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The defining ideals of conjugacy classes of nilpotent matrices
and a conjecture of Weyman
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Abstract

Tanisaki introduced generating sets for the defining idealsof the schematic intersections of the closure
of conjugacy classes of nilpotent matrices with the set of diagonal matrices. These ideals are naturally
labeled by integer partitions. Given such a partitionλ, we define several methods to produce a reduced
generating set for the associated idealIλ. For particular shapes we find nice generating sets. By comparing
our sets with some generating sets ofIλ arising from a work of Weyman, we find a counterexample to a
related conjecture of Weyman.

1 Introduction

Let X be the set ofn × n matrices over a fieldk of characteristic0. In his paper Kostant [K] showed that
the ideal of polynomial functions vanishing on the set of nilpotent matrices inX , is given by the invariants
of the action by conjugation ofGL(n) on X . Let Cλ be the conjugacy class of nilpotent matrices inX
having Jordan block sizesλ′

1, . . . , λ
′
h, with λ a partition ofn andλ′ its transpose. LetCλ be the nilpotent

orbit variety defined as the Zariski closure ofCλ. De Concini and Procesi [DP] asked for a description of
the idealJλ of polynomial functions vanishing onCλ, for a general partitionλ. They were interested in a
refinement of Kostant’s result, which corresponds to the case λ = (1n). De Concini and Procesi described a
set of elements ofJλ that they conjectured to be a generating set. Later, Tanisaki [T] conjectured a simpler
generating set, and Eisenbud and Saltman [ES] generalized Tanisaki’s conjecture to rank varieties. Finally,
in 1989 Weyman [W1] used geometric methods to show that the three conjectures hold, and conjectured a
minimal generating setWλ for these ideals.

In the present paper we focus on a related family of ideals that we denote byIλ and callDe Concini-
Procesi ideals. These are the ideals of the scheme-theoretic intersectionof nilpotent orbit varietiesCλ with
the set of diagonal matrices. De Concini and Procesi [DP] produced a set of generators for these ideals that
was later simplified by Tanisaki [T]. In both cases, the sets of generators are highly nonminimal. In the
caseλ = (1n), Kostant’s theorem implies that the elementary symmetric functions of the eigenvalues of the
matrices give a minimal set of generators forI(1n).

Our work in this paper is motivated by the search for a minimalgenerating set for De Concini–Procesi
ideals. To this end, we simplify the generating set described by Tanisaki using elementary facts of the theory
of symmetric functions. We provide several reduction methods. The obtained sets are minimal in special
cases, and are generally much smaller. The main tool we use isa special filling of the Young diagram of the
partitionλ which we call theregular filling.

Clearly, by adding the defining ideal of the diagonal matrices to any generating set for the idealJλ, we
obtain a generating set forIλ. The following question is natural: Is it true that, after adding these generators
to Weyman’s conjectured minimal generating set forJλ, a minimal generating set forIλ is obtained ? We
give a negative answer to this question and provide some infinite families of counterexamples. With the help
of Macaulay 2 we verify that one of these counterexamples is also a counterexample to the original conjecture
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of Weyman on a minimal generating set ofJλ. This has been a well studied problem that has been open for
the past seventeen years. We hope that our methods together with those of Weyman will eventually lead to a
complete solution of the problem of finding a minimal generating set for both idealsIλ andJλ.

Our paper is organized as follows. In Section 2 we introduce some basic tools from the theory of sym-
metric functions. In Section 3, we introduced Tanisaki’s generating set for the De Concini-Procesi ideal, and
derive a simple combinatorial description for it. This leads to a simple rule to read a set of generators of
the ideal directly from a special filling of the Young diagramof the partition that call theregular filling. In
Section 4 we show that only generators read from the top entries of the regular filling are necessary in order
to construct a generating set forIλ. The resulting generating set is in a one-to-one correspondence with a
generating set that arises from the work of Weyman [W1]. In the case where the partitionλ is a hook, our
result coincides with the minimal generating set we introduced in [BFR]. For a general shape though, this
generating set could be far from minimal. In Section 5 we reduce the number of generators coming from each
column of the Young diagram. Finally in Section 6, we providemany examples and counterexamples to the
modified version of Weyman’s conjecture, and discuss classes where our reductions work best. Inside those
families we are able to find a counterexample to the original conjecture of Weyman on a minimal generating
set for the idealJλ. Throughout the paper, we raise new questions whose answerscould help illuminate the
problem of finding minimal generating sets forIλ andJλ.

2 Basic Tools

We will be working in the polynomial ringR = k[x1, . . . , xn], wherek may be an arbitrary field of charac-
teristic0.

We define apartition of n ∈ N to be a finite sequenceλ = (λ1, . . . , λk) ∈ N
k, such that

∑k
i=1 λi = n

andλ1 ≥ . . . ≥ λk. If λ is a partition ofn we writeλ ⊢ n. The nonzero termsλi are calledpartsof λ. The
number of parts ofλ is called thelengthof λ, denoted byℓ(λ), soλi = 0 if i > ℓ(λ).

Let λ = (λ1, . . . , λk) be a partition ofn. TheYoung diagramof a partitionλ is the left-justified array
with λi squares in thei-th row, from bottom to top. We use the symbolλ for both a partition and its associated
Young diagram. For example, the diagram ofλ = (4, 4, 2, 1) is illustrated in Figure 1 on the left.

For a partitionλ = (λ1, . . . , λk) we define itsconjugatepartition asλ′ = (λ′
1, . . . , λ

′
h), where for each

i ≥ 1, λ′
i is the number of parts ofλ that are bigger than or equal toi. The diagram ofλ′ is obtained by

flipping the diagram ofλ across the diagonal.

Figure 1: The partitionλ = (4, 4, 2, 1) and its conjugateλ′ = (4, 3, 2, 2).

We shall need some basic definitions from the theory of symmetric functions. First, we introduce the gen-
erating series for the elementary and the complete symmetric polynomials (denoted respectively byE(S, z)
andH(S, z)). These series are defined as:

E(S, z) =
∑

i≥0

ziei(S) =
∏

a∈S

(1 + za), and H(S, z) =
∑

i≥0

zihi(S) =
∏

a∈S

1

1 − za
, (1)

whereS is a set of variables, andz is a formal variable. Therefore, theelementary symmetric polynomial
er(S) is the sum of all square free monomials of degreer in the variables ofS, and thecomplete symmetric
polynomialhr(S) is the sum of all monomials of degreer in the variables ofS.

In order to introduce the monomial symmetric polynomialsmλ(S), we say that a monomialxs =
xs1

1 xs2
2 · · ·xsn

n hastypeλ, if the partitionλ is obtained by rearranging the sequence(s1, s2, . . . , sn) in weakly
descending order. Given a partitionλ, themonomial symmetric polynomialmλ = mλ(S) is defined as

mλ(S) =
∑

x
s

2



where the sum is taken over all different monomialsx
s of typeλ and with all variables inS.

If f ∈ k[x1, . . . , xn] is a symmetric polynomial, andS ⊆ {x1, . . . , xn}, we definef(S) as the evaluation
of f at the setS, by setting all variablesx ∈ {x1, . . . , xn}\S to be equal to0 in f . For instance,e2(x1, x3) =
x1x3. The polynomialf(S) is called apartially symmetric polynomial. In general, it is no longer invariant
under the action of the symmetric group onn letters.

