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REDUCED BOOTSTRAP FOR THE MEDIAN

M. D. Jiménez-Gamero, J. Muñoz-Garćıa and R. Pino-Mej́ıas

Universidad de Sevilla

Abstract: In this paper we study a modified bootstrap that consists of only consid-

ering those bootstrap samples satisfying k1 ≤ νn ≤ k2, for some 1 ≤ k1 ≤ k2 ≤ n,

where νn is the number of distinct original observations in the bootstrap sample.

We call it reduced bootstrap, since it only uses a portion of the set of all possible

bootstrap samples. We show that, under some conditions on k1 and k2, the reduced

bootstrap consistently estimates the distribution and the variance of the sample me-

dian. Unlike the ordinary bootstrap, the reduced bootstrap variance estimator does

not require conditions on the population generating the data to be a consistent es-

timator, but does rely an adequate choice of k1 and k2. Since several choices of

k1 and k2 yield consistent estimators, we compare the finite sample performance

of the corresponding estimators through a simulation study. The simulation study

also considers consistent variance estimators proposed by other authors.

Key words and phrases: Bootstrap, consistency, distribution estimation, sample

median, variance estimation.

1. Introduction

Let X1, . . . ,Xn be a random sample of size n from a univariate population
with distribution function F , and let θ = inf{t/F (t) ≥ 1/2} be the population
median. If F has a positive derivative f at θ, f(θ) > 0, then Zn =

√
n(θn − θ)

converges weakly to N(0, σ2), where θn is the sample median, θn = inf{t/Fn(t) ≥
1/2}, Fn is the empirical distribution function of the sample and σ2 = 1/{4f2(θ)}.
If f(θ) were known, one could approximate the distribution of Zn by its weak
limit. However, f(θ) is rarely known. Another way to approximate the distri-
bution of Zn is by its bootstrap distribution. Bickel and Freedman (1981) have
shown that if F has a unique median θ and a positive derivative f at θ that is
continuous in a neighborhood of θ, then the bootstrap consistently estimates the
distribution of Zn.

The bootstrap can be also used to estimate standard errors. Hence, one can
estimate the variance of Zn, σ2

n, through its bootstrap variance, σ∗2
n . Neverthe-

less, Ghosh, Parr, Singh and Babu (1984) have shown that σ∗2
n may not be a

consistent estimator of σ2
n. This is caused by the fact that Z∗

n may take some
exceptionally large values. To solve this inconsistency one can put additional
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conditions on F (Ghosh, Parr, Singh and Babu (1984) and Babu (1986)), mod-
ify the original sample by winsorizing or trimming it (Ghosh, Parr, Singh and
Babu (1984)), modify the usual bootstrap variance estimator (Shao (1990, 1992)),
or modify the resampling scheme generating the bootstrap samples (Jiménez-
Gamero, Muñoz-Garćıa and Muñoz-Reyes (1998)).

In this paper we generalize the method in Jiménez-Gamero, Muñoz-Garćıa
and Muñoz-Reyes (1998). The method considered by these authors, termed
OBS, consists of only considering those bootstrap samples having a number of
distinct original observations, νn, greater or equal than some constant k. The
main advantage of OBS over the usual bootstrap is that the breakdown point
of the OBS version of Zn is greater than that of the usual bootstrap, which is
1/n regardless of the breakdown point of the estimator (Stromberg (1997)). This
way, the OBS bootstrap variance estimator is not affected by exceptionally large
values that Z∗

n may take.
The generalization considered here is motivated by the following observation

made by Rao, Pathak and Koltchinskii (1997): as bootstrap samples are simple
random samples of size n selected with replacement from the original sample, not
all bootstrap samples are equally informative, due to the randomness in νn that
occurs in different bootstrap samples. As these authors assert, the variability
of νn is neither necessary nor desirable. To reduce this variability, which causes
the inconsistency of σ∗2

n , we propose trimming νn, that is, only considering those
bootstrap samples satisfying k1 ≤ νn ≤ k2, for some 1 ≤ k1 ≤ k2 ≤ n. We call it
the reduced bootstrap (RB), since it only uses a portion of all possible bootstrap
samples. OBS is a particular case of RB with k2 = n.

In this paper we show that, for suitable choices of k1 and k2, the RB estimator
of the distribution of Zn has the same asymptotic accuracy as the usual bootstrap
estimator (ordinary bootstrap variability of νn is not necessary) and that, in
contrast to usual bootstrap, the RB estimator of the variance of Zn is consistent
(ordinary bootstrap variability of νn is not desirable).

The paper is organized as follows. In Section 2 we introduce some notation,
describe RB and discuss the choice of k1 and k2. In Section 3 we give a preliminary
result that will be used in the proofs of the results in the following sections. (To
shorten the proofs of our main results, we include an appendix containing most
of the required technical results we need to demonstrate them). The result of
Section 3 deserves to be displayed since it has interest per se − it gives the order
of the error of the RB distribution estimator of the sample mean, for certain
choices of k1 and k2. In Section 4 we show that, under the conditions on k1

and k2 previously stated, the RB consistently estimates the distribution of the
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sample median. Section 5 gives a similar result for the RB variance estimator of
the sample median. Simulation results are displayed in Section 6. Finally, the
Appendix contains some auxiliary lemmas used in the proofs of the results in
Sections 3, 4 and 5.

2. The Reduced Bootstrap

Let X = (X1, . . . ,Xn) be a random sample from an unknown distribution
F , and let Tn = Tn(X;F ) be a statistic of interest. Let Fn be the empirical dis-
tribution function of X and let X∗ = (X∗

1 , . . . ,X∗
n) be a random sample drawn

from Fn. X∗ is called a bootstrap sample. The bootstrap method estimates
the distribution of Tn through the conditional distribution of T ∗

n = Tn(X∗;Fn),
given X1, . . . ,Xn. This conditional distribution is called the bootstrap distri-
bution of Tn. In particular, the bootstrap estimates the variance of Tn by the
conditional variance of T ∗

n . Throughout this paper P∗, E∗ and var∗ denote the
bootstrap conditional probability law, the bootstrap conditional expectation and
the bootstrap conditional variance, given X1, . . . ,Xn, respectively.

