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Generalized S-space-forms
with two structure vector fields

Alfonso Carriazo, Luis M. Fernández and Ana M. Fuentes∗

(Communicated by P. Eberlein)

Abstract. We introduce and study generalized S-space-forms with two structure vector fields.
We also present several examples of these manifolds such as certain hypersurfaces of Sasakian-
space-forms, principal toroidal bundles and warped products. Moreover, we investigate generalized
S-space-forms endowed with an additional structure and we obtain some obstructions for them to
be S-manifolds.

Key words. Metric f -manifold, f -contact manifold, f -K-contact manifold, S-manifold, general-
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1 Introduction

It is an interesting problem to analyze what kind of Riemannian manifolds may be de-
termined by special pointwise expressions for their curvatures. For instance, it is well
known that the sectional curvatures of a Riemannian manifold determine the curvature
tensor field completely. So, if (M, g) is a connected Riemannian manifold with dimen-
sion greater than 2 and its curvature tensor field R has the pointwise expression

R(X,Y )Z = λ{g(X,Z)Y − g(Y,Z)X},

where λ is a differentiable function on M , then M is a space of constant sectional curva-
ture, that is, a real-space-form and λ is a constant function.

Further, when the manifold is equipped with some additional structure, it is sometimes
possible to obtain conclusions from the special form of the curvature tensor field for this
structure too. Thus, an almost-Hermitian manifold (M,J, g) is said to be a generalized
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complex-space-form [13] if its curvature tensor satisfies

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ}, (1.1)

where f1 and f2 are differentiable functions on M . This name derives from the fact that,
when M is a complex-space-form, that is, a Kählerian manifold of constant holomorphic
curvature equal to c, the curvature tensor field of M satisfies (1.1) with f1 = f2 = c/4.
Moreover, in [13], F. Tricerri and L. Vanhecke proved that any connected generalized
complex-space-form of dimension greater than or equal to 6 and with f2 not identically
zero is a complex-space-form (in particular, f1 = f2 are constant functions). For the
4-dimensional case, Z. Olszak [11] characterized generalized complex-space-forms with
non-constant function f2, giving some non-trivial examples.

Since Sasakian-spaces-forms play a similar role in contact metric geometry to that of
complex-space-forms in complex geometry, P. Alegre, D.E. Blair and A. Carriazo have
defined and studied generalized Sasakian-space-forms [1] as those almost-contact metric
manifolds (M,ϕ, ξ, η, g) whose curvature tensor field satisfies

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}, (1.2)

f1, f2, f3 being differentiable functions on M . If M is actually a Sasakian-space-form,
that is a Sasakian manifold with constant ϕ-sectional curvature equal to c, then:

f1 =
c+ 3

4
; f2 = f3 =

c− 1
4

.

More in general, K. Yano [14] introduced the notion of f -structure on a (2m + s)-
dimensional manifold as a tensor field f of type (1,1) and rank 2m satisfying f 3 + f = 0.
Almost complex (s = 0) and almost contact (s = 1) structures are well-known exam-
ples of f -structures. In this context, D.E. Blair [2] defined K-manifolds (and particular
cases of S-manifolds and C-manifolds) as the analogue of Kählerian manifolds in the
almost complex geometry and of quasi-Sasakian manifolds in the almost contact geome-
try and he showed that the curvature of either S-manifolds or C-manifolds is completely
determined by their f -sectional curvatures. Later, M. Kobayashi and S. Tsuchiya [10]
got expressions of the curvature tensor field of S-manifolds and C-manifolds when their
f -sectional curvature is constant depending on such a constant.

For these reasons, we consider that it is interesting to introduce a notion of general-
ized S-space-form on metric f -manifolds (see Section 2 for a precise definition of these
manifolds) and we have limited our research to the case s = 2 which appeared in the
study of hypersurfaces in almost contact manifolds [3, 8]. To this end, we have followed
the same procedure as in almost complex and almost contact cases, that is, we have sub-
stituted the constants in the expression of the curvature tensor field of an S-space-form
(an S-manifold of constant f -sectional curvature) obtained in [10] by certain differen-
tiable functions on the manifold. So, S-space-forms are natural examples of generalized
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Generalized S-space-forms with two structure vector fields 207

S-space-forms. Furthermore, we check that C-space-forms are also generalized S-space-
forms.

