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Abstract. We consider a monotone operator of the form Au = −div(a(x,Du)), with Ω ⊆ Rn

and a : Ω×MM×N →MM×N , acting on W 1,p
0 (Ω,RM ). For every sequence (Ωh) of open subsets of

Ω and for every f ∈W−1,p′ (Ω,RM ), 1/p+1/p′ = 1, we study the asymptotic behavior, as h→ +∞,

of the solutions uh ∈W 1
0 (Ωh,R

M ) of the systems Auh = f in W−1,p′ (Ωh,RM ), and we determine
the general form of the limit problem.
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1. Introduction. In this paper we study the asymptotic behavior of the so-
lutions of elliptic nonlinear systems, of M equations and N variables, on varying
domains with Dirichlet boundary conditions. Namely, let Ω be a bounded open
subset of RN and let 1 < p < +∞. We regard A as a vector monotone oper-
ator defined from W 1,p(Ω,RM ) to W−1,p′(Ω,RM ), mapping u ∈ W 1,p(Ω,RM ) in
Au = −div

(
a(x,Du)

) ∈W−1,p′(Ω,RM ). The function a: Ω×MM×N 7→MM×N is a
Carathéodory function which satisfies the standard assumptions of strong monotonic-
ity and Hölder continuity (see conditions (i)–(iv) in section 5). Given an arbitrary
sequence of open subsets Ωn of Ω and given an arbitrary f ∈ W−1,p′(Ω,RM ), we
consider the solutions un of the following systems with Dirichlet boundary condition

un ∈W 1,p
0 (Ωn,R

M ) , Aun = f in Ωn.(1.1)

We set un = 0 in Ω\Ωn and regard the sequence (un) as a sequence in W 1,p
0 (Ω,RM ).

Our results describe the asymptotic behavior of (un) as n→∞ and characterize the
limit function as the solution of a variational “limit problem.”

The main result of this paper is given by the following compactness theorem.
Theorem 1.1. Let Ωn be an arbitrary sequence of open subsets of Ω. Then

there exist a subsequence of Ωn, still denoted by Ωn, a measure µ in the class Mp
0(Ω)

of positive Borel measures not charging set of p-capacity zero, and a vector function
F : Ω × RM → RM , such that for every f ∈ W−1,p′(Ω,RM ) the sequence (un) of
solutions of problems (1.1) converges weakly in W 1,p

0 (Ω,RM ) to the solution u of the
variational problem

u ∈W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ) ,∫

Ω

a(x,Du)Dv dx+

∫
Ω

F (x, u)v dµ = 〈f, v〉

∀v ∈W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ).

(1.2)
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582 JUAN CASADO DIAZ AND ADRIANA GARRONI

By Lpµ(Ω,RM ) we denote the standard Lp spaces with respect to the measure µ.
Note that in this general case the usual “extra term” is given by

∫
Ω
F (x, u)v dµ.

The problem considered in the present paper has been studied, under various
degree of generality, by many authors, with several approaches and in different frame-
works. Most of the known results are given under assumptions involving the geometry
or the capacity of the closed sets Ω \ Ωn, which in general imply that the measure µ
in the limit problem is a Radon measure (see, for instance, [20], [22], and [7] for the
linear case, and [24], [25], [26], [27], [21], and [3], for monotone operators).

The class Mp
0(Ω) described above also includes measures which take the value

+∞ on large families of sets; in this way, Dirichlet problems in subdomains of Ω can
be written in the form (1.2) for a suitable choice of µ. Indeed, it is easy to see that,
if E is a closed subset of Ω and the measure µ is defined by

µ(B) =

{
0 if Cp(B ∩ E) = 0
+∞ otherwise,

(1.3)

for every Borel subset B of Ω, where Cp denotes the p-capacity, then problem (1.2)
is equivalent to

u ∈W 1,p
0 (Ω \ E,RM ) , Au = f in Ω \ E.

In view of the latter remark, the compactness result above will be proved in a more
general formulation (see Theorem 6.4) for a sequence of problems of the type

un ∈W 1,p
0 (Ω,RM ) ∩ Lpµn(Ω,RM ) ,∫

Ω

a(x,Dun)Dv dx+

∫
Ω

Fn(x, un)v dµn = 〈f, v〉

∀v ∈W 1,p
0 (Ω,RM ) ∩ Lpµn(Ω,RM ) ,

(1.4)

which for a suitable choice of (µn) in Mp
0(Ω) reduce to (1.1), and includes also

Schrödinger systems with positive oscillating potentials. A further motivation for
the study of problem (1.4) is given by the recent applications to a relaxed formulation
of some optimal design problems (see, for instance, [2]).

The compactness result in the setting of (1.4) was first proved for the scalar case
M = 1, using Γ-convergence techniques, in [13] and [14] when p = 2 and A is a
symmetric linear elliptic operator, and in [10] if A is p − 1 homogeneous, under the
assumption that it is the subdifferential of a convex functional. These results were
generalized using Tartar’s energy method in [11] for the general scalar linear case,
and subsequently for the nonlinear case under an assumption of homogeneity of order
p − 1 for the operator A (see [15] and [16]). In these cases the extra term which
appears in the limit problem is proved to be of the form

∫
Ω
|u|p−2uv , dµ. The case

of systems is much less investigated. Previous results have been obtained only in the
framework of linear symmetric elliptic operators in [18]. Further reference on this
subject can be found in the book [9] and in the papers [11] and [16], which contain a
wide bibliography.

Our result provides a description of the limiting behavior of sequences of Dirichlet
boundary value problems not only for monotone operators of Leray–Lions type, but
also covering the case of systems related to linear possibly nonsymmetric operators or
nonlinear homogeneous operators, which were not included in previous results. The
proof follows the lines of [3], where Theorem 1.1 is obtained in the scalar case, under
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 583

some additional assumptions on the sequence (Ωn) which imply in particular that the
measure µ in the limit problem is bounded. The idea of the proof is essentially to
compare our sequence of problems with a sequence of model problems for which the
behavior is known (for instance scalar problems with the p-Laplace operator).

In section 2 we recall some preliminary results and notation and in section 3 we
state some known results in the study of the asymptotic behavior of scalar problems
with the p-Laplace operator.

Section 4 is dedicated to a careful study of the behavior of a sequence of “cor-
rectors” for the p-Laplace operator, as introduced in [16]. In section 5 we state the
problem and we prove, following the line of [1] and [16], that a sequence of solutions
of problems (1.4) which converges weakly in W 1,p(Ω,RM ) converges also strongly in
W 1,r(Ω,RM ) for every r < p (see Proposition 5.4). In section 6 we prove the com-
pactness result. In section 7 we prove a correctors result, in the general context of
nonlinear monotone vector operators. Indeed, the sequence of gradients (Dun) of so-
lutions of problems (1.1) converges to Du a priori only weakly in Lp by Theorem 1.1.
Hence to obtain a strong convergence it is necessary to add a further sequence which
depends only on the limit function u. The construction of such a sequence is provided
by Theorem 7.1 and is new also in the case of linear systems. For previous correctors
results, see, e.g., [7], [11], [3]. Section 8 is devoted to the analysis of some special
cases. In particular we obtain a simpler form for the extra term and for the correctors
in the linear case and in the homogeneous case, in agreement with the previous scalar
results. The structure of the extra term is proved to depend only on the asymptotic
behavior of the function a(x, ξ) for ξ →∞ (see section 9). In the last section our result
is applied also to the treatment of asymptotic problems in a class of pseudomonotone
operators. The extension to the general pseudomonotone operators for the scalar case
can be found in [5]. Throughout the paper we treat in detail only the case p ≥ 2.
The case 1 ≤ p < 2 can be treated in a similar way, after proper modification on the
growth and coerciveness hypotheses for the operator A. The changes in the proofs
can easily be performed using Proposition 3.2 of [17].

2. Notation and preliminaries. Let N and M be two positive integers, N ≥ 2;
by MM×N we denote the space of M ×N real matrices.

Let Ω be a bounded open subset of RN . We denote by W 1,p
0 (Ω,RM ) and

W 1,p(Ω,RM ), 1 < p < +∞, the usual Sobolev spaces (of RM -valued functions) and
by W−1,p′(Ω,RM ), 1/p′ + 1/p = 1, the dual of W 1,p

0 (Ω,RM ). By W 1,p
c (Ω,RM ) and

W 1,p
loc (Ω,RM ) we denote respectively the space of all functions in W 1,p(Ω,RM ) with

compact support in Ω and the space of all functions which belong to W 1,p(U,RM ) for
every open set U ⊂⊂ Ω. When p = 2 we adopt the standard notation H1(Ω,RM ),
H1

0 (Ω,RM ), and H−1(Ω,RM ).
By Lpµ(Ω,RM ), 1 ≤ p ≤ +∞, we denote the usual Lebesgue space with respect to

the measure µ. If µ is the Lebesgue measure, we use the standard notation Lp(Ω,RM ).
When we consider space of scalar functions (M = 1), we omit RM in the notations

above.
Let u ∈ W 1,p(Ω) and k ∈ R. By Tku we shall denote the truncation at the level

k which is the function in W 1,p(Ω) defined by Tku = (−k) ∧ u ∨ k.
Let A be an open set in RN , u : A → RM and a, b ∈ R; we shall denote by

{a ≤ |u| ≤ b}A the set of all x ∈ A such that a ≤ |u(x)| ≤ b. When A = Ω we shall
omit Ω in the notation above.

We shall use om,n (respectively, on) to denote a sequence of real numbers such
that limm→∞ limn→∞ om,n = 0 (respectively, limn→∞ on = 0).
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584 JUAN CASADO DIAZ AND ADRIANA GARRONI

If E ⊆ Ω, the (harmonic) p-capacity of E in Ω, denoted by Cp(E), is defined as
the infimum of ∫

Ω

|Du|p dx

over the set of all functions u ∈W 1,p
0 (Ω) such that u ≥ 1 almost everywhere (a.e.) in

a neighborhood of E.
We say that a property P(x) holds p-quasi everywhere (abbreviated as p-q.e.)

in a set E if it holds for all x ∈ E except for a subset N of E of p-capacity zero.
The expression µ-almost everywhere (abbreviated as µ-a.e.) refers, as usual, to the
analogous property for a Borel measure µ.

A function u: Ω → RM is said to be p-quasi continuous if for every ε > 0 there
exists a set A ⊆ Ω, with Cp(A) < ε, such that the restriction of u to Ω\A is continuous.

It is well known that every u ∈W 1,p(Ω,RM ) has a p-quasi continuous representa-
tive, which is uniquely defined up to a set of p-capacity zero. In the following we shall
always identify u with its p-quasi continuous representative, so that the pointwise
values of a function u ∈W 1,p(Ω,RM ) are defined p-q.e. in Ω.

A subset A of Ω is said to be p-quasi open in Ω if for every ε > 0 there exists an
open subset Aε of Ω, with Cp(Aε) < ε, such that A∪Aε is open. It is easy to see that
if a function u: Ω→ R is p-quasi continuous, then the set {u > c} is p-quasi open for
every c ∈ R. For all these properties of p-quasi continuous representatives of Sobolev
functions we refer to [28, Chapter 3].

By a nonnegative Borel measure in Ω we mean a countably additive set function
defined in the Borel σ-field of Ω and with values in [0,+∞]. By a nonnegative Radon
measure in Ω we mean a nonnegative Borel measure which is finite on every compact
subset of Ω. We shall always identify a nonnegative Borel measure with its completion.

We say that a Radon measure ν on Ω belongs to W−1,p′(Ω) if there exists f ∈
W−1,p′(Ω) such that

〈f, ϕ〉 =

∫
Ω

ϕdν ∀ϕ ∈ C∞0 (Ω) ,(2.1)

where 〈·, ·〉 denotes the duality pairing between W−1,p′(Ω) and W 1,p
0 (Ω). We shall

always identify f and ν. Note that, by the Riesz theorem, for every positive functional
f ∈W−1,p′(Ω), there exists a Radon measure ν such that (2.1) holds.

We denote by Mp
0(Ω) the class of all Borel measures which vanish on the sets of

p-capacity zero and satisfy the following condition:

µ(B) = inf{µ(A) : A p-quasi open, B ⊆ A ⊆ Ω}

for every Borel set B ⊆ Ω. It is well known that every Radon measure which belongs
to W−1,p′(Ω) belongs also to Mp

0(Ω) (see [28, section 4.7]).

3. Preliminary results on the relaxed Dirichlet problem with the p-
Laplace operator. Let Ω be a bounded open subset of RN , N ≥ 2. Let 2 ≤ p < +∞
and let µ ∈Mp

0(Ω). In the following we shall consider the space W 1,p
0 (Ω) ∩ Lpµ(Ω) of

all functions u ∈W 1,p
0 (Ω) such that

∫
Ω
|u|pdµ < +∞. With the norm

‖u‖W 1,p
0 (Ω)∩Lpµ(Ω) =

(∫
Ω

|Du|pdx+

∫
Ω

|u|pdµ
) 1
p
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 585

the space W 1,p
0 (Ω) ∩ Lpµ(Ω) is a reflexive Banach space.

Let f be a functional belonging to (W 1,p
0 (Ω)∩Lpµ(Ω))′ (the dual space of W 1,p

0 (Ω)∩
Lpµ(Ω)) and let us consider the following variational problem:


u ∈W 1,p

0 (Ω) ∩ Lpµ(Ω),∫
Ω

|Du|p−2DuDv dx+

∫
Ω

|u|p−2uv dµ = 〈f, v〉

∀ v ∈W 1,p
0 (Ω) ∩ Lpµ(Ω).

(3.1)

Since the operator fromW 1,p
0 (Ω)∩Lpµ(Ω) to (W 1,p

0 (Ω)∩Lpµ(Ω))′ mapping u ∈W 1,p
0 (Ω)∩

Lpµ(Ω) to the functional defined by
∫

Ω
|Du|p−2DuDv dx +

∫
Ω
|u|p−2uv dµ for every

v ∈W 1,p
0 (Ω)∩Lpµ(Ω) is a maximal monotone operator and the space W 1,p

0 (Ω)∩Lpµ(Ω)
is reflexive, we get that there exists a unique solution u of problem (3.1).

Remark 3.1. It is easy to see that the dual of W 1,p
0 (Ω) ∩ Lpµ(Ω), (W 1,p

0 (Ω) ∩
Lpµ(Ω))′, coincides with W−1,p′(Ω) + Lp

′
µ (Ω), so that, in particular, an element of

the space W−1,p′(Ω) can be seen as an element of (W 1,p
0 (Ω) ∩ Lpµ(Ω))′. In what

follows, with a slight abuse of notation, 〈f, v〉 will denote the duality pairing between
(W 1,p

0 (Ω)∩Lpµ(Ω))′ and W 1,p
0 (Ω)∩Lpµ(Ω), in the general case f ∈ (W 1,p

0 (Ω)∩Lpµ(Ω))′,
and the duality pairing between W−1,p′(Ω) and W 1,p

0 (Ω), in the case f ∈W−1,p′(Ω).

Many results similar to those given in the linear case (comparison principle, com-
pactness, etc.) have been proved by Dal Maso and Murat (see [16] and [15]) for
nonlinear problems of the type (3.1) (in general for nonlinear homogeneous opera-
tors).

Proposition 3.2. Let f1, f2 ∈ W−1,p′(Ω) and let µ1, µ2 ∈ Mp
0(Ω). Let u1,

u2 ∈W 1,p
0 (Ω) be the solutions of problem (3.1) corresponding to f1, µ1 and to f2, µ2.

If 0 ≤ f1 ≤ f2 and µ2 ≤ µ1 in Ω, then 0 ≤ u1 ≤ u2 p-q.e. in Ω.

Proof. See [15, Proposition 2.7].

In the spaceMp
0(Ω) it is possible to introduce a notion of convergence relative to

the p-Laplace operator, ∆pu = div(|Du|p−2Du).

Definition 3.3. Let (µn) be a sequence of measures of Mp
0(Ω) and let µ ∈

Mp
0(Ω). We say that (µn) γ−∆p-converges to the measure µ if, for every f ∈W−1,p′(Ω),

the sequence (un) of solutions of problems


un ∈W 1,p

0 (Ω) ∩ Lpµn(Ω),∫
Ω

|Dun|p−2DunDv dx+

∫
Ω

|un|p−2unv dµn = 〈f, v〉

∀ v ∈W 1,p
0 (Ω) ∩ Lpµn(Ω)

(3.2)

converges weakly in W 1,p
0 (Ω) to the solution u of problem (3.1).

Theorem 3.4. Every sequence of measures in Mp
0(Ω) contains a γ−∆p-con-

vergent subsequence.

Proof. See [10, Theorem 2.1] or [15, Theorem 6.5].

