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Abstract. We give examples of results on composition operators connected with
lens maps. The first two concern the approximation numbers of those operators
acting on the usual Hardy space H2. The last ones are connected with Hardy-
Orlicz and Bergman-Orlicz spaces Hψ and Bψ, and provide a negative answer
to the question of knowing if all composition operators which are weakly compact
on a non-reflexive space are norm-compact.
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1 Introduction

We first recall the context of this work, which appears as a continuation of
[9], [10], [11], [14] and [15].

Let D be the open unit disk of the complex plane and H(D) be the space
of holomorphic functions on D. To every analytic self-map ϕ : D → D (also
called Schur function), a linear map Cϕ : H(D) → H(D) can be associated
by Cϕ(f) = f ◦ ϕ. This map is called the composition operator of symbol ϕ.
A basic fact of the theory ([21], page 13, or [4], Theorem 1.7) is Littlewood’s
subordination principle which allows to show that every composition operator
induces a bounded linear map from the Hardy space Hp into itself, 1 ≤ p <∞.

In this work, we are specifically interested in a one-parameter family (a semi-
group) of Schur functions: lens maps ϕθ, 0 < θ < 1, whose definition is given
below. They turn out to be very useful in the general theory of composition
operators because they provide non trivial examples (for example, they gener-
ate compact and even Hilbert-Schmidt operators on the Hardy space H2 [21],
page 27). The aim of this work is to illustrate that fact by new examples.
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We show in Section 2 that, as operators on H2, the approximation numbers
of Cϕθ behave as e−cθ

√
n. In particular, the composition operator Cϕθ is in all

Schatten classes Sp, p > 0. In Section 3, we show that, when one “spreads”
these lens maps, their approximation numbers become greater, and the associ-
ated composition operator Cϕ̃θ is in Sp if and only if p > 2θ. In Section 4, we
answer to the negative a question of H.-O. Tylli: is it true that every weakly com-
pact composition operator on a non-reflexive Banach function space is actually
compact ? We show that there are composition operators on a (non-reflexive)
Hardy-Orlicz spaces, which are weakly compact and Dunford-Pettis, though not
compact and that there are composition operators on a non-reflexive Bergman-
Orlicz space which are weakly compact but not compact. We also show that
there are composition operators on a non-reflexive Hardy-Orlicz space which are
weakly compact but not Dunford-Pettis.

We give now the definition of lens maps (see [21], page 27).

Definition 1.1 (Lens maps) The lens map ϕθ : D → D with parameter θ,
0 < θ < 1, is defined by:

(1.1) ϕθ(z) =
(1 + z)θ − (1 − z)θ

(1 + z)θ + (1 − z)θ
, z ∈ D.

In a more explicit way, ϕθ is defined as follows. Let H be the open right
half-plane, and T : D → H be the (involutive) conformal mapping given by

(1.2) T (z) =
1− z

1 + z
·

We denote by γθ the self-map of H defined by

(1.3) γθ(w) = wθ = eθ logw,

where log is the principal value of the logarithm and finally ϕθ : D → D is defined
by

(1.4) ϕθ = T−1 ◦ γθ ◦ T.

Those lens maps form a continuous curve of analytic self-maps from D into
itself, and an abelian semi-group for the composition of maps since we obviously
have from (1.4) and the rules on powers that ϕθ(0) = 0 and:

(1.5) ϕθ ◦ ϕθ′ = ϕθ′ ◦ ϕθ = ϕθθ′ .

Acknowledgement. The fourth-named author is partially supported by a
Spanish research project MTM 2009-08934.
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2 Approximation numbers of lens maps

For every operator A : H2 → H2, we denote by

an(A) = inf
rankR<n

‖A−R‖ , n = 1, 2, . . .

its n-th approximation number. We refer to [2] for more details on those ap-
proximation numbers.

Recall ([24], page 18) that the Schatten class Sp on H2 is defined by

Sp = {A : H2 → H2 ; (an(A))n ∈ ℓp}, p > 0.

S2 is the Hilbert-Schmidt class and the quantity ‖A‖p =
(
∑∞

n=1(an(A))
p
)1/p

is
a Banach norm on Sp for p ≥ 1.

We can now state the following theorem:

Theorem 2.1 Let 0 < θ < 1 and ϕθ be the lens map defined in (1.1). There
are positive constants a, b, a′, b′ depending only on θ such that

(2.1) a′ e−b
′
√
n ≤ an(Cϕθ ) ≤ a e−b

√
n.

In particular, Cϕθ lies in all Schatten classes Sp, p > 0.

The lower bound in (2.1) was proved in [15], Proposition 6.3. The fact that
Cϕθ lies in all Schatten classes was first proved in [22] under a qualitative form
(see the very end of that paper).

The upper bound will be obtained below as a consequence of a result of
O. G. Parfenov ([19]). However, an idea of infinite divisibility, which may be
used in other contexts, leads to a simpler proof, though it gives a worse estimate
in (2.1):

√
n is replaced by n1/3. We shall begin by giving this proof, because

it is quite short. It relies on the semi-group property (1.5) and on an estimate
of the Hilbert-Schmidt norm ‖Cϕα‖2 in terms of α, as follows:

Lemma 2.2 There exist numerical constants K1,K2 such that:

(2.2)
K1

1− α
≤ ‖Cϕα‖2 ≤ K2

1− α
, for all 0 < α < 1.

