q}{q-2}$ for any q > 2 and argue as before with 2^* replaced by q. In this case we finish by item i).

Along this section, we assume, instead of (A_2) , that for each $s_0 \in \mathbb{R}^+$ there exists $\beta(s_0)$ such that

$$|A(x,s)| \le \beta(s_0),\tag{A2}$$

for $(x,s) \in \overline{\Omega} \times [0,s_0]$.

We consider the truncated problems

$$\begin{cases} -\operatorname{div}(A(x,T_n(u))\nabla u) = \lambda u, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$
 $(P_{\lambda,n})$

being $T_n(s)$ the map defined, for each $n \in \mathbb{N}$, by

$$T_n(s) = \begin{cases} s & 0 \le s \le n, \\ n & s > n. \end{cases}$$

By Theorem 2.2, there exist Σ_n unbounded maximal continua of positive solutions such that $(\lambda_0, 0) \in \Sigma_n$ for each $n \in \mathbb{N}$. Now, we can prove

Theorem 3.2. Suppose that A satisfies $(A_{1,4})$ and (\tilde{A}_2) . Then, there exists an unbounded continuum $\Sigma \subset S$ such that $(\lambda_0, 0) \in \Sigma$.

Proof. Firstly, we denote by Σ_k^n the connected component of $\Sigma_k \cap (\mathbb{R} \times \overline{B}_n(0))$ containing $(\lambda_0, 0)$. We claim that

$$\Sigma_k^n = \Sigma_n^n \quad \text{for } k \ge n. \tag{3.5}$$

Indeed, if $k \ge n$ and $(\lambda, u) \in \Sigma_k^n$ then u is solution of $(P_{\lambda,n})$. Thus, Σ_k^n is a closed and connected subset of

$$cl\{(\lambda, u) \in \mathbb{R} \times E : u \text{ is solution non-trivial of } (P_{\lambda,n})\}$$

containing $(\lambda_0, 0)$. So, $\Sigma_k^n \subset \Sigma_n$, whence we deduce that $\Sigma_k^n \subset \Sigma_n^n$. We can reason similarly and obtain that $\Sigma_n^n \subset \Sigma_k \cap (\mathbb{R} \times \overline{B}_n(0))$, and so it follows (3.5). So, we get

$$\Sigma_n^n = \lim_k \Sigma_k^n.$$

Therefore, for each $n \in \mathbb{N}$ we have a continuum

$$\Sigma_n^n \subset \operatorname{cl}\{(\lambda, u) \in \mathbb{R} \times E : u \text{ is a non-trivial solution of } (P_\lambda)\}$$

J. Carmona and A. Suárez

containing $(\lambda_0, 0)$ and if $(\lambda, u) \in \Sigma_n^n$ then $||u||_0 \le n$.

Now, we are going to prove that

$$\Sigma_n^n \subset \Sigma_{n+1}^{n+1} \quad \text{for each } n \in \mathbb{N}.$$
(3.6)

Indeed, observe that

$$\Sigma_n^n = \Sigma_{n+1}^n \subset \Sigma_{n+1} \cap (\mathbb{R} \times \overline{B}_n(0)) \subset \Sigma_{n+1} \cap (\mathbb{R} \times \overline{B}_{n+1}(0)),$$

so, since Σ_{n+1}^{n+1} is the connected component of $\Sigma_{n+1} \cap (\mathbb{R} \times \overline{B}_{n+1}(0))$ containing $(\lambda_0, 0)$ and Σ_n^n is a connected of such subset containing it, (3.6) follows.

Finally, we show that the set

$$\Sigma = \bigcup_{n=1}^{\infty} \Sigma_n^n$$

satisfies the theorem. Firstly, observe that since Σ_n is unbounded, Σ is also unbounded. Indeed, since $\operatorname{Proj}_{\mathbb{R}}\Sigma_n$ is bounded, so there exists a connected subset of $\Sigma_n \cap (\mathbb{R} \times \overline{B}_n(0))$ containing $(\lambda_0, 0)$ and intersecting with $\mathbb{R} \times \partial \overline{B}_n(0)$ for each $n \in \mathbb{N}$; i.e., for each $n \in \mathbb{N}$ there exists $(\lambda_n, u_n) \in \Sigma_n^n$, with $||u_n||_0 = n$.

