
Rev. Mat. Iberoamericana 19 (2003), 325–338

Graphs associated with nilpotent Lie
algebras of maximal rank

Eduardo Dı́az, Rafael Fernández-Mateos,
Desamparados Fernández-Ternero and Juan Núñez

Abstract

In this paper, we use the graphs as a tool to study nilpotent Lie
algebras. It implies to set up a link between graph theory and Lie
theory. To do this, it is already known that every nilpotent Lie algebra
of maximal rank is associated with a generalized Cartan matrix A
and it is isomorphic to a quotient of the positive part n+ of the Kac-
Moody algebra g(A). Then, if A is affine, we can associate n+ with
a directed graph (from now on, we use the term digraph) and we
can also associate a subgraph of this digraph with every isomorphism
class of nilpotent Lie algebras of maximal rank and of type A. Finally,
we show an algorithm which obtains these subgraphs and also groups
them in isomorphism classes.

1. Introduction

Let L be a finite-dimensional nilpotent Lie algebra, DerL its derivation
algebra, AutL its automorphism group.

Definition 1 A torus on L is a commutative subalgebra of DerL whose
elements are semi-simple. A torus is said to be maximal if it is not contained
in any other torus.

Definition 2 The rank of L is the common dimension of all maximal tori
on L. We say that L is of maximal rank if its rank r is equal to the dimension
� of L/[L,L] (in general, the rank r is less than �).
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If L is a nilpotent Lie algebra and T is a maximal torus on L, the elements
of T can be diagonalized simultaneously, then L is decomposed in a direct
sum of root spaces for T :

L =
⊕
β∈T ∗

Lβ ,

where T ∗ is the dual of the vector space T and

Lβ = {X ∈ L : tX = β(t)X, ∀t ∈ T}.
Definition 3 The set R(T ) = {β ∈ T ∗ : Lβ �= {0}} is called root system
of L associated with T (Favre calls root set to R(T ) in [1]).

Definition 4 A minimal system {X1, X2, . . . , X�} of generators of L veri-
fying that for each Xi there exists βi ∈ R(T ) such that Xi ∈ Lβi is called
T -msg.

We can obtain a T -msg for each torus T on a nilpotent Lie algebra L
(see 2.6 of [5]).

By 2.10 of [5], if L is a nilpotent Lie algebra of maximal rank �, T is a
torus on L and {X1, X2, . . . , X�} is a T -msg with roots β1, β2, . . . , β�, then
the set {β1, β2, . . . , β�} is a basis of T ∗ and for each β ∈ R(T ) there exists
(d1, . . . , d�) ∈ N

�, non null, unique such that β =
∑�

i=1 diβi and we call

|β| =
∑�

i=1 di the height of β.

Definition 5 We call generalized Cartan matrix a matrix A = (aij)
�
i,j=1

with entries in Z satisfying:

1. aij = 2, ∀i = 1, . . . , �

2. aij ≤ 0, ∀i, j = 1, . . . , �, i �= j

3. aij = 0 ⇔ aji = 0, ∀i, j = 1, . . . , �

The indecomposable generalized Cartan matrices are classified in 3 types:
finite, affine and indefinite.

In [5] a generalized Cartan matrix A = (ai,j)
�
i,j=1 is associated to every

nilpotent Lie algebra L of maximal rank � and thus, one says that L is of
type A. This matrix is built considering maximal tori on L and applying the
nilpotency of L on T -msg.

Then, by using generalized Cartan matrices we link the nilpotent Lie
algebras of maximal rank with Kac-Moody algebras. Indeed, we have that
every nilpotent Lie algebra L of maximal rank and of type A is a quotient
of the positive part n+ of the Kac-Moody algebra g(A) associated with A.