For simplicity, given a symmetric polynomialf ∈ k[x1, . . . , xn], for all 1 ≤ k ≤ n, we will denote by
f(k) the following set of partially symmetric polynomials,

f(k) = {f(S) | S ⊆ {x1, . . . , xn}, |S| = k}.

For example, letn = 4, thene2(3) = {x1x2 + x1x3 + x2x3, x1x2 + x1x4 + x2x4, x1x3 + x1x4 +
x3x4, x2x3 + x2x4 + x3x4}. Note that ifr > k we haveer(k) = ∅.

Notation. Let S ⊆ {x1, . . . , xn}. Forx ∈ S, andI = {xi1 , . . . , xik
} ⊆ S, we let

Sx = S \ {x} and Si1,...,ik
= S \ I.

We shall be using the following elementary lemma later in thepaper.

Lemma 2.1(Basic Lemma). LetS ⊆ {x1, . . . , xn}, |S| = s, and letj ≤ s. Then

1. ej(S) = ej(Sx) + xej−1(Sx) for all x ∈ S;

2.
∑

x∈S

ej(Sx) = (s − j)ej(S);

3.
∑

x∈S

xej−1(Sx) = jej(S).

Proof. 1. Clear.

2. Fix a square-free monomialM of degreej appearing inej(S). Without loss of generality, assume
M = x1 · · ·xj and S = {x1, . . . , xs}. Then eachej(Sxt

) contains exactly one copy ofM , for
t = j +1, . . . , s. There are exactlys− j such indicest, soM appearss− j times in the left-hand sum.

3. We use the equation in Part 1, and sum over all elements ofS :
∑

x∈S ej(S) =
∑

x∈S ej(Sx) +
∑

x∈S xej−1(Sx) so by Part 2 we havesej(S) = (s−j)ej(S)+
∑

x∈S xej−1(Sx) and hencejej(S) =
∑

x∈S xej−1(Sx).

Proposition 2.2 (Another presentation of the partially symmetric polynomials). Let S = {x1, . . . , xn},
i ≤ n, and define the idealEi(S) = (e1(S), . . . , ei(S)) in the polynomial ringk[x1, . . . , xn]. LetU ⊆ S be
a subset of cardinalityu. Then fori ≤ n − u we have

ei(S \ U) = (−1)ihi(U) modEi(S). (2)

Proof. This result follows from a formal manipulation of the generating functions in (1). We have

E(S \ U, z) =
∏

a∈S
a6∈U

(1 + za) =

∏

a∈S(1 + za)
∏

a∈U (1 + za)
= E(S, z)H(U,−z).

Therefore, extracting the coefficient ofzi from both sides of the resulting equationE(S\U, z) = E(S, z)H(U,−z)
we obtain

ei(S \ U) =

i
∑

j=0

ej(S)(−1)i−jhi−j(U).

By hypothesisej(S) is in the ideal forj = 1, . . . , i. Sincee0(S) = 1, the result follows.
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3 A new combinatorial description of Tanisaki’s generatingset for Iλ

In this section, we define a family of idealsIλ in the polynomial ringR = k[x1, . . . , xn] indexed by partitions
λ of n. The idealIλ was first introduced by De Concini and Procesi [DP] in order todescribe the coordinate
ring of the schematic intersection of the Zariski closure ofthe conjugacy class of nilpotent matrices of shape
λ, with the set of diagonal matrices.

In order to manipulate De Concini-Procesi ideals, we use a generating set defined by Tanisaki [T]. A
nice feature of Tanisaki’s generating set is that its elements are elementary partially symmetric polynomials.
Furthermore, Tanisaki’s proof of the correctness of his generating set is both elegant and elementary, and it
is based on standard linear algebra facts. Finally, Tanisaki’s generating set has proven to be very fruitful in
algebraic combinatorics, see for example [AB, BG, GP].

Let λ = (λ1, . . . , λk) be a partition ofn. For the purpose of the next formula, we add enough zeroes to
the end ofλ so that it hasn terms:λ = (λ1, . . . , λn). For any1 ≤ k ≤ n, we define

δk(λ) = λ′
n + λ′

n−1 + . . . + λ′
n−k+1. (3)

It is clear thatδn(λ) ≥ δn−1(λ) ≥ . . . ≥ δ1(λ), and thatδn(λ) = n.

Theorem 3.1(Tanisaki’s generating set [T]). The idealIλ is generated by the following collection of ele-
mentary partially symmetric polynomials

Iλ =
(

er(k) | k = 1, . . . , n, and k ≥ r > k − δk(λ)
)

. (4)

Definition 3.2 (De Concini-Procesi ideal). We call the idealIλ defined in Theorem 3.1 theDe Concini-
Procesi idealof the partitionλ.

Since for any partitionλ of n, δn(λ) = n, when we setk = n in (4) we conclude thatIλ contains all the
elementary symmetric polynomials in all the variablesx1, . . . , xn.

Example 3.3. Let λ = (4, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0) ⊢ 11 be the partition appearing in Figure 1. Then
(δ1(λ), . . . , δ11(λ)) = (0, 0, 0, 0, 0, 0, 0, 2, 4, 7, 11). Hence

(1 − δ1(λ), . . . , 11 − δ11(λ)) = (1, 2, 3, 4, 5, 6, 7, 6, 5, 3, 0).

Heren = 11. For k = 1, . . . , 7 there is no admissibleer(k) in the generating set described in (4). So the
generating set ofI(4421) consists of the following elements

Generators

k = 8 e7(8), e8(8)
k = 9 e6(9), e7(9), e8(9), e9(9)
k = 10 e4(10), e5(10), . . . , e10(10)
k = 11 e1(11), e2(11), . . . , e11(11)

We now give a simple combinatorial description of the set of generators forIλ described in Theorem 3.1,
and then demonstrate how to shorten it so that one can read a reduced generating set forIλ directly from the
diagram of the partitionλ. In order to do so we introduce the notion of regular filling.

Definition 3.4 (The regular filling of a partition). Let λ be a partition ofn. Draw its Young diagram and then
fill its cells with the numbers1, 2, . . . , n from top to bottom and from left to right, skipping the cells in the
bottom row, which should be filled at the end from right to left. This is called theregular filling of λ, denoted
rf.

Definition 3.5 (The reading process). We associate to any fillingf of the Young diagram ofλ a set of partial
symmetric polynomials, denoted byGf (λ). We read the elements of this set from the filling as follows. For a
given column ofλ we add toGf (λ) all the elements of the setser(k), wherek is the entry in the bottom cell
of the column, and the degreesr’s are given by all the entries in that column.

4



1

2 4

3 5 6 7

11 10 9 8

Figure 2: The regular filling of(4, 4, 2, 1).

Notation. From now on, we enumerate columns and rows of a Young diagram from left to right by starting
from zero. So the “first” column will be the0-th column; similarly for rows.

Example 3.6.For the partitionλ = (4, 4, 2, 1), the regular fillingrf is illustrated in Figure 2. The reading pro-
cess of this filling gives the setGrf (λ) consisting of: the elementary symmetric polynomialse1(x1, . . . , x11),
e2(x1, . . . , x11), e3(x1, . . . , x11), e11(x1, . . . , x11), coming from the0-th column; the partially symmetric
polynomials of the setse4(10), e5(10), e10(10) read from the first column,e6(9), e9(9) from the second
column, ande7(8), e8(8) from the last column.

