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Abstract

In this note we shall study the notions of isotropic and marginally trapped
surface in a spacetime by using a differential geometric approach. We first
consider spacelike isotropic surfaces in a Lorentzian manifold and, in particular,
in a four-dimensional spacetime, where the isotropy function appears to be
determined by the mean curvature vector field of the surface. Explicit examples
of isotropic marginally outer trapped surfaces are given in the standard four-
dimensional space forms: Minkowski, De Sitter and anti De Sitter spaces. Then
we prove ridigity theorems for complete spacelike 0-isotropic surfaces without
flat points in these standard space forms. As a consequence, we also obtain
characterizations of complete spacelike isotropic marginally trapped surfaces in
these backgrounds.

PACS numbers: 04.20.Cv, 02.40.Ky, 02.40.Ma

1 Introduction

A precise definition of isotropy depends on the subject area. In Mathematics, a
Riemannian manifold is isotropic if, roughly speaking, the geometry of the mani-
fold is the same regardless of direction. The concept of isotropic immersion of a
Riemannian manifold S in another M was introduced by B. O’Neill in 1965 [1] as
an isometric immersion such that all its normal curvature vectors have the same
length. These submanifolds can be considered as a generalization of the totally
umbilical submanifolds, and constitute a distinguished family in Submanifold The-
ory. Later, Y. H. Kim [2] introduced the notion of pseudo-isotropic submanifold
by extending the O’Neill’s notion to the case of pseudo-Riemannian submanifolds
of pseudo-Euclidean space. Since both notions are basically identical, from now on
we shall omit the prefix pseudo and call them all isotropic submanifolds. However,
new proof methods are usually required to achive similar results to those obtained
in the Riemannian case [3, 4].

On the other hand, in studies of gravitational collapse, an useful local property
is the closed trapped surface, introduced by R. Penrose in 1965 [5]. This is a closed
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spacelike two-dimensional surface S at any instant of time which has the property
that the outgoing light rays from it are convergent. In the spherical symmetric case
the existence of a trapped surface garantees that the system must collapse to a black
hole assuming only that the matter has positive energy density (the week energy
condition). The idea that matter concentration causes gravitational collapse is the
trapped surface conjecture: a trapped surface forms if a sufficient amount of matter
is packed into a small enough volume. In [6] the authors give necessary and sufficient
conditions for the existence of trapped surfaces in sphericaly symmetric spacetimes,
and in [7] the authors by using the spin coefficient formalism generalize from the
Schwarzschild solution and prove the existence of a wide class of solutions possessing
trapped surfaces, includding the so-called ”asymptotically trapped surfaces”. In [8]
the non-existence of these closed surfaces is proved for strictly stationary spacetimes.
In it is shown that the existence of one trapped surface in a spherical symmetric
spacetime is sufficient to ensure the formation of a black hole and the completeness
of null infinity. A generalization of the concept of trapped surface is introduced in
[9] for codimension-2 submanifolds of a Lorentzian space.

From a geometrical point of view, the light converging condition means that
the mean curvature vector H is everywhere timelike on the surface. If the mean
curvature vector is future or past-pointing all over the surface, the trapped surface
is accordingly called future or past trapped. On the other hand, consider two future-
pointing lightlike normal vectors at each point of the surface S and suppose the
mean curvature vector H is proportional to some of them by a function Θ. The
following cases may occurs: (1) S is marginally trapped if Θ never vanishes; (2)
partly marginally trapped if Θ ≥ 0 or Θ ≤ 0; (3) marginally outer trapped (MOTS) if
Θ is arbitrary. The study of these family of surfaces has been quite active in recent
years (see for instance [9, 10, 11, 12, 13], etc).

It is clear that the second fundamental form of S is a suitable tool to study these
families of surfaces. Thus, a classification of spacelike marginally trapped surfaces
in the Lorentzian space forms Rn

1 , Sn
1 and Hn

1 having the property that the second
fundamental form is a quadratic degenerated form (in the sense that the surfaces
have positive relative nullity) have been obtained in [14]. The same authors proved
the nonexistence of marginally trapped surfaces with positive relative nullity for a
Robertson-Walker spacetime which does not contain any open subset of constant
curvature [15].