Many properties of the measure µ ∈ Mp
0(Ω) can be studied by means of the
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586 JUAN CASADO DIAZ AND ADRIANA GARRONI

solution w of the problem
w ∈W 1,p

0 (Ω) ∩ Lpµ(Ω),∫
Ω

|Dw|p−2DwDv dx+

∫
Ω

|w|p−2wv dµ =

∫
Ω

v dx

∀ v ∈W 1,p
0 (Ω) ∩ Lpµ(Ω).

(3.3)

By the comparison principle (Proposition 3.2), the function w is bounded in L∞(Ω)
by a constant which does not depend on µ (see [15, section 2]) and satisfies w ≥ 0
p-q.e. in Ω.

Theorem 3.5. Let µ ∈ Mp
0(Ω), let w be the solution of problem (3.3) and let

ν = 1 + ∆pw in the sense of W−1,p′(Ω). Then ν is a nonnegative Radon measure of

W−1,p′(Ω) and

ν(B ∩ {w > 0}) =

∫
B

wp−1dµ(3.4)

for every Borel set B ⊆ Ω. Reciprocally, we have

µ(B) =


∫
B

1

wp−1
dν if Cp(B ∩ {w = 0}) = 0,

+∞ if Cp(B ∩ {w = 0}) > 0

for any Borel set B ⊆ Ω.
Proof. See [15, Theorem 5.1] and [11, Proposition 3.4] for the linear case.
The next proposition gives two density results which will be useful in what follows.
Proposition 3.6. Let µ ∈Mp

0(Ω) and let w the solution of problem (3.3). Then
(a) the set {wψ : ψ ∈ C∞0 (Ω)} is dense in W 1,p

0 (Ω) ∩ Lpµ(Ω) and hence in

W 1,p
loc (Ω) ∩ Lpµ(Ω).

(b) the set Λ of all functions of the form w
∑l
i=1 ai1Ki where ai ∈ R and Ki are

closed subsets of Ω such that w = 0 µ-a.e. on Ki ∩Kj, with i 6= j, is dense
in Lpµ(Ω).

Proof. The proof of part (a) is given in [15, Proposition 5.5]. In order to prove
part (b), we consider the measure λ = wpµ. Since w belongs to Lpµ(Ω), the measure
λ is a Borel bounded measure and therefore the set of all step functions of the form∑l
i=1 ai1Ki , where ai ∈ R and Ki are closed subsets of Ω such that, for i 6= j,

λ(Ki∩Kj) = 0, is dense in Lpλ(Ω). If u belongs to Lpµ(Ω), then u/w belongs to Lpλ(Ω),
and for every ζ ∈ Λ we have∫

Ω

∣∣∣ζ − u

w

∣∣∣p dλ =

∫
Ω

|wζ − u|p dµ

which gives part (b).
Finally the solutions of problems (3.3) are useful to characterize the γ−∆p-con-

vergence inMp
0(Ω). Let (µn) be a sequence of measures inMp

0(Ω), and let wn be the
solutions of the problems

wn ∈W 1,p
0 (Ω) ∩ Lpµn(Ω),∫

Ω

|Dwn|p−2DwnDv dx+

∫
Ω

|wn|p−2wnv dµn =

∫
Ω

v dx

∀ v ∈W 1,p
0 (Ω) ∩ Lpµn(Ω).

(3.5)
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 587

The following result characterizes the γ−∆p-convergence in terms of the convergence
of the functions wn.

Theorem 3.7. The following conditions are equivalent:

(a) (wn) converges to w weakly in W 1,p
0 (Ω);

(b) (µn) γ−∆p-converges to µ.

Proof. See [15, Theorem 6.3] and [11, Theorem 4.3] for the linear case.

Remark 3.8. If (µn) γ−∆p-converges to µ, then the sequence (wn) converges to w
strongly in W 1,r

0 (Ω) for every 1 ≤ r < p and hence, a subsequence of (Dwn) converges
to Dw pointwise a.e. in Ω (see [15, Theorem 6.8]).

4. Sequences in the spacesW 1,p∩Lpµn . In this section (µn) will be a sequence

ofMp
0(Ω) which γ−∆p-converges to a measure µ ∈Mp

0(Ω). We shall use the sequence
(wn) of the solutions of problems (3.5) to investigate the behavior of an arbitrary
sequence (un), with un ∈W 1,p(Ω)∩Lpµn(Ω), which converges weakly in W 1,p(Ω). By
Remark 3.8 we may assume that (wn) and (Dwn), respectively, converge to w and
Dw pointwise a.e. in Ω.

Let us prove some technical lemmas that will be useful in the remainder of this
paper.

Lemma 4.1. Let Ω′ be an open subset of Ω. For every ϕ ∈ W 1,p
0 (Ω′) ∩ L∞(Ω′)

we have

lim
n→∞

(∫
Ω′
|Dwn|pϕdx+

∫
Ω′
|wn|pϕdµn

)
=

∫
Ω′
|Dw|pϕdx+

∫
Ω′
|w|pϕdµ.(4.1)

Proof. Let ϕ ∈ W 1,p
0 (Ω′) ∩ L∞(Ω′) and let us extend ϕ to Ω by setting ϕ = 0 in

Ω \ Ω′. Thus wnϕ belongs to W 1,p
0 (Ω), and we can take it as test function in (3.3).

Therefore by Remark 3.8 we obtain

lim
n→∞

(∫
Ω′
|Dwn|pϕdx+

∫
Ω′
|wn|pϕdµn

)
= lim

n→∞

(∫
Ω′
wnϕdx−

∫
Ω′
|Dwn|p−2DwnDϕwndx

)
=

∫
Ω′
wϕdx−

∫
Ω

|Dw|p−2DwDϕw dx =

∫
Ω′
|Dw|pϕdx+

∫
Ω′
|w|pϕdµ,

which concludes the proof.

Lemma 4.2. Let Ω′ be an open subset of Ω. For every ϕ,ψ ∈W 1,p(Ω′)∩L∞(Ω′),
with ϕ or ψ in W 1,p

0 (Ω′), we have

lim
n→∞

(∫
Ω′
|D(wnψ)|pϕdx+

∫
Ω′
|wnψ|pϕdµn

)
=

∫
Ω′
|D(wψ)|pϕdx+

∫
Ω′
|wψ|pϕdµ.

(4.2)

Proof. Let ϕ,ψ ∈ W 1,p(Ω′) ∩ L∞(Ω′), with ϕ or ψ in W 1,p
0 (Ω′). Since for every

ξ1, ξ2 ∈ RN and for every p ≥ 2 the following inequality holds∣∣|ξ1|p − |ξ2|p∣∣ ≤ p
(|ξ1|+ |ξ2|)p−1|ξ1 − ξ2|,(4.3)

we have∣∣|ψDwn + wnDψ|p − |ψDwn|p
∣∣ ≤ p

(|ψDwn + wnDψ|+ |ψDwn|
)p−1|wnDψ|,
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588 JUAN CASADO DIAZ AND ADRIANA GARRONI

where by Remark 3.8 the left-hand side converges pointwise to
∣∣|ψDw + wDψ|p −

|ψDw|p∣∣ and the right-hand side is uniformly integrable. Then (|D(wnψ)|p−|ψDwn|p)
converges to |D(wψ)|p − |ψDw|p strongly in L1(Ω′). This implies that∫

Ω′
|D(wnψ)|pϕdx =

∫
Ω′
|D(wψ)|pϕdx−

∫
Ω′
|Dw|p|ψ|pϕdx+

∫
Ω′
|Dwn|p|ψ|pϕdx+on

and therefore the conclusion follows from Lemma 4.1.
Lemma 4.3. Let Ω′ be an open subset of Ω, let u ∈ W 1,p(Ω′) ∩ Lpµ(Ω′), and let

(ψm) be a sequence of functions in C∞0 (Ω′) such that (wψm) converges to u strongly
in W 1,p

loc (Ω′) ∩ Lpµ(Ω′). Then

lim
m→∞ lim

n→∞

(∫
Ω′
|D(wnψm − u)|pϕdx+

∫
Ω′
|wnψm|pϕdµn

)
=

∫
Ω′
|u|pϕdµ(4.4)

for every ϕ ∈W 1,p
c (Ω′) ∩ L∞(Ω′).

Proof. As in the proof of Lemma 4.2,
(|D(wnψm−u)|p−|D(wnψm)|p) converges to

|D(wψm−u)|p−|D(wψm)|p strongly in L1(Ω′) as n→∞. Let ϕ ∈W 1,p
c (Ω′)∩L∞(Ω′);

thus, by Lemma 4.2, we get∫
Ω′
|D(wnψm−u)|pϕdx+

∫
Ω′
|wnψm|pϕdµn =

∫
Ω′

(|D(wnψm−u)|p−|D(wnψm)|p)ϕdx
+

∫
Ω′
|D(wnψm)|pϕdx+

∫
Ω′
|wnψm|pϕdµn =

∫
Ω′

(|D(wψm − u)|p − |D(wψm)|p)ϕdx
+

∫
Ω′
|D(wψm)|pϕdx+

∫
Ω′
|wψm|pϕdµ+ on =

∫
Ω′
|u|pϕdµ+ om,n.

The conclusion follows by taking the limit first as n→∞ and then as m→∞.
Let Ω′ be an open subset of Ω. The following theorem shows that if a sequence

(un), with un ∈ W 1,p(Ω′) ∩ Lpµn(Ω′), converges weakly in W 1,p(Ω′) to a function
u ∈W 1,p(Ω′), and there exists a constant C > 0 such that∫

Ω′
|un|pdµn ≤ C(4.5)

for every n ∈ N, then the function u belongs to Lpµ(Ω′).
Theorem 4.4. Let (un) be a sequence such that un ∈ W 1,p(Ω′) ∩ Lpµn(Ω′).

Suppose that (un) converges weakly in W 1,p(Ω′) to some function u. Then

lim inf
n→∞

(∫
Ω′
|Dun|pdx+

∫
Ω′
|un|pdµn

)
≥
∫

Ω′
|Du|pdx+

∫
Ω′
|u|pdµ.(4.6)

In particular, if (4.5) holds, then u ∈W 1,p(Ω′) ∩ Lpµ(Ω′).
The result of Theorem 4.4 can be obtained as a direct consequence of the Γ-

convergence of the functionals
∫

Ω′ |Dun|pdx+
∫

Ω′ |un|pdµn to the functional
∫

Ω′ |Du|pdx+∫
Ω′ |u|pdµ proved in [10]. For the sake of completeness we shall give an alternative

proof of Theorem 4.4 which does not involve Γ-convergence theory. Before proving
Theorem 4.4, let us prove two preliminary lemmas.

Lemma 4.5. Let (un) be a sequence such that un ∈W 1,p(Ω′)∩Lpµn(Ω′) and such
that (4.5) holds. Suppose that (un) converges weakly in W 1,p(Ω′) to some function u.
Then {u = 0}Ω′ ⊇ {w = 0}Ω′ .
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 589

Proof. Taking into account the decomposition un = u+
n − u−n , where u+

n and u−n
denote respectively the positive and the negative part of un, it is not restrictive to
assume un ≥ 0 p-q.e. in Ω′.

We shall prove first the result in the special case where the functions un and u
belong to W 1,p

0 (Ω′), and we shall suppose, also, that there exists a constant K > 0
such that un ≤ K p-q.e. in Ω′ and hence u ≤ K p-q.e. in Ω′.

For every m ∈ N let us consider the sequence (umn ) of the solutions of the problems

umn ∈W 1,p
0 (Ω′) ∩ Lpµn(Ω′),∫

Ω′
|Dumn |p−2Dumn Dv dx+

∫
Ω′
|umn |p−2umn v dµn

= m

∫
Ω′

(|un|p−2un − |umn |p−2umn
)
v dx

∀ v ∈W 1,p
0 (Ω′) ∩ Lpµn(Ω′),

(4.7)

which, extended to Ω by setting umn = 0 in Ω\Ω′, are also the solutions of the following
equivalent problems:

umn ∈W 1,p
0 (Ω) ∩ Lpµ̂n(Ω),∫

Ω

|Dumn |p−2Dumn Dv dx+

∫
Ω

|umn |p−2umn v dµ̂n

= m

∫
Ω

(|un|p−2un − |umn |p−2umn
)
v dx

∀ v ∈W 1,p
0 (Ω) ∩ Lpµ̂n(Ω),

(4.8)

where µ̂n is the measure defined by

µ̂n(B) =


µn(B) if Cp(B ∩ (Ω \ Ω′)) = 0,

+∞ if Cp(B ∩ (Ω \ Ω′)) > 0

for any Borel set B ⊆ Ω. By the comparison principle (Proposition 3.2) we have that

0 ≤ umn ≤ m
1
p−1Kwn p-q.e. in Ω.(4.9)

By taking in (4.7) umn − un as a test function we get∫
Ω′

(|Dumn |p−2Dumn − |Dun|p−2Dun
)
D(umn − un) dx

+

∫
Ω′

(|umn |p−2umn − |un|p−2un
)
(umn − un) dµn

+m

∫
Ω′

(|umn |p−2umn − |un|p−2un
)
(umn − un) dx

= −
∫

Ω′
|Dun|p−2DunD(umn − un) dx−

∫
Ω′
|un|p−2un(umn − un) dµn.

(4.10)

Since for every ξ1, ξ2 ∈ RN and for every p ≥ 2 we have

(|ξ1|p−2ξ1 − |ξ2|p−2ξ2)(ξ1 − ξ2) ≥ 22−p|ξ1 − ξ2|p,(4.11)
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590 JUAN CASADO DIAZ AND ADRIANA GARRONI

applying Young’s inequality in (4.10) we get

22−p
∫

Ω′
|D(umn − un)|pdx+ 22−p

∫
Ω′
|umn − un|pdµn + 22−pm

∫
Ω′
|umn − un|pdx

≤ 1

εp′p′
(∫

Ω′
|Dun|pdx+

∫
Ω′
|un|pdµn

)
+
εp

p

(∫
Ω′
|D(umn − un)|pdx+

∫
Ω′
|umn − un|pdµn

)
,

where ε > 0 is an arbitrary real number. Since (un) is bounded in W 1,p
0 (Ω′) and (4.5)

holds, by choosing ε small enough we obtain that there exists a constant C > 0 such
that ∫

Ω′
|D(umn − un)|pdx+m

∫
Ω′
|umn − un|pdx ≤ C.(4.12)

By (4.12) we have that the sequence (umn ) is bounded in W 1,p
0 (Ω′), uniformly in m

and n. Then for every m ∈ N there exists a subsequence of (umn ) (we can choose the
subsequence independent of m) which converges to a function um weakly in W 1,p

0 (Ω′).
By the weak lower semicontinuity of the norm, the sequence (um) is also bounded in
W 1,p

0 (Ω′). Moreover by (4.12) we get∫
Ω′
|um − u|pdx = lim

n→∞

∫
Ω′
|umn − un|pdx ≤

C

m
,

and hence (um) converges weakly to u in W 1,p
0 (Ω′). By (4.9) we have that |um| ≤

m1/(p−1)Kw p-q.e. in Ω′ and hence um belongs to the set K = {v ∈ W 1,p
0 (Ω′) : v =

0 p-q.e. in {w = 0}Ω′}. Since K is convex and closed in W 1,p
0 (Ω′), it is weakly closed.

Therefore u ∈ K and hence {u = 0}Ω′ ⊇ {w = 0}Ω′ .
Finally let us consider the general case where the sequence (un) is not bounded in

L∞(Ω′) but un ∈W 1,p(Ω′)∩Lpµn(Ω′), satisfies (4.5), and converges weakly in W 1,p(Ω′)
to u. Let Φ be a function in W 1,∞

0 (Ω′), with Φ > 0 in Ω′, and for every n ∈ N let
T1un be the truncation at the level 1 of un. Since ΦT1un ∈ W 1,p

0 (Ω′) ∩ Lpµn(Ω′) and
the sequence (ΦT1un) satisfies (4.5), is bounded in L∞(Ω′), and converges weakly in
W 1,p

0 (Ω′) to ΦT1u, by the previous step we can conclude that {ΦT1u = 0}Ω′ ⊇ {w =
0}Ω′ and hence {u = 0}Ω′ ⊇ {w = 0}Ω′ .