For each bootstrap sample X∗, let Ni = card{X∗
j = Xi}, 1 ≤ i ≤ n. The

vector N = (N1, . . . , Nn) is the resampling vector and, under the ordinary boot-
strap, has a multinomial distribution, M(n; 1/n, . . . , 1/n). Let νn = νn(X∗) be
the number of different elements contained in X∗, that is, νn =

∑n
i=1 I(Ni > 0),

where I(A) = 1 if A holds and I(A) = 0 otherwise. Given k1 and k2, with
1 ≤ k1 ≤ k2 ≤ n, the RB estimates the distribution of a statistic Tn, P (Tn ≤ x),
through P∗(T ∗

n ≤ x/k1 ≤ νn ≤ k2), the RB distribution of Tn. This way,
only αnn bootstrap samples are used to estimate the distribution of T , where
α = P (k1 ≤ νn ≤ k2).

To get a bootstrap sample X∗ with k1 ≤ νn(X∗) ≤ k2, for some fixed 1 ≤
k1 ≤ k2 ≤ n, we can proceed in several fashions. One way to do this is to imitate
the algorithm in Muñoz-Garćıa, Pino-Mej́ıas, Muñoz-Pichardo and Cubiles-de-la-
Vega (1997): Step 1, draw a bootstrap sample X∗; Step 2, calculate νn = νn(X∗);
Step 3, if νn < k1 or k2 < νn then throw away the generated bootstrap sample
and go to Step 1, otherwise the generated bootstrap sample is considered to be
valid. Another way is as follows: first, select a simple random sample of size
k2 without replacement from {1, . . . , n}, say I1; second, select a simple random
sample of size k1 without replacement from I1, say I2 = {i1, i2, . . . , ik1}; third,
select a simple random sample of size n − k1 with replacement from I1, say
J = (j1, . . . , jn−k1); fourth, let (l1, . . . , ln) be an n-vector whose components are
obtained by randomly permuting the string (i1, . . . , ik1 , j1, . . . , jn−k1); finally, the
n-vector (Xl1 , . . . ,Xln) is a bootstrap sample satisfying k1 ≤ νn ≤ k2.
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The choice of an algorithm to get X∗ with k1 ≤ νn(X∗) ≤ k2 depends
on α = P (k1 ≤ νn ≤ k2). If α is large then the first algorithm requires less
computational effort than the second one, and the reverse is true when α is
small. A minimum requirement is to choose k1 and k2 so that RB consistently
estimates the distribution of Zn. To discuss this choice we first introduce some
notation.

Let Φ denote the standard normal distribution function. Let k1 = k1(n) and
k2 = k2(n) be two integers with 1 ≤ k1 ≤ k2 ≤ n, w1 = (k1 − 1 − np)n−1/2σ0

−1,
w2 = (k2 − np)n−1/2σ0

−1, σ0
2 = pq − q2, p = 1 − e−1, q = 1 − p and, for any

fixed ε ≥ 0, let

vε =

{
w1 + ε if w1 → ∞,

|w2 − ε| if w2 → −∞.

Since P (νn ≤ k) = Φ(w) + o(1) with w = (k − np)/
√

nσ0 (Johnson and
Kotz (1977, p.318)), if k1 and k2 are such that condition C.1 below holds, then
imitating the proof of Proposition 3.1 in Jiménez-Gamero, Muñoz-Garćıa and
Muñoz-Reyes (1998) one can show that the RB consistently estimates the distri-
bution of Zn.

Condition C.1. Φ(w2)−Φ(w1) ≥ α0, ∀n ≥ n0, for some n0 ∈ N and some fixed
constant α0 > 0.

Condition C.1 means that, at least for large n, the percentage of bootstrap
samples used by the RB is greater or equal than 100α0%. The question that
arises is that if RB can also estimate consistently the distribution of Zn when k1

and k2 are chosen such that the percentage of used bootstrap samples tends to 0.
The method of proof of Proposition 3.1 in Jiménez-Gamero, Muñoz-Garćıa and
Muñoz-Reyes (1998) is not useful to handle this case. In this paper we will see
that, employing the results in Section 3, it is possible to show the consistency
of the RB distribution of Zn when k1 and k2 are chosen such that P (k1 ≤ νn ≤
k2) → 0 in the way specified by the following conditions.

Condition C.2. |w1 − w2| → 0 and w1 → l, for some l ∈ R.

Condition C.3. w1 → ∞ or w2 → −∞, |w2 − w1| ≥ ε and 2v2
ε ≤ a + log n +

2 log log log n, ∀n ≥ n0, for some n0 ∈ N and some fixed constants ε ≥ 0 and
a ∈ R.

Condition C.4. w1 → ∞ or w2 → −∞ and v0 ≤ a log1/2 n, ∀n ≥ n0, for some
n0 ∈ N and some fixed constant a < 1.

If C.2 holds then, in the limit, all the considered bootstrap samples have
the same number of different elements; if C.3 or C.4 hold, then they all have
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a very large number of different elements (w1 → ∞) or, by contrast, they all
have a very small number of different elements (w2 → −∞). Condition C.3 is
more restrictive than C.4. Although under both conditions the RB consistently
estimates the distribution of Zn, if C.3 holds we can get a better approximation
to the distribution of Zn.

3. A Preliminary Result

To demonstrate that the RB consistently estimates the distribution of Zn,
we use the result in Theorem 3.1 below. It has interest on its own, because it
gives the order of the error of the RB distribution estimator of the sample mean.
Let

X̄n =
1
n

n∑
i=1

Xi, s2
n =

1
n

n∑
i=1

(Xi − X̄n)2 and X̄∗
n =

1
n

n∑
i=1

X∗
i .