The plan of the paper is as follows. Basic formulas, definitions and facts on
n-dimensional Lorentz manifolds Mn

1 are introduced in Section II. In Section III
we first recall the notion of isotropic surface S in Mn

1 and, as a consequence, we
see that it is pseudo-umbilical, but for n = 3 the surface is totally umbilical. Sec-
tion IV deals with the interesting case of a surface embedded into a 4-dimensional
spacetime M4

1 , where the notions of λ-isotropy and pseudo-umbilicity for surfaces
with lightlike mean curvature vector are seen to be equivalent. Some properties of
the isotropy function λ are obtained, in particular, characterizations of 0-isotropic
surfaces. In Section V we first exhibit examples of 0-isotropic MOTS in the 4-
dimensional spacetimes R4

1, S4
1 and H4

1, and then we give sufficient conditions for
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them to be non-totally umbilical marginally trapped surfaces. Finally, we present
our main results that provide ridigity theorems, that is, explicit determination of
complete spacelike 0-isotropic surfaces without flat points in these spacetimes. In
fact, they are seen to be MOTS congruent to the corresponding immersed surfaces
introduced as Examples 5.1, 5.2 and 5.3. As a consequence, we obtain a characteriza-
tion of complete spacelike isotropic marginally trapped surfaces as well as complete
pseudo-umbilical marginally trapped surfaces in these standard space forms. We
close the paper with a summary of conclusions.

2 Preliminaries

Let Mn
1 be a n-dimensional Lorentzian manifold with metric tensor g. All the

manifolds will be assumed to be connected without boundary. Let φ : S → Mn
1 be

an isometric immersion of a 2-dimensional spacelike surface S. For all local formulae
and computations we may assume φ is an imbedding and thus we shall often identify
p ∈ S with φ(p) ∈ Mn

1 , and the tangent space TpS with the subspace φ∗(TpS) of
TpM

n
1 . The normal bundle will be denoted by T⊥S. We shall use letters X,Y, Z

(resp. ξ, η, ζ) to denote vectors fields tangent (resp. normal) to S. A tangent vector
v ∈ TpM

n
1 is said to be spacelike (timelike or lightlike) if g(v, v) ≥ 0 (g(v, v) < 0,

g(v, v) = 0 and v 6= 0, respectively). Let ∇̃ and ∇ be the Levi-Civita connections of
Mn

1 and S, respectively. Then, the Gauss-Weingarten formulas are given by

∇̃XY = ∇XY + h(X, Y ), (2.1)
∇̃Xξ = −AξX + DXξ, (2.2)

where h denotes the second fundamental form of φ, Aξ the shape operator, and D
is the normal connection. The shape operator and the second fundamental form are
related by g(AξX, Y ) = g(h(X, Y ), ξ).

Denote by R̃ and R the curvature tensor of Mn
1 and S, respectively. If Mn

1

is of constant sectional curvature c, then R̃ is given by R̃(X, Y )Z = c{g(Y,Z)X −
g(X, Z)Y }. The curvature tensor R is given by R(X, Y )Z = K{g(Y,Z)X−g(X,Z)Y },
where K is the Gauss curvature of S.

If p ∈ S and v ∈ TpM
n
1 we shall denote by v> and v⊥ the tangential and

normal components of v, respectively. The equations of Gauss and Codazzi are
given, respectively, by

(R̃(X, Y )Z)> = R(X,Y )Z + Ah(X,Z)Y −Ah(Y,Z)X, (2.3)

(R̃(X, Y )Z)⊥ = (∇̄Xh)(Y,Z)− (∇̄Y h)(X, Z), (2.4)

where ∇̄h is defined by

(∇̄Xh)(Y, Z) = DX(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ).
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If p ∈ S and x, y ∈ TpS are linearly independent tangent vectors, we define the
discriminant Dp at p as

Dp =
g(h(x, x), h(y, y))− g(h(x, y), h(x, y))

g(x, x)g(y, y)− g(x, y)2
. (2.5)

If K̃ denotes the sectional curvature of Mn
1 , from Eq. (2.3) we easily have

K̃(x, y) = Kp −Dp. (2.6)

Note that if D ≡ 0 then S is extrinsically flat: observers in Mn
1 see no curving. This

does not mean that S is intrinsically flat, but the surface S has the same intrinsic
curvature as Mn

1 .
Recall that a point p ∈ S is called umbilic [16] provided there exists a vector

ξp ∈ T⊥p S such that h(u, v) = g(u, v)ξp for any u, v ∈ TpS. The immersion φ is said
to be totally umbilical when every point of S is umbilic. In such a case, it is easy
to see that h(X, Y ) = g(X,Y )H for any X,Y ∈ X(S), where H = (1/2)traceg (h) is
the mean curvature vector of S. We also recall that a point p ∈ S is said to be flat if
h = 0 at p, and the immersion φ is totally geodesic provided every point of S is flat.

The immersion φ is called pseudo-umbilical if its second fundamental form h
satisfies g(h(X,Y ),H) = ρg(X, Y ) for some function ρ. Necessarily this function
ρ is given by ρ = g(H,H). Clearly, any totally umbilical immersion is pseudo-
umbilical.