On the other hand, since Σ_n^n is connected and $(\lambda_0, 0) \in \Sigma_n^n$ for each $n \in \mathbb{N}$, it follows that Σ is connected.

Finally, we will prove that Σ is closed. Let $(\lambda, u) \in \overline{\Sigma}$. Since $\overline{\Sigma}$ is connected, there exists a connected and bounded set $\Sigma' \subset \overline{\Sigma}$ containing $(\lambda_0, 0)$ and (λ, u) . Thus, there exists $n \in \mathbb{N}$ such that

$$\Sigma' \subset cl\{(\lambda, u) \in \mathbb{R} \times E : ||u||_0 \le n, u \text{ is non-trivial solution of } (P_{\lambda,n})\}.$$

In particular, $\Sigma' \subset \Sigma_n \cap (\mathbb{R} \times \overline{B}_n(0))$ whence $\Sigma' \subset \Sigma_n^n$ and so, $(\lambda, u) \in \Sigma_n^n \subset \Sigma$. \Box

- **Remark 3.3.** 1. We would like to point out that the above result is true even in the case that the limit of A(x, s) does not exist as $s \to \infty$.
- 2. In the case A bounded in some subset of Ω , then we can conclude that $\operatorname{Proj}_{\mathbb{R}}\Sigma$ is bounded. Indeed, assume that $|A(x,s)| \leq \gamma$ if $x \in B$, where B is a ball such that $B \subset \Omega$, then using the monotony of the principal eigenvalue with respect to the domain, we obtain

$$\lambda = \lambda_1(A(x, u)) \le \lambda_1^B(A(x, u)) \le \lambda_1^B(\gamma I) = \gamma \lambda_1^B(I).$$

3. In this case we can obtain a similar result to the main one in [2]. Indeed, for each r > 0 there exists $\lambda_r > 0$ and $u_r \in H^1_0(\Omega)$ solution of (P_{λ}) with $||u||_0 = r$.

In the next result we show that when A(x, s) tends to infinity as $s \to \infty$ in the sense of (A_{∞}) , then the bifurcation at infinity disappears, in some sense $\lambda_{\infty} \to +\infty$ when A(x, s) tends to infinity.

Theorem 3.4. Assume that A satisfies (A_4) , (\tilde{A}_2) and (A_{∞}) . Then, there exists a continuum $\Sigma \subset S$ such that $(\lambda_0, 0) \in \Sigma$. Moreover, the interval $(\lambda_0, +\infty) \subset \operatorname{Proj}_{\mathbb{R}}\Sigma$ and

$$\lim_{\substack{\lambda \to +\infty\\ (\lambda, u_{\lambda}) \in \Sigma}} \|u_{\lambda}\|_{0} = +\infty$$

Proof. The existence of the continuum unbounded Σ bifurcating from $(\lambda_0, 0)$ follows by Theorem 3.2. Since $\lambda = \lambda_1(A(x, u)) \geq \lambda_1(\alpha I) = \alpha \lambda_1(I)$, there do not exist positive solutions for λ small. So, it suffices to prove that it is not possible bifurcation from infinity. In order to do that we observe that problem (P_{λ}) can be written as

$$\begin{cases} -\operatorname{div}(B(x,u)g(u)\nabla u) &= \lambda u, \quad x \in \Omega, \\ u &= 0, \quad x \in \partial\Omega, \end{cases}$$
(P_{\lambda})

where g is given by hypothesis (A_{∞}) and

$$B(x,u) := \frac{A(x,u)}{g(u)}.$$

Moreover, if we perform the change of variable

$$w = \tilde{g}(u) = \int_0^u g(t)dt,$$

problem (P_{λ}) is equivalent to

$$\begin{cases} -\operatorname{div}(C(x,w)\nabla w) &= \lambda f(w), \quad x \in \Omega, \\ w &= 0, \quad x \in \partial\Omega, \end{cases}$$
 (Q_{λ})

where

$$C(x,w) := B(x, \tilde{g}^{-1}(w))$$
 and $f(w) := \tilde{g}^{-1}(w).$

Now we argue by contradiction, and assume that there exists a sequence of solutions (λ_n, u_n) of (P_{λ_n}) such that $\lambda_n \to \overline{\lambda} > 0$ and $||u_n||_0 \to \infty$. Then, by (3.1) we have that $||u_n|| \to \infty$ and taking $w_n = \tilde{g}(u_n)$, it is clear that $||w_n||_0 \to \infty$. In addition, since (A_{∞}) implies that $\alpha^2 ||u_n||^2 \leq ||w_n||^2$, we also have that $||w_n|| \to \infty$. For the normalized sequence $z_n := \frac{w_n}{||w_n||}$ we know the existence of $z \in H_0^1(\Omega)$, such that