We have organized the paper in the following way. In Section 2 we review definitions
and formulas concerning metric f -manifolds which we shall use later. In Section 3 we
introduce the notion of generalized S-space-form and we give some non-trivial examples.
So, we prove that pseudo-umbilical, totally contact-umbilical, totally contact-geodesic,
totally umbilical and totally geodesic hypersurfaces of a generalized Sasakian-space-form
are generalized S-space-forms. Moreover, the bundle space of a principal toroidal bundle
over a Kählerian manifold and the warped product of R times a generalized Sasakian-
space-form are generalized S-space-forms too. Finally, in Section 4 we study generalized
S-space-forms endowed with an additional structure and the relationships between the
functions in such a case. Thus, we prove that any generalized S-space-form with a met-
ric f -K-contact structure is actually an S-manifold. The same result holds for a metric
f -contact structure with some additional conditions on the functions. We also obtain an
obstruction for a generalized S-space-form to be an S-manifold, depending on the func-
tions.

2 Metric f -manifolds

A (2m + s)-dimensional Riemannian manifold (M, g) endowed with an f -structure f
(that is, a tensor field of type (1,1) and rank 2m satisfying f 3 + f = 0 [14]) is said to be a
metric f -manifold if, moreover, there exist s global vector fields ξ1, . . . , ξs on M (called
structure vector fields) such that, if η1, . . . , ηs are the dual 1-forms of ξ1, . . . , ξs, then

fξα = 0; ηα ◦ f = 0; f 2 = −I +
s∑

α=1

ηα ⊗ ξα;

g(X,Y ) = g(fX, fY ) +
s∑

α=1

ηα(X)ηα(Y ), (2.1)

for any X,Y ∈ X (M) and α = 1, . . . , s. The distribution on M spanned by the structure
vector fields is denoted byM and its complementary orthogonal distribution is denoted
by L. Consequently, TM = L ⊕M. Moreover, if X ∈ L, then ηα(X) = 0, for any
α = 1, . . . , s, and if X ∈M, then fX = 0.

If the structure vector fields of a metric f -manifold are Killing vector fields, then

d ηα(X,Y ) = (∇Xηα)Y = g(∇Xξα, Y ), (2.2)

for anyX,Y ∈ X (M) and α = 1, . . . , s, where∇ is denoting the Riemannian connection
of the manifold. The curvature tensor fieldR of a metric f -manifold with Killing structure
vector fields satisfies [6]

R(ξα, X, ξβ , Y ) = Y ηα(∇Xξα)− g(∇Xξβ ,∇Y ξα), (2.3)

for any X,Y ∈ X (M) and α, β = 1, . . . , s.
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Let F be the 2-form on M defined by F (X,Y ) = g(X, fY ), for any X,Y ∈ X (M).
Since f is of rank 2m, we have

η1 ∧ · · · ∧ ηs ∧ Fm 6= 0

and, particularly, M is orientable. A metric f -manifold is said to be a metric f -contact
manifold if F = d ηα, for any α = 1, . . . , s. On the other hand, a metric f -contact
manifold it is said to be a metric f -K-contact manifold if the structure vector fields are
Killing vector fields. When s = 1, metric f -contact manifolds correspond to contact
manifolds and metric f -K-contact manifolds to K-contact manifolds. Furthermore, in a
metric f -K-contact manifold, from (2.2) it easy to show that:

∇Xξα = −fX, X ∈ X (M), α = 1, . . . , s. (2.4)

For the curvature tensor field R of a metric f -K-contact manifold it is known that [6]

R(X, ξα)Y = −(∇Xf)Y, (2.5)

for any X,Y ∈ X (M) and α = 1, . . . , s.
The f -structure f is said to be normal if

[f, f ] + 2
s∑

α=1

ξα ⊗ dηα = 0,

where [f, f ] denotes the Nijenhuis tensor of f .
A metric f -manifold is said to be a K-manifold [2] if it is normal and dF = 0. In a

K-manifold M , the structure vector fields are Killing vector fields [2]. Then:

∇ξαξβ = 0, α, β = 1, . . . , s. (2.6)

A K-manifold is called an S-manifold if F = d ηα, for any α (that is, if it is a metric
f -K-contact manifold) and a C-manifold if d ηα = 0, for any α. Note that, for s = 0,
a K-manifold is a Kählerian manifold and, for s = 1, a K-manifold is a quasi-Sasakian
manifold, an S-manifold is a Sasakian manifold and a C-manifold is a cosymplectic man-
ifold. When s ≥ 2, non-trivial examples can be found in [2, 9]. Moreover, a K-manifold
M is an S-manifold if and only if

∇Xξα = −fX, X ∈ X (M), α = 1, . . . , s,

and it is a C-manifold if and only if

∇Xξα = 0, X ∈ X (M), α = 1, . . . , s. (2.7)

It is easy to show that any f -K-contact manifold M is an S-manifold if and only if

(∇Xf)Y =
∑
α

{g(fX, fY )ξα + ηα(Y )f 2X}, (2.8)

for any X,Y ∈ X (M).
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On the other hand, the curvature tensor field R of a K-manifold M satisfies [6]