Lemma 4.6. Let (vn), with vn ∈ W 1,p(Ω′) ∩ Lpµn(Ω′), be a sequence which con-
verges to a function v weakly in W 1,p(Ω′), and suppose that there exists a constant
C > 0 such that ∫

Ω′
|vn|pdµn ≤ C(4.13)

for every n ∈ N. Then we have

lim
n→∞

(∫
Ω′
ϕ|D(wnψ)|p−2D(wnψ)Dvn dx+

∫
Ω′
ϕ|wnψ|p−2wnψvn dµn

)
=

∫
Ω′
ϕ|D(wψ)|p−2D(wψ)Dv dx+

∫
Ω′
ϕ|wψ|p−2wψv dµ

(4.14)

for every ψ ∈W 1,p(Ω′) ∩ L∞(Ω′) and for every ϕ ∈W 1,p
0 (Ω′) ∩ L∞(Ω′).
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 591

Proof. Let ψ ∈ W 1,p(Ω′) ∩ L∞(Ω′) and ϕ ∈ W 1,p
0 (Ω′) ∩ L∞(Ω′). Since for every

p ≥ 2 the following inequality holds∣∣|ξ1|p−2ξ1 − |ξ2|p−2ξ2
∣∣ ≤ (p− 1)(|ξ1|+ |ξ2|)p−2|ξ1 − ξ2|(4.15)

for every ξ1, ξ2 ∈ RN , as in Lemma 4.2, we can conclude that
(|D(wnψ)|p−2D(wnψ)−

|ψDwn|p−2ψDwn
)

converges to |D(wψ)|p−2D(wψ)−|ψDw|p−2ψDw strongly in Lp
′
(Ω′,RN ).

Thus

lim
n→∞

(∫
Ω′
ϕ|D(wnψ)|p−2D(wnψ)Dvn dx−

∫
Ω′
ϕ|ψDwn|p−2ψDwnDvn dx

)
=

∫
Ω′

(|D(wψ)|p−2D(wψ)− |ψDw|p−2ψDw
)
Dv ϕdx.

(4.16)

In order to conclude the proof it is enough to show that

lim
n→∞

(∫
Ω′
ϕ|ψDwn|p−2ψDwnDvn dx+

∫
Ω′
ϕ|wnψ|p−2wnψvn dµn

)
=

∫
Ω′
ϕ|ψDw|p−2ψDwDv dx+

∫
Ω′
ϕ|ψ|p−2ψv dν,

(4.17)

where ν ∈W−1,p′(Ω) is the Radon measure defined in Theorem 3.5. Indeed, since by
Lemma 4.5 we have that {v = 0}Ω′ ⊇ {w = 0}Ω′ , by (3.4) we get∫

Ω′
ϕ|ψ|p−2ψv dν =

∫
{w>0}Ω′

ϕ|ψ|p−2ψv dν =

∫
Ω′
ϕwp−1|ψ|p−2ψv dµ;

therefore the conclusion follows from (4.16) and (4.17).
It remains to prove (4.17). Let us consider φ ∈ W 1,∞

0 (Ω′). Taking φvn ∈
W 1,p

0 (Ω′) ∩ Lpµn(Ω′) ⊂ W 1,p
0 (Ω) ∩ Lpµn(Ω) as a test function in problem (3.5), and

taking into account that ν = 1 + ∆pw in W−1,p′(Ω) (Theorem 3.5), we obtain

lim
n→∞

∫
Ω′
φ|Dwn|p−2DwnDvn dx+

∫
Ω′
φ|wn|p−2wnvn dµn

= lim
n→∞

∫
Ω′
φvn dx−

∫
Ω′
|Dwn|p−2DwnDφvn dx

=

∫
Ω′
φv dx−

∫
Ω′
|Dw|p−2DwDφv dx =

∫
Ω′
φ|Dw|p−2DwDv dx+

∫
Ω′
φv dν.

(4.18)

We have to prove that (4.18) holds for every φ ∈ W 1,p
0 (Ω′) ∩ L∞(Ω′). Let φ ∈

W 1,p
0 (Ω′) ∩ L∞(Ω′). Since ν is a Radon measure in W−1,p′(Ω), it is possible to con-

struct a sequence (φm) of functions in W 1,∞
0 (Ω′) bounded in L∞(Ω′), which converges

to φ a.e. and ν-a.e. in Ω′. By (4.18) we have∣∣∣∫
Ω′
φ|Dwn|p−2DwnDvn dx+

∫
Ω′
φ|wn|p−2wnvn dµn −

∫
Ω′
φ|Dw|p−2DwDv dx−

∫
Ω′
φv dν

∣∣∣
≤
∣∣∣∫

Ω′
(φ− φm)|Dwn|p−2DwnDvn dx+

∫
Ω′

(φ− φm)|wn|p−2wnvn dµn

∣∣∣
+
∣∣∣∫

Ω′
(φm − φ)|Dw|p−2DwDv dx+

∫
Ω′

(φm − φ)v dν
∣∣∣+ on.

(4.19)

D
ow

nl
oa

de
d 

09
/3

0/
16

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



592 JUAN CASADO DIAZ AND ADRIANA GARRONI

By the dominated convergence theorem the limit as m→∞ of the second term in the
right-hand side of (4.19) is zero. It remains to estimate the first term of the right-hand
side of (4.19). Since (φm) is bounded in L∞(Ω′), by Hölder’s inequality, (4.13), and
Lemma 4.1 we obtain∣∣∣∫

Ω′
(φ− φm)|Dwn|p−2DwnDvn dx+

∫
Ω′

(φ− φm)|wn|p−2wnvn dµn

∣∣∣
≤ C

(∫
Ω′
|Dwn|p|φ− φm|

p
(p−1) dx+

∫
Ω′
|wn|p|φ− φm|

p
(p−1) dµn

) p−1
p

= C
(∫

Ω′
|Dw|p|φ− φm|

p
(p−1) dx+

∫
Ω′
|w|p|φ− φm|

p
(p−1) dµ

) p−1
p

+ on = om,n,

where C is a positive constant independent of n and m and where for the last limit
we used the dominated convergence theorem. Finally (4.17) follows immediately from
(4.18) by choosing φ = ϕ|ψ|p−2ψ.

We are now in a position to prove Theorem 4.4.
Proof of Theorem 4.4. If lim infn→∞

∫
Ω′ |un|pdµn = +∞, then inequality (4.6)

is trivially satisfied; otherwise it is not restrictive to suppose that (4.5) holds. Let
ψ ∈ W 1,p(Ω′) ∩ L∞(Ω′), and let ϕ ∈ W 1,p

0 (Ω′) ∩ L∞(Ω′) with ϕ ≥ 0. Since for every
ξ1, ξ2 ∈ RN , by the convexity of the function | · |p, the following inequality holds:

|ξ1|p − |ξ2|p ≥ p|ξ2|p−2ξ2(ξ1 − ξ2),(4.20)

we have∫
Ω′
ϕ|Dun|pdx+

∫
Ω′
ϕ|un|pdµn ≥

∫
Ω′
ϕ|D(wnψ)|pdx+

∫
Ω′
ϕ|wnψ|pdµn

+ p

∫
Ω′
|D(wnψ)|p−2D(wnψ)D(un−wnψ)ϕdx+p

∫
Ω′
|wnψ|p−2wnψ(un−wnψ)ϕdµn.

By Lemmas 4.2 and 4.6 we get

lim inf
n→∞

(∫
Ω′
ϕ|Dun|pdx+

∫
Ω′
ϕ|un|pdµn

)
≥
∫

Ω′
ϕ|D(wψ)|pdx+

∫
Ω′
ϕ|wψ|pdµ

+ p

∫
Ω′
|D(wψ)|p−2D(wψ)D(u− wψ)ϕdx+ p

∫
Ω′
|wψ|p−2wψ(u− wψ)ϕdµ.

(4.21)

Assume that u ∈ L∞(Ω′). Let ε > 0 and let us choose in (4.21) ψ = u
w∨ε and

ϕ = φRε(w), with 0 ≤ φ ≤ 1, φ ∈W 1,p
0 (Ω′) ∩ L∞(Ω′), and Rε : R 7→ R defined by

Rε(s) =

{
0 if s ≤ ε,
s
ε − 1 if ε ≤ s ≤ 2ε,
1 if 2ε ≤ s < +∞.

Since wψ = u p-q.e. in {w > ε} and φRε(w) = 0 p-q.e. in {w ≤ ε}, by (4.21) we have

lim inf
n→∞

(∫
Ω′
|Dun|pdx+

∫
Ω′
|un|pdµn

)
≥
∫

Ω′∩{w>ε}
Rε(w)φ|Du|pdx+

∫
Ω′∩{w>ε}

Rε(w)φ|u|pdµ,
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 593

which, by the monotone convergence theorem, implies

lim inf
n→∞

(∫
Ω′
|Dun|pdx+

∫
Ω′
|un|pdµn

)
(4.22)

≥
∫

Ω′∩{w>0}
φ|Du|pdx+

∫
Ω′∩{w>0}

φ|u|pdµ

for every φ ∈W 1,p
0 (Ω′)∩L∞(Ω′) with 0 ≤ φ ≤ 1. Since Du = 0 a.e. in {u = 0}Ω′ and

by Lemma 4.5 {u = 0}Ω′ ⊇ {w = 0}Ω′ , estimate (4.23) may be written as

lim inf
n→∞

(∫
Ω′
|Dun|pdx+

∫
Ω′
|un|pdµn

)
≥
∫

Ω′
φ|Du|pdx+

∫
Ω′
φ|u|pdµ.

Thus, by the monotone convergence theorem, we deduce that u ∈ Lpµ(Ω′) and (4.6)
holds. If u does not belong to L∞(Ω′), it is enough to apply the previous step to the
sequence of truncations Tk(un) with k ∈ N. Then we have

lim inf
n→∞

(∫
Ω′
|Dun|pdx+

∫
Ω′
|un|pdµn

)
≥ lim inf

n→∞

(∫
Ω′
|DTk(un)|pdx+

∫
Ω′
|Tk(un)|pdµn

)
≥
∫

Ω′
|DTk(u)|pdx+

∫
Ω′
|Tk(u)|pdµ.

We conclude the proof by the monotone convergence theorem, taking the limit as
k →∞.

5. Relaxed Dirichlet problems with monotone operators. Let A be the
monotone operator defined from W 1,p(Ω,RM ) to W−1,p′(Ω,RM ), with 2 ≤ p < +∞
and M ≥ 2, mapping u ∈ W 1,p(Ω,RM ) in Au = −div

(
a(x,Du)

) ∈ W−1,p′(Ω,RM ),
where a: Ω ×MM×N 7→ MM×N is a Carathéodory function. We shall assume that
the function a satisfies the following conditions:

(i) there exists a constant α > 0 such that

(a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2) ≥ α|ξ1 − ξ2|p

for every ξ1, ξ2 ∈MM×N and for a.e. x ∈ Ω;
(ii) there exists a constant β > 0 and a function h ∈ L p

p−2 (Ω) such that

|a(x, ξ1)− a(x, ξ2)| ≤ β(h(x) +
(|ξ1|+ |ξ2|)p−2

)|ξ1 − ξ2|
for every ξ1, ξ2 ∈MM×N and for a.e. x ∈ Ω;

(iii) a(x, 0) = 0 a.e. in Ω.
These hypotheses imply in particular that the following conditions hold:

(iv) there exists a constant η > 0 and a function k ∈ Lp′(Ω) such that

|a(x, ξ)| ≤ k(x) + η|ξ|p−1

for every ξ ∈MM×N and for a.e. x ∈ Ω;
(v) a(x, ξ)ξ ≥ α|ξ|p for every ξ ∈MM×N and a.e. x ∈ Ω.
We shall see in section 10 that the results proved in what follows hold for a class

of operators which satisfy more general conditions than (i)–(iv) above.
Given three positive constants c1, c2, and σ, with 0 < σ ≤ 1, let us define the

class F(c1, c2, σ) of all vector functions F : Ω × RM 7→ RM such that the following
properties are satisfied:
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594 JUAN CASADO DIAZ AND ADRIANA GARRONI

(I) F (x, s) is a Borel function;
(II) for every s1, s2 ∈ RM and for every x ∈ Ω we have

(F (x, s1)− F (x, s2))(s1 − s2) ≥ c1|s1 − s2|p;

(III) for every s1, s2 ∈ RM and for every x ∈ Ω we have

|F (x, s1)− F (x, s2)| ≤ c2(|s1|+ |s2|)p−1−σ|s1 − s2|σ;

(IV) F (x, 0) = 0 for every x ∈ Ω.
As consequence of properties (III) and (IV) we have that the function F also satisfies

(V) |F (x, s)| ≤ c2|s|p−1 for every s ∈ RM and for every x ∈ Ω,
and by properties (II) and (IV) we get

(VI) F (x, s)s ≥ c1|s|p for every s ∈ RM and for every x ∈ Ω.
In the following we shall fix a constant L > 0 and we shall denote by F(L) the

class F(α,L, 1), where α is the positive constant which appears in condition (i) above.
From now on by C we shall denote a positive constant, depending only on α, β,

L, and p, which can change from line to line.
Let f ∈ W−1,p′(Ω,RM ), let (µn) be a sequence of Mp

0(Ω), and let Fn ∈ F(L).
Let us consider the following nonlinear systems with boundary Dirichlet condition:

un ∈W 1,p
0 (Ω,RM ) ∩ Lpµn(Ω,RM ),∫

Ω

a(x,Dun)Dv dx+

∫
Ω

Fn(x, un)v dµn = 〈f, v〉

∀ v ∈W 1,p
0 (Ω,RM ) ∩ Lpµn(Ω,RM ).

(5.1)

Since by Remark 3.1 〈f, · 〉 is a functional in (W 1,p
0 (Ω,RM ) ∩ Lpµn(Ω,RM ))′, by as-

sumptions (i)–(v) and (I)–(VI) the theory of monotone operators (see [23]) assures
the existence of a unique solution un of problem (5.1). From (v) and (VI), taking
un as a test function in (5.1), it is easy to see that the sequence (un) is bounded
in W 1,p

0 (Ω,RM ) for any choice of (µn) and (Fn). Thus, up to a subsequence, the
sequence (un) converges weakly in W 1,p

0 (Ω,RM ) to some function u ∈W 1,p
0 (Ω,RM ).

Our goal is to find the variational problem satisfied by the function u. To this aim
we shall consider special sequences of test functions vn ∈W 1,p

0 (Ω,RM )∩Lpµn(Ω,RM )

which converge weakly to some function v ∈W 1,p
0 (Ω,RM )∩Lpµ(Ω,RM ), and we shall

try to take the limit in problem (5.1). This is the energy method of L. Tartar.
In order to prove that the structure of the limit problem is local (i.e., it does not

depend on the choice of the domain Ω and of the boundary data), in what follows,
we shall consider a more general situation. Namely, we shall study the asymptotic
behavior of an arbitrary sequence (un) of solutions of the problems

un ∈W 1,p(Ω′,RM ) ∩ Lpµn(Ω′,RM ),∫
Ω′
a(x,Dun)Dv dx+

∫
Ω′
Fn(x, un)v dµn = 〈fn, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ),

(5.2)

where Ω′ is an open subset of Ω, fn ∈ (W 1,p
0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ))′. We do not

require any boundary data for un, while we assume that the sequence (un) is bounded
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 595

inW 1,p(Ω′,RM ), which implies in particular that, up to a subsequence, (un) converges
weakly to some u in W 1,p(Ω′,RM ). For the sequence (fn), we shall assume a notion
of convergence specified by the following definition.

Definition 5.1. Let (µn) be a sequence of Mp
0(Ω) which γ−∆p-converges to

a measure µ. Let (fn) be a sequence of functionals, with fn ∈ (W 1,p
0 (Ω′,RM ) ∩

Lpµn(Ω′,RM ))′, and let f ∈ (W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′. We shall say that the

sequence (fn) converges to f in the sense of (HΩ′) if the following condition is satisfied:

(HΩ′) If v ∈ W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ), vn ∈ W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ) for

every n, and (vn) converges to v weakly in W 1,p
0 (Ω′,RM ), then 〈fn, vn〉 →

〈f, v〉.
The next lemma gives an estimate of the norm in (W 1,p

0 (Ω′,RM )∩Lpµn(Ω′,RM ))′

of a sequence of functionals (fn) which converges in the sense of (HΩ′), while Propo-
sition 5.3 gives a local estimate of the norm in Lpµn(Ω′,RM ) of the corresponding
solutions un of problem (5.2).

Lemma 5.2. Let f ∈ (W 1,p
0 (Ω′,RM )∩Lpµ(Ω′,RM ))′, and let fn ∈ (W 1,p

0 (Ω′,RM )∩
Lpµn(Ω′,RM ))′ for every n. If (fn) converges to f in the sense of (HΩ′), then
(‖fn‖) converges to ‖f‖, where the norm of fn (resp., f) is taken in the space
(W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ))′ (resp., (W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′).

Proof. Let (ζn) be a sequence such that ζn ∈W 1,p
0 (Ω′,RM )∩Lpµn(Ω′,RM ), with

unit norm and ‖fn‖ = 〈fn, ζn〉. Then, up to a subsequence, (ζn) converges weakly in
W 1,p

0 (Ω′,RM ) to some function ζ, by Theorem 4.4 ζ ∈ W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ),

and ‖ζ‖ ≤ 1. Since (fn) converges in the sense of (HΩ′) we have that

lim
n→∞ ‖fn‖ = lim

n→∞〈fn, ζn〉 = 〈f, ζ〉 ≤ ‖f‖.