In particular, we have

(2.3) an(Cϕα) ≤
K2√

n(1− α)
·

Proof. The relation (2.3) is an obvious consequence of (2.2) since

n
[

an(Cϕα)
]2 ≤

n
∑

j=1

[

aj(Cϕα)
]2 ≤

∞
∑

j=1

[

aj(Cϕα)
]2

= ‖Cϕα‖22 ≤ K2
2

(1− α)2
·
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For the first part, let a = cos(απ/2) = sin((1 − α)π/2) ≥ 1 − α and let
σ = T (m) (m is the normalized Lebesgue measure dm(t) = dt/2π on the unit
circle) be the probability measure carried by the imaginary axis which satisfies:

∫

H

f dσ =

∫ ∞

−∞
f(iy)

dy

π(1 + y2)
·

By definition, T , defined in (1.2), is a unitary operator from H2(D,m) into
H2(H, σ), and we easily obtain, setting γ(y) = γα(iy) = ei(π/2)α sign (y)|y|α
(where sign is the sign of y and γα is defined in (1.3)), that (see [21], section 2.3):

‖Cϕα‖22 =

∫

T

dm

1− |ϕα|2
=

∫

H

dσ

1−
∣

∣

1−γ
1+γ

∣

∣

2 =

∫

H

|1 + γ|2
4Re γ

dσ

=

∫ +∞

−∞

|1 + γ(y)|2
4a |y|α

dy

π(1 + y2)

≤ K

1− α

∫ +∞

0

1 + y2α

yα
dy

1 + y2
=

2K

1− α

∫ +∞

0

yα

1 + y2
dy

≤ 4K

(1− α)2
,

where K is a numerical constant. This gives the upper bound in (2.2) and the
lower one is obtained similarly. �

We can now finish the first proof of Theorem 2.1. Let k be a positive integer
and let

αk = θ1/k,

so that αkk = θ.
Now use the well-known sub-multiplicativity ap+q−1(vu) ≤ ap(v) aq(u) of

approximation numbers ([18], page 61), as well as the semi-group property (1.5)
(which implies Cϕθ = Ckϕαk

), and (2.3). We see that:

akn(Cϕθ ) = akn(C
k
ϕαk

) ≤
[

an(Cϕαk )
]k ≤

[

K2

(1− αk)
√
n

]k

.

Observe that

1− αk ≥ 1− αkk
k

=
1− θ

k
·

We then get, c = cθ denoting a constant which only depends on θ:

akn(Cϕθ ) ≤
( k

c
√
n

)k

.

Set d = c/e and take k = d
√
n, ignoring the questions of integer part. We

obtain:
adn3/2(Cϕθ ) ≤ e−k = e−d

√
n.
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Setting N = dn3/2, we get

(2.4) aN (Cϕθ ) ≤ a e−bN
1/3

for an appropriate value of a and b and for any integer N ≥ 1. This ends our
first proof, with an exponent slightly smaller that the right one (1/3 instead of
1/2), yet more than sufficient to prove that Cϕθ ∈ ∩p>0Sp. �

Remark. Since the estimate (2.3) is rather crude, it might be expected that,
using (2.4), and iterating the process, we could obtain a better one. This is
not the case, and this iteration leads to (2.4) and the exponent 1/3 again (with
different constants a and b).

Proof of Theorem 2.1. This proof will give the correct exponent 1/2 in the
upper bound. Moreover, it works more generally for Schur functions whose
image lies in polygon inscribed in the unit disk. This upper bound appears, in a
different context and under a very cryptic form, in [19]. First note the following
simple lemma.

Lemma 2.3 Suppose that a, b ∈ D satisfy |a−b| ≤M min(1−|a|, 1−|b|), where
M is a constant. Then:

d(a, b) ≤ M√
M2 + 1

:= χ < 1.

Here d is the pseudo-hyperbolic distance defined by:

d(a, b) =
∣

∣

∣

a− b

1− ab

∣

∣

∣
a, b ∈ D.

Proof. Set δ = min(1− |a|, 1− |b|). We have the identity

1

d2(a, b)
− 1 =

(1 − |a|2)(1− |b|2)
|a− b|2 ≥ (1 − |a|)(1− |b|)

|a− b|2 ≥ δ2

M2δ2
=

1

M2
,

hence the lemma. �

The second lemma gives an upper bound for aN (Cϕ). In this lemma, κ is
a numerical constant, S(ξ, h) the usual pseudo-Carleson window centered at
ξ ∈ T (where T = ∂D is the unit circle) and of radius h (0 < h < 1), defined by:

(2.5) S(ξ, h) = {z ∈ D ; |z − ξ| ≤ h},
and mϕ is the pull-back measure of m, the normalized Lebesgue measure on T,
by ϕ∗. Recall that if f ∈ H(D), one sets fr(eit) = f(reit) for 0 < r < 1 and, if
the limit exists m-almost everywhere, one sets:

(2.6) f∗(eit) = lim
r→1−

f(reit).

Actually, we shall do write f instead of f∗. Recall that a measure µ on D is called
a Carleson measure if there is a constant c > 0 such that µ

[

S(ξ, h)
]

≤ c h for all
ξ ∈ T. Carleson’s embedding theorem says that µ is a Carleson measure if and
only if the inclusion map from H2 into L2(µ) is bounded (see [4], Theorem 9.3,
for example).
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Lemma 2.4 Let B be a Blaschke product with less than N zeroes (each zero
being counted with its multiplicity). Then, for every Schur function ϕ, one has:

(2.7) a2N :=
[

aN (Cϕ)
]2 ≤ κ2 sup

0<h<1,ξ∈T

1

h

∫

S(ξ,h)

|B|2 dmϕ,

for some universal constant κ > 0.

Proof. The subspace BH2 is of codimension ≤ N − 1. Therefore, aN =
cN (Cϕ) ≤

∥

∥Cϕ|BH2

∥

∥, where the cN ’s are the Gelfand numbers (see [2]), and
where we used the equality aN = cN occurring in the Hilbertian case (see [2]).
Now, since ‖Bf‖H2 = ‖f‖H2 for any f ∈ H2, we have:

∥

∥Cϕ|BH2

∥

∥

2
= sup

‖f‖H2≤1

∫

T

|B ◦ ϕ|2 |f ◦ ϕ|2 dm = sup
‖f‖H2≤1

∫

D

|B|2|f |2 dmϕ

= ‖Rµ‖2,

where µ = |B|2mϕ and where Rµ : H2 → L2(µ) is the restriction map. Of
course, µ is a Carleson measure for H2 since µ ≤ mϕ. Now, Carleson’s em-

bedding theorem says us that ‖Rµ‖2 ≤ κ2 sup0<h<1,ξ∈T

µ[S(ξ,h)]
h (see [4], Re-

mark after the proof of Theorem 9.3, at the top of page 163; actually, in that
book, Carleson’s windows W (ξ, h) are used instead of pseudo-Carleson’s win-
dows S(ξ, h), but that does not matter, since W (ξ, h) ⊆ S(ξ, 2h): if r ≥ 1 − h
and |t − t0| ≤ h, then |reit − eit0 | ≤ |reit − eit| + |eit − eit0 | ≤ 2h). That ends
the proof of Lemma 2.4. �

The following lemma takes into account the behaviour of ϕθ(eit), and will
be useful to us in Section 3 as well. The notation u(t) ≈ v(t) means that
a u(t) ≤ v(t) ≤ b u(t), for some positive constants a, b.