The first normal space of φ at p ∈ S is defined as the subspace spanned by the
second fundamental form h at p, that is,

Im(h)p = span{h(u, v) : u, v ∈ TpS}.
A simple computation shows that {ξ ∈ T⊥p S : Aξ = 0} is the orthogonal complement
of Im(h)p in T⊥p S. Observe that if the dimension of Im(h) is constant along S, then
Im(h) is a subbundle of T⊥S.

3 Isotropic immersion

We first recall that an isometric immersion φ : S → Mn
1 is called isotropic at p ∈ S

[2] if
g(h(u, u), h(u, u)) = λ(p) ∈ R (3.1)

does not depends on the choice of the unit tangent vector u ∈ TpS, and φ is said to
be isotropic if φ is isotropic at each point of S. In such a case, the smooth function
λ : S → R defined by equation (3.1) is called the isotropy function, and the isometric
immersion φ is said to be λ-isotropic. In particular, if λ is a constant function, then
φ is said to be a constant isotropic immersion.

Remark 3.1 It is clear that every totally umbilical immersion φ : S → Mn
1 is an

isotropic immersion with isotropy function λ = g(H,H), but not vice versa. Notice
also that if φ is totally umbilical and Mn

1 has constant sectional curvature c, then
H is a parallel vector field and the function g(H,H) is a constant [17, p.11].
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Similar to the Riemannian case [1], it is easy to prove the following.

Lemma 3.2 Let φ : S → Mn
1 be a spacelike isometric immersion. Then, the fol-

lowing conditions are equivalent:

(1) φ is isotropic at p.

(2) g(h(x, y), h(z, w))+g(h(y, z), h(x, w))+g(h(z, x), h(y, w)) = λ(p){g(x, y)g(z, w)+
g(y, z)g(x,w) + g(x, z)g(y, w)} for all x, y, z, w ∈ TpS.

Furthermore, if φ is isotropic at p we have

g(h(u, u), h(u, v)) = 0, (3.2)
g(h(u, u), h(v, v)) + 2g(h(u, v), h(u, v)) = λ(p), (3.3)

for any orthonormal tangent vectors u, v ∈ TpS.

Remark 3.3 As a consequence of equation (3.2) we see that an isotropic immersion
of a spacelike surface S into a 3-dimensional Lorentzian manifold M3

1 is totally
umbilical, since T⊥S is a 1-dimensional negative defined space [4].

Lemma 3.4 Let φ : S → Mn
1 be a spacelike λ-isotropic immersion. Then, φ is

pseudo-umbilical and H, λ and D satisfy the equation

3g(H,H) = 2λ +D. (3.4)

PROOF. Let {e1, e2} be a local orthonormal frame tangent to S. Since H =
(h(e1, e1)+h(e2, e2))/2, equations (2.5) and (3.3) give D = λ−3g(h(e1, e2), h(e1, e2)).
Thus g(h(e1, e1),H) = g(h(e2, e2),H) = (2λ + D)/3. On the other hand, Eq. (3.2)
yields g(h(e1, e2),H) = 0, and by linearity g(h(X, Y ),H) = ((2λ +D)/3) g(X, Y ) for
any X,Y ∈ X(S). This means that S is pseudo-umbilical with associated function
ρ = g(H,H) = (2λ +D)/3.

¤

4 Isotropic surfaces in 4-dimensional spacetimes

When the mean curvature vector field H of an immersed spacelike surface in a
spacetime Mn

1 is a lightlike vector field and n=4, then the notions of isotropy and
pseudo-umbilicity are equivalent. In fact, we have the following.

Proposition 4.1 Let φ : S → M4
1 be a spacelike surface with lightlike mean curva-

ture vector. Then, the following assertions are equivalent.

(1) φ is pseudo-umbilical.

(2) φ is 0-isotropic.
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(3) φ is isotropic.

PROOF. (1) ⇒ (2). Since g(h(X,X),H) = 0 and the normal space is a Lorentzian
plane we have g(h(X,X), h(X, X)) = 0. Now (2) ⇒ (3) is obvious, and (3) ⇒ (1)
follows from Lemma 3.4.

¤

Theorem 4.2 Let S be a spacelike λ-isotropic surface in a spacetime M4
1 . Then,

we have

(a) If p ∈ S is not an umbilical point, then λ(p) = g(H,H)p = Dp = 0.

(b) The isotropy function λ is given by λ = g(H,H) = D.