Theorem 3.1. If E(|X1|3) < ∞ then, as n → ∞, P∗{n1/2(X̄∗
n − X̄n) ≤ xsn |

k1 ≤ νn ≤ k2} = Φ(x) + rn uniformly in x, where

rn =




O(n−1/2) if C.1 or C.2 hold,
O
(
n−1/4(log log n)1/2

)
if C.3 holds,

o(1) if C.4 holds.
(1)

Proof. Let Y1, Y2, . . . be a sequence of independent and identically distributed
Poisson variables with mean 1, S =

∑n
j=1 Yj, T =

∑n
j=1 I(Yj > 0) and Di =

Di,n = (Xi − X̄n)/sn, 1 ≤ i ≤ n. With this notation,

P∗
{
n1/2(X̄∗

n − X̄n) ≤ xsn | k1 ≤ νn ≤ k2

}

=
P∗
{∑n

i=1 DiYi ≤ n1/2x, S = n, k1 ≤ T ≤ k2

}
P (S = n, k1 ≤ T ≤ k2)

. (2)

From (2) and Lemmas 7.1 and 7.4 in the Appendix, P∗{n1/2(X̄∗
n − X̄n) ≤ x |

k1 ≤ νn ≤ k2} = Φ(x) + O(t−1
n ), where

tn =




n1/2{Φ(w2) − Φ(w1)} if |w2 − w1| ≥ ε, for some ε > 0,

n1/2
k2∑

k=k1

φ0(vk)/(k2 − k1 + 1) if |w2 − w1| → 0.

(3)
The assumed conditions on k1 and k2 give the orders in (1).
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Corollary 3.1. Let µ = E(X1) and �2 = var(X1). Under the conditions of
Theorem 3.1, as n → ∞, if C.1 or C.2 hold then

sup
x

n1/2
∣∣∣P∗
{
n1/2(X̄∗

n−X̄n)≤xsn | k1≤νn≤k2

}
−P

{
n1/2(X̄n−µ)≤x�

}∣∣∣=O(1);

if C.3 holds then

sup
x

n1/4(log log n)−1/2
∣∣∣P∗

{
n1/2(X̄∗

n − X̄n) ≤ xsn | k1 ≤ νn ≤ k2

}
−P

{
n1/2(X̄n − µ) ≤ x�

}∣∣∣ = O(1);

if C.4 holds then

sup
x

∣∣∣P∗
{
n1/2(X̄∗

n−X̄n)≤xsn | k1≤νn≤k2

}
−P

{
n1/2(X̄n−µ)≤x�

}∣∣∣=o(1).

Note that if E(|X1|3) < ∞ and k1 and k2 satisfy C.1 or C.2, then the RB
distribution estimator of the sample mean has the same asymptotic accuracy as
the ordinary bootstrap estimator (see Theorem 1.C of Singh (1981)), while under
C.3 and C.4, the RB distribution estimator of the sample mean behaves worse
than the ordinary bootstrap one. Nevertheless, in all cases, the RB distribution
estimator of the sample mean is consistent, which is the only condition we need
to prove the consistency of the RB distribution estimator of the sample median.
We will use this fact in the proof of Theorem 4.1 in next Section, which shows
that, for all the considered conditions on k1 and k2, the RB consistently estimates
the distribution of the sample median.

4. Consistency of the RB Distribution of the Sample Median

Bickel and Freedman (1981) have shown that if

F has a unique median θ and a positive derivative F ′ = f at θ

that is continuous in a neighborhood of θ,
(4)

then the bootstrap estimates consistently the distribution of Zn. Next we show
that, under some conditions on k1 and k2, the RB distribution of Zn is also
a consistent estimator. For each bootstrap sample X∗, let F ∗

n be its empirical
distribution function and θ∗n = inf{t/F ∗

n(t) ≥ 1/2}.
Theorem 4.1. If F satisfies (4) and k1, k2 satisfy one of C.1, C.2, C.3, C.4, then
as n → ∞, supx

∣∣∣P∗{n1/2(θ∗n − θn) ≤ x/k1 ≤ νn ≤ k2} − P{n1/2(θn − θ) ≤ x}
∣∣∣ =

o(1).
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Proof. Since

P∗
{
n1/2(θ∗n − θn) ≤ x / k1 ≤ νn ≤ k2

}
= P∗

[
W ∗

n − nµ∗
n

{nµ∗
n(1 − µ∗

n)}1/2
≥ − nµ∗

n − n/2
{nµ∗

n(1 − µ∗
n)}1/2

/ k1 ≤ νn ≤ k2

]
, (5)

where W ∗
n = nF ∗

n(θn +xn−1/2) and µ∗
n = Fn(θn +xn−1/2), the result follows from

(5), Theorem 3.1 and the fact that Zn converges to N(0, σ2).

To prove Theorem 4.1 we use two facts: under the assumed conditions on k1

and k2, the RB consistently estimates the distribution of the sample mean; if F

satisfies (4), then {Fn(θn + xn−1/2)− 1/2}/xn−1/2 = f(θ) + un, with un = o(1).
By assuming stronger conditions on F we can reduce the order of un. More
precisely, if

F has a bounded second derivative in a neighborhood of θ and
f(θ) > 0,

(6)

then Theorem 2 in Singh (1981) shows that the difference between the distri-
bution of Zn and its bootstrap estimator is O(n−1/4(log log n)1/2). The next
Theorem shows that for appropriate choices of k1 and k2 the RB also satisfies
this property.

Theorem 4.2. If F satisfies (6) and k1, k2 satisfy one of C.1, C.2, C.3, then as
n → ∞,

sup
x

∣∣∣P∗
{
n1/2(θ∗n − θn) ≤ x / k1 ≤ νn ≤ k2

}
− P

{
n1/2(θn − θ) ≤ x

}∣∣∣
= O(n−1/4(log log n)1/2).