Lemma 2.5 Set γ(t) = ϕθ(e
it) = |γ(t)| eiA(t), with −π ≤ t ≤ π, and −π ≤

A(t) ≤ π. Then, for 0 ≤ |t|, |t′| ≤ π/2, one has:

(2.8) |1− γ(t)| ≈ 1− |γ(t)| ≈ |t|θ and |γ(t)− γ(t′)| ≤ K |t− t′|θ.

Moreover, we have for |t| ≤ π/2:

(2.9) A(t) ≈ |t|θ and A′(t) ≈ |t|θ−1.

Proof. First, recall that

ϕθ(z) =
(1 + z)θ − (1− z)θ

(1 + z)θ + (1− z)θ
,

so that ϕθ(z) = ϕθ(z) and ϕθ(−z) = −ϕθ(z). It follows that γ(−t) = γ(t) and
γ(t+ π) = −γ(t), so that we may assume 0 ≤ t, t′ ≤ π/2. Then, we have more

precisely, setting c = e−iθπ/2, s = sin(θπ/2) and τ =
(

tan(t/2)
)θ

:

γ(t) =
(cos t/2)θ − e−iθπ/2(sin t/2)θ

(cos t/2)θ + e−iθπ/2(sin t/2)θ
=

1− cτ

1 + cτ
=

1− τ2

|1 + cτ |2 +
2isτ

|1 + cτ |2
,
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after a simple computation, since (1 + eit)θ = eitθ/2(2 cos t/2)θ and (1− eit)θ =
e−iθπ/2 eitθ/2(2 sin t/2)θ. Note by the way that

ϕθ(1) = 1 ; ϕθ(i) = i tan(θπ/4) ; ϕθ(−1) = −1 ; ϕθ(−i) = −i tan(θπ/4).

Now, observe that 2 ≥ |1 + cτ | ≥ Re (1 + cτ) ≥ 1 and therefore that

|1− γ(t)| =
∣

∣

∣

∣

2cτ

1 + cτ

∣

∣

∣

∣

≈ τ ≈ tθ ,

and similarly for 1−|γ(t)| since 1−|γ(t)|2 = 4(Re c) τ
|1+cτ |2 . The relation (2.8) clearly

follows. To prove (2.9), we just have to note that, for 0 ≤ t ≤ π/2, we have
A(t) = arctan 2sτ

1−τ2 · �

Now, we prove Theorem 2.1 in the following form (in which q = qθ denotes
a positive constant smaller than one), which is clearly sufficient.

(2.10) a4N2+1 ≤ KqN .

The proof will come from an adequate choice of a Blaschke product of length
4N2, with zeroes on the curve γ(t) = ϕθ(e

it), −π ≤ t ≤ π. Let tk = π2−k and
pk = γ(tk), with 1 ≤ k ≤ N , so that the points pk are all in the first quadrant.
We reflect them through the coordinate axes, setting:

qk = pk, rk = −pk, sk = −qk, 1 ≤ k ≤ N.

Let now B be the Blaschke product having a zero of order N at each of the
points pk, qk, rk, sk, namely:

B(z) =

N
∏

k=1

[

z − pk
1− pkz

· z − qk
1− qkz

· z − rk
1− rkz

· z − sk
1− skz

]N

.

This Blaschke product satisfies, by construction, the symmetry relations:

(2.11) B(z) = B(z) , B(−z) = B(z).

Of course, |B| = 1 on the boundary of D, but |B| is small on a large portion of
the curve γ, as expressed by the following lemma.

Lemma 2.6 For some constant χ = χθ < 1, the following estimate holds:

(2.12) tN ≤ t ≤ t1 =⇒ |B(γ(t))| ≤ χN .

Proof. Let tN ≤ t ≤ t1 and k such that tk+1 ≤ t ≤ tk. Let Bk(z) = z−pk
1−pkz .

Then, with help of Lemma 2.5, we see that the assumptions of Lemma 2.3 are
satisfied with a = γ(t) and b = γ(tk), since |t − tk| ≤ tk − tk+1 = π2−k−1, so
that min(1− |a|, 1− |b|) ≈ tθk ≈ 2−kθ and hence, for some constant M :

|a− b| ≤ K |t− tk|θ ≤ K2−kθ ≤M min(1 − |a|, 1− |b|) .

7



We therefore have, by definition, and by Lemma 2.3, where we set χ =
M/

√
M2 + 1:

|Bk(γ(t))| = d(γ(t), pk) ≤ χ < 1.

It then follows from the definition of B that:

|B(γ(t))| ≤ |Bk(γ(t))|N ≤ χN ,

and that ends the proof of Lemma 2.6. �

Now fix ξ ∈ T and 0 < h ≤ 1. By interpolation, we may assume that
h = 2−nθ. By symmetry, we may assume that Re ξ ≥ 0 and Re γ(t) ≥ 0,
i.e. |t| ≤ π/2. Then, since ϕθ(D) is contained in the symmetric angular sector
of vertex 1 and opening θπ < π, there is a constant K > 0 such that |1 −
γ(t)| ≤ K(1 − |γ(t)|). The only pseudo-windows S(ξ, h) giving an integral not
equal to zero in the estimation (2.7) of Lemma 2.4 satisfy |ξ − 1| ≤ (K + 1)h.
Indeed, suppose that |γ(t) − ξ| ≤ h. Then 1 − |γ(t)| ≤ |γ(t) − ξ| ≤ h and
|1 − γ(t)| ≤ K(1 − |γ(t)|) ≤ Kh. If |ξ − 1| > (K + 1)h, we should have
|γ(t)− ξ| ≥ |ξ− 1| − |γ(t)− 1| > (K +1)h−Kh = h, which is impossible. Now,
for such a window, we have by definition of mϕ:

∫

S(ξ,h)

|B|2 dmϕθ =

∫

|γ(t)−ξ|≤h
|B(γ(t))|2 dt

2π
≤

∫

|γ(t)−1|≤(K+2)h

|B(γ(t))|2 dt
2π

≤
∫

|t|≤Dtn
|B(γ(t))|2 dt

2π

def
= Ih,

since |γ(t)− 1| ≤ |γ(t)− ξ|+ |ξ − 1| ≤ h+ (K + 1)h and since |γ(t)− 1| ≥ a|t|θ
and |γ(t) − 1| ≤ (K + 2)h together imply |t| ≤ Dtn, where D > 1 is another
constant (recall that h = 2−nθ = (tn/π)

θ).