R(ξα, X, ξβ , Y ) = −g(∇Xξβ ,∇Y ξα), (2.9)

for any X,Y ∈ X (M) and α, β = 1, . . . , s. If M is an S-manifold, then [6]

R(X,Y )ξα =
s∑

β=1

{ηβ(X)f 2Y − ηβ(Y )f 2X}, (2.10)

for any X,Y ∈ X (M) and α = 1, . . . , s.
A plane section π on a metric f -manifold M is said to be an f -section if it is de-

termined by a unit vector X ∈ Lx and fX . The sectional curvature of π is called an
f -sectional curvature. An S-manifold (respectively, a C-manifold) is said to be an S-
space-form (respectively, a C-space-form) if it has constant f -sectional curvature c and
then, it is denoted by M(c). In such cases, the curvature tensor field R of M(c) satisfies
[10]:

R(X,Y, Z,W ) =
∑
α,β

(g(fX, fW )ηα(Y )ηβ(Z)− g(fX, fZ)ηα(Y )ηβ(W )

+ g(fY, fZ)ηα(X)ηβ(W )− g(fY, fW )ηα(X)ηβ(Z))

+
c+ 3s

4
(g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW ))

+
c− s

4
(F (X,W )F (Y,Z)− F (X,Z)F (Y,W )− 2F (X,Y )F (Z,W )), (2.11)

respectively

R(X,Y, Z,W ) =
c

4
(g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW )

+ F (X,W )F (Y, Z)− F (X,Z)F (Y,W )− 2F (X,Y )F (Z,W )), (2.12)

for any X,Y, Z,W ∈ X (M).

3 Generalized S-space-forms with two structure vector fields

From now on, we only consider metric f -manifolds with two structure vector fields ξ1
and ξ2. Then, we say that such a metric f -manifold

(M,f, ξ1, ξ2, η1, η2, g)
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is a generalized S-space-form if there exists differentiable functions F1, . . . , F8 on M
such that the curvature tensor field of M satisfies

R(X,Y )Z = F1{g(Y,Z)X − g(X,Z)Y }
+ F2{g(X, fZ)fY − g(Y, fZ)fX + 2g(X, fY )fZ}
+ F3{η1(X)η1(Z)Y − η1(Y )η1(Z)X + g(X,Z)η1(Y )ξ1 − g(Y,Z)η1(X)ξ1}
+ F4{η2(X)η2(Z)Y − η2(Y )η2(Z)X + g(X,Z)η2(Y )ξ2 − g(Y,Z)η2(X)ξ2}
+ F5{η1(X)η2(Z)Y − η1(Y )η2(Z)X + g(X,Z)η1(Y )ξ2 − g(Y,Z)η1(X)ξ2}
+ F6{η2(X)η1(Z)Y − η2(Y )η1(Z)X + g(X,Z)η2(Y )ξ1 − g(Y,Z)η2(X)ξ1}
+ F7{η1(X)η2(Y )η2(Z)ξ1 − η2(X)η1(Y )η2(Z)ξ1}
+ F8{η2(X)η1(Y )η1(Z)ξ2 − η1(X)η2(Y )η1(Z)ξ2}, (3.1)

for any X,Y, Z ∈ X (M).
This kind of manifold appears as a natural generalization of S-space-forms because

a straightforward computation from (2.11) gives that any S-space-form M(c) with two
structure vector fields is a generalized S-space-form with functions:

F1 =
c+ 6

4
; F2 = F7 = F8 =

c− 2
4

; F3 = F4 =
c+ 2

4
; F5 = F6 = −1.

Moreover, any C-space-form M(c) with two structure vector fields is also a general-
ized S-space-form. In fact, from (2.12), we only have to take:

F1 = F2 = F3 = F4 = F7 = F8 =
c

4
; F5 = F6 = 0.

On the other hand, from (3.1) it is easy to compute the f -sectional curvature of M :

Proposition 3.1. The f -sectional curvature of a generalized S-space-form M = (M,f,
ξ1, ξ2, η1, η2, g) is equal to F1 + 3F2.