Proof. We have

P∗
{
n1/2|θ∗n − θn| > log n /k1 ≤ νn ≤ k2

}
≤

P∗
{
n1/2|θ∗n − θn| > log n

}
P (k1 ≤ νn ≤ k2)

,

P∗
{
n1/2|θ∗n − θn| > log n

}

≤ P∗
{ n∑

i=1

V ∗
i −

n∑
i=1

E∗(V ∗
i ) > nδ1

}
+ P∗

{ n∑
i=1

W ∗
i −

n∑
i=1

E∗(W ∗
i ) ≥ nδ2

}
,

where V ∗
i = I(X∗

i > θn + n−1/2 log n), δ1 = Fn(θn + n−1/2 log n) − 1/2, W ∗
i =

I(X∗
i ≤ θn−n−1/2 log n) and δ2 = 1/2−Fn(θn−n−1/2 log n). Using these bounds

and Lemma 2.3.2 in Serfling (1980), we get

P∗
{
n1/2|θ∗n − θn| > log n /k1 ≤ νn ≤ k2

}
≤ e−2nδ2

1 + e−2nδ2
2

P (k1 ≤ νn ≤ k2)
.
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According to Lemma 3.2 in Singh (1981), nδ2
i = f2(θ) log2 n + o(1), i = 1, 2.

Using this and Lemma 7.2, we find that the right side of the above inequality is
O(n−1), that is,

P∗
{
n1/2|θ∗n − θn| > log n /k1 ≤ νn ≤ k2

}
= O(n−1). (7)

Now, from (5), Theorem 3.1 and Lemma 3.2 in Singh (1981), we obtain

P∗
{
n1/2(θ∗n − θn) ≤ x / k1 ≤ νn ≤ k2

}
= Φ(xσ−1) + O(n−1/4(log log n)1/2), (8)

uniformly in |x| ≤ log n. Finally, the result follows from (7), (8) and the Berry-
Esseén bound for θn − θ (see, for example, Theorem 2.3.3.C in Serfling (1980)).

Needless to say the results in Theorems 4.1 and 4.2 extend appropriately for
any general quantile, θξ = inf{t/F (t) ≥ ξ}, 0 < ξ < 1.

5. Consistency of the RB Variance of the Sample Median

It is well known that convergence in distribution of a random sequence does
not imply convergence of moments. An example in the sample median: although
its bootstrap distribution is strongly consistent, its bootstrap variance estima-
tor may diverge to infinity, while the asymptotic variance of θn is finite. This
inconsistency is caused by the fact that |θ∗n − θn| may take some exceptionally
large values (see the example in Ghosh, Parr, Singh and Babu (1984)). To ensure
the consistency of the bootstrap variance estimator we need some additional tail
condition on F . Examples are the moment conditions in Ghosh, Parr, Singh
and Babu (1984) and Babu (1986). Another way to get a consistent variance
estimator is to truncate |θ∗n − θn|, as proposed in Shao (1992). As noted earlier,
the RB estimator is also based on truncating (it truncates νn) but, in contrast to
Shao’s method, it truncates before evaluating θ∗n. Both methods restrict θ∗n from
attaining large deviations from θn. One might say that Shao’s method is a post-
sampling correction to the ordinary bootstrap and that the RB is a pre-sampling
or while-sampling correction to the ordinary bootstrap.

The following Lemma shows that, for certain choices of k1 and k2, under RB,
the absolute difference |θ∗n − θn| is bounded with probability one. Hence we do
not have to impose additional tail conditions on F to get a consistent variance
estimator, as is shown in Theorem 5.1 below.

Lemma 5.1. If nβ0 ≤ k1 ≤ k2 ≤ n, for some β0 > 1/2, then P∗(X[nβ]:n ≤
θ∗n ≤ X[n(1−β)]:n / k1 ≤ νn ≤ k2) = 1, where Xr:n denotes the rth order statistic,
1 ≤ r ≤ n, β = β0 − 1/2 and [x] denotes the greatest integer less or equal than x.
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Theorem 5.1. If the assumptions of Theorem 4.1 hold and nβ0 ≤ k1 for some
1/2 < β0 ≤ p if w1 /→ −∞ and 1/2 < β0 < p if w1 → −∞, then var∗{

√
n(θ∗n −

θn) / k1 ≤ νn ≤ k2} = σ2
n + o(1).

Proof. By the assumed conditions on k1 and k2 and Theorem 4.1, it suffices to
show that

E∗{|
√

n(θ∗n − θn)|2+δ / k1 ≤ νn ≤ k2}
= (1 + δ)

∫ ∞

0
t1+δP∗(

√
n|θ∗n − θn| > t / k1 ≤ νn ≤ k2)dt < ∞ (9)

for some δ > 0. To bound the integral in (9), we consider three zones: (I)
t ∈ [1, c log1/2 n], (II) t ∈ (c log1/2 n, d

√
n) and (III) t ∈ [d

√
n,∞), where the

constants c and d will be specified later. From Lemma 7.6, Markov’s inequality
and Lemma 7.5, in zone (I) of t, P∗(

√
n|θ∗n − θn| > t / k1 ≤ νn ≤ k2) = O(t−4)

and hence for any 0 < δ < 2,∫
zone (I)

t1+δP∗(
√

n|θ∗n − θn| > t / k1 ≤ νn ≤ k2)dt < ∞.

In zone (II) of t, by our Lemma 7.6 and Lemma 2.3.2 in Serfling (1980), we obtain

P∗(
√

n|θ∗n − θn| > t/k1 ≤ νn ≤ k2) ≤ P∗(
√

n|θ∗n − θn| > c log1/2 n/k1 ≤ νn ≤ k2)

≤ 2
n2c2P (k1 ≤ νn ≤ k2)

,

and therefore∫
zone (II)

t1+δP∗(
√

n|θ∗n − θn| > t / k1 ≤ νn ≤ k2)dt = O
( n1+δ/2−2c2

P (k1 ≤ νn ≤ k2)

)
.

From Lemma 7.2, to ensure that the integral in zone (II) is finite, it suffices to
take the constant c such that c ≥ (2 + δ/2)1/2. Finally, since m = max{θn −
X[βn]:n,X[(1−β)n]:n − θn} = O(1), with β = β0 − 1/2, if we take the constant d

such that m ≤ d, then by Lemma 5.1 we have that∫
zone (III)

t1+δP∗(
√

n|θ∗n − θn| > t / k1 ≤ νn ≤ k2)dt = 0.