(c) For any X, Y, Z, W ∈ X(S) we have

g(h(X,Y ), h(Z,W )) = λg(X, Y )g(Z, W ). (4.1)

PROOF. (a) Assume p ∈ S is not an umbilical point. Take e1, e2 ∈ TpS orthonormal
vectors such that h(e1, e2) 6= 0. Since φ is λ-isotropic then

g(h(ei, ei), h(ei, ei)) = λ(p) (4.2)

for i = 1, 2. Now we shall prove λ(p) = 0.
Case (i). Suppose λ(p) > 0. Equation (3.2) yields g(h(e1, e1), h(e1, e2)) = 0, and we
have that h(e1, e1) 6= 0 is spacelike and h(e1, e2) is timelike. Let us write

h(e1, e1) = δ e3, (4.3)
h(e1, e2) = µ e4, (4.4)

where {e1, e2, e3, e4} is an orthonormal frame of TpM
4
1
∼= R4

1 (e4 is a unit timelike
vector), and δ = [λ(p)]1/2 > 0, µ = [−g(h(e1, e2), h(e1, e2))]1/2 > 0. On the other
hand, from Eq. (3.2) we have also that g(h(e1, e2), h(e2, e2)) = 0. Therefore, equa-
tions (4.2) and (4.4) give h(e2, e2) = ±δ e3. If h(e2, e2) = δ e3, then from Eq. (3.3)
we have

g(h(e1, e1), h(e2, e2)) + 2g(h(e1, e2), h(e1, e2)) = λ(p). (4.5)

Thus equations (4.3) and (4.4) yield g(h(e1, e2), h(e1, e2)) = 0, which is a contra-
diction because µ > 0. The case h(e2, e2) = −δ e3 also gives a contradiction with
µ2 = −λ(p).
Case (ii). Assume λ(p) < 0. As in Case (i), if we write h(e1, e1) = δ e4, h(e1, e2) =
µ e3, with δ = [−λ(p)]1/2 and µ = [g(h(e1, e2), h(e1, e2))]1/2 we get a contradiction.

Finally, using equations (2.5) and (3.4), we have λ(p) = g(H,H)p = Dp = 0.
(b) From Remark 3.1, at any umbilical point we have λ = g(H,H), and then

Eq. (3.4) gives λ = D = g(H,H). Therefore, in a non-umbilical point the result
follows from assertion (a).
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(c) For any p ∈ S and x, y, z, w ∈ TpS define the multilinear function F on TpS
as follows.

F (x, y, z, w) = g(h(z, x), h(y, w))− g(h(y, z), h(x,w))
−λ(p) {g(z, x)g(y, w)− g(y, z)g(x,w)} . (4.6)

Then, F is a curvaturelike function, i.e., F has the following symmetries:

(i) F (x, y, z, w) + F (y, z, x, w) + F (z, x, y, w) = 0,

(ii) F (y, x, z, w) = −F (x, y, z, w),

(iii) F (x, y, w, z) = −F (x, y, z, w),

(iv) F (z, w, x, y) = F (x, y, z, w),

But Eq. (2.5) yields F (x, y, y, x) = 0 for any x, y ∈ TpS such that Q(x, y) =
g(x, x)g(y, y)− g(x, y)2 6= 0, and therefore [16] F = 0. In particular,

g(h(z, x), h(y, w))− λ(p)g(z, x)g(y, w) = g(h(y, z), h(x,w))− λ(p)g(y, z)g(x,w) =
= g(h(x, y), h(z, w))− λ(p)g(x, y)g(z, w).

Now, using (2) of Lemma 3.2, Eq. (4.1) follows.
¤

Remark 4.3 Observe that an isotropic surface into a Riemannian manifold which
satisfies Eq. (4.1) is totally umbilical. The Lorentzian version, however, is not true.

As a immediate consequence we have the following two corollaries.

Corollary 4.4 Let φ : S → M4
1 be a spacelike isotropic immersion. Then, the

following assertions are equivalent.

(1) φ is 0-isotropic.

(2) g(h(X, Y ), h(Z, W )) = 0 for any X,Y, Z, W ∈ X(S).

(3) g(H,H) = 0.

(4) S is extrinsically flat, i.e., the discriminant D ≡ 0.

(5) The first normal space Im(h) is a lightlike line at each non-flat point.

Corollary 4.5 Let φ : S → M4
1 be a spacelike isotropic immersion without umbilical

points. Then, φ is 0-isotropic.