To finish the discussion, we separate two cases.
1) If n ≥ N , we simply majorize |B| by 1. We set q1 = 2θ−1 < 1 and get:

1

h
Ih ≤ 1

h

∫ Dtn

−Dtn
|B(γ(t))|2 dt

2π
≤ 2Dtn

2πh
= Dqn1 ≤ D qN1 .

2) If n ≤ N − 1, we write:

1

h
Ih =

2

h

∫ DtN

0

|B(γ(t))|2 dt
2π

+
2

h

∫ Dtn

DtN

|B(γ(t))|2 dt
2π

:= JN +KN .

The term JN is estimated above: JN ≤ D qN1 . The term KN is estimated
through Lemma 2.6, which gives us:

KN ≤ 2nθ
2Dtn
2π

χ2N ≤ Dχ2N ,

since tn2nθ ≤ π, due to the fact that θ < 1.

8



If we now apply Lemma 2.4 with q = max(q1, χ
2) and with N changed into

4N2 + 1, we obtain (2.10), by changing the value of the constant K once more.
This ends the proof of Theorem 2.1. �

Theorem 2.1 has the following consequence (as in [21], page 29).

Proposition 2.7 Let ϕ be a univalent Schur function and assume that ϕ(D)
contains an angular sector centered on the unit circle and with opening θπ,
0 < θ < 1. Then an(Cϕ) ≥ a e−b

√
n, n = 1, 2, . . ., for some positive constants a

and b, depending only on θ.

Proof. We may assume that this angular sector is centered at 1. By hypothesis,
ϕ(D) contains the image of the “reduced” lens map defined by ϕ̃θ(z) = ϕθ((1 +
z)/2). Since ϕ is univalent, there is a Schur function u such that ϕ̃θ = ϕ ◦ u.
Hence Cϕ̃θ = Cϕ ◦ Cu and an(Cϕ̃θ ) ≤ ‖Cu‖ an(Cϕ). Theorem 2.1 gives the
result, since the calculations for ϕ̃θ are exactly the same as for ϕθ (because they
are equivalent as z tends to 1). �

The same is true if ϕ is univalent and ϕ(D) contains a polygon with vertices
on ∂D.

3 Spreading the lens map

In [9], we studied the effect of the multiplication of a Schur function ϕ by

the singular inner function M(z) = e−
1+z
1−z , and observed that this multiplication

spreads the values of the radial limits of the symbol and lessens the maximal
occupation time for Carleson windows. In some cases this improves the com-
pactness or membership to Schatten classes of Cϕ. More precisely, we proved
the following result.

Theorem 3.1 ([9], Theorem 4.2) For every p > 2, there exist two Schur
functions ϕ1 and ϕ2 = ϕ1M such that |ϕ∗

1| = |ϕ∗
2| and Cϕ1

: H2 → H2 is not
compact, but Cϕ2

: H2 → H2 is in the Schatten class Sp.

Here, we will meet the opposite phenomenon: the symbol ϕ1 will have a fairly
big associated maximal function ρϕ1

, but will belong to all Schatten classes since
it “visits” a bounded number of windows (meaning that there exists an integer J
such that, for fixed n, at most J of the Wn,j are visited by ϕ∗(eit)). The spread
symbol will have an improved maximal function, but will visit all windows, so
that its membership in Schatten classes will be degraded. More precisely, we
will prove that

Theorem 3.2 Fix 0 < θ < 1. Then there exist two Schur functions ϕ1 and ϕ2

such that:

1) Cϕ1
: H2 → H2 is in all Schatten classes Sp, p > 0, and even an(Cϕ1

) ≤
a e−b

√
n;

2) |ϕ∗
1| = |ϕ∗

2|;

9



3) Cϕ2
∈ Sp if and only if p > 2θ;

4) an(Cϕ2
) ≤ K (logn/n)1/2θ, n = 2, 3, . . ..

Of course, it would be better to have a good lower bound for an(Cϕ2
), but

we do not succeed in finding it yet.

Proof. First observe that Cϕ1
∈ S2, so that Cϕ2

∈ S2 too, since |ϕ∗
1| = |ϕ∗

2| and
since the membership of Cϕ in S2 only depends on the modulus of ϕ∗ because
it amounts to ([21], page 26):

∫ π

−π

dt

1− |ϕ∗(eit)| <∞.

Theorem 3.2 says that we can hardly have more. We first prove a lemma. Recall
(see [9], for example) that the maximal Carleson function ρϕ of a Schur function
ϕ is defined, for 0 < h < 1, by:

(3.1) ρϕ(h) = sup
|ξ|=1

mϕ[S(ξ, h)].

Lemma 3.3 Let 0 < θ < 1. Then, the maximal function ρϕθ of ϕθ satisfies
ρϕθ(h) ≤ K1/θ(1 − θ)−1/θh1/θ and, moreover,

(3.2) ρϕθ (h) ≈ h1/θ.

Proof of the lemma. Let 0 < h < 1 and γ(t) = ϕθ(e
it). K and δ will denote

constants which can change from a formula to another. We have, for |t| ≤ π/2:

1− |γ(t)|2 =
4(Re c)τ

|1 + cτ |2 ≥ δ cos(θπ/2)
τ

|1 + cτ |2 ≥ δ(1− θ)
τ

|1 + cτ |2
≥ δ(1 − θ)|t|θ.