This completes the proof.

6. A Simulation Study

In Sections 4 and 5 we have seen that, for adequate choices of k1 and k2, the
RB estimators of the distribution and the variance of Zn are consistent. Since
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several choices of k1 and k2 are reasonable, we have carried out a simulation
experiment to compare the finite sample performance of the corresponding esti-
mators, including the ordinary bootstrap. We consider six choices for k1 and k2,
displayed in Table 1. Note that Method 1 in this Table is the ordinary bootstrap.

Table 1. Choices of k1 and k2.

Method k1 k2

1 1 n

2 [np −√
npq] + 1 n

3 [np −√
npq] + 1 [np +

√
npq]

4 [np] + 1 [np] + 1
5 [np +

√
npq] + 1 [np +

√
npq] + 1

6 [np +
√

npq] + 1 n

For the estimation of the variance of Zn we have also considered the following
consistent estimators:

• The estimator developed by Bloch and Gastwirth (1968), with m = 0.5n4/5,
denoted estimator 7.

• The estimator based on the interquartile range, (IQR∗/{Φ−1(3/4)−Φ−1(1/4)})2,
where IQR∗ is the interquartile range of the ordinary bootstrap distribution
of Zn, denoted estimator 8.

• The estimator proposed by Shao (1992); for estimating the variance of Zn

it is equivalent to the usual bootstrap estimator obtained by winsorizing the
original sample, that is, replacing Xi:n by X[nε1]:n for 1 ≤ i ≤ [nε1] and by
X[n(1−ε2)]:n for [n(1 − ε2)] ≤ i ≤ n, for some 0 < ε1, ε2 < 1/2. We have taken
ε1 = ε2 = 0.10. We refer to it as estimator 9.

To study the corresponding variance and distribution estimators (estimators
1 to 9 for the variance and estimators 1 to 6 for the distribution) we gener-
ated M = 10.000 samples of size n = 21 from a standard normal population,
N(0,1). For each method (except for the variance estimator 7) and from each
sample Xm, 1 ≤ m ≤ M , we have first generated B = 1000 bootstrap samples,
X∗m,1, . . . ,X∗m,B , and then

• We estimated σ2
n = var{√n(θ̂n − θ)} by σ̂2

n(m), the sample variance of√
n(θ̂∗m,b

n − θ̂m
n ), 1 ≤ b ≤ B, where θ̂m

n is the sample median of Xm and
θ̂∗m,b
n is the sample median of X∗m,b, 1 ≤ b ≤ B.

• We considered the following intervals

(−∞,−3), [−3,−2.9), [−2.9,−2.8), [−2.8,−2.7), . . . , [2.9, 3), [3,∞) (10)
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and, for each interval, we calculated f(I,m), the fraction of
√

n(θ̂∗m,b
n − θ̂m

n ),
1 ≤ b ≤ B, falling in the interval I.

Finally, we approximated the bias and the mean squared error (mse) of the
corresponding variance estimator by

bias ≈ 1
M

M∑
m=1

σ̂2
n(m) − σ2

n and mse ≈ 1
M

M∑
m=1

{σ̂2
n(m) − σ2

n}2,

respectively. To evaluate the corresponding distribution function estimator we
considered the following global measure of the bias, BS = 100 ×∑I∈I bias2(I),
where I is the set of the intervals in (10), bias(I) = (1/M)

∑M
m=1 f(I,m) −

f(I) and f(I) gives the fraction of
√

n(θ̂m
n − θ), 1 ≤ m ≤ M , falling in the

interval I; and as a global measure of the mean squared error of each distribution
estimator we have considered MS = 100 × ∑

I∈I MSE (I), where MSE(I) =
(1/M)

∑M
m=1 {f(I,m) − f(I)}2.

We repeated the above experiment for n = 31, 41 and also for samples from
a exponential negative distribution with mean 1, Exp(1), and for samples from
a standard Cauchy population, C(0,1). Since for all the considered populations
E{log(1 + |X1|)} < ∞, by the theorem in Babu (1986), in all cases the ordinary
bootstrap variance estimator is consistent. Nevertheless, as consistency does
not guarantee asymptotic efficiency, we also repeated the above experiment for
n = 500, 1000 to study empirically the asymptotic bias and the asymptotic mean
squared error of the considered estimators. Tables 2 to 5 show the obtained
results.

Note that we employed the same number of bootstrap replications to ap-
proximate the bootstrap variance estimators and to approximate the bootstrap
distribution estimators. According to Efron and Tibshirani (1993, Chap.6), to
approximate the bootstrap variance estimator, B = 100 usually gives quite sat-
isfactory results. In fact, we repeated the whole experiment, where by whole
experiment we mean for all the considered methods, for all the considered sam-
ple sizes and for all the considered populations generating the original samples,
with B = 100 for the variance estimators and obtained almost the same results
as for B = 1000, the differences being quite negligible.

Looking at Table 2 we see that Methods 1, 3, 7, 8 and 9 yield variance
estimators with positive bias, while the rest of the methods underestimate the
true variance. The sign of the bias remains constant for all the considered sample
sizes (n = 21, 31, 41). With respect to the mean squared error, Methods 2 and 4
give, in general, the best results.
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Table 2. Results for the variance estimators and n = 21, 31, 41.