By using this reading process, we are going to read Tanisaki’s generators from a special filling.

Definition 3.7 (The antidiagonal filling). Let λ be a partition ofn. Compute the partitionδ(λ)

δ(λ) = δn(λ) ≥ δn−1(λ) ≥ . . . ≥ δ1(λ),

whereδk(λ) is defined as in (3), and draw the Young diagram of its conjugateδ′(λ). Now fill the0-th column
of δ′(λ) by 1, 2, . . . , n from top to bottom, and then fill the remainder of the diagram so that the filling is
constant following each antidiagonal. We call this theantidiagonal fillingof δ′(λ) and denote it byaf.

For our running exampleλ = (4, 4, 2, 1, 07), we haveδ(λ) = (11, 7, 4, 2, 07); the antidiagonal filling of
δ′(λ) is given in Figure 3. Note that the bottom entry of thek-th column ofδ′(λ) is n − k.

1

2

3

4

5 4

6 5

7 6

8 7 6

9 8 7

10 9 8 7

11 10 9 8

Figure 3: The antidiagonal filling ofδ′(λ).

Let λ be a partition ofn. Compute the setGaf (δ
′(λ)) by applying the reading process to the antidiagonal

filling af of δ′(λ). We have the following lemma.

Lemma 3.8. Letλ be a partition ofn. Then Tanisaki’s set of generators isGaf (δ
′(λ)). In particular,

Iλ = (Gaf (δ
′(λ))).

Proof. Let λ = (λ1, . . . , λn). Computeδ′(λ) and fill its diagram with the antidiagonal filling. According
to Theorem 3.1, to compute Tanisaki’s generating set, we need to find for whichk the interval[k − δk(λ) +
1, . . . , k − 1, k] is nonempty; clearly this happens whenδk(λ) > 0.

From the definition ofδk(λ), the only timesδk(λ) > 0 is whenk = n − λ1 + 1, . . . , n. So we are
considering valueser(S) for setsS such thatn− λ1 + 1 ≤ |S| ≤ n. This is an interval of lengthλ1, and the
numbersk = |S| we are considering are exactly the entries in the first row ofδ′(λ).
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Now, fix a columnt that has entryn − t in its bottom cell. The generating set described in Theorem 3.1
haser(S), where|S| = n− t andr = n− t− δn−t(λ)+1, . . . , n− t. Note that there exactlyδn−t(λ) values
thatr takes, and that is exactly the size of thet-th column ofδ′(λ). The mentioned values ofr are exactly the
entries of thet-th column of the antidiagonal filling ofδ′(λ).

One can easily check that this procedure applied to the antidiagonal filling in Figure 3 produces the
generators given in the table of Example 3.3.

We are now able to show the main result of this section, namely, thatIλ is the sum of three simpler ideals.
In order to do so we will use the regular filling.

Theorem 3.9. Let λ be a partition ofn. Fill the diagram ofλ with the regular filling, and compute the set
Grf (λ) by using the reading process described in Definition 3.5. Then

Iλ = (Grf (λ)).

Proof. Compute the partitionδ′(λ), fill its diagram with the antidiagonal filling and read off all of Tanisaki’s
generators. By Part 2 of Lemma 2.1, ifer(x1, . . . , xj) 6= 0 belongs to the ideal, so doeser(x1, . . . , xJ ) for
anyJ > j. Therefore, for each entryr = 1, . . . , n, we only need to keep the generators coming from the
rightmost occurrence of thatr in the antidiagonal filling ofδ′(λ). So we delete all other occurrences ofr in
that filling, and the corresponding cell. We obtain a filling that contains exactly one occurrence of each of
the numbers from1 to n. Now observe that the differences of heights between adjacent columns ofδ′(λ) are
given by the sequenceλ′

1, . . . , λ
′
λ1

. So after the deletion process, explained above, the remaining diagram
will have columns of heightλ′

1, . . . , λ
′
λ1

. Hence it is the diagram of our partitionλ. Moreover the resulting
is the regular filling, and we are done. The case of the partitionλ = (4, 4, 2, 1) is displayed in Figure 4.

1

2

3

∗

∗ 4

∗ 5

∗ ∗

∗ ∗ 6

∗ ∗ ∗

∗ ∗ ∗ 7

11 10 9 8

↓

1

2 4

3 5 6 7

11 10 9 8

Figure 4: From the antidiagonal to the regular filling.

Remark 3.10. Observe thatej(S) for S of cardinalityj is a square free monomial of degreej. So once we
have all square-free monomials of degreen − λ1 + 1 in our ideal, then we have the ones of higher degree.
These monomials are obtained when we read the generators coming from the rightmost entry of the bottom
row.

The following statement follows easily from the previous remark and Theorem 3.9.

Corollary 3.11 (First reduction of Tanisaki’s generating set forIλ). Let λ be a partition ofn. ThenIλ can
be described as the sum of the following three ideals:

Iλ = Mλ + Eλ + Kλ,

where

• Mλ is generated by all square-free monomials of degreen − λ1 + 1;

• Eλ is generated by the elementary symmetric polynomialse1(x1, . . . , xn), . . . , eℓ(λ)−1(x1, . . . , xn);

• Kλ is generated by the partially symmetric polynomials iner(k), wheren− 1 ≥ k ≥ n− λ1 + 1, and
r in an entry of the regular filling ofλ, in the same column ask, and strictly above it.

In the particular case where the indexing partitionλ is a hook, we recover the minimal generating set for
Iλ described in [BFR, Proposition 3.4].
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4 Second reduction of the generating set forIλ

Our goal in the rest of the paper is to shave off as many redundant generators as possible from the generating
set given in Corollary 3.11 . It turns out that only partiallysymmetric polynomials coming from the top
value of each column are required in the generating set. Thisfinding already gives a large reduction in the
number of generator needed in the generating set of Tanisaki. Several other reductions will be obtained in the
following sections.

Suppose we have a partitionλ of an integern, and fill the diagram ofλ with the regular filling defined in
Definition 3.4. Fork ≥ 1 we label the value in the top cell of thek-th column withbk, as long as the height
of the k-th column is≥ 2. If the right-most column ofλ has height 1, then we label its entrybs. This is
reflected in the diagram in Figure 5. Note that with this notation we have

b1 = λ′
1, b2 = λ′

1 + λ′
2 − 1, . . . , bk = λ′

1 + . . . + λ′
k − k + 1 for k ≤ t, bs = n − s,

where we set
t = λ2 − 1, and s = λ1 − 1. (5)

Clearly if λ1 = λ2, thent = s andbs does not exist.

1

2

b1 b2

bt

b1−1 b2−1 b3−1 n−s−1

n n−1 n−2 n−t bs=
n−s

Figure 5: Diagram of a partitionλ of n with the regular filling.

By Corollary 3.11) the reduced form of Tanisaki’s generating set forIλ is the union of the following sets:

Column0 e1(n), . . . , eb1−1(n)
Column1 eb1(n − 1), . . . , eb2−1(n − 1)
Column2 eb2(n − 2), . . . , eb3−1(n − 2)
...

...
Columnt ebt

(n − t), . . . , en−s−1(n − t)
Columns (if s > t) en−s(n − s), or all square-free monomials of degree(n − s).