In order to prove the opposite inequality let us consider the function ζ such that
ζ ∈ W 1,p

0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ), with unit norm, ‖f‖ = 〈f, ζ〉, and let (ψm) be a

sequence in C∞0 (Ω′,RM ) such that (wψm) converges strongly to ζ in W 1,p
0 (Ω′,RM )∩

Lpµ(Ω′,RM ). By Lemma 4.2 we have that the norm in the space W 1,p
0 (Ω′,RM ) ∩

Lpµn(Ω′,RM ) of the functions wnψm converges to the norm of wψm in the space

W 1,p
0 (Ω′,RM )∩Lpµ(Ω′,RM ). Thus, since (wnψm) converges weakly in W 1,p

0 (Ω′,RM )
to wψm, we have

‖f‖ = 〈f, ζ〉 = lim
m→∞ lim

n→∞〈fn, wnψm〉
≤ lim

m→∞ lim inf
n→∞ ‖fn‖ ‖wnψm‖ = lim inf

n→∞ ‖fn‖ ‖ζ‖ = lim inf
n→∞ ‖fn‖.

Proposition 5.3. Let (un) be a sequence of solutions of problems (5.2). If the
sequence (un) is bounded in W 1,p(Ω′,RM ), then∫

Ω′
|un|pϕdµn ≤ M(5.3)

for every ϕ ∈ C1
0 (Ω′), with ϕ ≥ 0, where the constant M depends on the norm in

C1
0 (Ω′) of ϕ.

Proof. The proof follows immediately, taking unϕ as test function in (5.2), by
Lemma 5.2 and conditions (v) and (VI).

The following proposition shows that, without any additional assumption, the
sequence (un) converges strongly in W 1,r(Ω′,RM ) for every 1 ≤ r < p.

D
ow

nl
oa

de
d 

09
/3

0/
16

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



596 JUAN CASADO DIAZ AND ADRIANA GARRONI

Proposition 5.4. Let (un), with un ∈ W 1,p(Ω′,RM ) ∩ Lpµn(Ω′,RM ), be a se-

quence which converges to some function u weakly in W 1,p(Ω′,RM ). Suppose that
there exists a sequence (fn), with fn ∈ (W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ))′, which con-

verges to f ∈ (W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′ in the sense of (HΩ′), such that un

satisfies problem (5.2). Then (un) converges to u strongly in W 1,r(Ω′,RM ) for every
r < p, and hence a subsequence of (Dun) converges to Du pointwise a.e. in Ω′.

Proof. The proof follows the lines of the one given in [16] (see also [1]).
In the course this proof we shall denote by C a positive constant independent on

n. Let Ψ : R 7→ R be a C1 function which satisfies the following properties:

Ψ(t) = 1 if |t| < 1, Ψ(t) = 0 if |t| ≥ 2,

|Ψ(t)| ≤ 1 ∀ t ∈ R, |Ψ′(t)| ≤ 2 ∀ t ∈ R,

and let Φ(y) = Ψ(|y|)y. Let δ > 0 and, for every n ∈ N, let δn ≤ δ be a positive real
number that we shall fix later. For every such a δn we define the function Φδn(y) =
δnΦ(y/δn). Given ϕ ∈ C1

0 (Ω′), with ϕ ≥ 0, we can take (Φδn(un) +wnΦδn(un − u))ϕ
as test function in problem (5.2), and we obtain∫

Ω′
a(x,Dun)DΦδn(un)Dunϕdx

+

∫
Ω′

(
a(x,Dun)− a(x,Du)

)
DΦδn(un − u)D(un − u)wnϕdx

+

∫
Ω′
a(x,Dun)

(
Φδn(un)⊗Dϕ+ Φδn(un − u)⊗D(wnϕ)

)
dx

+

∫
Ω′
Fn(x, un)(wnΦδn(un − u) + Φδn(un))ϕdµn

= 〈fn, (wnΦδn(un − u) + Φδn(un))ϕ〉
−
∫

Ω′
a(x,Du)DΦδn(un − u)D(un − u)wnϕdx.

(5.4)

Since (un) is bounded in W 1,p(Ω′,RM ), (wn) is bounded in W 1,p(Ω), and |Φδn | ≤
2δn ≤ 2δ, by condition (iv), we have∣∣∣∫

Ω′
a(x,Dun)

(
Φδn(un)⊗Dϕ+ Φδn(un − u)⊗D(wnϕ)

)
dx
∣∣∣ ≤ Cδ.(5.5)

From property (V), Hölder’s inequality, and Proposition 5.3 it follows that∣∣∣∫
Ω′
Fn(x, un)Φδn(un − u)wnϕdµn

∣∣∣ ≤ Cδ,(5.6)

while from property (VI) and the definition of the function Φ we get∫
Ω′
Fn(x, un)Φδn(un)ϕdµn ≥ 0.(5.7)

Since (Φδn(un − u)wnϕ) converges weakly to zero in W 1,p
0 (Ω,RM ) and (fn) con-

verges in the sense of (HΩ′), we have

〈fn, wnΦδn(un − u)ϕ〉 = on.(5.8)
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 597

Moreover, as 0 < δn ≤ δ and the sequence (Φδn) is uniformly Lipschitz, it is easy to
see that there exists a positive number δ̃ ≤ δ such that

lim sup
n→∞

〈fn,Φδn(un)ϕ〉 = 〈f,Φδ̃(u)ϕ〉.(5.9)

Finally, since (DΦδn(un − u)D(un − u)) converges weakly to zero in Lp(Ω′,RM ) we
also obtain that ∫

Ω′
a(x,Du)DΦδn(un − u)D(un − u)wnϕdx = on.(5.10)

Thus, by assumptions (i)–(v), by (5.4)–(5.10), and by the definition of the function
Φ, we get ∫

{|un|<δn}Ω′
|Dun|pϕdx,+

∫
{|un−u|<δn}Ω′

|D(un − u)|pwnϕdx

≤ C

∫
{δn≤|un−u|<2δn}Ω′

(h+ |Du|+ |Dun|)p−2|D(un − u)|2 dx

+C

∫
{δn≤|un|<2δn}Ω′

(k + η|Dun|p−1)|Dun| dx+ 〈f,Φδ̃(u)ϕ〉+ Cδ + on,

(5.11)

where we also used the fact that the sequence (wn) is bounded in L∞(Ω). Now, since
(un) is bounded in W 1,p(Ω′,RM ), there exists a positive constant K such that∫

Ω′
(h+ |Du|+ |Dun|)p−2|D(un − u)|2 dx+

∫
Ω′

(k + η|Dun|p−1)|Dun| dx ≤ K.

In particular, if we fix J ∈ N and γ > 0, then we have

J∑
j=1

(∫
{2j−1γ≤|un−u|<2jγ}Ω′

(h+ |Du|+ |Dun|)p−2|D(un − u)|2 dx

+

∫
{2j−1γ≤|un|<2jγ}Ω′

(k + η|Dun|p−1)|Dun| dx
)
≤ K;

so that, for every n ∈ N, there exists j(n) ∈ {1, . . . , J} such that∫
{2j(n)−1γ≤|un−u|<2j(n)γ}Ω′

(h+ |Du|+ |Dun|)p−2|D(un − u)|2 dx

+

∫
{2j(n)−1γ≤|un|<2j(n)γ}Ω′

(k + η|Dun|p−1)|Dun| dx ≤ K

J
.

If in (5.11) we take δ = 2Jγ and δn = 2j(n)−1γ, then we get∫
{|un|<γ}Ω′

|Dun|pϕdx+

∫
{|un−u|<γ}Ω′

|D(un − u)|pwnϕdx

≤ C

J
+ C2Jγ + 〈f,Φδ̃(u)ϕ〉 + on,

(5.12)

where we used the fact that δn ≥ γ for every n ∈ N. By Rellich’s theorem the
sequence (un) converges to u strongly in Lploc(Ω′,RM ), and hence, up to a subsequence,
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598 JUAN CASADO DIAZ AND ADRIANA GARRONI

pointwise a.e. in Ω′. Thus, by Egorov’s theorem, for every σ > 0 there exists a subset
S of Ω′, with |S| < σ, such that (un) converges to u uniformly on Ω′ \ S.

Now let ε > 0. If we choose J ∈ N and γ > 0 such that 1/J < ε and δ = 2Jγ = ε,
then by (5.12) we have

lim sup
n→∞

(∫
{|un|<γ}Ω′

|Dun|pϕdx+

∫
{|un−u|<γ}Ω′

|D(un−u)|pwnϕdx
)
≤ Cε+ 〈f,Φδ̃(u)ϕ〉.

Moreover, for n large enough we have that Ω′ \ S ⊆ {|un − u| < γ}Ω′ and {u =
0}Ω′ \ S ⊆ {|un| < γ}Ω′ , so that we get

lim sup
n→∞

(∫
{u=0}Ω′\S

|Dun|pϕdx +

∫
Ω′\S
|D(un − u)|pwnϕdx

)
(5.13)

≤ Cε + 〈f,Φδ̃(u)ϕ〉,
which, by using that 0 ≤ δ̃ ≤ δ = ε and Φδ̃(u)ϕ converges strongly to zero in

W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ) as ε tends to zero, gives

lim
n→∞

(∫
{u=0}Ω′\S

|Dun|pϕdx +

∫
Ω′\S
|D(un − u)|pwnϕdx

)
= 0.(5.14)

By the arbitrariness of σ, we get, up to a subsequence, that (D(un − u)wn) and
(Dun1{|u|=0}Ω′ ) converges to zero pointwise a.e. in Ω′. Moreover, since (wn) converges

to w strongly in Lp(Ω′,RM ) and by Lemma 4.5 {w > 0} ⊇ {|u| > 0}Ω′ , this implies
that (Dun) converges pointwise to Du a.e. in {|u| > 0}Ω′ and hence, as |Du| = 0 a.e.
in {|u| = 0}Ω′ , (Dun) converges pointwise to Du a.e. in Ω′.

Finally, since (un) is bounded in W 1,p(Ω′,RM ), we obtain that (un) converges to
u strongly in W 1,r(Ω′,RM ) for every r < p.

Remark 5.5. Under the same assumptions of Proposition 5.4, by (v) and Proposi-
tion 5.4 we have that (a(x,Dun)) converges to a(x,Du) weakly in Lp

′
(Ω′,MM×N ) and

strongly in Lr(Ω′,MM×N ) for every 1 ≤ r < p′. Similarly we deduce that (a(x,D(un−
u))) converges to zero weakly in Lp

′
(Ω′,MM×N ) and strongly in Lr(Ω′,MM×N ) for

every 1 ≤ r < p′.

6. The limit problem. In this section we shall prove the main result of this
paper (Theorem 6.4). We shall consider a sequence (un) of solutions of problems
(5.2), with Fn ∈ F(L) and µn ∈Mp

0(Ω), which satisfies∫
Ω′
|Dun|pdx +

∫
Ω′
|un|pdµn ≤ M,(6.1)

where M is a positive constant which depends on the sequence (un). We shall show
that a cluster point u of such a sequence is a solution of a variational problem similar
to (5.2). Namely we shall prove that the limit problem will be of the form

u ∈W 1,p(Ω′,RM ) ∩ Lpµ(Ω′,RM ),∫
Ω′
a(x,Du)Dv dx+

∫
Ω′
F (x, u)v dµ = 〈f, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ),

(6.2)

where µ is a measure inMp
0(Ω) and F (x, s) is a vector function in F(α,C, 1/(p− 1))

for a constant C which depends only on α, β, L, N , and p.
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 599

Remark 6.1. Let µ ∈ Mp
0(Ω) and let F̃ , F ∈ F(c1, c2, σ) be two functions such

that for every s ∈ RM F (x, s) = F̃ (x, s) µ-a.e. in {w > 0}, where w is the solution of
problem (3.3). If in problem (6.2) we change F by F̃ we obtain an equivalent problem.
In particular the function F (x, s) can be defined arbitrarily in the set {w = 0}.

Let us introduce now a notion of convergence in the space Mp
0(Ω)×F(c1, c2, σ),

with c1 > 0, c2 > 0, and 0 < σ ≤ 1.
Definition 6.2. Let (µn) be a sequence in Mp

0(Ω), let (Fn) be a sequence in
F(c1, c2, σ), let µ ∈Mp

0(Ω) and F ∈ F(c1, c2, σ). We say that the pairs (µn, Fn) γA-
converge (in Ω) to the pair (µ, F ) if the following property holds: for any open set Ω′ ⊆
Ω, for any sequence of functionals (fn) with fn ∈ (W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ))′,
which converges to some f ∈ (W 1,p

0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′ in the sense of (HΩ′)
(according with Definition 5.1), and for any sequence (un) of solutions of problems
(5.2) satisfying (6.1), all cluster points of the sequence (un) in the weak topology of
W 1,p(Ω′,RM ) satisfy problem (6.2).

The most important property of the γA convergence is the following result.
Proposition 6.3. Let ((µn, Fn)) be a sequence in Mp

0(Ω) × F(c1, c2, σ) which
γA-converges to a pair (µ, F ). Then for any open set Ω′ ⊆ Ω and for any se-
quence (fn), with fn ∈ (W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ))′, which converges to some

f ∈ (W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′ in the sense of (HΩ′), the unique solution un of

the problem 
un ∈W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ),∫
Ω′
a(x,Dun)Dv dx+

∫
Ω′
Fn(x, un)v dµn = 〈fn, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµn(Ω′,RM )

(6.3)

converges weakly in W 1,p
0 (Ω′,RM ) to the unique solution u of the problem

u ∈W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ),∫

Ω′
a(x,Du)Dv dx+

∫
Ω′
F (x, u)v dµ = 〈f, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ).

(6.4)

Proof. By using un as a test function in (6.3) and by taking into account Lemma
5.2, we deduce that the sequence (un) satisfies (6.1). This implies in particular that
there exists a subsequence of (un) which converges weakly in W 1,p

0 (Ω′,RM ) to a
function u ∈ W 1,p

0 (Ω′,RM ). By the definition of γA-convergence, the function u
satisfies (6.4). Since this problem has a unique solution, the whole sequence (un)
converges to u.

The following theorem gives a compactness result for the γA-convergence.
Theorem 6.4. Let (µn) be a sequence of measures in Mp

0(Ω) and let (Fn) be a
sequence in F(L), with L > 0. Then there exist an increasing sequence of integers
(nj), a measure µ ∈ Mp

0(Ω), and a function F ∈ F(α,C, 1/(p − 1)) such that the
pairs (µnj , Fnj ) γ

A-converge to (µ, F ) in Ω (according to Definition 6.2), where C is
a positive constant which depends only on α, β, L, N , and p.

Remark 6.5. The compactness result stated in Theorem 6.4 can be proved un-
der more general assumptions on (Fn). Namely, if the sequence (Fn) belongs to
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600 JUAN CASADO DIAZ AND ADRIANA GARRONI

F(c1, c2, σ), for some constants c1 > 0, c2 > 0, and 0 < σ ≤ 1, then there ex-
ist an increasing sequence of integers (nj), a measure µ ∈ Mp

0(Ω), and a func-
tion F ∈ F(c′1, c

′
2, σ
′) such that the pairs (µnj , Fnj ) γ

A-converge to (µ, F ) in Ω.
The positive constants c1 and c2 depend only on α, β, c1, c2, N , p, and σ; while
σ′ = min{σ, 1/(p− σ)}.

In order to simplify the exposition of the proof, we shall prove only the compact-
ness result as stated in Theorem 6.4 (the proof of the general case stated in Remark 6.5
being analogous). Before proving Theorem 6.4 we need additional information on the
behavior of the sequence (un) of solutions of problems (5.2). To this aim we shall
compare (un) with the sequences (wnψm), ψm ∈ C∞0 (Ω,RM ), of correctors for the
p-Laplacian, studied in section 4.

In Lemma 6.6 and Propositions 6.7 and 6.8, we shall consider an open set Ω′ ⊆ Ω,
a sequence of measures (µn), a sequence of functions (Fn), two sequences of functionals
(fn), (gn), two sequences of functions (un), (zn), a measure µ, two functionals f , g,
and two functions u and z such that{

µn, µ ∈Mp
0(Ω), Fn ∈ F(L),

(µn) γ−∆p-converges to µ,
(6.5) 

fn, gn ∈ (W 1,p
0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ))′,

f, g ∈ (W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′,

fn → f in the sense of (HΩ′),
gn → g in the sense of (HΩ′),

(6.6)


un, zn ∈W 1,p(Ω′,RM ) ∩ Lpµn(Ω′,RM ),

u, z ∈W 1,p(Ω′,RM ) ∩ Lpµ(Ω′,RM ),

un ⇀ u in W 1,p(Ω′,RM ),
zn ⇀ z in W 1,p(Ω′,RM ),

(6.7)


∫

Ω′ a(x,Dun)Dv dx+
∫

Ω′ Fn(x, un)v dµn = 〈fn, v〉
∀ v ∈W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ),∫
Ω′ a(x,Dzn)Dv dx+

∫
Ω′ Fn(x, zn)v dµn = 〈fn, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ).