For a general overview on Kac-Moody Lie algebras and Graph Theory
the reader can see [3] and [4], respectively.
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2. Associated graphs

Definition 6 Let L be a nilpotent Lie algebra of maximal rank �, T a maxi-
mal torus on L, R(T ) the root system associated with T and {X1, X2, . . . , X�}
a T -msg with corresponding roots β1, β2, . . . , β�. We define the following di-
graph:

• the set of vertices V (GL) is R(T ).

• we draw a directed edge from γ to µ if there exists βi such that µ =
γ + βi, where µ, γ ∈ R(T ).

Theorem 7 The digraph above mentioned is unique, up to isomorphism,
for every nilpotent Lie algebra L of maximal rank. We will denote it by GL.

Proof. Let L a nilpotent Lie algebra of maximal rank �.

1. If T and T ′ are two maximal tori, there exists θ ∈ Aut (L) such that
θTθ−1 = T ′. Let {X1, X2, . . . , X�} be a T -msg with corresponding
roots β1, β2, . . . , β�. Then {θ(X1), θ(X2), . . . , θ(X�)} is a T ′-msg with
corresponding roots β ′

1, β
′
2, . . . , β

′
� which are defining by

β ′
i(t

′) = βi(θ
−1t′θ), ∀t′ ∈ T ′, i = 1, . . . , � .

We have the following bijection from R(T ) on R(T ′):

if β ∈ R(T ), then there exists an unique (d1, . . . , d�) ∈ N
� such that

β =
∑�

i=1 diβi and we define f(β) =
∑�

i=1 diβ
′
i. Moreover, we have

that θ(Lβ) = Lf(β), ∀β ∈ T ∗. Due to this bijection, the digraphs
obtained from the torus T and the T -msg {X1, X2, . . . , X�} and from
the torus T ′ and the T ′-msg {θ(X1), θ(X2), . . . , θ(X�)} are isomorphic.

2. Let T be a torus on L and let {X1, X2, . . . , X�} and {Y1, Y2, . . . , Y�}
be two T -msg with corresponding roots β1, β2, . . . , β� and γ1, γ2, . . . , γ�,
respectively. By 3.1 of [5], there exist a unique σ ∈ S� and λ1, . . . , λ� ∈
K − {0} such that Yi = λiXσi and γi = βσi, i = 1, . . . , �. Then
the digraphs obtained from T and the T -msg {X1, X2, . . . , X�} and
{Y1, Y2, . . . , Y�}, respectively, are isomorphic. �

Example 1 We consider the following Lie algebra:

M = Ce1 ⊕ · · · ⊕ Ce9

with brackets

[e1, e2] = e5, [e1, e4] = e6, [e2, e3] = e7,

[e3, e4] = e8, [e2, e8] = e9, [e4, e7] = −e9.
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This Lie algebra is nilpotent Lie algebra of maximal rank � = 4. A maximal
torus on M is:

T = Ct1 ⊕ · · · ⊕ Ct4 with ti(ej) = δij ej, i, j = 1, . . . , 4

The set {e1, e2, e3, e4} is a T-msg with roots β1, β2, β3, β4. The root system
associated with T is

R(T ) = {β1, β2, β3, β4, β1 + β2, β1 + β4, β2 + β3, β3 + β4, β2 + β3 + β4}
Then we have the following root space decomposition:

M =
⊕

β∈R(T )

Mβ

where

Mβi = Cei for i = 1, . . . , 4,

Mβ1+β2 = Ce5, Mβ1+β4 = Ce6, Mβ2+β3 = Ce7, Mβ3+β4 = Ce8,

Mβ2+β3+β4 = Ce9.

The corresponding associated digraph GM is:

� �R

�

R

�

�

R

�

R

��

��

��

�� �� � ��
�� � �� � ��

�� � ��

�� � ��

�� � ��

Figure 1: The digraph GM.

and the generalized Cartan matrix associated with M is:

A =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2




which is the generalized Cartan matrix of affine type A
(1)
3 (see Chapter 4

of [3]).
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Remark 1 In the digraph GM, we have drawn in each vertical line all the
vertices corresponding with roots of R(T ) with the same height. The height
is augmented from left to right in 1. If we have drawn a directed edge from
γ to µ, then the height of µ is |µ| = |γ| + 1. We will follow this indications
to draw digraphs from now on.