 $z_n \to z$ strongly in $L^2(\Omega)$, and a.e. in Ω .

and so, taking $w_n / ||w_n||^2$ as a test function in (Q_{λ_n}) , we obtain that

$$\alpha \le \int_{\Omega} C(x, w_n) \nabla z_n \cdot \nabla z_n = \lambda_n \int_{\Omega} \frac{f(w_n)}{\|w_n\|} z_n.$$
(3.7)

Now, taking into account that

$$\frac{f(s)}{s} \to 0 \quad \text{as } s \to \infty,$$

and that $f(s) \leq \frac{1}{\alpha}s$ for each $s \in \mathbb{R}^+$, we can argue as Theorem 5.5 in [1] and conclude that

$$\int_{\Omega} \frac{f(w_n)}{\|w_n\|} z_n \to 0, \quad \text{as } n \to \infty$$

Indeed, we can write for every $n \in \mathbb{N}$

$$\int_{\Omega} \frac{f(w_n)}{\|w_n\|} z_n = \int_{\Omega} \frac{f(w_n)}{\|w_n\|} (z_n - z) + \int_{\Omega} \frac{f(w_n)}{\|w_n\|} z$$
$$\leq \frac{1}{\alpha} \|z_n\|_2 \|z_n - z\|_2 + \int_{\Omega_0} \frac{f(w_n)}{\|w_n\|} z,$$

where $\Omega_0 = \{x \in \Omega : z(x) \neq 0\}$. Thus, we only have to prove that

$$\lim_{n \to \infty} \int_{\Omega_0} \frac{f(w_n)}{\|w_n\|} z = 0,$$

which is a direct consequence of the Lebesgue Theorem, since for a.e. $x \in \Omega_0$, $w_n(x) = z_n(x) ||w_n|| \to +\infty$ and then

$$\frac{f(w_n(x))}{\|w_n\|} z(x) \to 0, \text{ a.e. } x \in \Omega_0.$$

Thus, taking limits in (3.7), we have that $\alpha \leq 0$, which is a contradiction.

This work was developed while the first author was visiting the Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla. He gratefully acknowledges the whole department for the warm hospitality and the friendly atmosphere. First author partially supported by D.G.E.S. Ministerio de Educación y Ciencia (Spain) n. PB98-1283. The second supported by the Spanish Ministry of Science and Technology under Grant BFM2000-0797.

References

- Arcoya, D., Carmona, J., Pellacci, B.: Bifurcation for Quasilinear Operator, Proc. Roy. Soc. Edinb. 131 A, (2001), 733-765.
- Boccardo, L.: Positive eigenfunctions for a class of quasili-linear operator, Bollettino B. M. I. 18-B (1981), 951-959.
- Cantrell R.S., Cosner C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments, Part I and II, Proc. R. Soc. Edinb., 112A, 293-318 (1989) and SIAM J. Math. Anal., 22, 1043-1064 (1991).
- 4. Chabrowski, J.: Some Existence Theorems for the Dirichlet Problem for Quasilinear Elliptic Equations, Annali di Matematica pura ed applicata., **158**, 391-398 (1991).
- De Figueiredo D.G.: Positive solutions of semilinear elliptic problems, Lectures Notes in Math., 957, (1982).
- De Giorgi, E.: Sulla Differenziabilità e l'Analiticità degli Estremali degli Integrali Multipli Regolari. Mem. Accad. Sci. Torino (1957), 25-43.
- 7. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, 1983.
- 8. Stampacchia, G.: Le Problème de Dirichlet pour les Équations Elliptiques du Second Ordre À Coefficients Discontinus. Ann. Inst. Fourier Grenoble. **117** (1965), 138-152.