N(0,1) Exp(1) C(0,1)
n method bias mse bias mse bias mse
21 1 0.2650 1.3026 0.2965 1.0320 1.8436 20.6449

2 -0.3673 0.8562 -0.1640 0.5358 -0.0822 5.7361
3 0.1902 1.2260 0.2374 0.9547 1.4969 16.0646
4 -0.5882 0.9033 -0.3213 0.4840 -0.6459 4.2185
5 -0.8458 1.1001 -0.5021 0.5030 -1.2604 3.7511
6 -0.8846 1.1013 -0.5024 0.5033 -1.2591 3.7606
7 0.5878 1.3430 0.5354 1.2296 5.2311 134.2880
8 0.4931 5.5071 0.4408 3.3981 1.4048 27.0004
9 0.2639 1.3026 0.2965 1.0320 1.8139 19.4772

31 1 0.2569 1.0952 0.2469 0.7729 1.0129 7.4404
2 -0.3031 0.7256 -0.1486 0.4352 -0.2709 3.2844
3 0.3721 1.2687 0.3270 0.8998 1.2631 8.7490
4 -0.5127 0.7647 -0.2943 0.4028 -0.7171 2.8869
5 -0.7603 0.9311 -0.4642 0.4320 -1.2138 3.0376
6 -0.7588 0.9318 -0.4638 0.4328 -1.2136 3.0438
7 0.4218 0.8302 0.3719 0.6779 2.8621 24.4037
8 0.5817 4.2666 0.4320 2.4865 1.1660 17.4788
9 0.2515 1.0920 0.2455 0.7718 0.9860 7.3207

41 1 0.2629 0.9972 0.2086 0.6028 0.7827 4.9280
2 -0.3071 0.6531 -0.1773 0.3539 -0.3895 2.4137
3 0.3581 1.1296 0.2742 0.6880 0.9717 5.6365
4 -0.4639 0.6811 -0.2817 0.3445 -0.6934 2.3066
5 -0.7031 0.8299 -0.4409 0.3810 -1.1510 2.5726
6 -0.7027 0.8286 -0.4405 0.3813 -1.1516 2.5765
7 0.4000 0.6752 0.3279 0.5112 2.2113 12.5698
8 0.1066 2.4930 0.0931 1.3473 0.2281 8.3937
9 0.2559 0.9928 0.2067 0.6016 0.7589 4.8719

From Table 3 we observe that the bias of all methods, except for Method 9,
has the same sign as for small samples. As expected from the theoretical results in
Bloch and Gastwirth (1968) and Hall and Martin (1988), the estimator 7 has less
mean squared error than the usual bootstrap estimator. In fact, the Bloch and
Gastwirth estimator is the one having the smallest mean squared error. If we only
pay attention to the RB variance estimators we see that, with respect to mean
squared error, its behaviour is opposite to that for small samples (n = 21, 31, 41):
for large samples Method 1 and, especially, Method 3 give the best results, while
for small samples these methods have the largest mean squared errors.
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Table 3. Results for the variance estimators and n = 500, 1000.

N(0,1) Exp(1) C(0,1)
n method bias mse bias mse bias mse

500 1 0.0962 0.2696 0.0457 0.1155 0.1557 0.6941
2 -0.5162 0.3995 -0.3416 0.1737 -0.8129 0.9989
3 0.0935 0.2688 0.0432 0.1141 0.1553 0.6986
4 -0.5609 0.4391 -0.3694 0.1904 -0.8822 1.0977
5 -0.6021 0.4794 -0.3969 0.2076 -0.9488 1.1988
6 -0.6030 0.4813 -0.3968 0.2077 -0.9494 1.2009
7 0.1305 0.0765 0.0791 0.0398 0.4640 0.4355
8 0.1171 0.7386 0.0512 0.2989 0.1753 1.8132
9 -0.0372 0.2460 -0.0280 0.1079 -0.0579 0.6274

1000 1 0.0935 0.1996 0.0295 0.0811 0.1110 0.4775
2 -0.5244 0.3706 -0.3577 0.1680 -0.8551 0.9597
3 0.0748 0.1949 0.0189 0.0800 0.0817 0.4634
4 -0.5569 0.4013 -0.3787 0.1814 -0.9065 1.0401
5 -0.5881 0.4331 -0.3975 0.1944 -0.9547 1.1197
6 -0.5887 0.4334 -0.3982 0.1949 -0.9553 1.1209
7 0.1091 0.0458 0.0446 0.0199 0.3172 0.2134
8 0.1085 0.5313 0.0379 0.2122 0.1134 1.2619
9 -0.4235 0.3133 -0.2959 0.1427 -0.7013 0.8155

Table 4. Results for the distribution estimators and n = 21, 31, 41.

N(0,1) Exp(1) C(0,1)
n method BS MS BS MS BS MS

21 1 3.1584 12.6967 3.1897 12.6334 3.2029 13.1130
2 5.0037 15.7055 5.1364 15.7446 4.8162 15.8918
3 3.1446 12.8307 3.1925 12.7790 3.1845 13.2508
4 6.3032 17.5262 6.4806 17.6046 6.0365 17.6149
5 8.9050 20.8116 9.1384 20.9136 8.5426 20.7728
6 8.9192 20.8012 9.1491 20.9114 8.5453 20.7787

31 1 2.1169 10.4285 2.0780 10.2432 2.1494 10.8000
2 3.1933 12.5231 3.2329 12.4241 3.0842 12.7299
3 1.9334 10.0823 1.8859 9.8846 2.0014 10.5007
4 3.9592 13.8185 4.0337 13.7489 3.8237 13.9941
5 5.4450 16.0692 5.5847 16.0280 5.2604 16.1465
6 5.4349 16.0627 5.5774 16.0204 5.2592 16.1565

41 1 1.5826 9.0571 1.7258 9.0343 1.6411 9.4364
2 2.4478 10.9570 2.7112 11.0650 2.3942 11.1751
3 1.4741 8.8117 1.5920 8.7607 1.5582 9.2241
4 2.9024 11.7851 3.2119 11.9470 2.8270 11.9839
5 3.9631 13.5869 4.3744 13.8416 3.8586 13.7260
6 3.9485 13.5842 4.3548 13.8312 3.8593 13.7289
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In summary, the mean squared error of the considered estimators is differ-
ent for small and large samples. An example is estimator 7 that, although the
asymptotic theory says it has a faster convergence rate than does estimator 1
(we can also appreciate this looking at Table 3), can have a quite unsatisfactory
behaviour for small sample sizes (see the results in Table 2 for the Cauchy pop-
ulation). Another example involves the RB estimators: for small sample sizes,
Methods 2 and 4 give, in general, the best results, while for large samples Method
1 and, especially, Method 3 have smaller mean squared error.

Table 5. Results for the distribution estimators and n = 500, 1000.