(6)

Our goal here is to show that it is enough to pick only one set ofgenerators in each column, other than
the0-th column; namely, the ones coming from the top values in each column.

Theorem 4.1(Principal reduction of the generating set forIλ). Let λ be a partition ofn, and suppose that
the diagram ofλ has been filled as in Figure 5. Then a generating set forIλ is

Column0 e1(n), . . . , eb1−1(n)

Column1 eb1(n − 1) (or xb1
1 , . . . , xb1

n )
Column2 eb2(n − 2)
...

...
Columnt ebt

(n − t)
Last column (ifs > t) en−s(n − s), or all square-free monomials of degree(n − s).

(7)

7



If λ = (1n) is the one-column partition, then we also need to add the elementen(n) = x1 · · ·xn to this
generating set. Ifλ = (n) is the one-row partition, we only need generators from the last column, in other
wordsI(n) = (x1, . . . , xn).

Proof. We need to show that having in the ideal all generators read from the top index of each column implies
that the other partially symmetric functions coming from the larger indices in that column also belong to the
ideal. We go column by column, and build a new idealIλ by adding generators described in (7) for each
column ofλ. We show, each time, thatIλ contains all the other generators described in (6) (coming from the
same column), and thereforeIλ = Iλ.

Col. 0. There is nothing to prove here, as we are keeping all the generatorse1(n), . . . , eb1−1(n).

Col. 1. Assume that we haveeb1(S) ∈ Iλ for all S with |S| = n − 1. By Part 2 of Lemma 2.1, settingj = b1,
we see that we haveeb1(n) ∈ Iλ.

For eachi > b1, we can assume by induction oni that

e1(n), . . . , ei−1(n) ∈ Iλ andeb1(n − 1), . . . , ei−1(n − 1) ∈ Iλ.

Apply Part 3 of Lemma 2.1 withj = i, to see thatei(n) ∈ Iλ.

Fix a setS with |S| = n − 1 andx /∈ S. Let Sx = S ∪ {x}. Part 1 of Lemma 2.1 implies that

ei(S) = ei(S
x) − xei−1(S)

which demonstrates thatei(S) ∈ Iλ. Henceei(n − 1) ∈ Iλ.

The fact that the generatorseb1(n − 1) can be replaced by the powersxb1
1 , . . . , xb1

n follows directly
from Proposition 2.2. Note that, in particular, we haveei(n − 1) ∈ Iλ, for all i ≥ b1.

Col. j. SupposeIλ contains all generators from the previous columns0, . . . , j − 1 as described in (7). Let
|S| = n − j, and supposex /∈ S, so that|Sx| = n − j + 1, (Sx = S ∪ {x}). We know by induction
thatIλ containseh(Sx) for all h ≥ bj−1. Therefore, sincebj > bj−1, for i ≥ bj we have by Part 1 of
Lemma 2.1
ei(S) = ei(S

x) − xei−1(S) = −xei−1(S)
= −x(ei−1(S

x) − xei−2(S)) = x2ei−2(S)
= x2(ei−2(S

x) − xei−3(S)) = −x3ei−3(S)
...

= (−1)i−bj xi−bj ebj
(S) (mod Col. j − 1)

This means that once we includeebj
(S) in Iλ, we will have allei(S) ∈ Iλ for i ≥ bj.

In the case whereλ is a hook, the generating set described in Theorem 4.1 coincides with the minimal
generating set forIλ introduced in our earlier work [BFR].

Example 4.2. Let λ = (5, 4, 4, 3). Then, the regular filling ofλ is

1 4 7

2 5 8 10

3 6 9 11

16 15 14 13 12

8



So the generators ofIλ are

Column Generators Number of generators

0 e1(16), e2(16), e3(16) 3
1 x4

1, . . . , x
4
16 16

2 e7(14) 120
3 e10(13) 560
4 e12(12), or all square-free monomials of degree12 1820

Total 2519

Later in Example 6.4 we shall further reduce the generating set of this particular partition.

4.1 Remarks on a related work and conjecture of Weyman

We end this section by showing some relations between the generating set of Theorem 4.1 and two generating
sets forIλ arising in the work of Weyman [W1].

In [W1] Weyman uses the representation theory of the generallinear group to construct and study gener-
ating sets for the idealJλ of polynomial functions vanishing on the conjugacy classCλ. The generators in
the first family, denoted byVλ, are expressed as sums of minors, and come from reducible representations of
GL(n). The second set of generatorsUλ, on the other hand, arises from the irreducible representations of
GL(n). The setUλ is smaller thanVλ, but how to compute its elements is not explicit in the paper.

The setVλ (respectivelyUλ) is given by the disjoint union of setsVi,p (respectivelyUi,p), where the
family of indices(i, p) can be read off from a special diagram introduced by Weyman; see [W1, Example
(4.5)]. We call this diagram theWeyman diagramof λ. It is possible to construct the Weyman diagram of a
partition starting from the antidiagonal filling (see Definition 3.7) as follows. First, consider the antidiagonal
filling of δ′(λ), and justify its columns in such a way that equal entries are now in same rows. Then, replace
any entry of this diagram by anX . The resulting picture is the Weyman diagram. In Figure 6 we illustrate the
Weyman diagram corresponding to the partitionλ = (4, 4, 2, 1). Compare this diagram to the one in Figure
3. Note that if the topX in thei-th column of Weyman diagram ofλ has coordinates(i, p), then the top cell
of thei-th column of the regular filling ofλ is filled byp.

p = 1 X
p = 2 X
p = 3 X
p = 4 X X
p = 5 X X
p = 6 X X X
p = 7 X X X X
p = 8 X X X X
p = 9 X X X
p = 10 X X
p = 11 X

i = 0 1 2 3

Figure 6: Weyman diagram forλ = (4, 4, 2, 1).

We would like to remark that Weyman follows a convention opposite to ours when labelling the idealsIλ

andJλ: he labelsJλ the ideal of polynomial functions vanishing on all nilpotent matrices with Jordan blocks
λ1, . . . , λn, while we use the transpose. On the other hand, he associatesto a partitionλ what in our setting
would be the Weyman diagram ofλ′. These two facts cancel out, and we do not need to take any transpose
when reading statements involving his diagrams.
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Definition 4.3 (Weyman’s generating set forJλ). In [W1, Theorem (4.6)] Weyman shows that the idealJλ

is generated by theUi,p, where the(i, p)’s are the coordinates of the top cells of the columns (i ≥ 1) of the
Weyman diagram ofλ, together with the invariantsU0,p with 1 ≤ p ≤ n. This result implies that the ideal
Jλ is also generated by theVi,p coming from the same set of indices(i, p).

Example 4.4. For the partitionλ = (4, 4, 2, 1), whose Weyman diagram is in Figure 6, Weyman’s setUλ

consists ofU0,p, with 1 ≤ p ≤ 11, U1,4, U2,6, andU3,7 (and similarly for the setVλ). The cellsX whose
coordinates label this generating set are underlined.

After adding the generators for the ideal defining the diagonal matrices to the two setsVλ andUλ, one
gets two generating sets forIλ; we denote these two generating sets byṼλ andŨλ.