(6.8)

Lemma 6.6. Assume that (6.5), (6.6), (6.7), and (6.8) hold. Then for every
function ϕ ∈ C∞c (Ω′), with ϕ ≥ 0, we have the estimates

lim sup
n→∞

(∫
Ω′
|D(un − u)|pϕdx+

∫
Ω′
|un|pϕdµn

) ≤ C

∫
Ω′
|u|pϕdµ(6.9)

and

lim sup
n→∞

(∫
Ω′
|D((un − zn)− (u− z))|pϕdx+

∫
Ω′
|un − zn|pϕdµn

)
≤ C

(∫
Ω′
|u|pϕdµ+

∫
Ω′
|z|pϕdµ

) p−2
p−1
(∫

Ω′
|u− z|pϕdµ

) 1
p−1

,

(6.10)

where C is a positive constant which depends only on α, β, L, N , and p.
Proof. By Theorem 4.4 we have that u and z belong to W 1,p(Ω,RM )∩Lpµ(Ω,RM ).

Let ϕ ∈ C∞c (Ω′), with ϕ ≥ 0, let wn and w be the solutions of problems (3.5) and (3.3).
By Proposition 3.6 there exists a sequence (ψm) in C∞0 (Ω′,RM ) such that (wψm)
converges to u − z strongly in W 1,p

loc (Ω′) ∩ Lpµ(Ω′). Thus, taking (un − zn − wnψm)ϕ
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 601

as a test function in the difference of the equations in (6.8), we get

∫
Ω′

[a(x,Dun)− a(x,Dzn)]D(un − zn − wnψm)ϕdx

+

∫
Ω′

[Fn(x, un)− Fn(x, zn)](un − zn − wnψm)ϕdµn

= −
∫

Ω′
[a(x,Dun)− a(x,Dzn)](un − zn − wnψm)⊗Dϕdx
+ 〈fn − gn, (un − zn − wnψm)ϕ〉 = om,n.

(6.11)

Let us estimate the terms which appear in (6.11). By using assumption (ii) and
Proposition 5.4, the sequences (|a(x,Dun) − a(x,D(un − u)|p′) and (|a(x,Dzn) −
a(x,D(zn − z)|p′) are uniformly integrable and pointwise convergent respectively to
|a(x,Du)|p′ and |a(x,Dz)|p′ . Therefore they converge strongly in L1(Ω′,MM×N ) and
hence, from (6.11), we deduce

∫
Ω′

[a(x,D(un − u))− a(x,D(zn − z))]D(un − zn − (u− z))ϕdx

+

∫
Ω′

[Fn(x, un)− Fn(x, zn)](un − zn)ϕdµn

= om,n −
∫

Ω′
[a(x,Du)− a(x,Dz)]D(un − zn − wnψm)ϕdx

+

∫
Ω′

[a(x,D(un − u))− a(x,D(zn − z))]D(wnψm − (u− z))ϕdx

+

∫
Ω′

[Fn(x, un)− Fn(x, zn)]wnψmϕdµn.

Since ∫
Ω′

[a(x,Du)− a(x,Dz)]D(un − zn − wnψm)ϕdx = om,n

by properties (i) and (ii) of a and properties (II) and (III) of Fn, we get

α

∫
Ω′
|D(un − zn − (u− z))|pϕdx+ α

∫
Ω′
|un − zn|pϕdµn

≤ β

∫
Ω′

(h+ |D(un − u)|+ |D(zn − z)|)p−2|D(un − zn − (u− z))| |D(wnψm − (u− z))|ϕdx

+L

∫
Ω′

(|un|+ |zn|)p−2|un − zn| |wnψm|ϕdµn + om,n

= β

∫
Ω′

(|D(un − u)|+ |D(zn − z)|)p−2|D(un − zn − (u− z))| |D(wnψm − (u− z))|ϕdx

+L

∫
Ω′

(|un|+ |zn|)p−2|un − zn| |wnψm|ϕdµn + om,n.

(6.12)
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602 JUAN CASADO DIAZ AND ADRIANA GARRONI

Using Young’s inequality and then Hölder’s inequality in (6.12), we obtain∫
Ω′
|D((un − zn)− (u− z))|pϕdx+

∫
Ω′
|un − zn|pϕdµn

≤ C
(∫

Ω′

(|D(un − u)|+ |D(zn − z)|)pϕdx
) p−2
p−1
(∫

Ω′
|D(wnψm − (u− z))|pϕdx

) 1
p−1

+C
(∫

Ω′

(|un|+ |zn|)pϕdµn) p−2
p−1
(∫

Ω′
|wnψm|pϕdµn

) 1
p−1

+ om,n.

(6.13)
Taking zn = z = 0 (and then gn = 0), in estimate (6.13), by Young’s inequality, we
get ∫

Ω′
|D(un − u)|pϕdx+

∫
Ω′
|un|pϕdµn

≤ C

∫
Ω′
|D(wnψm − u)|pϕdx+ C

∫
Ω′
|wnψm|pϕdµn + om,n,

which by Lemma 4.3 implies (6.9).
Finally, in order to get (6.10), it is enough to apply, in estimate (6.13), estimate

(6.9) for un and zn, and Lemma 4.3.
The following proposition gives a first version of the limit problem satisfied by u.
Proposition 6.7. Let us assume (6.5), (6.6), (6.7), and (6.8). Then there exists a

wµ-measurable vector function H, uniquely defined µ-a.e. in Ω′, such that the function
u satisfies the problem

u ∈W 1,p(Ω′,RM ) ∩ Lpµ(Ω′,RM ),∫
Ω′
a(x,Du)Dv dx +

∫
Ω′
Hv dµ = 〈f, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ),

(6.14)

and

|H| ≤ C|u|p−1 µ-a.e. in Ω′.(6.15)

Moreover, for every φ ∈ C∞c (Ω′,RM ) we have∫
Ω′
Hwφdµ

= lim
n→∞

[∫
Ω′
a(x,D(un − u))φ⊗D(wn − w) dx+

∫
Ω′
Fn(x, un)wnφdµn

]
,

(6.16)

where wn and w are the solutions of problems (3.5) and (3.3).
Proof. Given φ ∈ C∞c (Ω′,RM ), we take wnφ as the test function in the equation

satisfied by un (see (6.8)) and we get∫
Ω′
a(x,Dun)φ⊗Dwn dx +

∫
Ω′
a(x,Dun)Dφwndx

+

∫
Ω′
Fn(x, un)wnφdµn = 〈fn, wnφ〉.

(6.17)D
ow

nl
oa

de
d 

09
/3

0/
16

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 603

By Remark 5.5 we have

lim
n→∞

(
〈fn, wnφ〉 −

∫
Ω′
a(x,Dun)Dφwndx

)
= 〈f, wφ〉 −

∫
Ω′
a(x,Du)Dφwdx.

Let us define a distribution T in Ω′ by

〈T, φ〉 = lim
n→∞

[∫
Ω′
a(x,Dun)φ⊗Dwn dx

−
∫

Ω′
a(x,Du)φ⊗Dw dx +

∫
Ω′
Fn(x, un)wnφdµn

]
for every φ ∈ C∞c (Ω′,RM ). Since the norm of wn in W 1,p

0 (Ω) ∩ Lpµn(Ω) is bounded,
by (6.1) and property (V) we have∫

Ω

|a(x,Dun)||Dwn| dx +

∫
Ω

|Fn(x, un)||wn| dµn ≤ C,

and hence T is continuous with respect to the uniform convergence and it can be
represented by a vector Radon measure (T1, . . . , TM ) such that

〈T, φ〉 =

M∑
i=1

∫
Ω′
φidTi ∀φ ∈ C∞c (Ω′,RM ),(6.18)

where φ1, . . . , φM are the components of the vector function φ. Thus taking the limit
in (6.17) we obtain ∫

Ω′
a(x,Du)D(wφ) dx + 〈T, φ〉 = 〈f, wφ〉.(6.19)

Since by conditions (ii) and (iv) and Proposition 5.4, a(x,Dun) − a(x,D(un − u))
converges to a(x,Du) strongly in Lp

′
(Ω,MM×N ), we can write

〈T, φ〉 = lim
n→∞

[∫
Ω′
a(x,D(un − u))φ⊗D(wn − w) dx +

∫
Ω′
Fn(x, un)wnφdµn

]
.

(6.20)

Let us prove (6.16). For every φ ∈ C∞c (Ω′,RM ), with φ ≥ 0, by assumptions (V) and
(v), Proposition 5.4, Hölder’s inequality, Lemma 4.3, and estimate (6.9), we have

|〈T, φ〉| ≤ C lim sup
n→∞

[∫
Ω′

(k(x) + η|D(un − u)|p−1)|D(wn − w)||φ| dx

+

∫
Ω′
|Fn(x, un)|wn|φ| dµn

]
≤ C lim sup

n→∞

[∫
Ω

|D(un − u)|p−1|D(wn − w)||φ| dx+

∫
Ω′
|un|p−1wn|φ| dµn

]
≤ C lim sup

n→∞

[(∫
Ω′
|D(un − u)|p|φ| dx

) p−1
p
(∫

Ω

|D(wn − w)|p|φ| dx
) 1
p

(6.21)

+
(∫

Ω′
|un|p|φ| dµn

) p−1
p
(∫

Ω′
|wn|p|φ| dµn

) 1
p
]

≤ C
(∫

Ω′
|u|p|φ| dµ

) p−1
p
(∫

Ω′
|w|p|φ| dµ

) 1
p

.
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604 JUAN CASADO DIAZ AND ADRIANA GARRONI

Let us denote by |Ti| the total variation of the measures Ti, i = 1 . . . ,M . Taking
into account that for every open subset A of Ω′ we have

|Ti|(A) = sup {〈Ti, ϕ〉 : ϕ ∈ C∞0 (A), sup |ϕ| ≤ 1},
by (6.21) we get

|Ti|(A) ≤ C
(∫

A

|u|pdµ
) p−1

p
(∫

A

|w|pdµ
) 1
p

(6.22)

for every open subset A of Ω′. Since |u|pµ, |w|pµ, and |Ti| are finite measures, (6.22)
holds for every Borel subset of Ω′. This implies that the measures Ti are absolutely
continuous with respect to the measure |w|pµ, and hence to the measure wµ. Since
wµ is a σ-finite measure we can apply the Radon–Nikodým derivation theorem and
we find a wµ-measurable vector function H = (H1, . . . , HM ) such that

Ti(A) =

∫
A

Hiwdµ

for every Borel subset A of Ω′ and i = 1, . . . ,M , so that, by (6.20) and (6.18), (6.16)
holds. We can suppose that

Hi(x) = 0 for µ-a.e. x in {w = 0} ∀ i = 1, . . . ,M.(6.23)

Thus by (6.22) we get∫
A

|Hi|wdµ ≤ C
(∫

A

|u|pdµ
) p−1

p
(∫

A

|w|pdµ
) 1
p

for every Borel subset A of Ω′. Using Young’s inequality, we obtain∫
A

|Hi|wdµ ≤ C
( 1

p′εp′

∫
A

|u|pdµ+
εp

p

∫
A

|w|pdµ
)

for every Borel subset A of Ω′ and for every ε > 0. Thus (first reasoning for ε ∈ Q
and then arguing by density) we get

|Hi(x)|w(x) ≤ C
( 1

p′εp′
|u(x)|p +

εp

p
|w(x)|p

)
(6.24)

for µ-a.e. x in Ω′ and for every ε > 0. If x ∈ Ω′ satisfies w(x) > 0 and (6.24) holds

true for any ε, by choosing ε = |u(x)| p−1
p /|w(x)| p−1

p in (6.24) and taking into account
(6.23), we get

|Hi(x)| ≤ C|u(x)|p−1, µ-a.e. x ∈ Ω′,

and hence (6.15) is proved. Condition (6.14) follows from (6.19), (6.18), and the
density result given by Proposition 3.6. Finally the vector function H is uniquely
determined µ-a.e. in Ω′ by (6.14) and (6.15). Indeed, by (6.14) H is uniquely deter-
mined µ-a.e. in {w > 0}, and by (6.15) we have H = 0 µ-a.e. in {|u| = 0}Ω′ . Then
the conclusion follows by Lemma 4.5.

In order to study the dependence of the function H on the function u, let us
consider a sequence of functionals (gn) and a sequence of functions (zn) which satisfy
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 605

(6.6), (6.7), and (6.8). By Proposition 6.7, applied to (zn), we get that there exists a
wµ-measurable vector function H ′, uniquely defined µ-a.e. in Ω′, such that

z ∈W 1,p(Ω′,RM ) ∩ Lpµ(Ω′,RM ),∫
Ω′
a(x,Dz)Dv dx +

∫
Ω′
H ′v dµ = 〈g, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ),

(6.25)

|H ′| ≤ C|z|p−1, µ-a.e. in Ω′,(6.26)

and ∫
Ω′
H ′wφdµ

= lim
n→∞

[∫
Ω′
a(x,D(zn − z))φ⊗D(wn − w) dx+

∫
Ω′
Fn(x, zn)wnφdµn

]
.

(6.27)

The following proposition compares the function H with the function H ′.
Proposition 6.8. The vector functions H and H ′ satisfy

|H −H ′| ≤ C
(|u|+ |z|)p p−2

p−1 |u− z| 1
p−1 , µ-a.e. in Ω′(6.28)

and

(H −H ′)(u− z) ≥ α|u− z|p, µ-a.e. in Ω′.(6.29)

Proof. Let us first prove (6.28). Consider φ ∈ C∞c (Ω′,RM ) and let wn and w be
the solutions of problems (3.5) and (3.3). By (6.16), (6.27), and by assumptions (ii)
and (III), we have ∣∣∣∫

Ω′
(H −H ′)wφdµ

∣∣∣
≤
∣∣∣∫

Ω′
(a(x,D(un − u))− a(x,D(zn − z)))φ⊗D(wn − w) dx

∣∣∣
+
∣∣∣∫

Ω′
(Fn(x, un)− Fn(x, zn))wnφdµn

∣∣∣+ on

≤ C

∫
Ω′

(
h+ |D(un − u)|+ |D(zn − z)|

)p−2|D((un − zn)− (u− z))| |D(wn − w)| |φ| dx

+C

∫
Ω′

(|un|+ |zn|)p−2|un − zn| |φ|wn dµn + on

≤ C

∫
Ω′

(|D(un − u)|+ |D(zn − z)|
)p−2|D((un − zn)− (u− z))| |D(wn − w)| |φ| dx

+C

∫
Ω′

(|un|+ |zn|)p−2|un − zn| |φ|wn dµn + on.

(6.30)
By using Hölder’s inequality, (6.9), applied to un and zn and (6.10), we get∣∣∣∫

Ω′
(H −H ′)wφdµ

∣∣∣
≤ C

(∫
Ω′
|u|p|φ| dµ+

∫
Ω

|z|p|φ| dµ
) p−2
p−1
(∫

Ω′
|u− z|p|φ| dµ

) 1
p(p−1)

(∫
Ω′
|w|p|φ| dµ

) 1
p

.
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606 JUAN CASADO DIAZ AND ADRIANA GARRONI

Then we conclude as in the proof of Proposition 6.7 and we obtain (6.28).
In order to prove (6.29), let us consider a function ϕ ∈ C∞c (Ω′), with ϕ ≥ 0.

Using (un− zn)ϕ as a test function in the difference of the two equations in (6.8), we
obtain ∫

Ω′
[a(x,Dun)− a(x,Dzn)]D(un − zn)ϕdx

+

∫
Ω′

[a(x,Dun)− a(x,Dzn)](un − zn)⊗Dϕdx

+

∫
Ω′

[Fn(x, un)− Fn(x, zn)](un − zn)ϕdµn = 〈fn − gn, (un − zn)ϕ〉.

We can rewrite this formula as∫
Ω′

(
[a(x,Dun)− a(x,Dzn)]D(un − zn)− α|D(un − zn)|p)ϕdx

+α

∫
Ω′
|D(un − zn)|pϕdx+

∫
Ω′

[Fn(x, un)− Fn(x, zn)](un − zn)ϕdµn

+

∫
Ω′

[a(x,Dun)− a(x,Dzn)](un − zn)⊗Dϕdx = 〈fn − gn, (un − zn)ϕ〉.