Now, we are going to present other non-trivial examples:

Example 3.1. Let (M̃, ϕ, ξ, η, g) be a generalized Sasakian-space-form [1] with func-
tions f1, f2 and f3 and let M be an isometrically immersed (orientable) hypersurface of
M̃ such that the vector field ξ is always tangent toM . IfN denotes the unit normal vector
field of M in M̃ and we put

ξ1 = ξ; ξ2 = −ϕN ;
η1 = η; η2(X) = −g(X,ϕN);

fX = ϕX − η2(X)N,

for any vector field X tangent to M , then (M,f, ξ1, ξ2, η1, η2, g) is a metric f -manifold
[15]. Moreover, the 2-form F of M satisfies

F (X,Y ) = g(X,ϕY ), for X,Y tangent to M.
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Generalized S-space-forms with two structure vector fields 211

Now, if we denote by R the curvature tensor field of M and by A the shape oper-
ator AN , then, by using the well-known Gauss equation for the curvature tensor fields,
from (1.2) we easily get

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }
+ f2{g(X, fZ)fY − g(Y, fZ)fX + 2g(X, fY )fZ}
+ f3{η1(X)η1(Z)Y − η1(Y )η1(Z)X
+ g(X,Z)η1(Y )ξ1 − g(Y, Z)η1(X)ξ1}+ g(AY,Z)AX − g(AX,Z)AY, (3.2)

for any X,Y, Z ∈ TM , where we are also denoting by f1, f2 and f3 the corresponding
restrictions of such functions to M .

Next, suppose that M is a pseudo-umbilical hypersurface of M̃ , that is, the shape
operator A satisfies (see [15])

AX = f̃1(X − η1(X)ξ1) + f̃2η2(X)ξ2 − η1(X)ξ2 − η2(X)ξ1,

for any X tangent to M , f̃1 and f̃2 being differentiable functions on M . Thus, a direct
computation from (3.2) gives that M is a generalized S-space-form. In fact:

F1 = f1 + f̃ 2
1 ; F2 = f2; F3 = f2 + f̃ 2

1 ; F4 = −f̃1f̃2;

F5 = F6 = f̃1; F7 = F8 = −1− f̃1f̃2.

In particular, totally contact-umbilical (f̃1 ≡ 1, f̃2 ≡ 0) and, respectively, totally
contact-geodesic (f̃1 = f̃2 ≡ 0) hypersurfaces of a generalized Sasakian-space-form are
generalized S-space-forms. Moreover, any totally umbilical (AX = λX , for any X
tangent toM ) hypersurface of a Sasakian space-form is a generalized S-space-form, with

F1 = f1 + λ2; F2 = f2; F3 = f3; F4 = F5 = F6 = F7 = F8 = 0

and any totally geodesic (AX = 0, for any X ∈ TM ) hypersurface of a Sasakian space-
form is a generalized S-space-form, with:

F1 = f1; F2 = f2; F3 = f3; F4 = F5 = F6 = F7 = F8 = 0.

Example 3.2. Let M = (M,f, ξ1, ξ2, η1, η2, g) be an S-manifold which is the bundle
space of a principal toroidal bundle over a Kählerian manifold N = (N, J,G), with
dimensions 2n+ 2 and 2n, respectively. We denote by π : M −→ N the projection map
which is a Riemannian submersion. Then, it is known (see [2, 4] for more details) that

(i) νx = span{ξ1x , ξ2x}; (ii) (JX)∗ = fX∗; (iii) G(X,Y ) = g(X∗, Y ∗),

for any point x ∈ M and any vector fields X ,Y on N , where νx is the vertical subspace
at x and ∗ is denoting the horizontal lift. Let R and R̃ be the curvature tensor fields of M
and N , respectively. Then, in [7] it is proved that

(R̃(X,Y )Z)∗ = R(X∗, Y ∗)Z∗ + 2{g(X∗, fZ∗)fY ∗

− g(Y ∗, fZ∗)fX∗ + 2g(X∗, fY ∗)fZ∗},
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for any X,Y, Z tangent to N . In these conditions, if N is a generalized complex-space-
form with functions f1 and f2, then from (1.1) we obtain that

R(X∗, Y ∗)Z∗ = (f1 ◦ π){g(Y ∗, Z∗)X∗ − g(X∗, Z∗)Y ∗}
+ (f2 ◦ π − 2){g(X∗, fZ∗)fY ∗ − g(Y ∗, fZ∗)fX∗ + 2g(X∗, fY ∗)fZ∗}, (3.3)

for any X,Y, Z tangent to N . Since we can write

X = X̃ +
2∑

α=1

ηα(X)ξα,

for any vector field X tangent to M , where X̃ is an horizontal vector field and taking
into account that any S-manifold is a metric f -K-contact manifold too, a straightforward
computation using (2.5), (2.8), (2.10) and (3.3) gives that M is a generalized S-space-
form, with functions:

F1 = f1 ◦ π; F2 = f2 ◦ π − 2; F3 = F4 = f1 ◦ π − 1;
F5 = F6 = −1; F7 = F8 = f1 ◦ π − 2.