By the above remark, we draw the digraph GM in a more simplified form,
substituting directed edges by edges (since each edge is directed from a root
of height h to roots of height h + 1):

��

��

��

�� �� � ��
�� � �� � ��

�� � ��

�� � ��

�� � ��

Figure 2: The digraph GM (simplified form).

Then, let consider a generalized Cartan matrix A of affine type. Let ∆+

be the set of positive roots, gα the root subspace associated with α ∈ ∆+ and
α1, α2 . . . , αl the simple roots of the Kac-Moody algebra g(A). If α ∈ ∆+

there exist d1, . . . , d� such that α =
∑

diαi and we call |α| =
∑

di the height
of α.

We have the following decomposition for the positive part n+ of g(A) :

n+ =
⊕

α∈∆+

gα.

Definition 8 We define the following digraph GA, associated with n+:

• the set of vertices V (GA) is {0} ∪ ∆+.

• we draw a directed edge from γ to µ if there exists αi such that µ =
γ + αi, where µ, γ ∈ {0} ∪ ∆+.

Due to the properties of the positive root system ∆+ when A is affine,
the following lemma is verified:
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Lemma 9 If A is a generalized Cartan matrix of affine type, then the di-
graph GA is infinite, it has a countable infinite set {nξ / n ≥ 1} of cut points
and there are countably infinite many finite subgraphs Gn (n ≥ 0) of GA such
that:

1. V (Gn−1) ∩ V (Gn) = {nξ}.
2. V (Gn) = {α + nξ /α ∈ V (G0)}.

Proof. If A is a generalized Cartan matrix of affine type, the positive root
system of the Kac-Moody algebra g(A) has the following structure:

there exist r ∈ {1, 2, 3} and δ ∈ ∆+ such that ∆+ ∪{0} = ∪j≥0∆j where

∆0 = {0} ∪ {γ ∈ ∆+ / |γ| < |rδ|} ∪ {rδ},
∆j = {jrδ + γ / γ ∈ ∆0} if j ≥ 1.

Since V (GA) = ∆+∪{0}, we have that GA is a infinite digraph. The vertices
nξ = nrδ are cut points in the digraph GA because nrδ is the unique root of
∆+ with height nr|δ|. Gn is the subgraph of GA whose set of vertices is ∆n

for n ≥ 0 and, obviously, these subgraphs verify the properties 1 and 2. �
As a consequence of this lemma and the results related to the root sys-

tems, see [3], the digraph GA has the following structure:

G0 ∨ G1 ∨ · · · ∨ Gn ∨ Gn+1 ∨ · · · =
∨
n≥0

Gn

where we identify the vertices nξ of Gn−1 and Gn for all n ≥ 1.

Example 2 We consider the following generalized Cartan matrix of affine
type:

A
(1)
3 =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2




The set ∆+ of positive roots of the Kac-Moody algebra g(A
(1)
3 ) verifies that

there exists δ ∈ ∆+ (r = 1) such that ∆+ ∪ {0} = ∪j≥0∆j where

∆0 = { 0, α0, α1, α2, α3, α4 =α0+α1, α5 =α0+α3, α6 =α1+α2, α7 =α2+α3,

α8 = α0 + α1 + α2, α9 = α0 + α1 + α3, α10 = α0 + α2 + α3,

α11 = α1 + α2 + α3, δ = α0 + α1 + α2 + α3}
∆j = { jδ + γ / γ ∈ ∆0} if j ≥ 1

with α0, α1, α2, α3 the simple roots.
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We obtain the following digraph associated with A
(1)
3 :
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Figure 3: The digraph G
A

(1)
3

.