Instead of going into the definitions ofVλ andUλ that can be found in [W1, Section 4], we explicitly state
the cardinalities of their components in order to compare them with our generating set. We emphasize the
fact that Tanisaki’s generators (the ones we use) are easierto handle than Weyman’s generators. We have that

|Vi,p| =

(

n

i

)2

and |Ṽi,p| =

(

n

i

)

,

and

|Ui,p| =

(

n

i

)2

−

(

n

i − 1

)2

and |Ũi,p| =

(

n

i

)

−

(

n

i − 1

)

.

It turns out that the cardinalities of the generating set forIλ given by theṼi,p’s and the generating set
given in Theorem 4.1 are the same. Moreover, it is not difficult to describe a one-to-one correspondence
between the two generating sets. Under this correspondenceWeyman’sVi,p generators correspond to our
generators read from the top cell of thei-th column of the regular filling, as described in Theorem 4.1.

Weyman conjectured that a special subset ofUλ gives a minimal generating set ofJλ; see Conjecture 5.1
and Remark 5.3 of [W1].

Conjecture 4.5(Weyman’s original conjecture). Let λ be a partition. The set consisting ofU0,p for 1 ≤ p ≤
ℓ(λ), andUi,p, where(i, p) labels a top cell of thei-th row (in the Weyman diagram ofλ), such that there are
no X ’s to the right of or on the line segment joining(i, p) with (0, 1), is a minimal set of generatorsWλ of
Jλ.

A very interesting question is the following.

Question 4.6(Diagonal version of Weyman’s conjecture). Is the generating set̃Wλ for Iλ arising from
Weyman’s conjecture minimal ?

In the following sections we show that the the answer to this question is negative. Indeed, we provide
some infinite families of counterexamples. These observations, together with the help of Macaulay 2 led us
to the discovery that even the original conjecture of Weyman(Conjecture 4.5) fails already for one of the
smallest elements in these families.

5 Reducing generators ofIλ of a fixed degree

The aim of this section is to consider the generating set ofIλ described in Theorem 4.1, and eliminate as
many redundant generators as possible from each column.

Proposition 5.1(Columns of height> 1). Let λ be a partition whose diagram is represented in Figure 5.
For k ≥ 2, if the height of the(k − 1)-st column is> 1, then we can eliminate

(

n−1
k−1

)

+ 1 generators ofIλ

(as described in (7)) that come from thek-th column. Indeed, ifS denotes the set of variablesx1, . . . , xn, we
can eliminate the elements in the set{ebk

(S1,i2,...,ik
) | 1 < i2 < . . . < ik ≤ n} andebk

(S2,3,...,k+1).

Proof. Let k > 1, by using Part 2 of Lemma 2.1 we write

∑

j /∈{i1,...,ik−1}

ebk
(Si1,...,ik−1,j) = (n − bk − k + 1)ebk

(Si1,...,ik−1
) ≡ 0 (mod Ik−1) (8)
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12 13 14 23 24 34
2 1 0 0 1 1 0
3 0 1 0 1 0 1
4 0 0 1 0 1 1
1 1 1 1 0 0 0

123 124 134 234
23 1 0 0 1

24 0 1 0 1

34 0 0 1 1

12 1 1 0 0

13 1 0 1 0

14 0 1 1 0

Figure 7: The non-singular submatrices forn = 4, k = 2, andn = 4, k = 3.

whereIk−1 is the ideal of generators coming from columns0 to k − 1.
So we have a system of

(

n
k−1

)

linear homogeneous equations, in
(

n
k

)

variables. In fact we have one
equation for each choice of a(k − 1)-subset{i1, . . . , ik−1}, and one variableebk

(Si1,...,ik−1,j) for each
k-subset{i1, . . . , ik−1, j}.

The matrix associated to this system has columnsJ indexed by thek-subsets of{1, 2, . . . , n}, and rows
I indexed byk − 1-subsets of{1, 2, . . . , n}. Equation (8), says that at position(I, J) the entry will be1 if
I ⊆ J and0 if I 6⊆ J .

We claim that we can drop from the generating set of Theorem 4.1 ebk
(SJ), for all J of cardinalityk

containing1, andebk
(S2,...,k+1). To prove this it suffices to show that the submatrix corresponding to these

columns has full rank
(

n−1
k−1

)

+ 1.
We order the columns of this submatrix in this way: we put firstthe the columns indexed by aJ containing

1 in alphabetical order, and then column indexed by{2, . . . , k + 1}. Similarly, we order the rows starting
with those indexed by subsetsI that do not contain1, in alphabetical order, and then the row indexed by
{1, . . . , k − 1}, and then the other rows in any order. In Figure 7 two examplesare displayed.

The square submatrix given by the first
(

n−1
k−1

)

+ 1 rows consists of two blocks. An identity
(

n−1
k−1

)

-matrix
together with an additional row:(1, . . . , 1, 0, . . . , 0), with n− k + 1 ones. In fact, this last row is indexed by
{1, . . . , k−1}, and the entries are1 at columns indexed by{1, 2, . . . , k−1, j} for j > k, and zero otherwise.
By Gauss elimination, it is easy to see that this submatrix has full rank.

Remark 5.2. The system (8) has
(

n
k−1

)

linear equations and
(

n
k

)

variables. If all the equations are indepen-
dent, then

(

n
k−1

)

variables are redundant. Hence only
(

n
k

)

−
(

n
k−1

)

of them are necessary. Then using Gauss

elimination we would obtain an explicit generating set of the same size as Weyman’s̃Uk,p. We note that there
is no explicit construction for the generators inUλ in Weyman’s paper [W1].

Remark 5.3. Let λ be a partition ofn different than(n). As a consequence of Proposition 5.1, the number
of generators coming from the top cell of columnk in our generating set forIλ is

(

n
k

)

−
(

n−1
k−1

)

− 1. On

the other hand, and as discussed in Section 4.1 the corresponding Ũk,p in Weyman’s generating set consists
of

(

n
k

)

−
(

n
k−1

)

elements. Since for all partitions other than(n), we have thatn > k, we conclude that the

difference between the two sets is
(

n−1
k−2

)

− 1, for eachk > 2. For columns0, 1, and2 their cardinalities
coincide.

We now focus on eliminating generators from a column of height 1.

Proposition 5.4(Columns of height 1). Let λ be a diagram represented in Figure 5. Ifs > t ≥ 1, then we
can eliminate

(

n−s+t
t

)

square-free monomial generators ofIλ coming from the last column.

Proof. Note that asn−s > bt (see Figure 5), from the proof of Theorem 4.1 we know thaten−s(n−t) ∈ Iλ.
We now claim that we can drop monomial generators of the form

en−s(S1,2,...,s−t,i1,...,it
), s − t < i1 < i2 < . . . < it ≤ n

from the generating set forIλ. Since there are
(

n−s+t
t

)

such choices for sets{i1, . . . , it}, this will settle the
statement of the proposition. But this follows from the trivial identity

ek(A) =
∑

J⊆A
|J|=k

ek(J),
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which implies

en−s(S1,2,...,s−t,i1,...,it
) = en−s(Si1,...,it

) −
∑

{j1,...,js−t}6={1,...,s−t}
{j1,...,js−t}∩{i1,...,it}=∅

en−s(Sj1,...,js−t,i1,...,it
) ∈ Iλ.

Therefore using Propositions 5.1 and 5.4, we have reduced our generating set to that in the table in
Figure 8, using the Vandermonde identity

(

n
k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

.