Hence, we get, from Lemma 2.5:

ρϕθ(h) ≤ 2m({1− |γ(t)| ≤ h and |t| ≤ π/2}) ≤ 2m({(1− θ)δ|t|θ ≤ Kh})
≤ K1/θ(1 − θ)−1/θh1/θ.

Similarly, we have:

ρϕθ(h) ≥ mϕθ [S(1, h)] ≥ m({|1− γ(t)| ≤ h}) ≥ m({|t|θ ≤ Kh}) ≥ Kh1/θ,

and that ends the proof of the lemma. �

Going back to the proof of Theorem 3.2, we take ϕ1 = ϕθ and ϕ2(z) =
ϕ1(z)M(z2). We use M(z2) instead of M(z) in order to treat the points −1 and
1 together.

The first two assertions are clear. For the third one, we define the dyadic
Carleson windows, for n = 1, 2, . . . , j = 0, 1, . . . , 2n − 1, by:

Wn,j = {z ∈ D ; 1− 2−n ≤ |z| < 1 and (2jπ)2−n ≤ arg(z) < (2(j + 1))π)2−n}.

10



Recall (see [9], Proposition 3.3) the following proposition, which is a variant of
Luecking’s criterion ([16]) for membership in a Schatten class, and which might
also be used to give a third proof of the membership of Cϕθ in all Schatten
classes Sp, p > 0, although the first proof turns out to be more elementary.

Proposition 3.4 ([16], [9]) Let ϕ be a Schur function and p > 0 a positive
real number. Then Cϕ ∈ Sp if and only if

∞
∑

n=1

2n−1
∑

j=0

[

2nmϕ(Wn,j)
]p/2

<∞.

We apply this proposition with ϕ = ϕ2, which satisfies, for 0 < |t| ≤ π/2,
the following relation:

ϕ(eit) = |γ(t)|ei[A(t)−cot(t)] def= |γ(t)|eiB(t),

where γ(t) = ϕ1(e
it) and (using Lemma 2.5):

(3.3) 0 < |t| ≤ π/2 =⇒ B(t) = Γ(t)− 1

t
, with Γ(t) ≈ |t|θand Γ′(t) ≈ |t|θ−1.

It clearly follows from (3.3) that the function B is increasing on some interval
[−δ, 0[ where δ is a positive numerical constant. Let us fix a positive integer q0
such that −π/2 ≤ t < 0 and

B(t) ≥ 2q0π =⇒ t ≥ −δ.

Fix a Carleson window Wn,j and let us analyze the set En,j of those t’s such
that ϕ(eit) belongs to Wn,j . Recall that mϕ(Wn,j) = m(En,j). The membership
in En,j gives two constraints.

1) Modulus constraint. We must have |γ(t)| ≥ 1 − 2−n, and therefore |t| ≤
K2−n/θ.

2) Argument constraint. Let us set θn,j = (2j + 1)π2−n, h = π2−n and
In,j = (θn,j − h, θn,j + h). The angular constraint argϕ(eit) ∈ In,j will be
satisfied if t < 0 and

B(t) ∈
⋃

q≥q0

[

θn,j − h+ 2qπ, θn,j + h+ 2qπ
]

:=
⋃

q≥q0
Jq(h) := F.

We have F ⊂ [2q0π,∞[, and so B(t) ∈ F and t < 0 imply t ≥ −δ. Set:

E =
⋃

q≥q0

[

B−1(θn,j − h+ 2qπ), B−1(θn,j + h+ 2qπ)
]

:=
⋃

q≥q0
Iq(h) ⊂ [−δ, 0[.

The intervals Iq ’s are disjoint, since θn,j + 2(q + 1)π − h > θn,j + 2qπ + h and
since B increases on [−δ, 0[. Moreover, t ∈ E implies that B(t) ∈ F , which

11



in turn implies that argϕ(eit) ∈ In,j . Using Lemma 2.5, we can find positive
constants c1, c2 such that:

q ≥ q0 =⇒ −c1/q ≤ min Iq(h) ≤ max Iq(h) ≤ −c2/q.

Now, by the mean-value theorem, Iq(h) has length 2h/|B′(tq)| for some tq ∈
Iq(h). But, using (3.3), we get:

B(t) ≈ 1

t
and |B′(t)| ≈ 1

t2
,

so that Iq(h) has length approximately ht2q ≈ h/q2 since |tq| ≈ 1/q. Because of
the modulus constraint, the only involved q’s are those for which q ≥ q1, where
q1 ≈ 2n/θ. Taking n numerically large enough, we may assume that q1 > q0.
We finally see that, for any 0 ≤ j ≤ 2n − 1, we have the lower bound:

mϕ(Wn,j) = m(En,j) &
∑

q≥q1
m(Iq(h)) &

∑

q≥q1

h

q2
&

h

q1
& 2−n(1+1/θ).

It follows that:

∞
∑

n=1

2n−1
∑

j=0

[

2nmϕ(Wn,j)
]p/2

&

∞
∑

n=1

2n−1
∑

j=0

[

2n2−n(1+1/θ)
]p/2

=
∞
∑

n=1

2n−1
∑

j=0

[

2−np/2θ
]

=

∞
∑

n=1

2n(1−p/2θ) = ∞,

if p ≤ 2θ. Hence Cϕ2
/∈ Sp for p ≤ 2θ by Proposition 3.4.

A similar upper bound, and the membership of Cϕ2
in Sp for p > 2θ, would

easily be proved along the same lines (and we will make use of that fact in Sec-
tion 4). But this will also follow from the more precise result on approximation
numbers. To that effect, we shall borrow the following result from [15].

Theorem 3.5 ([15]) Let ϕ be a Schur function. Then the approximation num-
bers of Cϕ : H

2 → H2 have the upper bound:

(3.4) an(Cϕ) ≤ K inf
0<h<1

[

(1− h)n +

√

ρϕ(h)

h

]

, n = 1, 2, . . . .

Applying this theorem to ϕ2, which satisfies ρϕ2
(h) ≤ Kh1+1/θ as is clear

from the preceding computations, would provide upper bounds for mϕ(Wn,j) of
the same order as the lower bounds obtained. Then choosing h = H logn/n,
where H is a large constant (H = 1/2θ will do) and using 1 − h ≤ e−h, we get
from (3.4):

an(Cϕ2
) ≤ K

[

n−H +

(

logn

n

)1/2θ]

≤ K

(

logn

n

)1/2θ

.