Remark 2 In drawing the above digraph we have followed the same indi-
cations as in figure 2. Moreover we have used the notation αj

i for the root
jδ + αi ∈ ∆j, where αi ∈ ∆0.

Theorem 10 If L is a nilpotent Lie algebra of maximal rank and of type A,
then the corresponding associated digraph GL is isomorphic to a subgraph
G′

L of GA.

Proof. Let A = (aij)
�
i,j=1 be a generalized Cartan matrix of affine type, L

be a nilpotent Lie algebra of maximal rank and of type A and n+ be the
positive part of the Kac-Moody algebra associated with A and we define the
following ideal n++ of n+:

n+ =
( ⊕

1≤i �=j≤�
0≤k≤−aji

gαi+kαj

)
⊕ n++.

By 5.10 of [5], there exists an homogeneous ideal a of n+ included in n++

such that L and n+/a are isomorphic.
n+/a is a nilpotent Lie algebra of maximal rank and the digraph asso-

ciated with this algebra, Gn+/a, can be obtained, by 4.9 of [5], from the
torus T = ⊕�

i=1Kti, where ti ∈ Der(n+/a) is defined by tiEj = δijEj,
i = 1, . . . , �, with E1, . . . , E� the Chevalley generators of n+. Furthermore
{E1, E2, . . . , E�} is a T -msg whose corresponding roots can be identified to
α1, α2, . . . , α�. Then the set {α1, . . . , α�} is a basis for T ∗ and R(T ) ⊂ ∆+.

Therefore we have that Gn+/a is a subgraph of GA and, since L and n+/a
are isomorphic, GL and G′

L = Gn+/a are isomorphic. �
This digraph G′

L is a subgraph of GA which is obtained from the nilpotent
Lie algebra n+/a, where a is an homogeneous ideal of n+. Thus we have
that a = ⊕α∈∆+aα where aα = a ∩ gα. Then there exists j ≥ 0 such that
jrδ /∈ {α ∈ ∆+ / aα �= Ø} and nrδ ∈ {α ∈ ∆+ / aα �= Ø}, ∀n ≥ j + 1.
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Therefore G′
L verifies that there exists j ≥ 0 such that jξ ∈ V (G′

L) and
nξ /∈ V (G′

L),∀n ≥ j + 1 and thus, we can consider that G′
L is a subgraph of

the finite digraph

G0 ∨ G1 ∨ · · · ∨ Gj =

j∨
n=0

Gn .

Let the digraph G̃L,j be the subgraph of
∨j

n=0 Gn whose set of vertices

V (G̃L,j) is V (GA)− V (GL) and whose edges are all edges in
∨j

n=0 Gn which
connect two vertices in V (G̃L,j). This digraph G̃L,j is a subgraph of the
digraph Gj which verifies the following properties:

1. (j + 1)δ ∈ V (G̃L,j) and δ /∈ V (G̃L,j)

2. if α ∈ V (G̃L,j) and α+αi ∈ V (Gj), then α+αi ∈ V (G̃L,j) and the edge
from α to α + αi belongs to G̃L,j .

Theorem 11 To classify nilpotent Lie algebras of maximal rank and of
type A it is necessary to compute (up to isomorphism), as a first step, all
the subgraphs of Gj verifying the properties 1 and 2 above mentioned, for
each j ≥ 0.

Proof. Let j ≥ 0 and G be a subgraph of Gj verifying the properties:

1. (j + 1)δ ∈ V (G) and δ /∈ V (G)

2. if α ∈ V (G) and α + αi ∈ V (Gj), then α + αi ∈ V (G) and the edge
from α to α + αi belongs to G.

Then there exists a nilpotent Lie algebra L such that the digraph

G0 ∨ G1 ∨ · · · ∨ Gj−1 ∨ G̃,

where G̃ is the subgraph of Gj whose set of vertices V (G̃) is V (Gj) − V (G)
and whose edges are all edges in Gj which connect two vertices in V (G̃), is
isomorphic to GL.