Example 3.3. Let (M̃, ϕ, ξ, η, g̃) be a generalized Sasakian space-form with functions
f1, f2 and f3. Then, its curvature tensor field R̃ satisfies (1.2). Consider now a warped
product (see [12]) M = R ×h M̃ , where h > 0 is a differentiable function on R. Then,
the warped product metric on M is given by

gh = π∗1 (gR) + (h ◦ π1)2π∗2 (g̃),

where π1 and π2 are the projections from R × M̃ on R and M̃ , respectively. Given any
vector field X on M , written as

X =
(
a

d
dt
, X̃
)
, X̃ on M̃,

with a any differentiable function on R and t the coordinate of R, we define an f -structure
on M by:

fX = (0, ϕX̃) = (ϕ(π2)∗X)∗.

Taking

ξ1 =
(

0,
1
h
ξ
)
, ξ2 =

( d
dt
, 0
)
,

η1

((
a

d
dt
, X̃
))

= hη(X̃), e2

((
a

d
dt
, x̃
))

= a,

we easily show that (M,f, ξ1, ξ2, η1, e2, gh) is a metric f -manifold. Moreover, we have
that, for any X on M :

X =
(
a

d
dt
, X̃
)

= η2(X)ξ2 + (0, X̃).
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Now, by using (1.2) and the results of O’Neill [12] concerning the Riemannian con-
nections and curvature tensor fields of warped products (see Lemmas 4.6 and 4.7 of [1]),
a straightforward calculation proves thatM is a generalized S-space-form with functions:

F1 =
(f1 ◦ π2)− h′2

h2 ; F2 =
f2 ◦ π2

h2 ;

F3 = F7 = F8 =
f3 ◦ π2

h2 ; F4 =
(f1 ◦ π2)− h′2

h2 +
h′′

h
;

F5 = F6 = 0.

Consequently, new examples of generalized S-space-forms can be obtained from the
examples of generalized Sasakian-space-forms given in [1]. In particular, if N(c) is a
complex-space-form of constant holomorphic curvature c, thenM = R×h2 (R×h1 N(c))
is a generalized S-space-form (h1, h2 > 0 differentiable functions on R) with functions:

F1 =
c− 4(h′1)

2 − 4h2
1(h
′
2)

2

4h2
1h

2
2

; F2 =
c

4h2
1h

2
2
;

F3 = F7 = F8 =
c− 4(h′1)

2 + 4h1h
′′
1

4h2
1h

2
2

;

F4 =
c− 4(h′1)

2 − 4h2
1(h
′
2)

2 + 4h2
1h2h

′′
2

4h2
1h

2
2

;

F5 = F6 = 0.

On the other hand and as particular case too, the usual Riemannian product (a warped
product with h ≡ 1) of R and a generalized Sasakian-space-form with functions f1, f2
and f3 is a generalized S-space-form with functions:

F1 = F4 = f1 ◦ π2; F2 = f2 ◦ π2; F3 = F7 = F8 = f3 ◦ π2;
F5 = F6 = 0.

4 Structure of generalized S-space-forms

In this section we investigate generalized S-space-forms M with two structure vector
fields endowed with an additional structure and we study the relationships between the
functions in such a case. First and for later use, we write two particular expressions
of (3.1):

R(X, ξ1)Y = F1{η1(Y )X − g(X,Y )ξ1}
+ F3{η1(X)η1(Y )ξ1 − η1(Y )X + g(X,Y )ξ1 − η1(X)η1(Y )ξ1}
+ F4{η2(X)η2(Y )ξ1 − η2(X)η1(Y )ξ2}+
+ F5{η1(X)η2(Y )ξ1 − η2(Y )X + g(X,Y )ξ2 − η1(X)η1(Y )ξ2}
+ F7{−η2(X)η2(Y )ξ1}+ F8{η2(X)η1(Y )ξ2} (4.1)
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214 Alfonso Carriazo, Luis M. Fernández and Ana M. Fuentes

and

R(X, ξ2)Y = F1{η2(Y )X − g(X,Y )ξ2}
+ F3{η1(X)η1(Y )ξ2 − η1(X)η2(Y )ξ1}
+ F4{η2(X)η2(Y )ξ2 − η2(Y )X + g(X,Y )ξ2 − η2(X)η2(Y )ξ2}
+ F6{η2(X)η1(Y )ξ2 − η1(Y )X + g(X,Y )ξ1 − η2(X)η2(Y )ξ1}
+ F7{η1(X)η2(Y )ξ1}+ F8{−η1(X)η1(Y )ξ2}, (4.2)

for any X,Y ∈ X (M). Now, we can prove the following theorem; its proof is based on
Bianchi’s second identity,

g((SX,Y,Z(∇R)(X,Y, Z))W,V ) = g((∇XR)(Y, Z)W,V ) + g((∇YR)(Z,X)W,V )
+ g((∇ZR)(X,Y )W,V ) = 0, (4.3)

for any vector fields X,Y, Z,W, V tangent to M , together with the definition of a gener-
alized S-space-form (3.1).