This ends the proof of Theorem 3.2. �
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Remark: Theorem 3.5 of [15] gives a very imprecise estimate on the approxi-
mation numbers of lens maps, as we noticed in that paper. On the other hand,
when we apply it to a lens map spread by multiplication by the inner function
M , we obtain an estimate which is close to being optimal, up to a logarith-
mic factor. This indicates that many phenomena have still to be understood
concerning approximation numbers of composition operators.

4 Lens maps as counterexamples

Recall that an operator T : X → Y between Banach spaces is said to be
Dunford-Pettis (in short DP) or completely continuous, if for any sequence (xn)
which is weakly convergent to 0, the sequence (Txn) is norm-convergent to 0. It
is called weakly compact (in short w-compact) if the image T (BX) of the unit
ball in X is (relatively) weakly compact in Y . The identity map i1 : ℓ1 → ℓ1
is DP and not w-compact, by the Schur property of ℓ1 and its non-reflexivity.
If 1 < p < ∞, the identity map ip : ℓp → ℓp is w-compact and not DP by the
reflexivity of ℓp and the fact that the canonical basis (en) of ℓp converges weakly
to 0, whereas ‖en‖p = 1. Therefore, the two notions, clearly weaker than that of
compactness, are not comparable in general. Moreover, when X is reflexive, any
operator T : X → Y is w-compact and any Dunford-Pettis operator T : X → Y
is compact.

Yet, in the context of composition operators T = Cϕ : X → X , with X a
non-reflexive Banach space of analytic functions, several results say that weak
compactness of Cϕ implies its compactness. Let us quote some examples:

- X = H1; this was proved by D. Sarason in 1990 ([20]);
- X = H∞ and the disk algebra X = A(D) (A. Ülger [23] and R. Aron, P.

Galindo and M. Lindström [1], independently; the first-named of us also gave
another proof in [7]);

- X is the little Bloch space B0 (K. Madigan and A. Matheson [17]);
- X is the Hardy-Orlicz spaces X = Hψ, when the Orlicz function ψ grows

more rapidly than power functions, namely when it satisfies the condition ∆0

([11], Theorem 4.21, page 55);
- X = BMOA and X = VMOA (J. Laitila, P. J. Nieminen, E. Saksman

and H.-O. Tylli [6]).

Moreover, in some cases, Cϕ is compact whenever it is Dunford-Pettis ([7]
for X = H∞ and [11], Theorem 4.21, page 55, for X = Hψ, when the conjugate
function of ψ satisfies the condition ∆2).

The question naturally comes whether for any non-reflexive Banach space X
of analytic functions on D, every weakly compact (resp. Dunford-Pettis) com-
position operator Cϕ : X → X is actually compact. The forthcoming theorems
show that the answer is negative in general. Our spaces X will be Hardy-Orlicz
and Bergman-Orlicz spaces, so we first recall some definitions and facts about
Orlicz spaces ([11], Chapters 2 and 3).
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An Orlicz function is a nondecreasing convex function ψ : R+ → R+ such
that ψ(0) = 0 and ψ(∞) = ∞. Such a function is automatically continuous on
R+. If ψ(x) is not equivalent to an affine function, we must have ψ(x)/x −→

x→∞
∞.

The Orlicz function ψ is said to satisfy the ∆2-condition if ψ(2x)/ψ(x) remains
bounded. The conjugate function ψ̃ of an Orlicz function ψ is the Orlicz function
defined by:

ψ̃(x) = sup
y≥0

(

xy − ψ(y)
)

.

For the conjugate function, one has the following characterization of ∆2 (see
[11], page 7): ψ̃ has ∆2 if and only if , for some β > 1 and x0 > 0,

(4.1) ψ(βx) ≥ 2βψ(x) , for all x ≥ x0.

Let (Ω,A,P) be a probability space, and L0 the space of measurable functions
f : Ω → C. The Orlicz space Lψ = Lψ(Ω,A,P) is defined by

Lψ(Ω,A,P) =
{

f ∈ L0 ;

∫

Ω

ψ(|f |/K) dP <∞ for some K > 0
}

.

This is a Banach space for the Luxemburg norm:

‖f‖ψ = inf
{

K > 0 ;

∫

Ω

ψ(|f |/K) dP ≤ 1
}

.

The Morse-Transue space Mψ (see [11], page 9) is the subspace of functions f
in Lψ for which

∫

Ω
ψ(|f |/K) dP < ∞ for every K > 0. It is the closure of L∞.

One always has (Mψ)∗ = Lψ̃ and Lψ = Mψ if and only if ψ has ∆2. When
the conjugate function ψ̃ of ψ has ∆2, the bidual of Mψ is then (isometrically
isomorphic to) Lψ.

Now, we can define the Hardy-Orlicz space Hψ attached to ψ as follows.
Take the probability space (T,B,m) and recalling that fr(eit) = f(reit):

Hψ = {f ∈ H(D) ; sup
0<r<1

‖fr‖Lψ(m) := ‖f‖Hψ <∞}.

We refer to [11] for more information on Hψ. Similarly, we define (see [11]) the
Bergman-Orlicz space Bψ , using this time the normalized area measure A, by:

Bψ = {f ∈ H(D) ; ‖f‖Lψ(A) := ‖f‖Lψ <∞}.

If ψ(x) = xp, p ≥ 1, we get the usual Hardy and Bergman spaces Hp and
Bp. Those spaces are Banach spaces for any ψ, and Hilbert spaces for ψ(x) =
x2. The Hardy-Morse-Transue space HMψ and Bergman-Morse-Transue space
BMψ are defined by HMψ = Hψ ∩Mψ and BMψ = Bψ ∩Mψ. When the
conjugate function of ψ has ∆2, the bidual of HMψ is (isometrically isomorphic
to) Hψ ([11], page 10).

We can now state our first theorem.

14



Theorem 4.1 There exists a Schur function ϕ and an Orlicz function ψ such
that Hψ is not reflexive and the composition operator Cϕ : H

ψ → Hψ is weakly-
compact and Dunford-Pettis, but is not compact.