Column Generators Number

0 e1(n), . . . , eb1−1(n) b1 − 1 = λ′
1 − 1

1 xb1
1 , . . . , xb1

n

(

n
1

)

=
(

n−1
1

)

+ 1

2 eb2(n − 2)
(

n
2

)

−
(

n−1
1

)

− 1 =
(

n−1
2

)

− 1
...

...
...

t ebt
(n − t)

(

n
t

)

−
(

n−1
t−1

)

− 1 =
(

n−1
t

)

− 1

s (if s > t) en−s(n − s)
(

n
s

)

−
(

n−s+t
t

)

Figure 8: Number of generators in each degree in the reduced generating set forIλ

Example 5.5. Consider the partitionλ = (4, 4, 2, 1) in Figure 2. Our formula gives 177 generators, but in
fact, Macaulay2 verifies that 168 generators are enough. Theextra generators are in degree 7 (see table in
Figure 8):

Degrees Number of generators from Table 8 Actual number of generators required

1, 2, 3 1 in each degree 1 in each degree
4 11 11
6 44 44
7 119 110

While in many examples such as the previous one, the predictions of the diagonal version of Weyman’s
conjecture are correct, this is not always the case.

Example 5.6. Consider the partitionλ = (5, 4, 1). We denote byI01 = (e1(10), e2(10), x3
1, . . . , x

3
10) the

1

2 3 4 5

10 9 8 7 6

Figure 9: The partitionλ = (5, 4, 1)

ideal generated by the elements of the0-th and1-st column. Now considere4(8) coming from the second
column. LetA ⊆ {1, . . . , n} be a subset of of cardinality8, and letB be its complement (|B| = 2). By
Proposition 2.2, we have modE3(10)

e4(A) ≡ h4(B) = m(4)(B) + m(3,1)(B) + m(2,2)(B). (9)

Among the monomial symmetric polynomials appearing in (9),m(4), andm(3,1) are already in theI01,
since it containsx3

1, . . . , x
3
n. So from the second column we only need to add the setm(2,2)(2) to the genera-

tors ofI01 to obtain a bigger ideal denotedI012 included inIλ. That is, we need to add all generators of the
form (xixj)

2 for i < j.
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Now let us considere5(A), where|A| = 7 andB is its complement. From the third column

− e5(A) ≡ h5(B) = m(5)(B) + m(3,2)(B) + m(4,1)(B) + m(3,1,1)(B) + m(2,2,1)(B). (10)

It is clear that each one of these monomial symmetric polynomials is already in the idealI012. In fact, every
monomial in the first four summands in (10) contains a powerx3

i , and each element inm(2,2,1)(B) can be
obtained as a combination of elements inm(2,2)(2). Hence the third column will not contribute any new
generator. The same happens for the last column. Let|A| = 6 andB be its complement,|B| = 4. Then

e6(A) = h6(B) = m(6)(B) + m(5,1)(B) + m(4,2)(B) + m(3,3)(B)

+ m(4,1,1)(B) + m(3,2,1)(B) + m(2,2,2)(B)

+ m(3,1,1,1)(B) + m(2,2,1,1)(B),

and all monomials in this sum are already in the ideal, since they contain either a powerx3
i , or a monomial

(xixj)
2. So we haveIλ = I012.

Counterexample 5.7(Counterexample to the diagonal version of Weyman’s conjecture). Example 5.6 proves
that the generating set̃Wλ for Iλ coming from the minimal generating set forJλ conjectured by Weyman
is not in general minimal (see Question 4.6). More precisely, according to his diagram in Figure 10, some
generators of degree5 and6 should be needed, while they are not, as we just showed. In Figure 10 the
coordinates of the underlinedX ’s label the generators ofIλ arising from the diagonal version of Weyman’s
conjecture. The generators coming from the shadedX ’s are not needed. This is the convention that we shall
use later as well.

p = 1 X
p = 2 X
p = 3 X X
p = 4 X X X

p = 5 X X X X

p = 6 X X X X X

p = 7 X X X X
p = 8 X X X
p = 9 X X
p = 10 X

i = 0 1 2 3 4

Figure 10: Weyman diagram forλ = (5, 4, 1).

It might be possible to generalize the reasoning used in Example 5.6 with an algorithm, as explained
below.

Algorithm 5.8. Consider the Young diagram ofλ filled with the regular filling. Letb1, . . . , bs be the top-cell
entries ofλ as in Figure 5. SetG0 = {e1(n), . . . , eb1−1(n)}, and create a list of partitionsL0 = ∅. For all
k ≥ 1, define

Uk = {µ ⊢ bk | ℓ(µ) ≤ k andν 6⊆ µ, for anyν ∈ Lk−1},

whereν ⊆ µ means that the Young diagram ofν is contained in that ofµ.

1) If |Uk| = 1, sayUk = {θ}, thenLk = Lk−1 ∪ {θ} andGk = Gk−1 ∪ mθ(k).

2) If |Uk| = 0, thenGk = Gk−1 andLk = Lk−1.

3) If |Uk| > 1, thenGk = Gk−1

⋃
(
⋃

l≥k hbl
(l)

)

, and stop.
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Denote byG the set produced by the algorithm at the last step.

Question 5.9. Is the setG a generating set forIλ?

Clearly this algorithm produces a subset of the generating set given by the Theorem 4.1. All generators
coming from cells labeledbk satisfying condition2) in the above algorithm would become redundant.

We used this algorithm to produce generating sets for all families of examples and counterexamples
considered in the next section. Then, we proceeded to prove their correctness on a one by one basis. A proof
of the correctness of the algorithm would be greatly welcomed.

6 Families of examples and a counterexample to Weyman’s conjecture

We conclude the paper by producing simple generating sets for some particular families of shapes. In partic-
ular, this allows us to construct two infinite families of counterexamples to the diagonal version of Weyman’s
conjecture (Question 4.6), as well as a counterexample to the original conjecture of Weyman for a minimal
generating set of the idealJλ (see Conjecture 4.5).

Example 6.1(The case of two-column partitions). As mentioned above a partition ofn of the formλ =
(2a, 1c), wherea + c = ℓ = ℓ(λ) the length of the partition,Iλ is generated bye1(n), . . . , eℓ−1(n),
xℓ

1, . . . , x
ℓ
n.

Theorem 6.2(The case of partially-rectangular partitions). Let λ be a partition ofn, and letk > 2 be any
integer. If columns0, 1, . . . , k − 1 of the Young diagram have the same height, then in the generating set for
the idealIλ described in Theorem 4.1 generators coming from columns2, . . . , k are redundant.

Proof. The regular filling of the partitionλ has the following form.

1 g+1 2g+1 ···

2 g+2 2g+2 ··· kg+1

··· ··· ··· ··· ··· ···

g 2g 3g ··· ··· ···

n ··· ··· ··· ··· ···

By Theorem 4.1 and Proposition 2.2, modulo the previous columns, the generators coming from Column
k are of the form

hkg+1 =
∑

a1+...+ak=kg+1

xa1

j1
. . . xak

jk

where1 ≤ j1 ≤ . . . ≤ jk ≤ n.
Consider a termxa1

j1
. . . xak

jk
in the sum above. We claim that for at least one powerai, ai ≥ g+1, making

this monomial redundant in the presence of the second columngenerators, which are the(g + 1)-st powers
of the variables.

To see this, supposea1 ≤ g, . . . , ak ≤ g. Then we should have that

kg + 1 = a1 + . . . + ak ≤ kg

which is a contradiction.