The second step to classify nilpotent Lie algebras of maximal rank and
of type A will be to obtain all nilpotent Lie algebras of maximal rank (up
to isomorphism) whose digraph associated is G0 ∨ G1 ∨ · · · ∨ Gj−1 ∨ G̃, for
each subgraph G̃ of Gj obtained in the first step, for each j ≥ 0. �

This last step is not dealt in this paper due to reasons of length. For a
more general overview on this result the reader can see [2].

Moreover, as V (Gj) = {α+jξ / α ∈ V (G0)}, we have a bijection between
the set of subgraphs of G0 and the set of subgraphs of Gj , for j ≥ 1. So,
it is sufficient to obtain, up to isomorphism, all the subgraphs of G0 which
verify properties 1 and 2 (see [2]).
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Finally, since that the digraph G0 has a great number of vertices and
edges (which increase with the generalized Cartan matrix order), we have
designed an algorithm which allows, in the first place, to obtain all the
subgraphs of G0 verifying these properties and secondly, to group them in
isomorphism classes.

The main steps of this algorithm, described in a short way, are the fol-
lowing:

Algorithm

Input:

• The digraph G0 such that

G =
∨
n≥0

Gn

is the digraph associated with the positive part n+ of the Kac-Moody
algebra g(A). V (G0) = {0, v1, . . . , vp, vp+1 = δ}

• The automorphism group of the matrix A, Aut (A).

Output: For each isomorphism class of subgraphs of G0 which verify the
properties 1 and 2, we give a representative.

Method

Step 1: We calculate the subgraphs of G0 which verify the properties 1
and 2. (If I is a subgraph of G0 which verifies the property 2, then I is
generated by vi1 , . . . , vik ∈ V (I) and , by the property 1, vij �= 0, j =
1, . . . , k.)

Step 1.1: We obtain the list of the subgraphs generated by one vertex
v �= 0.

Step 1.1.1: For each vertex v we determine the subgraph gen-
erated by v, 〈v〉.

Step 1.2: We obtain the list of the ideals generated by two or more
vertices non nulls.

Step 1.2.1: For each ideal 〈vi1, . . . , vik〉 obtained in the preced-
ing iteration (considering the step 1.1.1 as the first iteration)
and for each nonzero vertex vj of G0, we determine if j > ik
and if 〈vi1 , . . . , vik , vj〉 is a new subgraph with k+1 generators
and in this case we add this subgraph to the list of subgraphs
generated by k + 1 roots.
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Step 2: We determine the action of Aut (A) on G0. (The set of vertices
V (GA) is {0} ∪ ∆+ and G0 is a subgraph of GA.)

Step 3: We calculate the isomorphism classes of subgraphs of G0 which ver-
ify 1 and 2. (We use Aut (A), since I and I ′ are isomorphic subgraphs
of G0 which verify 1 and 2 if and only if it exists an automorphism
σ ∈ Aut (A) such that σ(I) = I ′.)

Step 3.1: We obtain a representative of each isomorphism class, by
recurrence on the number k of vertices generating the subgraph.

We are now dealing with the computational complexity of algorithm
and its implementation for doing specific computations with nilpotent Lie
algebras.

Example 3 We consider the generalized Cartan matrix of affine type A
(1)
3

again. The digraph G0 such that G
A

(1)
3

=
∨

n≥0 Gn is:

0 δ

α0 α4 α8

α1 α5 α9

α2 α6 α10

α11α7α3

Figure 4: The digraph G0 corresponding to the Kac-Moody algebra g(A(1)
3 ).

and the automorphism group of the matrix A
(1)
3 is

Aut (A
(1)
3 ) = {σ1, σ

−1
1 , σ1 ◦ σ1, id} = 〈σ1〉

where σ1(α0) = α1, σ1(α1) = α2, σ1(α2) = α3 and σ1(α3) = α0.