Proof. First take for ϕ the lens map ϕ1/2 which in view of (3.2) of Lemma 3.3
satisfies, for some constant K > 1:

(4.2) ρϕ(h) ≥ K−1h2, 0 < h < 1.

We now recall the construction of an Orlicz function made in [13]. Let (xn)
be a the sequence of positive numbers defined as follows: x1 = 4 and then,
for every integer n ≥ 1, xn+1 > 2xn is the abscissa of the second intersection
point of the parabola y = x2 with the straight line containing (xn, x

2
n) and

(2xn, x
4
n); equivalently xn+1 = x3n − 2xn. We now define our Orlicz function ψ

by ψ(x) = 4x for 0 ≤ x ≤ 4 and, for n ≥ 1, by:

ψ(xn) = x2n,

ψ affine between xn and xn+1, so that ψ(2xn) = x4n.
(4.3)

Observe that ψ does not satisfy the ∆2-condition, since ψ(2xn) = [ψ(xn)]
2. It

clearly satisfies (since ψ−1 is concave):

x2 ≤ ψ(x) ≤ x4 for x ≥ 4,

ψ−1(Kx) ≤ Kψ−1(x) for any x > 0,K > 1.
(4.4)

Therefore, it has a moderate growth, but a highly irregular behaviour, which
will imply the results we have in view. Indeed, let yn = ψ(xn) and hn = 1/yn.
We see from (4.2), (4.3) and (4.4) that:

(4.5) D(hn)
def
=

ψ−1(1/hn)

ψ−1(1/ρϕ(hn))
≥ ψ−1(1/hn)

ψ−1(K/h2n)
=

ψ−1(yn)

ψ−1(Ky2n)
≥ xn

2Kxn
=

1

2K
.

Thus, we have lim suph→0+ D(h) > 0. By [11], Theorem 4.11 (see also [12],
comment before Theorem 5.2), Cϕ is not compact.

On the other hand, let jψ,2 : Hψ → H2 and j4,ψ : H
4 → Hψ be the nat-

ural injections, which are continuous, thanks to (4.4). We have the following
diagram:

Hψ jψ,2−→H2 Cϕ−→H4 j4,ψ−→Hψ.

The second map is continuous as a consequence of (3.2) and of a result of
P. Duren ([3]; see also [4], Theorem 9.4, page 163), which extends Carleson’s
embedding theorem (see also [11], Theorem 4.18). Hence Cϕ = j4,ψ ◦ Cϕ ◦ jψ,2
factorizes through a reflexive space (H2 or H4) and is therefore w-compact.

To prove that Cϕ is Dunford-Pettis, we use the following result of [14] (The-
orem 2.1):
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Theorem 4.2 ([14]) Let ϕ be a Schur function and Φ be an Orlicz function.
Assume that, for some A > 0, one has:

(4.6) sup
0<t≤h

ρϕ(t)

t2
≤ 1/h2

Φ
(

AΦ−1(1/h2)
) , 0 < h < 1.

Then, the canonical inclusion jΦ,ϕ : B
Φ → LΦ(mϕ) is continuous.

In particular, it is continuous for any Orlicz function Φ if ρϕ(h) = O (h2).

Now, let Jψ : Hψ → Bψ be the canonical inclusion, and consider the follow-
ing diagram:

Hψ Jψ−→Bψ
jψ,ϕ−→Lψ(mϕ).

The first map is Dunford-Pettis, by [13], Theorem 4.1. The second map is
continuous by (3.2) and (4.6). Clearly, being Dunford-Pettis is an ideal property
(if either u or v is Dunford-Pettis, so is vu). Therefore, jψ,ϕ ◦ Jψ is Dunford-
Pettis, and this amounts to say that Cϕ : Hψ → Hψ is Dunford-Pettis.

Now, the non-reflexivity of Hψ follows automatically, since Cϕ is Dunford-
Pettis but not compact.

This ends the proof of Theorem 4.1. �

Theorem 4.1 admits the following variant.

Theorem 4.3 There exist a Schur function ϕ and an Orlicz function χ such
that Hχ is not reflexive and the composition operator Cϕ : H

χ → Hχ is weakly
compact and not Dunford-Pettis; in particular it is not compact.

Proof . We use the same Schur function ϕ = ϕ1/2, but we replace ψ by the
function χ defined by χ(x) = ψ(x2). Let A > 1. Observe that, in view of (4.4),

χ(Ax)

[χ(x)]2
=
ψ(A2x2)

[ψ(x2)]2
≤ A8x8

x8
= A8.

By [13], Proposition 4.4, Jχ : Hχ → Bχ is w-compact, and we can see Cϕ : Hχ →
Hχ as the canonical inclusion j : Hχ → Lχ(mϕ). Hence Theorem 4.2 and the
diagram:

j = jχ,ϕ ◦ Jχ : Hχ Jχ−→Bχ
jχ,ϕ−→Lχ(mϕ)

show that Cϕ : Hχ → Hχ is w-compact as well.

Now, to prove that Cϕ is not Dunford-Pettis, we cannot use [13], as in
the proof of Theorem 4.1, but we follow the lines of Proposition 3.1 of [13].
Remark first that, by definition, the function χ satisfies, for β = 2, the following
inequality:

χ(βx) = ψ(4x2) ≥ 4ψ(x2) = 2βχ(x);

hence, by (4.1), this implies that the conjugate function of χ verifies the ∆2-
condition.
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Let xn be as in (4.3), and set:

un =
√
xn and A =

√
2

so that

(4.7) χ(Aun) =
[

χ(un)
]2

= x4n.

Finally, let:

rn = 1− 1

χ(un)
and fn(z) = un

(

1− rn
1− rnz

)2

.

By ([11], Corollary 3.10), ‖fn‖Hχ ≤ 1 and fn tends to 0 uniformly on compact
subsets of D; that implies that fn → 0 weakly inHχ since the conjugate function
of χ has ∆2 ([11], Proposition 3.7). On the other hand, if Kn = ‖fn‖Lχ(mϕ),
mimicking the computation of ([13], Proposition 3.1), we get:

(4.8) 1 =

∫

D

χ(|fn|/Kn) dmϕ ≥ (1− rn)
2χ(αun/4Kn)

for some 0 < α < 1 independent of n, where we used the convexity of χ and the
fact that the lens map ϕ satisfies, by(4.2):

mϕ({z ∈ D ; |1− z| ≤ 1− rn}) ≥ α(1 − rn)
2.