Corollary 4.6 Let φ : S → M4
1 be a non-totally umbilical spacelike constant isotropic

immersion. Then, φ is 0-isotropic.
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PROOF. Set U = {p ∈ S : h(u, v) 6= 0 for some orthonormal vectors u, v ∈ TpS}.
Note that U is a non-empty open set which is the set of not umbilical points of S.
From Theorem 4.2 the isotropy function λ satisfies λ|U = g(H,H)|U = 0. Now, let
p ∈ U be an umbilical point in the boundary of U and take a sequence {pN}N∈N in
S which converges to p and such that every pN is not umbilical. Let X be a local
unitary vector field around p and consider the function λ = g(h(X, X), h(X,X)).
We have

λ(p) = lim
N

g (h(X(pN ), X(pN )), h(X(pN ), X(pN ))) = lim
N

λ(pN ) = 0.

If U is dense the result follows. If U is not dense, the set S−U is an open submanifold
of S which is totally umbilical, and thus constant g(H,H)-isotropic. Now we take a
sequence of umbilical points converging to a point in the boundary of U , we obtain
λ = g(H,H) = 0.

¤
The following result can also be proved in a similar way as Corollary 4.6.

Corollary 4.7 Let S be a non-totally umbilical spacelike isotropic surface of a space-
time M4

1 (c) of constant sectional curvature c. Then, φ is 0-isotropic.

5 Isotropic surfaces in a Lorentzian space form

Let Rn
s be the n-dimensional pseudo-Euclidean space provided with the usual inner

product of signature s defined by

〈x, y〉 = −
s∑

i=1

xiyi +
n∑

i=s+1

xiyi,

where x = (x1, . . . , xn), y = (y1, . . . , yn). For a positive number c, the standard
space form Sn

s (c) is the hypersurface Sn
s (c) = {x ∈ Rn+1

s : 〈x, x〉 = 1/c} endowed
with the induced metric of signature s. For a negative number c, the standard space
form Hn

s (c) is the hypersurface Hn
s (c) = {x ∈ Rn+1

s+1 : 〈x, x〉 = 1/c} endowed with
the induced metric of signature s. We simply denote Sn

s (1), and Hn
s (−1) by Sn

s , Hn
s ,

and the manifolds Sn
s , Hn

s ,Rn
1 , are known as the Lorentzian spaces form models of

constant curvature c = 1, c = −1, and c = 0, respectively. In general relativity, R4
1,

S4
1 and H4

1 are called respectively as the Minkowski, de Sitter, and anti-de Sitter
spacetimes.

It is well known that for every point p ∈ Sn
1 (resp. Hn

1 ), any complete connected
totally geodesic hypersurface of Sn

1 (resp. Hn
1 ) through p is the connected component

of the intersection of Sn
1 (resp. Hn

1 ) with a n-dimensional vector subspace V of Rn+1
1

(resp. Rn+1
2 ) which contains p, and vice versa [16, p. 105]. These totally geodesic

hypersurfaces are degenerates if and only if the n-dimensional vector subspace V is
degenerate, or equivalently, if the orthogonal complement of V is a lightlike line.

We now show an example of an isotropic and marginally trapped surface in R4
1,

which is not totally umbilical.
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Example 5.1 Let f : R2 → R be a smooth function. The isometric immersion
ψ : R2 → R4

1 defined by

ψ(x, y) = (f(x, y), x, y, f(x, y))

is a 0-isotropic MOTS. In fact, it is easy to see that the second fundamental form h
and the mean curvature vector H are given respectively by

h(X, Y ) = ∇2f(X,Y ) η,

H =
1
2
∆f η,

where η is the lightlike vector (1, 0, 0, 1) ∈ R4
1, ∇2f denotes the Hessian of f in R2

and ∆f = traceg(∇2f) is the corresponding Laplacian. Moreover, H is lightlike if
and only if ∆f is nowhere zero, and ψ is totally umbilical if and only if f is given
by

f(x, y) = a
(
x2 + y2

)
+ bx + cy + d,

with a, b, c, d ∈ R. Notice that ψ(R2) is contained in a degenerate hyperplane x1 = x4

(in the natural coordinates of R4
1). Obviously, there exist functions f ∈ C∞(R2)

such that H is a non-parallel lightlike vector field. In such cases R2 is a non-totally
umbilical isotropic marginally trapped surface embedded in R4

1.

In the next example we show an isotropic marginally trapped immersion of S2

into S4
1 which is non-totally umbilical.

Example 5.2 Let f : S2 → R be a smooth function. The isometric immersion
ψ : S2 → S4

1 defined by

ψ(x, y, z) = (f(x, y, z), x, y, z, f(x, y, z)),

where (x, y, z) denote the canonical coordinates of R3, is a 0-isotropic MOTS in the
Lorentzian space S4

1. In fact, let ∇2f be the Hessian of the function f in the sphere
S2. A straightforward computation shows [18] that the second fundamental form h
of ψ is given by

h(X, Y ) =
(
(∇2f)(X, Y ) + fg(X,Y )

)
η,

where η denote the lightlike vector (1, 0, 0, 0, 1) ∈ R5
1. Thus, the immersion ψ is

0-isotropic with mean curvature vector

H =
1
2

(∆f + 2f) η.