(6.31)

By assumption (II) and Theorem 4.4, we have

α

∫
Ω′
|D(un − zn)|pϕdx+

∫
Ω′

[Fn(x, un)− Fn(x, zn)](un − zn)ϕdµn

≥ α

∫
Ω′
|D(u− z)|pϕdx + α

∫
Ω′
|u− z|pϕdµ + on.

Moreover, by Remark 5.5, the sequence (a(x,Dun)−a(x,Dzn)) converges to a(x,Du)−
a(x,Dz) pointwise a.e. in Ω′ and weakly in Lp

′
(Ω′,MM×N ). Then by condition (i)

we can apply Fatou’s lemma to the first integrand of (6.31) and, taking the limit, we
obtain ∫

Ω′

(
[a(x,Du)− a(x,Dz)]D(u− z)− α|D(u− z)|p)ϕdx

+α

∫
Ω′
|D(u− z)|pϕdx+ α

∫
Ω′
|u− z|pϕdµ

+

∫
Ω′

[a(x,Du)− a(x,Dz)](u− z)⊗Dϕdx ≤ 〈f − g, (u− z)ϕ〉,

that is,∫
Ω′

[a(x,Du)− a(x,Dz)]D
(
ϕ(u− z)) dx+ α

∫
Ω′
|u− z|pϕdµ ≤ 〈f − g, (u− z)ϕ〉.

Thus by (6.14) and (6.25) we get∫
Ω′

(H −H ′)(u− z)ϕdµ ≥ α

∫
Ω′
|u− z|pϕdµ

for every ϕ ∈ C∞c (Ω′), with ϕ ≥ 0. This implies (6.29).
Proposition 6.8 will imply that the function H defined by (6.16) depends on

u only through its pointwise values, i.e., there exists a function F (x, s) such that
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 607

H(x) = F (x, u(x)) µ-a.e. in Ω. This construction allows us to define the function
F (x, s) only on the pairs (x, s) such that s = u(x), where u is the limit of a sequence
of solutions of problems (5.2). We shall prove a penalization result (Theorem 6.9)
which shows that, in some sense, it is possible to obtain any real number s as the
“limit” of a sequence of solutions.

Theorem 6.9. Let s ∈ RM . For every m ∈ N, let smn be the unique solution of
the problem 

smn ∈W 1,p
0 (Ω,RM ) ∩ Lpµn(Ω,RM ),∫

Ω

a(x,Dsmn )Dv dx +

∫
Ω

Fn(x, smn )v dµn

= m

∫
Ω

(|wns|p−2wns− |smn |p−2smn )v dx

∀ v ∈W 1,p
0 (Ω,RM ) ∩ Lpµn(Ω,RM ).

(6.32)

Then there exists an increasing sequence of indices (nj) such that for every m the se-

quence (smnj )j∈N converges to some function sm weakly in W 1,p
0 (Ω,RM ). The sequence

(sm) converges to ws strongly in W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ) and satisfies

lim
m→∞m

∫
Ω

|sm − ws|p dx = 0.

Moreover, there exists a unique wµ-measurable function Hm
s , with

|Hm
s | ≤ C|sm|p−1, µ-a.e. in Ω,(6.33)

such that the function sm satisfies the problem

sm ∈W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ),∫

Ω

a(x,Dsm)Dv dx +

∫
Ω

Hm
s v dµ

= m

∫
Ω

(|wnψ|p−2wnψ − |sm|p−2sm)v dx

∀ v ∈W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ).

(6.34)

The sequence (Hm
s ) converges in Lp

′
µ (Ω,RM ) to a function Hs which satisfies

|Hs| ≤ C|sm|p−1, µ-a.e. in Ω.(6.35)

Proof. Let s ∈ RM and let smn ∈ W 1,p
0 (Ω,RM ) ∩ Lpµn(Ω,RM ) be the solution of
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608 JUAN CASADO DIAZ AND ADRIANA GARRONI

problem (6.32). Taking (smn − wns) as the test function in (6.32) we get∫
Ω

(
a(x,Dsmn )− a(x,D(wns))

)
D(smn − wns) dx

+

∫
Ω

(
F (x, smn )− F (x,wns)

)
(smn − wns) dµn

+m

∫
Ω

(|smn |p−2smn − |wns|p−2wns)(s
m
n − wns) dx

= −
∫

Ω

a(x,D(wns))D(smn − wns) dx−
∫

Ω

F (x,wns)(s
m
n − wns) dµn.

(6.36)

Using assumptions (i) and (iv) of a, (II) and (V) of Fn, and (4.3) we obtain

α

∫
Ω

|D(smn − wns)|pdx+ α

∫
Ω

|smn − wns|pdµn +m22−p
∫

Ω

|smn − wns|pdx

≤
∫

Ω

(
k(x) + η|D(wns)|p−1

)|D(smn − wns)| dx+ L

∫
Ω

|wns|p−1|smn − wns|dµn.
(6.37)

Then, by Young’s inequality and the fact that
∫

Ω
|Dwn|pdx+

∫
Ω
|wn|pdµn is bounded,

it is easy to see that there exists a constant C such that∫
Ω

|D(smn − wns)|pdx+

∫
Ω

|smn − wns|pdµn +m

∫
Ω

|smn − wns|pdx ≤ C|s|p.
(6.38)

Then there exists an increasing sequence of indices (nj) which, by a diagonal pro-
cedure, we can assume independent on m, such that for every m ∈ N the sequence
(smnj )j∈N converges to some function sm weakly in W 1,p

0 (Ω,RM ). Moreover, by The-
orem 4.4 we have∫

Ω

|D(sm − ws)|pdx +

∫
Ω

|sm − ws|pdµ + m

∫
Ω

|sm − ws|pdx ≤ C|s|p.(6.39)

This implies that (sm) converges weakly in W 1,p
0 (Ω,RM ) to ws. In particular |sm−ws|

converges to zero weakly in W 1,p
0 (Ω), and by Theorem 3.5 we get

lim
m→∞

∫
Ω

|sm − ws|wp−1dµ = lim
m→∞

∫
Ω

|sm − ws|dν = 0.

Thus up to a subsequence (sm) converges to ws ν-a.e. in Ω and hence by Lemma 4.5
µ-a.e. in Ω. Moreover, since by (6.39) (sm) is bounded in Lpµ(Ω,RM ), it converges to

ws weakly in Lpµ(Ω,RM ).
By Proposition 6.7, for everym ∈ N, there exists a wµ-measurable vector function

Hm
s , uniquely defined µ-a.e. in Ω, which satisfies (6.33) and such that sm is the solution

of the problem (6.34). By Proposition 6.8, for every m, k ∈ N, we have

|Hm
s −Hk

s | ≤ C
(|sm|+ |sk|)p p−2

p−1 |sm − sk| 1
p−1 , µ-a.e. in Ω.(6.40)

This implies that there exists a function Hs, which satisfies (6.35), such that Hm
s

converges to Hs µ-a.e. in Ω. Moreover, by Proposition 6.8, for every m, k ∈ N, we
have

(Hm
s −Hk

s )(sm − sk) ≥ α|sm − sk|p, µ-a.e. in Ω,
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 609

and then, taking the limit as k →∞, we obtain

(Hm
s −Hs)(s

m − ws) ≥ α|sm − ws|p, µ-a.e. in Ω.(6.41)

Now, taking (sm − ws) as a test function in (6.34), we get

∫
Ω

(
a(x,Dsm)− a(x,D(ws))

)
D(sm − ws) dx+

∫
Ω

(Hm
s −Hs)(s

m − ws) dµ

+m

∫
Ω

(|sm|p−2sm − |ws|p−2ws)(sm − ws) dx

= −
∫

Ω

a(x,D(ws))D(sm − ws) dx−
∫

Ω

Hs(s
m − ws) dµ.

Then by (6.41), assumption (i), and the inequality (4.3), we obtain

α

∫
Ω

|D(sm − ws)|pdx+ α

∫
Ω

|sm − ws|pdµ

≤ −
∫

Ω

a(x,D(ws))D(sm − ws) dx−
∫

Ω

Hs(s
m − ws) dµ.

The conclusion follows by the weak convergence of (sm) to ws in W 1,p
0 (Ω,RM ) ∩

Lpµ(Ω,RM ).

We are now in a position to prove Theorem 6.4.

Proof of Theorem 6.4. We start by defining the sequence (nj), the measure µ,
and the function F . By Theorem 3.4 we can suppose that there exists a measure
µ ∈Mp

0(Ω) such that the sequence (µn) γ−∆p-converges to a measure µ. This measure
will be the measure which appears in the statement.

For any q ∈ QM , let qmn be the solutions of the problems



qmn ∈W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ),∫

Ω

a(x,Dqmn )Dv dx+

∫
Ω

Fn(x, qmn )v dµn

= m

∫
Ω

(|wnq|p−2wnq − |qmn |p−2qmn )v dx

∀ v ∈W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ).

(6.42)

By Theorem 6.9 and a diagonal argument, there exists an increasing sequence (nj)

such that for every q ∈ QM , the sequence (qmnj ) converges weakly in W 1,p
0 (Ω,RM ) to

a function qm ∈W 1,p
0 (Ω,RM )∩Lpµ(Ω,RM ) when j tends to infinity, and the sequence

(qm) converges strongly in W 1,p
0 (Ω,RM )∩Lpµ(Ω,RM ) to qw when m tends to infinity.

Moreover, there exists a sequence (Hm
q ) in Lp

′
µ (Ω,RM ) such that the sequence (qm)
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610 JUAN CASADO DIAZ AND ADRIANA GARRONI

satisfies the problem

qm ∈W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM ),∫

Ω

a(x,Dqm)Dv dx+

∫
Ω

Hm
q v dµ

= m

∫
Ω

(|wnq|p−2wnq − |qm|p−2qm)v dx

∀ v ∈W 1,p
0 (Ω,RM ) ∩ Lpµ(Ω,RM )

(6.43)

and such that it converges strongly in Lp
′
µ (Ω,RM ) to a function Hq which satisfies

|Hq| ≤ C|wq|p−1, µ-a.e. in Ω.(6.44)

Applying Proposition 6.8 to qmn and (q′)mn and then taking the limit in Hm
q and Hm

q′ ,
we also have

|Hq(x)−Hq′(x)| ≤ C
(|q|+ |q′|)p p−2

p−1 |q − q′| 1
p−1w(x)p−1(6.45)

∀ q, q′ ∈ QM , µ-a.e. x in Ω

and

(Hq(x)−Hq′(x))(q − q′) ≥ α|q − q′|pw(x)p ∀ q, q′ ∈ QM , µ-a.e. x in Ω.

(6.46)

We define a function G : Ω×QM 7→ RM by

G(x, q) = Hq(x) ∀ q ∈ QM , µ-a.e. x in Ω(6.47)

and then we extend G to Ω×RM by continuity (see (6.45)). The function G satisfies
|G(x, s)| ≤ C|s|p−1w(x)p−1,

|G(x, s)−G(x, s′)| ≤ C(|s|+ |s′|)p p−2
p−1 |s1 − s2| 1

p−1w(x)p−1,
(G(x, s)−G(x, s′))(s− s′) ≥ α|s− s′|pw(x)p

(6.48)

for every s and s′ in RM and for µ-almost every x in Ω, and it is a Carathéodory
function with respect to the σ-finite measure wµ. Therefore, there exists a Borel
function F : Ω×RM → RM such that

F (x, s) = G

(
x,

s

w(x)

)
1{w>0}(x) + α|s|p−2s1{w=0} ∀ s ∈ RM , µ-a.e. x in Ω,

(6.49)

so that, by (6.48), F ∈ F(α,C, 1/(p− 1)).
In order to prove Theorem 6.4 it remains only to show that the pairs (µnj , Fnj )

γA-converge to (µ, F ). To carry this out, consider an open subset Ω′ of Ω and a
sequence of functionals (fnj ), with fnj ∈ (W 1,p

0 (Ω′,RM ) ∩ Lpµnj (Ω′,RM ))′, which

converges in the sense of (HΩ′) to a functional f ∈ (W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′.

We have to prove that if unj ∈W 1,p
0 (Ω′,RM )∩Lpµnj (Ω′,RM ) satisfies (5.2) and (6.1)
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 611

(with n replaced by nj), then any cluster point u of unj in the weak topology of
W 1,p(Ω′,RM ) satisfies (6.2). To simplify the notation, let us assume that the whole
sequence (unj ) converges weakly in W 1,p(Ω′,RM ) to u.

By Proposition 6.7, there exists a function H ∈ Lp′µ (Ω′,RM ) such that u satisfies
(6.14). Estimate (6.28), applied with un and zn replaced by unj and qmnj , gives

|H −Hm
q | ≤ C

(|u|+ |qm|)p p−2
p−1 |u− qm| 1

p−1 , µ-a.e. in Ω′,

and therefore, taking the limit as m tends to infinity we obtain

|H − F (x, qw)| ≤ C
(|u|+ |qw|)p p−2

p−1 |u− qw| 1
p−1 , µ-a.e. in Ω′,

which implies that for any step function ζ =
∑m
i=i qi1Bi , with Bi Borel subset of Ω′

and qi in QM , we get

|H − F (x, ζw)| ≤ C
(|u|+ |ζw|)p p−2

p−1 |u− ζw| 1
p−1 , µ-a.e. in Ω′.

Finally, Proposition 3.6 and the continuity property (III) of F imply that H(x) =
F (x, u(x)) µ-a.e. in Ω′, which concludes the proof.

7. Corrector. In this section, we shall fix the sequence (µn) in Mp
0(Ω) and

the sequence (Fn) in F(L), with L > 0, and we shall assume that (µn) γ−∆p-
converges to µ and the pairs (µn, Fn) γA-converge to (µ, F ), where µ ∈ Mp

0(Ω)
and F ∈ F(α,C, 1/(p − 1)). This implies that in Theorem 6.9 the solutions smn of
the problems (6.32) converge weakly in W 1,p

0 (Ω,RM ) to sm when n tends to infinity
without extracting any subsequence. Let us define Rmn : Ω×RM 7→MM×N by

Rmn (x, s) = Dsmn −D(sw).(7.1)

The following result gives an approach in Lp(Ω,MM×N ) of the gradient of the solution
un of problem (5.2).

Theorem 7.1. Let Ω′ be an open subset of Ω. Let (un) be a sequence, with un ∈
W 1,p(Ω′,RM )∩Lpµn(Ω′,RM ), which converges to a function u weakly in W 1,p(Ω′,RM )

and satisfies (6.1). Suppose there exists a sequence (fn), with fn ∈ (W 1,p
0 (Ω) ∩

Lpµn(Ω))′, which converges to f ∈ (W 1,p
0 (Ω) ∩ Lpµn(Ω))′ in the sense of (HΩ′) and

such that un satisfies problem (5.2).

Then, for every function ζ =
∑l
i=1 si1Ki with si in RM and Ki closed subsets of

Ω′ such that w = 0 µ-a.e. on Ki ∩Kj for i 6= j, we have

lim sup
m→∞

lim
n→∞

∫
K

|Dun −Du−Rmn (x, ζ)|pdx

≤ C
(∫

K

|u|p dµ+

∫
K

|wζ|p dµ
) p−2
p−1
(∫

K

|u− wζ|p dµ
) 1
p−1

,

(7.2)

where K =
⋃l
i=iKi and C is a positive constant which depends only on α, β, and L.

Remark 7.2. The heuristic idea of Theorem 7.1 is to show that the sequence
of the gradients of un is, except for a sequence which converges strongly to zero in
Lp(Ω,RM ), equal to the gradient of u plus a sequence of nonlinear functions of the
variables x and u(x). This explains the nonlinearity of the function F . If it were
possible to apply (7.2) by replacing ζ by u/w, we would get

lim
k→∞

lim sup
n→∞

∫
Ω

∣∣∣Dun −Du−Rmn (x, uw)∣∣∣p dx = 0.
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612 JUAN CASADO DIAZ AND ADRIANA GARRONI

But the choice ζ = u/w in (7.2) is not possible since we do not know, a priori, if
Rmn (x, s) is a Carathéodory function; so Rmn (x, u(x)) may not even be measurable.
We avoid this problem using the function wζ to approach u. This approach is always
possible by Proposition 3.6 part b.

Remark 7.3. When we consider Rmn (x, ζ), the value of ζ on Ki ∩Kj , i 6= j, is not
relevant. Indeed by taking in (7.2) un = u = 0 (then fn = 0) and ζ = s1Ki∩Kj we
deduce

lim sup
m→∞

lim sup
n→∞

∫
Ki∩Kj

Rmn (x, s) dx = 0 ∀ s ∈ RM .

Remark 7.4. If K is a compact subset of Ω′ such that µ(K) = 0, estimate (7.2)
with ζ = 0 implies that Dun converges strongly to Du in Lp(K,RM ).