In view of (4.7), (4.8) reads as well:

χ(αun/4Kn) ≤ χ2(un) = χ(Aun),

so that:

(4.9) ‖j(fn)‖Lχ(mϕ) = Kn ≥ α/4A.

This shows that j : Hχ → Lχ(mϕ) and therefore also Cϕ : Hχ → Hχ are not
Dunford-Pettis.

It remains to show that Hχ is not reflexive. We shall prove below a more
general result, but here, the conjugate function χ̃ of χ satisfies the ∆2 condition,
as we saw. Hence Hχ is the bidual of HMχ. Since χ fails to satisfy the ∆2-
condition, we know that Lχ 6= Mχ. Let u ∈ Lχ \Mχ,with u ≥ 1. Let f be the
associated outer function, namely:

f(z) = exp
( 1

2π

∫ 2π

0

eit + z

eit − z
log u(t) dt

)

.

One has |f∗| = u almost everywhere, with the notations of (2.6), and hence
f ∈ Hχ \HMχ. It follows that Hχ 6= HMχ. Hence HMχ is not reflexive, and
therefore Hχ is not reflexive either. �

As promised, we give the general result on non-reflexivity.
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Proposition 4.4 Let ψ be an Orlicz function which does not satisfy the ∆2-
condition. Then neither Hψ nor Bψ is reflexive.

Proof. We only give the proof for Bψ because it is the same for Hψ.
Since ψ does not satisfy ∆2 there is a sequence (xn) of positive numbers,

tending to infinity, such that ψ(2xn)/ψ(xn) tends to infinity. Let rn ∈ (0, 1)
such that (1− rn)

2 = 1/ψ(2xn) and set:

qn(z) =
(1− rn)

4

(1 − rnz)4
·

One has ‖qn‖∞ = 1 and ‖qn‖1 = (1−rn)2
(1+rn)2

≤ (1−rn)2. On the other hand, on the
pseudo-Carleson window S(1, 1− rn), one has |1− rnz| ≤ (1− rn)+ rn|1− z| ≤
(1− rn)+ rn(1− rn) = 1− r2n ≤ 2(1− rn); hence |qn(z)| ≥ 1/16. It follows that:

1 =

∫

D

ψ

( |qn|
‖qn‖ψ

)

dA ≥
∫

S(1,1−rn)
ψ

( |qn|
‖qn‖ψ

)

dA

≥ A[S(1, 1− rn)]ψ

(

1

16 ‖qn‖ψ

)

≥ 1

3
(1 − rn)

2ψ

(

1

16 ‖qn‖ψ

)

≥ (1 − rn)
2ψ

(

1

48 ‖qn‖ψ

)

=
1

ψ(2xn)
ψ

(

1

48 ‖qn‖ψ

)

;

hence ψ(1/[48 ‖qn‖ψ]) ≤ ψ(2xn), so 1/(48 ‖qn‖ψ) ≤ 2xn and 96 xn ‖qn‖ψ ≥ 1.

Set now fn = qn/‖qn‖ψ; one has ‖fn‖ψ = 1 and (using that ψ(xn |qn(z)|) ≤
|qn(z)|ψ(xn), by convexity, since |qn(z)| ≤ 1):

∫

D

ψ

( |fn|
96

)

dA =

∫

D

ψ

(

xn |qn|
96 xn ‖qn‖ψ

)

dA ≤
∫

D

ψ(xn |qn|) dA

≤ ψ(xn)

∫

D

|qn| dA ,

≤ ψ(xn) (1 − rn)
2 =

ψ(xn)

ψ(2xn)
−→
n→∞

0.

By [8], Lemma 11, that implies that the sequence (fn) has a subsequence equiv-
alent to the canonical basis of c0 and hence Bψ is not reflexive. �

We finish by giving a counterexample using Bergman-Orlicz spaces instead
of Hardy-Orlicz spaces.

Theorem 4.5 There exists a Schur function ϕ and an Orlicz function ψ such
that the space Bψ is not reflexive and the composition operator Cϕ : B

ψ → Bψ

is weakly-compact but not compact.

Proof. We use again the Orlicz function ψ defined by (4.3) and the Schur
function ϕ = ϕ1/2. The space Bψ is not reflexive since ψ does not satisfy the
condition ∆2.
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We now need an estimate similar to (3.2) for ϕθ, namely:

(4.10) ρϕ,2(h) := sup
|ξ|=1

A[{z ∈ D ; ϕ(z) ∈ S(ξ, h)}] ≈ h2/θ.

The proof of (4.10) is best seen by passing to the right half-plane with the
measure Aγθ which is locally equivalent to the Lebesgue planar measure A; we
get ρϕ,2(h) ≥ A({|z|θ ≤ h} ∩ H) ≥ Kh2/θ and the upper bound in (4.10) is
proved similarly.

We now see that Cϕ : Bψ → Bψ is not compact as follows. We use the
same xn as in (4.3) and set yn = ψ(xn), kn = 1/

√
yn. We notice that, since

ρϕ,2(h) ≥ K−1h4 (with K > 1) in view of (4.10), we have:

E(kn)
def
=

ψ−1(1/k2n)

ψ−1(1/ρϕ,2(kn))
≥ ψ−1(1/k2n)

ψ−1(K/k4n)
=

ψ−1(yn)

ψ−1(Ky2n)
≥ xn

2Kxn
=

1

2K
,

so that
lim sup
k→0+

E(k) > 0,

and this implies that Cϕ : Bψ → Bψ is not compact ([14], Theorem 3.2). To see
that Cϕ : Bψ → Bψ is w-compact, we use the diagram:

Bψ
jψ,2−→B2 Cϕ−→B4 j4,ψ−→Bψ

as well as (4.10), which gives ρϕ,2(h) ≤ Kh4. A result of W. Hastings ([5]) now
implies the continuity of the second map. This diagram shows that Cϕ factors
through a reflexive space (B2 or B4), and is therefore w-compact. �
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