The action of Aut (A
(1)
3 ) on G0 is given by:

σ1(α4) = α6, σ1(α5) = α4, σ1(α6) = α7, σ1(α7) = α5,

σ1(α8) = α11, σ1(α9) = α8, σ1(α10) = α9, σ1(α11) = α10,

σ1(δ) = δ.
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The algorithm calculates all the subgraphs I of G0, up to the action of
Aut (A

(1)
3 ), which verify the following properties:

1. δ ∈ V (I) and 0 /∈ V (I)

2. if α ∈ V (I) and v + α ∈ V (G0), then v + α ∈ V (I) and the edge from
α to v + α belongs to I.

These subgraphs are obtained by recurrence on the number k of vertices
which generate the subgraph.

For A
(1)
3 we have obtained 25 subgraphs:

k = 1 The subgraphs which are generated by 1 vertex:

I0 = 〈α0〉 I1 = 〈α4〉 I3 = 〈α8〉

δ

α4 α8

δδ

α0 α4 α8

α9α5 α9

α8

α10

I4 = 〈δ〉

δ

k = 2 The subgraphs which are generated by 2 vertices:

δ

α0 α4 α8

α1 α5 α9

α6 α10

α11

I5 = 〈α0, α1〉

δ

α0 α4 α8

α5 α9

α2 α6 α10

α11α7

I6 = 〈α0, α2〉

δ

α0 α4 α8

α5 α9

α6 α10

α11

I7 = 〈α0, α6〉

α7

δ

α0 α4 α8

α5 α9

α10

α11

I8 = 〈α0, α7〉

δ

α4 α8

α5 α9

δ

α0 α4 α8

α5 α9

α10

α11

α10

I9 = 〈α0, α11〉 I10 = 〈α4, α5〉
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α7

δ

α4 α8

α9

α10

α11

I11 = 〈α4, α7〉
α11

δ

α4 α8

α9

δ

α4 α8

α9

α10

I12 = 〈α4, α10〉 I13 = 〈α4, α11〉

δ

α8

α9

I14 = 〈α8, α9〉

δ

α8

α10

I15 = 〈α8, α10〉

k = 3 The subgraphs which are generated by 3 vertices:

I16 = 〈α0, α1, α2〉 I17 = 〈α0, α1, α7〉

δ

α0 α4 α8

α1 α5 α9

α2 α6 α10

α11α7

δ

α0 α4 α8

α1 α5 α9

α6 α10

α11α7

I18 = 〈α0, α6, α7〉

δ

α0 α4 α8

α5 α9

α6 α10

α11α7

I19 = 〈α4, α5, α6〉 I20 = 〈α4, α5, α11〉

δ

α4 α8

α5 α9

α6 α10

α11

δ

α4 α8

α5 α9

α10

α11

I21 = 〈α4, α10, α11〉

δ

α4 α8

α9

α10

α11

I22 = 〈α8, α9, α10〉

δ

α8

α9

α10
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k = 4 The subgraphs which are generated by 4 vertices:

I23 = 〈α0, α1, α2, α3〉

δ

α0 α4 α8

α1 α5 α9

α2 α6 α10

α11α7α3

I24 = 〈α4, α5, α6, α7〉

δ

α4 α8

α5 α9

α6 α10

α11α7

I25 = 〈α8, α9, α10, α11〉

δ

α8

α9

α10

α11

The Lie algebra M of the example 1 is a nilpotent Lie algebra of maximal
rank and of affine type A

(1)
3 . Then the digraph GM is isomorphic to a

subgraph G′
M of G

A
(1)
3

. This subgraph is:

G′
M ≡

α0 α4

α1 α5

α2 α6

α11α7α3

G′
M is the subgraph of G

A
(1)
3

corresponding to j = 0 and the subgraph I22 of

G0 (see the list of the subgraphs of G0 verify the properties 1 and 2 which
we have obtained by the algorithm).
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