N(0,1) Exp(1) C(0,1)
n method BS MS BS MS BS MS

500 1 0.0617 1.4213 0.0724 1.4718 0.0670 1.4651
2 0.2348 1.9325 0.2806 2.0529 0.2421 1.9023
3 0.0610 1.4170 0.0709 1.4667 0.0659 1.4599
4 0.2655 2.0009 0.3169 2.1323 0.2755 1.9724
5 0.2971 2.0754 0.3585 2.2142 0.3092 2.0421
6 0.2984 2.0788 0.3571 2.2143 0.3091 2.0450

1000 1 0.0346 1.1340 0.0437 1.1961 0.0427 1.1489
2 0.1762 1.5494 0.2361 1.6904 0.2070 1.5223
3 0.0345 1.1388 0.0443 1.2002 0.0416 1.1458
4 0.1950 1.5906 0.2610 1.7394 0.2306 1.5685
5 0.2163 1.6370 0.2876 1.7871 0.2521 1.6094
6 0.2160 1.6353 0.2890 1.7917 0.2522 1.6100

Looking at Tables 4 and 5 we see that Method 3 is the one that best ap-
proximates the distribution of Zn, followed by the usual bootstrap, Method 2,
Method 4 and Methods 5 and 6 (which have similar behaviours). Unlike the RB
variance estimators, the ordering of the methods remains the same for all the
considered sample sizes, for all the considered populations and for both BS and
MS. This assertion can be seen better by looking at Figures 1 and 2, that for
each sample size (n = 21, 31, 41 for Figure 1 and n = 500, 1000 for Figure 2) and
for each considered population, display the values of BS. The graph for MS is
quite similar.

The results in Tables 3 and 5 seem to support our initial suspicion that
the choice of k1 and k2 affects the asymptotic efficiency of the corresponding
estimators. Deeper theoretical studies, similar to that in Hall and Martin (1988)
for the ordinary bootstrap estimator, and to that in Falk and Reiss (1989) for the
usual bootstrap distribution estimator of Zn, should be carried out to confirm
this.
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Figure 1. Horizontal axis: method, vertical axis: BS.
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Appendix

Here we include some auxiliary lemmas used in the proofs of results in Sec-
tions 3, 4 and 5. First we introduce some notation. Let νm,n =

∑n
i=1 I(Ni > 0),

with (N1, . . . , Nn) ∼ M(m; 1/n, . . . , 1/n). Note that νn = νn,n. Let φ and φ0 de-
note the standard normal density function and the density of a normal law with
mean zero and variance σ2

0 , respectively. Let Y1, Y2, . . . be a sequence of inde-
pendent and identically distributed Poisson variables with mean 1, S =

∑n
j=1 Yj

and T =
∑n

j=1 I(Yj > 0). With this notation we have that

P (k1 ≤ νm,n ≤ k2) =
P (S = m, k1 ≤ T ≤ k2)

P (S = m)
. (11)

Lemma 7.1. (a) Uniformly in m and k, nP (S = m,T = k) = φ0,V (u, v){1 +
n−1/2Q1(u, v)} +O(n−1), where φ0,V is the bivariate normal density with zero
mean and dispersion matrix

V =

(
1 q

q pq

)
,

u = (m − n)n−1/2, v = (k − np)n−1/2 and Q1 is a third degree polynomial in u

and v whose coefficients are bounded. In particular, if m = n, then uniformly
in k, nP (S = n, T = k) = φ(0)φ0(v){1 + n−1/2Q(v)} + O(n−1), where Q(v) =
[(3q3 − 3pq2 + p2q)/2σ4

0 ]v − [(4q3 − 4pq2 + p2q)/6σ6
0 ]v3.

(b) Uniformly in m, k1 and k2,

n1/2P (S = n, k1 ≤ T ≤ k2)

= φ(0){Φ(w2) − Φ(w1)} + n−1/2φ(0)
∫ w2σ0

w1σ0

Q(w)φ0(w)dw

−n−1/2φ(0) {S1(k2)φ0(w2σ0) − S1(k1)φ0(w1σ0)} + O(n−1),

where S1(x) is a periodic function of period 1, with S1(x) = x−0.5, if 0 ≤ x < 1.

Proof. Part (a) follows from Theorem 22.1 in Bhattacharya and Ranga Rao
(1986). Part (b) follows from (a) and Theorem A.4.3 in Bhattacharya and Ranga
Rao (1986).

Lemma 7.2. If k1 and k2 satisfy one of C.1, C.2, C.3, C.4, then (nP (k1 ≤ νn ≤
k2))−1 = O(1).
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Proof. To prove the result we distinguish two cases: |w2 − w1| ≥ ε, for some
ε > 0, and |w2−w1| → 0. Suppose first that |w2−w1| ≥ ε, for some ε > 0. From
(11), Lemma 7.1, and taking into account that

√
nP (S = n) = φ(0) + O(n−1/2),

we get P (k1 ≤ νn ≤ k2) = Φ(w2) − Φ(w1) + O(n−1/2). Hence, if C.1 holds, then
(nP (k1 ≤ νn ≤ k2))−1 = O(n−1). If k1 and k2 satisfy C.3 or C.4 and w1 → ∞
(analogously if w2 → −∞), then

Φ(w2)−Φ(w1) ≥ Φ(w1+ε)−Φ(w1) = φ(w1)ε+O(ε2) > φ(log1/2 n)ε+O(ε2) ≥ 1
n

,

for all large n, and hence (nP (k1 ≤ νn ≤ k2))−1 = O(1). Now, suppose that
|w2 −w1| → 0. As before, by Lemma 7.1 and taking into account that

√
nP (S =

n) = φ(0) + O(n−1/2), we obtain

P (k1 ≤ νn ≤ k2) =
∑k2

k=k1
P (S = n, T = k)
P (S = n)

=
k2 − k1 + 1√

n
{φ(w1) + o(1)} .