Theorem 4.1. Let M = (M,f, ξ1, ξ2, η1, η2, g) be a generalized S-space-form with F2
not identically zero and dim(M) ≥ 6. Suppose that the following conditions hold on M :
(a) ∇Xξα ∈ L, for any X ∈ X (M) and any α = 1, 2;
(b) g(∇Xξα, X) = 0, for any X ∈ L and any α = 1, 2.
Then:

(i) ∇ξβξα = 0, for any α, β = 1, 2 and F7 = F8.
(ii) If there are two unit vector fieldsX,Y ∈ L such that d η1(X,Y ) 6= 0 (or d η2(X,Y )
6= 0), then F5 = F6.

(iii) If either F2 = F3 or F2 = F4, then F1 and F2 are constant functions. Moreover, if
M is a K-manifold, then F1 − F2 ≥ 0 and, in this case, if F1 = F2 = F3 = F4,
then M is a C-manifold.

Proof. Let X ∈ L be a unit vector field. Then, choosing another unit vector field Y ∈ L
such that g(X,Y ) = g(X, fY ) = 0 (which is possible since dim(M) ≥ 6) and putting
Z = ξα, W = ξβ (α, β = 1, 2) and V = fX , from (4.3) and (3.1) we obtain:

F2g(∇ξαξβ , fY ) = 0, α, β = 1, 2. (4.4)

But, from the hypothesis, F2 6= 0 and ∇ξaξβ ∈ L, for α, β = 1, 2 and so, (4.4)
implies that:

∇ξαξβ = 0, α, β = 1, 2. (4.5)

Consequently,R(ξ1, ξ2, ξ1, ξ2) = 0 and, from (4.1), F1−F3−F4+F8 = 0. Moreover,
R(ξ2, ξ1, ξ2, ξ1) = 0 and, from (4.2), F1−F3−F4 +F7 = 0. Thus, F7 = F8 and we have
proved (i).

Next, applying Bianchi’s second identity (4.3) together with (3.1) and (4.5),

g((SX,ξ2,ξ1(∇R)(X, ξ2, ξ1))ξ1, V ) = (ξ1F6 − ξ2F3)g(X,V )
+ F4g(∇Xξ2, V ) + F6g(∇Xξ1, V )− F8g(∇Xξ2, V ) = 0, (4.6)
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for any unit vector fields X,V ∈ L. Putting V = X , we have that (ξ1F6− ξ2F3) = 0 and
so:

F4g(∇Xξ2, V ) + F6g(∇Xξ1, V )− F8g(∇Xξ2, V ) = 0, (4.7)

for any unit vector field V ∈ L.
Now, from (4.3), (3.1) and (4.5) again

g((SX,Y,ξ1(∇R)(X,Y, ξ1))ξ1, ξ2) = F4{g(∇Y ξ2, X)− g(∇Xξ2, Y )}
+ F5{g(∇Y ξ1, X)− g(∇Xξ1, Y )}+ F8{g(∇Xξ2, Y )− g(∇Y ξ2, X)} = 0, (4.8)

for any unit vector fields X,Y ∈ L. Thus, from (4.7) and (4.8) we have that

0 = (F5 − F6){g(∇Y ξ1, X)− g(∇Xξ1, Y )}
= (F5 − F6)η1([X,Y ]) = −2(F5 − F6) d η1(X,Y )

and so, taking the vector fields of the hypothesis of (ii), F5 = F6. Reasoning similarly in
the case where d η2(X,Y ) 6= 0, we complete the proof of (ii).

From now on, we consider two unit vector fields X,Y ∈ L such that g(X,Y ) =
g(X, fY ) = 0, which exist since dim(M) ≥ 6. Then, putting Z = fY and W = X
into (4.3), from (3.1) we obtain that, for V = fX and V = fY , respectively,

Y F1 − 3F2g((∇Xf)X, fY ) = 0 (4.9)

and:
2XF2 − 3F2g((∇Y f)X, fY )− 3F2g((∇fY f)Y,X) = 0. (4.10)

Interchanging the roles of X and Y in (4.9), we have:

XF1 − 3F2g((∇Y f)Y, fX) = 0. (4.11)

But, since g(fX, Y ) = 0, (4.11) implies that XF1 = 3F2g((∇fY f)fY, fX) =
−3F2g((∇fY f)Y,X) and, then, from (4.10) and (4.11), we get, for any X ∈ L:

X(F1 + F2) = 0. (4.12)

Next, we apply Bianchi’s second identity (4.3) again when Z = ξα (α = 1, 2),
W = X and V = Y . By using (3.1), we obtain:

ξαF1 = 0, α = 1, 2. (4.13)

Similarly, putting W = fX and V = fY , we have:

ξαF2 = 0, α = 1, 2. (4.14)

On the other hand, Bianchi’s second identity again, together with (3.1), gives, for
Z = W = ξ1 and V = Y ,

X(F1 − F3) = 0 (4.15)
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and, for Z = W = ξ2 and V = Y :

X(F1 − F4) = 0. (4.16)

In these conditions, if F2 = F3, from (4.12), (4.13), (4.14) and (4.15) we show that
F1 and F2 are constant functions. If F2 = F4, we do the same using (4.16).

Finally, we suppose that M is a K-manifold. Then, from (3.1), if F2 = F3, we get
R(X, ξ1)ξ1 = (F1 − F2)X and so, from (2.9), F1 − F2 = ‖∇Xξ1‖2 ≥ 0. If F2 = F4, we
obtain the same result by using ξ2 instead of ξ1. Therefore, from (2.7) we deduce that, if
F1 − F2 = 0 and F2 = F3 = F4, then M is a C-manifold. 2

Observe that conditions (a) and (b) are natural because, for instance, either metric
f -K-contact manifolds (in particular, S-manifolds) or C-manifolds fulfill them. Further-
more, the hypothesis of (ii) holds, for example, for metric f -K-contact manifolds too.
On the other hand, the above theorem can be considered as the version for generalized S-
space-forms of Theorem 12.7 of [13] for generalized complex-space-forms and of either
the main theorem in [5] or Theorem 3.4 in [1] for generalized Sasakian-space-forms.

Now, we are interested in generalized S-space-forms with a general function F2. First,
we have:

Proposition 4.1. Let M = (M,f, ξ1, ξ2, η1, η2, g) be a generalized S-space-form. If M
is either a metric f -K-contact manifold or a K-manifold, then:

F1 + F7 = F3 + F4 = F1 + F8. (4.17)

Consequently, in these cases, F7 = F8.

Proof. If M is a metric f -K-contact manifold, from (2.3) and (2.4) we have R(ξ1, ξ2, ξ1,
ξ2) = 0 and then, by using (4.1), F1−F3−F4+F8 = 0. Similarly, fromR(ξ2, ξ1, ξ2, ξ1) =
0 and (4.2), we get F1 − F3 − F4 + F7 = 0.

The proof is the same if M is a K-manifold by using (2.6) and (2.9). 2

From Proposition 4.1, we deduce that totally umbilical (respectively, totally geodesic)
hypersurfaces of aK-contact generalized Sasakian-space-form with functions f1 = f3+1
and f2 (see Proposition 3.6 of [1]) are generalized S-space-forms which are neither metric
f -K-contact manifolds nor K-manifolds because (see Example 3.1)

F1 + F7 = f1 + λ2 6= F3 + F4 = f3 (respectively, F1 + F7 = f1 6= F3 + F4 = f3).

On the other hand, from (4.17) again, we also deduce that the warped product R×hM̃ ,
where M̃ is a generalized Sasakian-space-form (see Example 3.3), is a generalized S-
space-form which can be neither a metric f -K-contact manifold nor aK-manifold, unless
h′′ = 0.

Moreover, we have the following proposition.
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Proposition 4.2. Let M = (M,f, ξ1, ξ2, η1, η2, g) be a generalized S-space-form. If M
is a metric f -K-contact manifold, then:

F1 − F3 = F1 − F4 = 1; F5 = F6 = −1. (4.18)

Consequently:
F3 = F4 = 1 + F7; F1 − F7 = 2. (4.19)

Proof. From (2.3) and (2.4) we obtain R(ξα, X, ξβ , X) = −1, for any unit vector field
X ∈ L and any α, β = 1, 2; then, by using (4.1), (4.2) and (4.17) we complete the
proof. 2

In particular, as any S-manifold is a metric f -K-contact manifold, (4.18) and (4.19)
hold on S-manifolds. In this situation, we can prove:

Theorem 4.2. Any generalized S-space-form M = (M,f, ξ1, ξ2, η1, η2, g) with a metric
f -K-contact structure is an S-manifold.