Remark 6.3. Drawing the Weyman diagram associated to partially rectangular partitions considered in The-
orem 6.2, one can see that the points(0, 1), (1, g + 1), (2, 2g + 1), . . . , (k, kg + 1) are collinear because
they can successively obtained by adding the vector(1, g). Therefore, the diagonal version of Weyman’s
conjecture predicts that the generators coming from cells(2, 2g + 1), . . . , (k, kg + 1) are redundant. This is
true: in fact these are precisely the redundant cells according to Theorem 6.2.
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1 X
2 X
3 X
4 X X
5 X X
6 X X

7 X X X

8 X X X
9 X X X

10 X X X X

11 X X X X
12 X X X X X
13 X X X X
14 X X X
15 X X
16 X
i = 0 1 2 3 4

Figure 11: An example of a partially–rectangular partitionλ = (5, 4, 4, 3).

Example 6.4. Let λ = (5, 4, 4, 3) be the partition in Example 4.2. Theorem 6.2 implies that thegenerating
set forIλ consists of the elements in the second column in the table below (compare with Example 4.2), and
the reduced number from the table in Figure 8 is in the third column. No7 and10-degree generators are
needed in the generating set. In this case the prediction of the diagonal version of Weyman’s conjecture was
correct: cells(2, 7) and(3, 10) are redundant; see Figure 11.

Column Generators Numbers from Figure 8

0 e1(16), e2(16), e3(16) 3
1 x4

1, . . . , x
4
16 16

2 redundant –
3 redundant –
4 e12(12) 1365

Total 1384

Corollary 6.5 (The case of rectangular partitions). For a rectangular partition ofn of the formλ = (uℓ), the
generating set ofIλ will simply bee1(n), . . . , eℓ−1(n), xℓ

1, . . . , x
ℓ
n, wheren = u ℓ.

Corollary 6.6 (The case of two-row partitions). For a two-row partition ofn of the formλ = (u, v), a
generating set is given bye1(n), x2

1, . . . , x
2
n, andeu(u).

Theorem 6.7. Letλ be a partition ofn.

1. If λ = (ua, (u − 1)c) with g = a + c, then a generating set ofIλ is given by

e1(n), . . . , eg−1(n), xg
1, . . . , x

g
n.

2. If λ = (ua, (u − 1)c, 1) with u ≥ 3 andg = a + c > 1, thenIλ is generated by

e1(n), . . . , eg(n), xg+1
1 , . . . , xg+1

n , (x1x2)
g, (x1x3)

g, . . . , (xn−1xn)g.
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3. If λ = (ua, (u − 1)c, 1, 1) with u ≥ 4 andg = a + c + 1 > 2, thenIλ is generated by

e1(n), . . . , eg(n), xg+1
1 , . . . , xg+1

n , (xi + xj)(xixj)
g−1 for all i 6= j, and(xixjxk)g−1 for all i < j < k.

Proof. 1. This is an easy consequence of Theorem 6.2.

2. The regular filling of(ua, (u − 1)c, 1) will be of the form:

1

2 g+1 2g 3g−1 ··· lg−l
+2

···

··· ··· ··· ··· ··· ··· ···

··· ··· ··· ··· ··· ··· ··· (u−1)g
−u+3

g ··· ··· ··· ··· ··· ··· ···

n n−1 n−2 n−3 ··· n−l ··· n−u
+1

Columns0 and1 clearly provide the generatorse1(n), . . . , eg(n), xg+1
1 , . . . xg+1

n . By Proposition 2.2,
Column2 provides generators of the form

h2g =
∑

a+b=2g

xa
i xb

j

for 1 ≤ i < j ≤ n. Since we already havexg+1
i andxg+1

j in the ideal, this sum reduces to the monomial
xg

i x
g
j . Hence the third column provides the remaining generators(x1x2)

g, (x1x3)
g, . . . , (xn−1xn)g.

It remains to show that the generators coming from Columns3, . . . , u − 1 are redundant. Letl be any
integer such that3 ≤ l ≤ u − 1. The generators from Columnl, by Proposition 2.2 and the fact that
we have all(g + 1)-st powers of the variables in the ideal, are of the form

hlg−l+2 =
∑

a1+···+al=lg−l+2
a1,...,al≤g

xa1

i1
. . . xal

il

where1 ≤ i1 < i2 < . . . < il ≤ n, and in each monomialxa1

i1
. . . xal

il
at most one of the powersau is

equal tog. For such a monomial in the sum, we therefore have

a1 + · · · + al ≤ (l − 1)(g − 1) + g = lg − l + 1 =⇒ lg − l + 2 ≤ lg − l + 1

which is a contradiction. So there is no generator from Column l if l ≥ 3.

3. The regular filling of(ua, (u − 1)c, 1, 1) will be of the following form.

1

2

3 g+1 2g−1 3g−3 ··· lg−2l
+3

···

··· ··· ··· ··· ··· ··· ···

g ··· ··· ··· ··· ··· ··· (u−1)g
−2u+5

n ··· ··· ··· ··· ··· ···
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Again Columns0 and1 provide the generatorse1(n), . . . , eg(n), xg+1
1 , . . . xg+1

n .

By Proposition 2.2, Column2 provides generators of the form

h2g−1 =
∑

a+b=2g−1

xa
i xb

j

for 1 ≤ i < j ≤ n. Since we already havexg+1
i andxg+1

j in the ideal, we can additionally assume that
a, b ≤ g for each monomialxa

i xb
j in the sum, and so at least one ofa or b would have to beg − 1 and

the otherg. This produces a generator of the formxg
i x

g−1
j + xg−1

i xg
j = (xi + xj)(xixj)

g−1.

Similarly, Column3 will produce generators of the form

h3g−3 =
∑

a+b+c=3g−3

xa
i xb

jx
c
k

for 1 ≤ i < j < k ≤ n. Once more, we can assume thata, b, c ≤ g, which reduces the sum above to

xg−1
i xg−1

j xg−1
k + xg−2

i (xg
jx

g−1
k + xg−1

j xg
k) + xg−2

j (xg
i x

g−1
k + xg−1

i xg
k) + xg−2

k (xg
i x

g−1
j + xg−1

i xg
j )

= xg−1
i xg−1

j xg−1
k + xg−2

i xg−1
j xg−1

k (xj + xk) + xg−2
j xg−1

i xg−1
k (xi + xk) + xg−2

k xg−1
i xg−1

j (xi + xj).

The last three summands are in the ideal already (coming fromColumn2), so the generators from
Column3 can all be written asxg−1

i xg−1
j xg−1

k for 1 ≤ i < j < k ≤ n.

We now need to show that generators coming from Columnl, where4 ≤ l ≤ u − 1 are redundant.
The generators from Columnl, by Proposition 2.2 and the fact that we have all(g + 1)-st powers of
the variables in the ideal, are of the form

hlg−2l+3 =
∑

a1+···+al=lg−2l+3
a1,...,al≤g

xa1

i1
. . . xal

il

where1 ≤ i1 < i2 < . . . < il ≤ n.

Suppose thatM = xa1

i1
. . . xal

il
is a monomial in this sum.