Therefore, if C.2 holds, (nP (k1≤νn≤k2))−1≤ (
√

n{φ(l) + o(1)})−1 = O(n−1/2).
If k1 and k2 satisfy C.3 or C.4 and w1 → ∞ (analogously if w2 → −∞), then
φ(w1) > φ(log1/2 n) and hence (nP (k1 ≤ νn ≤ k2))−1 = O(1).

Lemma 7.3. Let r be a fixed positive integer. If k1 and k2 satisfy one of C.1, C.2,
C.3, C.4, then as n → ∞, P (k1 ≤ νn−r,n ≤ k2)/P (k1 ≤ νn,n ≤ k2) = 1 + o(1).

Proof. From (11) we have that

P (k1 ≤ νn−r,n ≤ k2)
P (k1 ≤ νn,n ≤ k2)

=
P (S = n − r, k1 ≤ T ≤ k2)

P (S = n, k1 ≤ T ≤ k2)
P (S = n)

P (S = n − r)
. (12)

Since r is fixed,
P (S = n)

P (S = n − r)
=

nr

n(r)
= 1 + o(1). (13)

For the first factor on the right side of (12) we apply Lemma 7.1. To do this,
we distinguish two cases: |w2 − w1| → 0, and |w2 − w1| ≥ ε for some ε > 0. If
|w2 − w1| → 0, we consider

n

k2−k1+1
P (S = n−r, k1≤T ≤k2) =

1
k2 − k1 + 1

k2∑
k=k1

φ0,V (ur, kk),+O(n−1/2),

n

k2 − k1 + 1
P (S = n, k1 ≤ T ≤ k2) =

1
k2 − k1 + 1

k2∑
k=k1

φ0,V (0, vk) + O(n−1/2)

=
1

k2 − k1 + 1
φ(0)

k2∑
k=k1

φ0(vk) + O(n−1/2),
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where ur = −rn−1/2 and vk = (k − np)n−1/2. If |w2 − w1| ≥ ε for some ε > 0,
we consider

n1/2P (S = n − r, k1 ≤ T ≤ k2)

=
∫ w2σ0

w1σ0

φ0,V (ur, v)dv + O(n−1/2)

= φ(ur){Φ(w2 + qurσ
−1
0 ) − Φ(w1 + qurσ

−1
0 )} + O(n−1/2),

and n1/2P (S = n, k1 ≤ T ≤ k2) = φ(0){Φ(w2) − Φ(w1)} + O(n−1/2). Hence,

P (S = n − r, k1 ≤ T ≤ k2)
P (S = n, k1 ≤ T ≤ k2)

= 1 + O(t−1
n ), (14)

where tn is as defined in (3). From the assumptions on k1 and k2, the right side
of (14) is 1 + o(1). This, together with (12) and (13), yield the result.

Lemma 7.4. Let Y1, . . . , Yn be i.i.d. Poisson random variates with mean 1. If
E(|X1|3) < ∞, then uniformly in x and k

n1/2P∗
( n∑

i=1

DiYi ≤ n1/2x, S = n, T ≤ k
)

= Φ(x)φ(0)Φ(v/σ0) + O(n−1/2),

nP∗
( n∑

i=1

DiYi ≤ n1/2x, S = n, T = k
)

= Φ(x)φ(0)φ0(v) + O(n−1/2),

where v = (k − np)n−1/2.

The proof of Lemma 7.4 follows along the lines of the proof of Proposition 1
in Babu, Pathak and Rao (1999), and so we omit it.

Lemma 7.5. If k1 and k2 satisfy one of C.1, C.2, C.3, C.4, then E∗([
√

n{F ∗
n(x)−

Fn(x)}]4 / k1 ≤ νn ≤ k2) = O(1).

Proof. Let µ(k1, k2) = E∗
(
[
√

n{F ∗
n(x) − Fn(x)}]4 / k1 ≤ νn ≤ k2

)
and ai =

I(Xi ≤ x), 1 ≤ i ≤ n. With this notation we have that

µ(k1, k2) =
1
n2

E∗
[{ n∑

i=1

(Ni − 1)ai

}4
/ k1 ≤ νn ≤ k2

]
. (15)

Since

E(· / k1 ≤ νn ≤ k2)

=
P (k1 ≤ νn)

P (k1 ≤ νn ≤ k2)
E(· / k1 ≤ νn) − P (k2 + 1 ≤ νn)

P (k1 ≤ νn ≤ k2)
E(· / k2 + 1 ≤ νn),

from Corollary 7.1 in Jiménez Gamero, Muñoz Garćıa, Muñoz Reyes and Pino
Mej́ıas (1998) and (15), we get

µ(k1, k2) = (1 − π1)µ(1, n) + O(π2) + O(π3/n), (16)
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∀x ∈ R, where

π1 = 1 − P (k1 ≤ νn−1,n ≤ k2)
P (k1 ≤ νn,n ≤ k2)

, π2 = 1 − π1 − P (k1 ≤ νn−2,n ≤ k2)
P (k1 ≤ νn,n ≤ k2)

,

π3 = 1 − π1 − π2 − P (k1 ≤ νn−3,n ≤ k2)
P (k1 ≤ νn,n ≤ k2)

.

By Lemma 7.3, the right side of (16) is O(1). This completes the proof.

Lemma 7.6. Let c be a positive constant. If F satisfies (4), then for all t ∈
[1, c log1/2 n] and all 1 ≤ k1 ≤ k2 ≤ n we have that

(a) P∗
{√

n(θ∗n − θn) > t / k1 ≤ νn ≤ k2
}

≤ P∗{F ∗
n(θn + t/

√
n) − Fn(θn + t/

√
n) ≤ −εt/

√
n/k1 ≤ νn ≤ k2},

(b) P∗
{√

n(θn − θ∗n) > t / k1 ≤ νn ≤ k2
}

≤ P∗{Fn(θn − t/
√

n) − F ∗
n(θn − t/

√
n) ≤ −εt/

√
n/k1 ≤ νn ≤ k2},

for some ε > 0, for all n ≥ n0, for some no ∈ N.

Proof. Inequality (a) is proved in the proof of Theorem 1 in Ghosh, Parr, Singh
and Babu (1984). Inequality (b) can be derived similarly.
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