Note that g(ψ, η) = 0 means that ψ(S2) is contained in the degenerate totally
geodesic hypersurface Π of S4

1 defined as the intersection of S4
1 with the degenerate

hyperplane x1 = x5 of R5
1.

It is clear that H is lightlike if and only if ∆f +2f is nowhere zero. On the other
hand, an isometric immersion of a compact pseudo-umbilical spacelike surface S into



10 Isotropic Marginally Trapped Surfaces in a Spacetime

the De Sitter spacetime S4
1 with parallel lightlike mean curvature vector, is totally

umbilical [19]. Moreover, if S is a pseudo-umbilical surface in S4
1 with g(H,H) = 0,

then it is easy to see that H is parallel if and only if H is a fixed vector of R5
1. Since

an eigenfunction of −∆ corresponding to the eigenvalue −2 is the restriction to S2

of a homogeneous polynomial of degree 1, [20], we have that ψ is totally umbilical
if and only if f is given by

f(x, y, z) = ax + by + cz + d,

where a, b, c, d ∈ R. Notice that there exist functions f ∈ C∞(S2) such that H is a
lightlike non-parallel vector field. In fact, it suffices to take f(x, y, z) = xy − 2 and
then we have H = −2(xy + 1)η. In such cases, S2 is a compact marginally trapped
surface embedded in S4

1 and ψ is a non-totally umbilical.

Example 5.3 Let f : H2 → R be a smooth function. Then, the isometric immersion
ψ : H2 → H4

1 defined by

ψ(x, y, z) = (f(x, y, z), x, y, z, f(x, y, z))

is a 0-isotropic MOTS in H4
1. In fact, the second fundamental form h of ψ is given

by
h(X, Y ) =

(
(∇2f)(X, Y )− fg(X, Y )

)
η,

where ∇2f is the Hessian of f in H2 and η denotes the lightlike vector (1, 0, 0, 0, 1) ∈
R5

2. Thus, the immersion ψ is 0-isotropic with mean curvature vector

H =
1
2

(∆f − 2f) η.

Moreover, ψ(H2) is contained in the degenerate totally geodesic hypersurface Π of
H4

1, defined as the intersection of H4
1 with the degenerate hyperplane x1 = x5 of R5

2.
Note that there exist functions f ∈ C∞(H2) such that H is a non-parallel lightlike
vector field. In fact, it suffices to take f(x, y, z) = x2 +y2 and then H = 2(x2 +y2)η.
In such cases H2 is a non-totally umbilical isotropic marginally trapped surface
embedded in H4

1.

For a 4-dimensional Lorentzian space form M4
1 (c) of constant sectional curvature

c we have the following result.

Lemma 5.4 Let φ : S → M4
1 (c) be a spacelike 0-isotropic immersion without flat

points. Then, φ(S) is contained in a degenerate totally geodesic hypersurface Π of
M4

1 (c). In particular, there exits a constant lightlike normal vector field η such that
g(φ, η) = 0 and H is proportional to η.

PROOF. From Corollary 4.4 we have that the first normal space Im(h) is a normal
subbundle spanned by a lightlike vector at each point p ∈ S and

g(h(X, Y ), h(Z, W )) = 0, (5.1)



J. L. Cabrerizo, M. Fernández and J. S. Gómez 11

holds for any X, Y, Z, W ∈ X(S). Now, a simple differentiation of equation (5.1)
with respect to any tangent vector field T in S gives

g((∇̄T h)(X,Y ), h(Z,W )) = −g(h(X, Y ), (∇̄T h)(Z, W )). (5.2)

Combining repeatedly Codazzi’s equation (∇̄Xh)(Y,Z) = (∇̄Y h)(X, Z) and equa-
tion (5.2), we find g((∇̄T h)(X,Y ), h(Z,W )) = 0. Since the normal space is Lorentzian
and two-dimensional we have (∇̄T h)(X,Y ) ∈ Im(h) for any X, Y, T ∈ X(S). This
shows that the first normal space Im(h) is D-parallel. Therefore φ(S) is contained
in a degenerate totally geodesic hypersurface Π of M4

1 (c) [21], and consequently,
there exits a lightlike constant normal vector field η such that g(φ, η) = 0 and H is
proportional to η.

¤
The flat points hypothesis in Lemma 5.4 is necessary as shown in the following

example.