If one of the powers, saya1, is equal tog, then we must have another power amonga2, . . . , al that isg
or g − 1. If not, all of a2, . . . , al are≤ g − 2, and we have

lg − 2l + 3 = a1 + · · · + al ≤ g + (l − 1)(g − 2) = lg − 2l + 2

which is a contradiction. So there is at least another power,saya2, such thata2 ≥ g − 1.

• a1 = a2 = g. In this case, we can write

xg
i1

xg
i2

xa3

i3
xa4

i4
...xal

il
= (xi1 + xi2)(xi1xi2 )

g−1[1/2xi2x
a3

i3
xa4

i4
...xal

il
+ 1/2xi1x

a3

i3
xa4

i4
...xal

il
]

−1/2xg+1
i1

xg−1
i2

xa3

i3
xa4

i4
...xal

il
− 1/2xg−1

i1
xg+1

i2
xa3

i3
xa4

i4
...xal

il

All the terms on the right-hand side are already in the ideal,and hence so isxg
i1

xg
i2

xa3

i3
xa4

i4
...xal

il
.

• a1 = g anda2 = g − 1. In this case, there is another monomialM ′ = xg−1
i1

xg
i2

xa3

i3
xa4

i4
...xal

il
in

the sum as well, and there is exactly one copy ofM and one copy ofM ′ in the sum. Now we
have

M + M ′ = (xi1 + xi2)x
g−1
i1

xg−1
i2

(xa3

i3
xa4

i4
...xal

il
).

So each such monomialM is paired with a unique monomialM ′ in the sum, and their sum is
already in the ideal.
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1

2

3 4 5 6 7

12 11 10 9 8

1 X
2 X

3 X

4 X X

5 X X X

6 X X X X

7 X X X X X

8 X X X X X
9 X X X X
10 X X X
11 X X
12 X
i = 0 1 2 3 4

Figure 12: The regular filling and the Weyman diagram ofλ = (5, 5, 1, 1).

Now assume that all the powersa1, . . . , al are≤ g − 1. If l − 2 of the powersa1, . . . , al are≤ g − 2,
then we have

lg − 2l + 3 = a1 + · · · + al ≤ (l − 2)(g − 2) + 2(g − 1) = lg − 2l + 2

which is a contradiction. So there are at least 3 powers amonga1, . . . , al that are equal tog − 1. But
then the monomialxa1

i1
. . . xal

il
is already inIλ, because it is a multiple of a generator coming from

Column3.

Corollary 6.8. Suppose that the firstl + 1 columns of a partitionλ belong to one of the three families of
shapes described in Theorem 6.7. Then

a) In cases 1 and 2, the generators coming from Columns3, . . . , l are redundant. For Columns0, 1, 2 we
can use the generators described in Theorem 6.7.

b) In Case 3, the generators coming from columns4, . . . , l are redundant. For Columns0, 1, 2, 3 we can
use the generators described in Theorem 6.7.

Counterexample 6.9(Counterexamples to the diagonal version of Weyman’s conjecture). The two infinite
families of partitions described in parts 2 and 3 of Theorem 6.7 are counterexamples to the diagonal version
of Weyman’s conjecture. Indeed, according to it, all generators coming from each of the top cells of their
diagrams should be necessary because fork > 0, the top cells are collinear (for the first family we can move
from one top cell to the next one by adding the vector(1, g − 1), and for the second family, by adding the
vector(1, g − 2)). But the line containing those points does not pass through(0, 1). Instead it passes through
(0, 2) for the first family, and through(0, 3) for the second family.

Let λ be a partition such that its firstl columns belong to one of the two families of shapes described
above, withl > 2 for the first family andl > 3 for the second one. The preceding corollary shows that
the generators coming from Columnk, with 3 < k ≤ l are redundant. We conclude that each suchλ is
a counterexample to the diagonal version of Weyman’s conjecture. A first counterexample was shown in
Counterexample 5.7.

Example 6.10. Consider the partition(5, 5, 1, 1) that fits inside one of the families in Theorem 6.7. As
proved in that theorem, the cell containing 7 is redundant. Translated into the Weyman diagram, this means
that theX in position(4, 7) is redundant (see Figure 12).

The following table, computed with Macaulay2, confirms our prediction that the275 degree7 generators
that should be in the generating set according to the diagonal version of the conjecture, are not needed.

18



1 X
2 X
3 X

4 X

5 X X

6 X X X

7 X X X X

8 X X X X X

9 X X X X X X

10 X X X X X
11 X X X X
12 X X X
13 X X
14 X
i = 0 1 2 3 4 5

Figure 13: An evidence regarding the statement in Question 6.11 forλ = (6, 5, 1, 1, 1)

Degrees Minimal number of generators

1, 2, 3 1 in each degree
4 12
5 54
6 154
7 redundant

Theorems 6.2 and 6.7 can be reformulated in a suggestive geometrical way as special instances of the
following statement.

Question 6.11.Let λ be a partition and draw the Weyman diagram ofλ. If the X ′s at the top of columns
1, 2, . . . , r are collinear, and the line containing them passes through the point(0, k), then are the generators
coming from columnsk + 1, . . . , r redundant ?

We have evidence that suggests that this statement is true: it was proven to be true whenk = 1 in
Theorem 6.2, fork = 2 in Theorem 6.7 Part 1, and fork = 3 in Theorem 6.7 Part 2, (see Figure 12: the
collinearX ’s have been surrounded). Fork = 4, we used Macaulay2 to verify whether the statement is still
true for the smallest possible member of this family, the partition (6,5,1,1,1) (see Figure 13). As predicted,
all degree9 generators are redundant.

Degrees Minimal number of generators

1, 2, 3, 4 1 in each degree
5 14
6 77
7 273
8 637
9 redundant

6.1 Weyman’s original conjecture

To finish our work, we focus our attention at the original conjecture of Weyman. It seems plausible that those
partitions that give counterexamples to the diagonal version of Weyman’s conjecture are also counterexamples
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1 X

2 X

3 X X

4 X X X

5 X X X X

6 X X X
7 X X
8 X

i = 0 1 2 3

Figure 14: A counterexample to Weyman’s original conjecture: (4, 3, 1).

to Weyman’s original conjecture. We used Macaulay2 to verify if this was the case for the smallest shape in
the families described in Counterexample 6.9.

Counterexample 6.12(Counterexample to Weyman’s original conjecture). Consider the partition(4, 3, 1)
whose Weyman diagram is represented in Figure 14. The points(1, 3), (2, 4) and(3, 5) are collinear, but
the line that contains them does not pass through(0, 1). So according to Weyman’s conjecture, all these
cells contribute generators to a minimal generating set ofJ(4,3,1). However, Theorem 6.7 suggests that the
generators coming from cell(3, 5) may be redundant.

Using Macaulay 2, we computed the minimal generating set forJ(4,3,1) and verified that this is indeed
the case. We conclude that(4, 3, 1) is a counterexample to Weyman’s original conjecture.

Degrees Weyman’s conjecture Minimal number of generators

1 1 1
2 1 1
3 64 64
4 720 720
5 2352 redundant

Total 3138 786

To summarize, in this particular case, Weyman’s conjecturepredicts that we need 3138 generators, but
only 786 of them are really necessary.

Unfortunately, even large servers were not able to handle slightly larger examples, so at this point we
do not know if other partitions in the families described earlier are counterexamples to Weyman’s original
conjecture.

We end the paper with a natural question.

Question 6.13.Does the statement of Question 6.11 hold forJλ ?
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