Proof of Theorem 7.1. Let s ∈ RM and let K be a closed subset of Ω′. By Lemma
6.6, for every ϕ ∈ C∞c (Ω′,RM ), with ϕ ≥ 1K in Ω′, we have

lim sup
n→∞

∫
K

|D((un − smn )− (u− sm))|p dx

≤ C
(∫

Ω′
|u|pϕdµ+

∫
Ω′
|sm|pϕdµ

) p−2
p−1
(∫

Ω′
|u− sm|pϕdµ

) 1
p−1

.

(7.3)

If ϕ now decreases to 1K , by the fact that (sm) tends to sw strongly in W 1,p
0 (Ω,RM )∩

Lpµ(Ω,RM ) and from (7.3) we deduce

lim sup
m→∞

lim sup
n→∞

∫
K

|D((un − smn )− (u− sm))|p dx

≤ C
(∫

K

|u|p dµ+

∫
K

|sw|p dµ
) p−2
p−1
(∫

K

|u− sw|p dµ
) 1
p−1

.

(7.4)

Moreover, by inequality∣∣|ξ1|p − |ξ2|p∣∣ ≤ p(|ξ1|p−1 + |ξ2|p−1)|ξ1 − ξ2| ∀ ξ1, ξ2 ∈MM×N ,

we get ∣∣∣|D((un − smn )− (u− sm))|p − |D((un − smn )− (u− sw))|p
∣∣∣

≤ p
(
|D((un − smn )− (u− sm))|p−1 + |D((un − smn )− (u− sw))|p−1

)
|D(sm − sw)|,

and then by the strong convergence of (sm) in W 1,p
0 (Ω,RM ) we deduce

lim
m→∞ lim sup

n→∞

∫
K

∣∣∣|D((un − smn )− (u− sm))|p dx− |D((un − smn )− (u− sw))|p
∣∣∣ dx = 0.

Thus by (7.4) and the definition of Rmn , we get

lim sup
m→∞

lim sup
n→∞

∫
K

|D(un − u−Rmn (x, s))|p dx

≤ C
(∫

K

|u|p dµ +

∫
K

|sw|p dµ
) p−2
p−1
(∫

K

|u− sw|p dµ
) 1
p−1

.

(7.5)D
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 613

Consider now ζ =
∑l
i=1 si1Ki , with si ∈ RM and Ki closed subsets of Ω′ such

that w = 0 µ-a.e. on Ki ∩Kj , for i 6= j. By Lemma 4.5, we also have |u| = 0 µ-a.e.

on Ki ∩Kj , for i 6= j. Then, if K =
⋃l
i=1Ki, by using (7.5) and Hölder’s inequality

we get

lim sup
m→∞

lim sup
n→∞

∫
K

|Dun −Du−Rmn (x, ζ)|p dx

≤ lim sup
m→∞

lim sup
n→∞

l∑
i=1

∫
Ki

|D(un − u−Rmn (x, si))|p dx

≤ C

l∑
i=1

(∫
Ki

|u|p dµ+

∫
Ki

|wsi|p dµ
) p−2
p−1
(∫

Ki

|u− wsi|p dµ
) 1
p−1

= C
(∫

K

|u|p dµ+

∫
K

|wζ|p dµ
) p−2
p−1
(∫

K

|u− wζ|p dµ
) 1
p−1

,

which concludes the proof.

8. Particular cases. In this section, we shall prove that some assumptions on
the function a, as homogeneity or linearity, are inherited by function F . In [6] we
construct an example which shows that the function F in general can be nonlinear
and nonhomogeneous.

Homogeneous case. Let a be a function which satisfies conditions (i)–(v), as at
the beginning of section 5. Let us assume in addition that a satisfies the following
homogeneity condition:

(vi) for a.e. x ∈ Ω, for every t ∈ R, and for every ξ ∈MM×N ,

a(x, tξ) = |t|p−2ta(x, tξ).

Moreover, let (µn) be a sequence inMp
0(Ω), and let (Fn) be a sequence of functions

in F(L) which satisfies the following condition:
(VII) for every x ∈ Ω, for every t ∈ R, and for every s ∈ RM ,

Fn(x, ts) = |t|p−2tFn(x, s).

Under these assumptions we have the following result.
Theorem 8.1. If the function a satisfies conditions (i)–(vi) and the sequence

(Fn) satisfies conditions (I)–(VII), then in Theorem 6.4 the function F can be chosen
satisfying

F (x, ts) = |t|p−2tF (x, s)

for every x ∈ Ω, for every t ∈ R, and for every s ∈ RM .
Proof. Assumptions (vi) and (VII) imply that for every t ∈ R and for every

q ∈ QM , the solution qmn of (6.42) satisfies

(tq)mn = tqmn , µ-a.e. in Ω,

where (tq)mn is the solution of problem (6.42) with q replaced by tq, which converges,
according with Theorem 6.9, to some function (tq)m weakly in W 1,p

0 (Ω,RM ) for every
m ∈ N. Then taking the limit as n→∞ we have

(tq)m = tqm, µ-a.e. in Ω.
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614 JUAN CASADO DIAZ AND ADRIANA GARRONI

Therefore, the functions Hm
q and Hm

tq defined by (6.43) satisfy

Hm
tq = tHm

q , µ-a.e. in Ω

for every t ∈ R and for every q ∈ QM . Thus, using that for every q ∈ QM , the
function G(x, q) in the proof of Theorem 6.4 is defined as the limit in m of Hm

q ,
the continuity of G(x, s) with respect to the variable s and that the function F (x, s)
satisfies (6.49), we conclude the proof.

In this special case we have the following result for the correctors defined by (7.1).
Theorem 8.2. Assume that the function a and the sequence (Fn) satisfy, respec-

tively, properties (vi) and (VII). Then, the function Rmn defined by (7.1) satisfies

Rmn (x, ts) = tRmn (x, s)(8.1)

for almost every x ∈ Ω, for every s ∈ RM , and for every t ∈ R.
Proof. Assumptions (vi) and (VII) imply that, for every t ∈ R and for every

s ∈ RM , (ts)mn = tsmn , where smn is the solution of (6.32) and (ts)mn is the solution of
problem (6.32) with s replaced by ts. Thus the conclusion follows by the definition
of Rmn .

Linear case. Let us consider now the linear case, i.e., let us assume, with slight
abuse of notation, that the function a(x, ξ) is of the form a(x)ξ, where a(x) is a
measurable function from Ω on the linear applications from MM×N to MM×N which
satisfies these hypotheses:

(il) there exists a constant α > 0 such that for every ξ ∈ MM×N and for a.e.
x ∈ Ω, we have

a(x)ξξ ≥ α|ξ|2;

(iil) there exists a constant β > 0 such that for every ξ ∈ MM×N and for a.e.
x ∈ Ω, we have

|a(x)ξ| ≤ β|ξ|.
Remark 8.3. Hypotheses (il) and (iil) imply (i)–(v) at the beginning of section 5

for p = 2.
Let us denote by Fl(L), with L > 0, the class of all vector functions from Ω×RM

to RM which are linear in the second argument (i.e., of the form F (x)s) and which
satisfy the following two conditions:

(Il) for every s ∈ RM and for every x ∈ Ω we have

F (x)ss ≥ α|s|2 ;

(IIl) for every s ∈ RM and for every x ∈ Ω we have

|F (x)s| ≤ L|s|.
Remark 8.4. It is easy to see that the class Fl(L) defined above is contained in

the class F(L) defined in section 5.
We are now in a position to state the following result.
Theorem 8.5. Assume that in Theorem 6.4, Au = −div (a(x)Du), with a(x) sat-

isfying (il) and (iil), and that the sequence (Fn) belongs to Fl(L). Then, the function
F which appears in the statement of Theorem 6.4 can be chosen in the class Fl(L′),
with L′ > 0 different, in general, from L.
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 615

Proof. We have already shown in Theorem 8.1 that F is homogeneous in its
second argument. The additivity of F can be proved essentially with the same argu-
ment.

For the corrector result, as in section 7, let us assume that (µn) γ−∆-converges
to µ and that the pairs (µn, Fn) γA-converge to (µ, F ) according with Definition 6.2
(where Au = −div (a(x)Du)). In this case the function Rmn : Ω ×RM → MM×N is
given by Rmn (x, s) = Dsmn (x)−D(ws)(x), where for every s ∈ RM , smn is the solution
of the problem

smn ∈ H1
0 (Ω,RM ) ∩ L2

µn(Ω,RM ),∫
Ω

a(x)Dsmn Dv dx +

∫
Ω

Fn(x)smn v dµn = m

∫
Ω

(wns− smn )v dx

∀ v ∈ H1
0 (Ω,RM ) ∩ L2

µn(Ω,RM ).

(8.2)

Clearly, the functions Rmn are linear in their second argument, and hence they are
Carathéodory functions. This allows us to improve Theorem 7.1.

Theorem 8.6. Let Ω′ be an open subset of Ω. Let (un), with un ∈ H1(Ω′,RM )∩
L2
µn(Ω′,RM ), be a sequence which converges weakly in H1(Ω′,RM ) to some function u

and satisfies (6.1). Assume also that there exists a sequence (fn), with fn belonging to
(H1

0 (Ω′,RM ) ∩ L2
µn(Ω′,RM ))′, converging to some functional f ∈ (H1

0 (Ω,RM ) ∩
L2
µ(Ω,RM ))′ in the sense of (HΩ′), such that (un) satisfies the following problem:

un ∈ H1(Ω′,RM ) ∩ L2
µn(Ω′,RM ),∫

Ω

a(x)DunDv dx+

∫
Ω

Fn(x)unv dµn = 〈fn, v〉

∀ v ∈ H1
0 (Ω′,RM ) ∩ L2

µn(Ω′,RM ).

(8.3)

Then, for every function ψ ∈ H1(Ω′,RM ) ∩ L∞(Ω′,RM ) and for every closed set
K ⊂ Ω, we have

lim sup
m→∞

lim sup
n→∞

∫
K

|Dun −Du−Rmn (x)ψ|2dx ≤ C

∫
K

|u− wψ|2 dµ.(8.4)

In particular, if u/w belongs to L∞(K,RM ), then we have

lim sup
m→∞

lim sup
n→∞

∫
K

∣∣∣Dun −Du−Rmn (x)
u

w

∣∣∣2 dx = 0.(8.5)

In order to prove Theorem 8.6, we need some preliminary lemmas.
Lemma 8.7. Let W = sup{‖wn‖L∞(Ω)}. Then for every s ∈ RM , the solutions

smn of (8.2) satisfy

lim sup
m→∞

lim sup
n→∞

∫
{|smn |≥2kW |s|}

|Dsmn |2dx ≤ C
|s|2
k

∀ k ∈ N.(8.6)

Proof. For any j ∈ N, let us consider the function Φj : RM 7→ RM defined by

Φj(ζ) =


0 if |ζ| ≤ 2j−1W |s|,
|ζ| − 2j−1W |s|

2j−1W |s| ζ if 2j−1W |s| < |ζ| < 2jW |s|,

ζ if |ζ| ≥ 2jW |s|.

(8.7)D
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616 JUAN CASADO DIAZ AND ADRIANA GARRONI

Taking Φj(s
m
n ) as a test function in (8.2), we get∫

Ω

a(x)Dsmn D[Φj(s
m
n )] dx+

∫
Ω

Fn(x)smn Φj(s
m
n ) dµn +m

∫
Ω

(smn −wns)Φj(smn ) dx = 0,

which implies

α

∫
{|smn |≥2jW |s|}

|Dsmn |2 dx

≤ −
∫
{2j−1W |s|≤|smn |<2jW |s|}

a(x)Dsmn D[Φj(s
m
n )] dx+m

∫
Ω

|smn − wns||Φj(smn )| dx

≤ C

∫
{2j−1W |s|≤|smn |<2jW |s|}

|Dsmn |2 dx+m

∫
Ω

|smn − wns||Φ1(smn )| dx,
(8.8)
where we used that |Φj(smn )| ≤ |Φ1(smn )| for every j ∈ N, and the fact that, in the set
{2j−1W |s| ≤ |smn | < 2jW |s|}, we haveD[Φj(s

m
n )] = Dsmn (2|smn |−2j−1W |s|)/2j−1W |s|,

and hence |D[Φj(s
m
n )]| ≤ 3|Dsmn |.

On the other hand, by (6.38) we can see that for every k ∈ N we have

k∑
j=1

∫
{2j−1W |s|≤|smn |<2jW |s|}

|Dsmn |2 dx ≤
∫

Ω

|Dsmn |2 dx ≤ C|s|2

and therefore, for every k ∈ N, there exists j(k), with 1 ≤ j(k) ≤ k, such that∫
{2j(k)−1W |s|≤|smn |<2j(k)W |s|}

|Dsmn |2 dx ≤ C
|s|2
k
.

By (8.8), applied with j(k), we deduce that for any k ∈ N we have∫
{|smn |≥2kW |s|}

|Dsmn |2 dx

≤
∫
{|smn |≥2j(k)W |s|}

|Dsmn |2 dx ≤ C
|s|2
k

+m

∫
Ω

|smn − wns||Φ1(smn )| dx,

thus taking the limit as n→∞ and using that Φ1(ws) = 0, we obtain

lim sup
n→∞

∫
{|smn |≥2kW |s|}

|Dsmn |2 dx ≤ C
|s|2
k

+m

∫
Ω

|sm − ws||Φ1(sm)− Φ1(ws)| dx

≤ C
|s|2
k

+ Cm

∫
Ω

|sm − ws|2 dx.

Since, by Theorem 6.9, the second term on the right-hand side tends to zero when m
tends to infinity, estimate (8.6) is proved.

Lemma 8.8. For every function ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), with ϕ ≥ 0, we have

lim sup
m→∞

lim sup
n→∞

∫
Ω

|Rmn (x)|2ϕdx ≤ C

∫
Ω

w2ϕdµ.(8.9)

Proof. Let s ∈ RM , with |s| ≤ 1. Let us define Ψk : RM 7→ RM by Ψk(ζ) =
ζ − Φk(ζ), where Φk is the function defined by (8.7). Taking Ψk(smn − wns)ϕ, with
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 617

ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) and ϕ ≥ 0, as a test function in (8.2), we have∫

Ω

a(x)Dsmn D[Ψk(smn − wns)]ϕdx+

∫
Ω

a(x)Dsmn Ψk(smn − wns)⊗Dϕdx

+m

∫
Ω

(smn − wns)Ψk(smn − wns)ϕdx+

∫
Ω

Fn(x)smn Ψk(smn − wns)ϕdµn = 0,

where the second term tends to zero when n and then m tend to infinity and where
the third term in the left-hand side is positive. This permits us to write

α

∫
{|smn −wns|≤2k−1W |s|}

|D(smn − wns)|2ϕdx+

∫
Ω

Fn(x)(smn − wns)Ψk(smn − wns)ϕdµn

≤ C

∫
{2k−1W |s|<|smn −wns|<2kW |s|}

|Dsmn ||D(smn − wns)|ϕdx

+C

∫
{|smn −wns|≤2k−1W |s|}

|D(wns− ws)||D(smn − wns)|ϕdx(8.10)

+C

∫
{|smn −wns|≤2k−1W |s|}

|Dws||D(smn − wns)|ϕdx

+C

∫
Ω

|wns||Ψk(smn − wns)|ϕdµn + om,n.

Since for k ≥ 2

|smn | ≥ |smn − wns| − |wns| ≥ |smn − wns| −W |s| ≥ 2k−2W |s|(8.11)

in the set {|smn − wns| ≥ 2k−1W |s|}, by Hölder’s inequality, (6.38), and Lemma 8.7,
we obtain∫
{2k−1W |s|<|smn −wns|<2kW |s|}

|Dsmn ||D(smn − wns)|ϕdx ≤ C
‖ϕ‖L∞(Ω)√

k − 2
|s|2 + om,n.

By the definition of Ψk and (Il), we have∫
Ω

Fn(x)(smn − wns)Ψk(smn − wns)ϕdµn ≥ α

∫
Ω

(smn − wns)Ψk(smn − wns)ϕdµn

≥ α

∫
Ω

|Ψk(smn − wns)|2ϕdµn.