Example 5.5 Let (x, y) be the canonical coordinates of R2 and consider the open
set S = {(x, y) ∈ R2 : 1 < x2 + y2 < 4}. Let f : S → R be a smooth function such
that f > 0 on the sets

U = {(x, y) ∈ S : 2−
√

1− x2 < y <
√

4− x2}
and

V = {(x, y) ∈ S : −
√

4− x2 < y < −2 +
√

1− x2},
while f = 0 on S− (U ∪V ). Define φ : S → R4

1 as the isometric immersion given by

φ(x, y) =

{
(f(x, y), x, y, f(x, y)) if y ≥ 0,

(f(x, y), x, y,−f(x, y)) if y < 0.

Then φ is a spacelike 0-isotropic immersion with flat points, which is full in R4
1, i.

e., φ(S) is contained in no hyperplane of R4
1.

The following result determines complete spacelike 0-isotropic surfaces of R4
1

without flat points.

Theorem 5.6 Let φ : S → R4
1 be a complete spacelike 0-isotropic immersion without

flat points. Then,

(a) S is isometric to R2.

(b) φ is congruent to an isometric immersion ψ : R2 → R4
1 given by

ψ(x, y) = (f(x, y), x, y, f(x, y)),

for some smooth function f : R2 → R. Moreover, S is a MOTS in R4
1 with

mean curvature vector
H =

1
2
∆f η,

where η is a constant lightlike vector field of R4
1.
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PROOF. (a) From Lemma 5.4 the codimension can be reduced so that φ(S) is
contained in a degenerate hyperplane Π of R4

1 defined as the orthogonal complement
of a constant lightlike vector field η of R4

1. Now, consider a rigid motion A of
R4

1 sending η (or a proportional vector to η) into (1, 0, 0, 1), and hence Π onto
the hyperplane x1 = x4 of R4

1. Let π : R4
1 → R2 be the projection map onto the

coordinates (x2, x3). Then π ◦ A ◦ φ : S → R2 is an isometric immersion and,
consequently, a local isometry. Now, by the completeness hypothesis, π ◦A ◦φ is an
isometry [16, Corollaries 7.27, 7.29].

(b) As π ◦A ◦ φ is an isometry, there exists a smooth function f : R2 → R such
that A sends φ(S) into the set of points (f(x, y), x, y, f(x, y)). Observe that the
mean curvature vector of A ◦ φ is given by A(H). Now, from Example 5.1 we have
A(H) = 1

2∆f (1, 0, 0, 1) and the result follows.
¤

From Proposition 4.1 and Theorem 5.6 we easily obtain the following ridigity
results.

Corollary 5.7 Let S be a complete spacelike surface of R4
1. Then, S is an isotropic

marginally trapped surface if and only if S is congruent to a surface defined by
ψ(x, y) = (f(x, y), x, y, f(x, y)), where f : R2 → R is a smooth function such that
∆f is nowhere zero.

Corollary 5.8 Let S be a complete spacelike surface of R4
1. Then, S is a pseudo-

umbilical marginally trapped surface if and only if S is congruent to a surface defined
by ψ(x, y) = (f(x, y), x, y, f(x, y)), where f : R2 → R is a smooth function such that
∆f is nowhere zero.

Remark 5.9 The last result completely determines the complete spacelike pseudo-
umbilical surfaces with lightlike mean curvature vector in R4

1. Compare this result
with Theorem 4.1 of [14]. On the other hand, note that the marginally trapped
surface S of this Corollary is totally umbilical if and only if f(x, y) = a(x2 + y2) +
bx + cy + d with a, b, c, d ∈ R, a 6= 0 (see Example 5.1).

Now, we prove a result analogous to Theorem 5.6 for complete spacelike 0-
isotropic surfaces of S4

1 without flat points.

Theorem 5.10 Let φ : S → S4
1 be a complete spacelike 0-isotropic immersion with-

out flat points. Then,

(a) S is isometric to S2.

(b) φ is congruent to an isometric immersion ψ : S2 → S4
1 given by

ψ(x, y, z) = (f(x, y, z), x, y, z, f(x, y, z)),

for some smooth function f : S2 → R, and S is a compact MOTS of S4
1 with

mean curvature vector
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H =
1
2
(∆f + 2f) η,

where η is a constant lightlike vector field of R5
1.

PROOF. (a) From Lemma 5.4 φ(S) is contained in a degenerate hypersurface Π of S4
1

defined as the intersection of S4
1 with the orthogonal complement of a constant light-

like vector field η of R5
1. Now we consider a rigid motion A of S4

1 such that A (viewed
as a rigid motion of R5

1) sends η into (1, 0, 0, 0, 1), and hence Π onto the hyperplane
x1 = x5. Let π : R5

1 → R3 be the projection onto the coordinates (x2, x3, x4). Then
π ◦ A ◦ φ : S → S2 is an isometric immersion and, by the completeness hypothesis,
an isometry.