Proof. From (4.1) and by using F7 = F8, we obtain:

R(X, ξ1)Y = (F1 − F3)(η1(Y )X − g(X,Y )ξ1)
+ (F4 − F7)(η2(X)η2(Y )ξ1 − η2(X)η1(Y )ξ2)
+ F5(η1(X)η2(Y )ξ1 − η2(Y )X + g(X,Y )ξ2 − η1(X)η1(Y )ξ2). (4.20)

Thus, substituting (4.18) and (4.19) into (4.20) and taking into account (2.5), we get
Formula (2.8) and, consequently, M is an S-manifold. 2

With respect to metric f -contact manifolds, we have the following result.

Theorem 4.3. Any generalized S-space-form M = (M,f, ξ1, ξ2, η1, η2, g) of dimension
2n+ 2 with a metric f -contact structure and such that F3 = F4, F7 = F8 and F1−F3 =
F4 − F7 = 1 is an S-manifold.

Proof. First, from (4.1), (4.2) and the hypothesis, we deduce K(ξ1, ξ2) = 0, where K is
denoting the sectional curvature. Moreover, a direct computation by using (4.1) and (4.2)
again shows that S(ξ1, ξ1) = 2n(F1 − F3) = 2n and S(ξ2, ξ2) = 2n(F1 − F4) = 2n,
S being the Ricci curvature tensor. Then, by using Theorem 3.8 of [6], we obtain that ξ1
and ξ2 are Killing vector fields, that is, M is a metric f -K-contact manifold and, so, from
Theorem 4.2, it is an S-manifold. 2

On the other hand, for generalized S-space-forms with a K-structure, we can prove
the following proposition.

Proposition 4.3. Let M = (M,f, ξ1, ξ2, η1, η2, g) be a generalized S-space-form. If M
is a K-manifold, then:

F1 − F3, F1 − F4, F3 − F7, F4 − F7 ≥ 0; F5 = F6. (4.21)

In particular, if M is a C-manifold, then:

F1 = F3 = F4 = F7 = F8; F5 = F6 = 0. (4.22)
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Proof. From (2.9), (4.1) and (4.2), we obtain

‖∇Xξ1‖2 = F1 − F3; ‖∇Xξ2‖2 = F1 − F4;
g(∇Xξ1,∇Xξ2) = −F5 = −F6,

for any unit vector field X ∈ L. Then, the proof is completed by using Proposition 4.1.
For C-manifolds, we only have to consider (2.7). 2

Finally, we want to obtain some conditions for the function F2 in the case of general-
ized S-space-forms endowed with an S-structure. First, by using (2.8), a direct computa-
tion gives:

Lemma 4.1. Let M = (M,f, ξ1, ξ2, η1, η2, g) be a generalized S-space-form. If M is an
S-manifold, then

R(X,Y, Z, fW ) +R(X,Y, fZ,W ) = 2{g(Y,Z)F (X,W )− g(X,Z)F (Y,W )
+ g(X,W )F (Y, Z)− g(Y,W )F (X,Z)}, (4.23)

for any X,Y, Z,W ∈ L.

Hence, we obtain the following theorem.

Theorem 4.4. Let M = (M,f, ξ1, ξ2, η1, η2, g) be a generalized S-space-form. If M is
an S-manifold, then F1 − F2 = 2 and, consequently:

F2 = F7 = F8 = F3 − 1 = F4 − 1.

Proof. From (3.1),

R(X,Y, Z, fW ) +R(X,Y, fZ,W ) = (F1 − F2){g(Y,Z)F (X,W )
− g(X,Z)F (Y,W ) + g(X,W )F (Y,Z)− g(Y,W )F (X,Z)},

for any X,Y, Z,W ∈ L. So, F1 − F2 = 2 follows from (4.23). The use of (4.18)
and (4.19) completes the proof. 2

As a consequence of the above theorem, if M is the bundle space of a principal
toroidal bundle over a Kählerian generalized complex-space-form N with functions f1
and f2 (see Example 3.2), then, since F1 − F2 = 2, we see that f1 ◦ π = f2 ◦ π which
implies f1 = f2 because π is onto. This result was known if n ≥ 3 [13].

References

[1] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian-space-forms. Israel J. Math. 141
(2004), 157–183. MR2063031 (2005f:53057) Zbl 1064.53026

[2] D. E. Blair, Geometry of manifolds with structural group U(n)×O(s). J. Differential Geom-
etry 4 (1970), 155–167. MR0267501 (42 #2403) Zbl 0202.20903

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated

Download Date | 10/5/16 7:50 AM

http://www.ams.org/mathscinet-getitem?mr=2063031
http://www.emis.de/MATH-item?1064.53026
http://www.ams.org/mathscinet-getitem?mr=0267501
http://www.emis.de/MATH-item?0202.20903


Generalized S-space-forms with two structure vector fields 219

[3] D. E. Blair, G. D. Ludden, Hypersurfaces in almost contact manifolds. Tôhoku Math. J. (2) 21
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