Therefore, using Young’s inequality in (8.10) and taking into account that |s| ≤ 1 and
that the third term of the right-hand side of (8.10) tends to zero when n and m tend
to infinity, we get∫

{|smn −wns|≤2k−1W |s|}
|D(smn − wns)|2ϕdx+

∫
Ω

|Ψk(smn − wns)|2ϕdµn

≤ C

[‖ϕ‖L∞(Ω)√
k − 2

+

∫
Ω

|D(wns− ws)|2ϕdx+

∫
Ω

|wns|2ϕdµn
]

+ om,n

≤ C
‖ϕ‖L∞(Ω)√

k − 2
+ C

∫
Ω

w2ϕdµ+ om,n,

(8.12)
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618 JUAN CASADO DIAZ AND ADRIANA GARRONI

where in the last inequality we used Lemma 4.2. Thus by (8.12), (8.11), and Lemmas
8.7 and 4.2, we have ∫

Ω

|Rmn (x)s|2ϕdx =

∫
Ω

|D(smn − ws)|2ϕdx

≤ 2

∫
{|smn −wns|≤2k−1W |s|}

|D(smn −wns)|2ϕdx+2

∫
{|smn −wns|≤2k−1W |s|}

|D(wns−ws)|2ϕdx

+ 2

∫
{|smn −wns|>2k−1W |s|}

|Dsmn |2ϕdx+ 2

∫
{|smn −wns|>2k−1W |s|}

|D(ws)|2ϕdx

≤ C‖ϕ‖L∞(Ω)

( 1√
k − 2

+
1

k − 2

)
+ C

∫
Ω

w2ϕdµ+ om,n,

which by the arbitrariness of k implies

lim sup
m→∞

lim sup
n→∞

∫
Ω

|Rmn (x)s|2ϕdx ≤ C

∫
Ω

w2ϕdµ.

Since

|Rmn (x)| = max{|Rmn (x)s| : |s| ≤ 1} ≤
N∑
i=1

|Rmn (x)ei|,

where {ei : i ≤ i ≤ N} is the canonical basis of RN , Lemma 8.8 is proved.
Remark 8.9. If in Lemma 8.8, ϕ belongs to C∞c (Ω), then estimate (8.9) may be

easily deduced from estimate (6.9) in Lemma 6.6. Remark also that Lemmas 8.7 and
8.8 can be easily generalized to the nonlinear case.

Proof of Theorem 8.6. By Lemma 8.8, for every closed K ⊂ Ω′ and for every
function ψ ∈ H1(Ω′,RM ), with ψ ≥ 0, we have

lim sup
m→∞

lim sup
n→∞

∫
K

|Rnm(x)|2ψ dx ≤ C

∫
K

w2ψ dµ.(8.13)

Indeed it is enough in (8.9) to take ϕ equals to ϕnψ, with ϕn ∈ H1
0 (Ω′,RM ) ∩

L∞(Ω′,RM ) decreasing to the characteristic function of K.
Consider ψ ∈ H1(Ω′,RM ) ∩ L∞(Ω′,RM ) and let K be a closed subset of Ω′. By

Theorem 7.1, for any function ζ =
∑l
i=1 si1Ki , with si ∈ R and Ki closed subsets of

Ω′, such that K =
⋃l
i=1Ki and w = 0 µ-a.e. on Ki ∩Kj , for i 6= j, we have∫

K

|Dun −Du−Rmn (x)ψ|2 dx

≤ 2

∫
K

|Dun −Du−Rmn (x)ζ|2 dx+ 2

∫
K

|Rmn (x)|2|ψ − ζ|2 dx

≤ C

∫
K

|u− wζ|2 dµ+ 2
l∑
i=1

∫
Ki

|Rmn (x)|2|ψ − si|2 dx+ om,n

≤ C

∫
K

|u− wζ|2 dµ+ C
l∑
i=1

∫
Ki

|wψ − siw|2 dµ+ om,n

= C

∫
K

|u− wζ|2 dµ+ C

∫
K

|wψ − wζ|2 dµ+ om,n,

(8.14)
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 619

where we used (8.13). In order to obtain (8.4), it is enough to take ζ = ζk, where
(ζk) is a sequence of step functions such that (wζk) converges strongly to wψ in
L2
µ(Ω′,RM ).

Assume now that u/w belongs to L∞(K,RM ) and take ε > 0. By estimates (8.4)
and (8.13), we get ∫

K

∣∣∣Dun −Du−Rmn (x)
u

w

∣∣∣2 dx
≤
∫
K

∣∣∣∣Dun −Du−Rmn (x)
u

w + ε

∣∣∣∣2 dx+

∫
K

|Rmn (x)|2
∣∣∣∣ u

w + ε
− u

w

∣∣∣∣2 dx
≤
∫
K

∣∣∣∣u− wu

w + ε

∣∣∣∣2 dµ+ Cε2
∥∥∥ u
w

∥∥∥2

L∞(K,RM )

∫
K

|Rmn (x)|2 1

(w + ε)2
dµ+ om,n

≤
∫
K

∣∣∣∣u− wu

w + ε

∣∣∣∣2 dµ+ Cε2
∥∥∥ u
w

∥∥∥2

L∞(K,RM )

∫
K

w2

(w + ε)2
dµ+ om,n.

(8.15)

By using that u belongs to L2
µ(Ω,RM ) and the dominated convergence theorem, the

first integral of the right-hand side of (8.15) tends to zero when ε tends to zero. Since

εw

(w + ε)2
=

ε

w + ε

w

w + ε
≤ 1,

and hence by the fact that ν = wp−1µ is a Radon measure,

ε

∫
K

w2

(w + ε)2
dµ ≤

∫
K

w dµ < +∞,

we get that the second integral on the right-hand side of (8.15) tends to zero when ε
tends to zero. We deduce (8.5) taking the limit in n, m, and then in ε.

9. Asymptotically equivalent operators. We saw in the previous sections
that the properties of the function F which appears in the limit problem (6.2) are
strictly related to the properties of the function a which define the differential operator
A. The next proposition shows, in some sense, how the function F depends on the
behavior of a(x, ξ) when |ξ| is large.

Let ã : Ω×MM×N →MM×N be a Carathéodory function which satisfies condi-
tions (i)–(v), and suppose that the following property

lim
|ξ|→∞

|a(x, ξ)− ã(x, ξ)|
|ξ|p−1

= 0(9.1)

holds uniformly with respect to x in Ω. Let Ã be the differential operator given by
Ãu = −div (ã(x,Du)).

Proposition 9.1. Suppose that the pair (µn, Fn), according to Definition 6.2,
γA-converges to (µ, F ).

If the functions a and ã satisfy condition (9.1), then we also have that (µn, Fn)

γÃ-converges to (µ, F ).

Proof. According to the definition of the γÃ-convergence, we have to show
that for any open subset Ω′ of Ω, for any sequence of functionals (fn), with fn ∈
(W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ))′, which converges to some f ∈ (W 1,p
0 (Ω′,RM ) ∩
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620 JUAN CASADO DIAZ AND ADRIANA GARRONI

Lpµ(Ω′,RM ))′ in the sense of (HΩ′), and for any sequence (un) which satisfies (6.1)
and 

un ∈W 1,p(Ω′,RM ) ∩ Lpµn(Ω′,RM ),∫
Ω′
ã(x,Dun)Dv dx+

∫
Ω′
Fn(x, un)v dµn = 〈fn, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ),

(9.2)

every cluster point of the sequence (un) in the weak topology of W 1,p(Ω′,RM ) satisfies
problem 

u ∈W 1,p(Ω′,RM ) ∩ Lpµ(Ω′,RM ),∫
Ω′
ã(x,Du)Dv dx+

∫
Ω′
F (x, u)v dµ = 〈f, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ).

(9.3)

If un satisfies (9.2), then it also satisfies


un ∈W 1,p(Ω′,RM ) ∩ Lpµn(Ω′,RM ),∫

Ω′
a(x,Dun)Dv dx+

∫
Ω′
Fn(x, un)v dµn = 〈gn, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ),

where gn = fn−div [a(x,Dun)−ã(x,Dun)]. Therefore, once we show that (div [a(x,Dun)−
ã(x,Dun)]) converges in the sense of (HΩ′) to div [a(x,Du) − ã(x,Du)], by the γA-
convergence of (µn, Fn) to (µ, F ), we can deduce that u satisfies (9.3).

In order to prove that (−div [ã(x,Dun) − a(x,Dun)]) converges in the sense of
(HΩ′), let us consider vn ∈ W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ) such that (vn) converges

weakly to some v in W 1,p
0 (Ω′,RM ). Since by Proposition 5.4 the sequence (Dun)

converges to Du pointwise a.e. in Ω′, by Egorov’s theorem, for every δ > 0, there
exists a set E ⊆ Ω′, with |E| < δ, such that (Dun) converges uniformly to Du in
Ω′ \ E. Thus we get

lim
n→∞

∫
Ω′

[ã(x,Dun)− a(x,Dun)]Dvn dx

=

∫
Ω′\E

[ã(x,Du)− a(x,Du)]Dv dx+ lim
n→∞

∫
E

[ã(x,Dun)− a(x,Dun)]Dvn dx.
(9.4)

Let us estimate the last limit in (9.4). By (9.1), for every ε > 0 there exists M > 0
such that

|ã(x, ξ)− a(x, ξ)| ≤ ε|ξ|p−1

whenever |ξ| > M . Thus, since (vn) and (un) are bounded in W 1,p(Ω′,RM ), by
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 621

Hölder’s inequality, we get

lim
n→∞

∣∣∣∫
E

[ã(x,Dun)− a(x,Dun)]Dvn dx
∣∣∣

≤ lim
n→∞

∫
E∩{|Dun|>M}Ω′

|ã(x,Dun)− a(x,Dun)||Dvn| dx

+

∫
E∩{|Dun|≤M}Ω′

|ã(x,Dun)− a(x,Dun)||Dvn| dx ≤ C(ε+Mp−1δ(p−1)/p).

(9.5)

Now taking the limit as δ goes to zero and then the limit as M goes to infinity, by
(9.4) and (9.5) we obtain

lim
n→∞

∫
Ω′

[ã(x,Dun)− a(x,Dun)]Dvn dx =

∫
Ω′

[ã(x,Du)− a(x,Du)]Dv dx,

which concludes the proof.
Corollary 9.2. Let (Fn) be a sequence in F(L) which satisfies condition

(VI) and assume that the function a satisfies the following condition: There exists
a Carathéodory function ã such that

lim
t→∞

a(x, tξ)

|t|p−2t
= ã(x, ξ)(9.6)

uniformly in x, for every ξ ∈MM×N .
Suppose that the pair (µn, Fn), according to Definition 6.2, γA-converges to (µ, F ).

Then the function F also satisfies condition (VI).
Proof. It is easy to see that ã satisfies conditions (i)–(vi) and that condition

(9.6) implies condition (9.1). Thus by the previous theorem the sequence of pairs

(Fn, µn) γÃ-converges to (µ, F ) and by Theorem 8.1 the function F satisfies condition
(VI).

10. General operators. In this section we shall prove that the results given
in the previous sections hold for a class of more general operators. Actually, let
2 ≤ p < +∞ and let b : Ω ×RM ×MM×N 7→ MM×N be a Carathéodory function
such that:

(i′) there exists a constant α > 0 such that

(b(x, 0, ξ1)− b(x, 0, ξ2))(ξ1 − ξ2) ≥ α|ξ1 − ξ2|p

for every s ∈ RM , for every ξ1, ξ2 ∈MM×N , and for a.e. x ∈ Ω;
(ii′) there exists a constant β > 0 and a function h ∈ L p

p−2 (Ω) (p/(p − 2) = +∞
if p = 2) such that

|b(x, 0, ξ1)− b(x, 0, ξ2)| ≤ β(h(x) + (|ξ1|+ |ξ2|)p−2)|ξ1 − ξ2|
for every ξ1, ξ2 ∈MM×N and for a.e. x ∈ Ω;

(iii′) there exists a constant γ > 0 and a function k ∈ Lp′(Ω) such that

|b(x, s1, ξ)− b(x, s2, ξ)| ≤ γ
(
k(x) + (|s1|+ |s2|)q + |ξ|r)min{|s1 − s2|, 1}

for every s1, s2 ∈ RM , for every ξ ∈MM×N and for a.e. x ∈ Ω, where q and
r are constants which satisfy 0 ≤ q < N(p − 1)/(N − p) if p < N , q ≥ 0 if
p ≥ N and 0 ≤ r < p− 1.
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622 JUAN CASADO DIAZ AND ADRIANA GARRONI

(iv′) b(·, 0, 0) ∈ Lp′(Ω).
Under these hypotheses on the operator Bu = −div(b(x, u,Du)), we have the

following generalizations of Definition 6.2 and Theorem 6.4.
Definition 10.1. Let (µn) be a sequence in Mp

0(Ω), let (Fn) be a sequence in
F(c1, c2, σ), let µ ∈Mp

0(Ω) and F ∈ F(c1, c2, σ). We say that the pairs (µn, Fn) γB-
converge (in Ω) to the pair (µ, F ) if the following property holds: for any open set Ω′ ⊆
Ω, for any sequence of functionals (fn), with fn ∈ (W 1,p

0 (Ω′,RM ) ∩ Lpµn(Ω′,RM ))′,
which converges to some f ∈ (W 1,p

0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′ in the sense of (HΩ′)
(according to Definition 5.1), and for any sequence (un) of solutions of the problems

un ∈W 1,p(Ω′,RM ) ∩ Lpµn(Ω′,RM ),∫
Ω′
b(x, un, Dun)Dv dx+

∫
Ω′
Fn(x, un)v dµn = 〈fn, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµn(Ω′,RM )

(10.1)

satisfying (6.1), all cluster points of the sequence (un) in the weak topology of
W 1,p(Ω′,RM ) satisfy the following problem:

u ∈W 1,p(Ω′,RM ) ∩ Lpµ(Ω′,RM ),∫
Ω′
b(x, u,Du)Dv dx +

∫
Ω′
F (x, u)v dµ = 〈f, v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ).

(10.2)

Remark 10.2. If (un) is a sequence of solutions of problems (10.1) then the
assertion of Proposition 5.4 can be proved using the same argument.

Theorem 10.3. Let (µn) be a sequence of measures in Mp
0(Ω) and let (Fn) be a

sequence in F(L), with L > 0. Then there exists an increasing sequence of integers
(nj), a measure µ ∈ Mp

0(Ω), and a function F ∈ F(α,C, 1/(p − 1)) such that the
pairs (µnj , Fnj ) γ

B-converge to (µ, F ) in Ω (according to Definition 10.1).
Proof. The above hypotheses on b(x, s, ξ) imply that the application a : Ω ×

MM×N 7→MM×N defined by a(x, ξ) = b(x, 0, ξ)−b(x, 0, 0) satisfies conditions (i)–(v)
in section 5 and then, by Theorem 6.4, there exists an increasing sequence of integers
(nj), a measure µ ∈Mp

0(Ω), and a function F ∈ F(α,C, 1/(p−1)) such that the pairs
(µnj , Fnj ) γ

A-converge to (µ, F ) in Ω (according to Definition 6.2). Let us see that
the pairs (µnj , Fnj ) γ

B-converge to (µ, F ) in Ω (according to Definition 10.1). Let us

consider a sequence of functionals (fnj ), with fnj ∈ (W 1,p
0 (Ω′,RM )∩Lpµnj (Ω′,RM ))′,

which converges to some f ∈ (W 1,p
0 (Ω′,RM ) ∩ Lpµ(Ω′,RM ))′ in the sense of (HΩ′), a

sequence (unj ) which satisfies (10.1) (with n replaced by nj) and (6.1), and a cluster
point u of the sequence (unj ) in the weak topology of W 1,p(Ω′,RM ). We have to
prove that u satisfies problem (10.2). In order to simplify the notation, we shall still
denote by (unj ) the subsequence of (unj ) which converges weakly in W 1,p(Ω′,RM ) to
u. By (10.1), the sequence (unj ) satisfies

unj ∈W 1,p(Ω′,RM ) ∩ Lpµnj (Ω′,RM ),∫
Ω′
a(x,Dunj )Dv dx +

∫
Ω′
F (x, unj )v dµ = 〈fnj , v〉 − 〈gnj , v〉

∀ v ∈W 1,p
0 (Ω′,RM ) ∩ Lpµnj (Ω′,RM ),

(10.3)
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ASYMPTOTIC BEHAVIOR OF NONLINEAR ELLIPTIC SYSTEMS 623

where gnj = −div
(
b(x, unj , Dunj )− b(x, 0, Dunj )− b(x, 0, 0)

)
. To conclude the proof

it is enough to show that the sequence (gnj ) converges in the sense of (HΩ′) to the
functional g = −div

(
b(x, u,Du)− b(x, 0, Du)− b(x, 0, 0)

)
. By (iii′) we have∣∣b(x, unj , Dunj )− b(x, 0, Dunj )∣∣ ≤ γ(k + |unj |q + |Dunj |r)|unj |.(10.4)

By Remark 10.2, Dunj converges pointwise toDu, and then the left-hand side of (10.4)
converges pointwise to b(x, u,Du)−b(x, 0, Du), and the power p′ of the right-hand side
is uniformly integrable. This implies that (b(x, unj , Dunj )− b(x, 0, Dunj )) converges

strongly in Lp
′
(Ω′) to b(x, u,Du)− b(x, 0, Du), which concludes the proof.
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