(b) As π ◦ A ◦ φ is an isometry, there exists a smooth function f : S2 → R such
that A sends φ(S) into the set of points (f(x, y, z), x, y, z, f(x, y, z)). Observe that
the mean curvature vector of A ◦ φ is given by A(H). Now, from Example 5.2,
A(H) = 1

2(∆f + 2f) (1, 0, 0, 0, 1) and the result follows.
¤

By Proposition 4.1 and Theorem 5.10 we have also the following ridigity results.

Corollary 5.11 Let S be a complete spacelike surface of S4
1. Then, S is an isotropic

marginally trapped surface if and only if S is congruent to a surface defined by
ψ(x, y, z) = (f(x, y, z), x, y, z, f(x, y, z)), where f : S2 → R is a smooth function
such that ∆f + 2f is nowhere zero.

Corollary 5.12 Let S be a complete spacelike surface of S4
1. Then, S is a pseudo-

umbilical marginally trapped surface if and only if S is congruent to a surface defined
by ψ(x, y, z) = (f(x, y, z), x, y, z, f(x, y, z)), where f : S2 → R is a smooth function
such that ∆f + 2f is nowhere zero.

We can also prove the corresponding H4
1-versions of Theorem 5.10 and Corol-

laries 5.11, 5.12 as follows.

Theorem 5.13 Let φ : S → H4
1 be a complete spacelike 0-isotropic immersion

without flat points. Then,

(a) S is isometric to H2.

(b) φ is congruent to an isometric immersion ψ : H2 → H4
1 given by

ψ(x, y, z) = (f(x, y, z), x, y, z, f(x, y, z)),

for some smooth function f : H2 → R, and S is a MOTS in H4
1 with mean

curvature vector

H =
1
2
(∆f − 2f) η,

where η is a constant lightlike vector field of R5
2.
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Corollary 5.14 Let S be a complete spacelike surface of H4
1. Then, S is an isotropic

marginally trapped surface if and only if S is congruent to a surface defined by
ψ(x, y, z) = (f(x, y, z), x, y, z, f(x, y, z)), where f : H2 → R is a smooth function
such that ∆f − 2f is nowhere zero.

Corollary 5.15 Let S be a complete spacelike surface of H4
1. Then, S is a pseudo-

umbilical marginally trapped surface if and only if S is congruent to a surface defined
by ψ(x, y, z) = (f(x, y, z), x, y, z, f(x, y, z)), where f : H2 → R is a smooth function
such that ∆f − 2f is nowhere zero.

6 Summary

In this paper we have considered two families of surfaces in spacetimes: isotropic
and marginally trapped surfaces. The notion of λ-isotropic surface means that the
geometry of the surface is the same at each point regardless of direction, but may
vary from point to point (unless λ is constant). Then we have shown that the
isotropy function λ is the squared norm of the mean curvature vector field of the
surface and also satisfies a key equation (Eq. (4.1)) involving the extrinsic geometry
of the surface. As a consequence, we have seen that λ ≡ 0 is equivalent to the
surface being extrinsically flat. On the other hand, we have developed a method to
produce examples of isotropic MOTS in the classical models of spacetime: (i) for
any differentiable function f(x, y) on R2 we have given an example of 0-isotropic
MOTS in the Minkowski spacetime R4

1; (ii) for any differentiable f(x, y, z) on the
two-sphere S2 we have exhibited a 0-isotropic MOTS in the De Sitter spacetime S4

1;
(iii) for any differentiable function f(x, y, z) on the hyperbolic plane H2 we have
shown a 0-isotropic MOTS in the anti De Sitter space H4

1. Furthermore, we have
seen that it is possible to take an appropriate function f such that the resulting
embedded surface has a non-parallel null mean curvature vector field, and hence the
surface is marginally trapped. It is worth pointing out that we have also provided
ridigity results from these examples, that is, each of these examples serve as a model
of 0-isotropic marginally trapped surfaces in the Minkowski, De Sitter and anti De
Sitter spacetime, respectively. In fact, we have shown that any isotropic marginally
trapped surface in R4

1, S4
1 or H4

1 is congruent to the surface given in example (i),(ii)
or (iii), respectively.
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[3] Cabrerizo J L, Fernández M and Gómez J S 2009 J. Geom. Phys. 59 834
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no.7 1707

[5] Penrose R 1965 Phys. Rev. Lett. 14 57
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in Mathematics 194 Springer)

[21] Dajczer M 1984 Rev. Un. Mat. Arg. 31 167


