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Introduction

In the present work we prove a structure theorem for operators of the 0-th
term of the VY• -filtration relative to a free divisor Y of a complex analytic variety
X. As an application, we give a formula for the logarithmic de Rham complex
in terms of VY0 -modules, which generalizes the classical formula for the usual de
Rham complex in terms of DX-modules, and the formula of Esnault-Viehweg in
the case that Y is a normal crossing divisor. Using this, we give a sufficient
condition for perversity of the logarithmic de Rham complex. Now we comment
on the contents of each part of the paper:

In the first section, we recall the concepts of logarithmic derivation and loga-
rithmic form, as well as free divisor, all of them due to Kyogi Saito [14], and the
definition of the ring VY0 (DX) of logarithmic differential operators along Y .

In the second part, we study the logarithmic operators in the case that Y is
free. We give a structure theorem in which we prove that the ring of logarith-
mic differential operators is the polynomial algebra generated by the logarith-
mic derivations over the sheaf OX of holomorphic functions. As a consequence,
VY0 (DX) is a coherent sheaf. Thanks to this theorem, we can prove the equiva-
lence between VY0 (DX)-modules and OX-modules with logarithmic connections.
Therefore, an VY0 (DX)-module (or logarithmic DX-module)M defines a logarith-
mic de Rham complex Ω•

X(log Y )(M).

In the third part, we prove that the logarithmic de Rham complex is canon-
ically isomorphic to the complex RHomVY

0
(DX)(OX ,M). To show this, we first

construct a resolution of OX as VY0 (DX)-module, which we call the logarithmic
Spencer complex and denote by Sp•(log Y ).
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Finally, we give a sufficient condition for perversity of the logarithmic de Rham
complex, which is a perverse sheaf if the symbols of a minimal generating set of
logarithmic derivations form a regular sequence in the graded ring associated to
the filtration by the order on DX . This condition always holds in dimension 2.

Some results of this paper have been announced in [4]. We give here the
complete proofs of all of the results announced in that note and other new results.

Acknowledgements: I am grateful to David Mond for his interest and encour-
agement. I wish to thank my advisor Luis Narváez for introducing me to the
subject of this work and for giving me suggestions for the proofs of some of the
results.

1 Notations and Preliminaries

Let X be a complex analytic variety of dimension n, and Y a hypersurface of
X defined by the ideal I. We will denote by DX the sheaf of linear differential
operators over X, DerC(OX) the sheaf of derivations of OX , and DX [⋆Y ] the
sheaf of meromorphic differential operators with poles along Y . Given a point
x of Y , we will denote by I = (f), O, DerC(O) and D the respective stalks at
x. We will denote by F • the filtration of DX by the order of the operators and
Ω•
X [⋆Y ] the meromorphic de Rham complex with poles along Y .

1.1 Logarithmic forms and logarithmic derivations.

Free divisors

We are going to recall some notions of [14] that we will use repeatedly:

A section δ of DerC(OX), defined over an open set U of X, is called a logarith-

mic derivation (or vector field) if for each point x in Y ∩ U , δx(Ix) is contained
in the ideal Ix (if I = Ix = (f), it is sufficient that δx(f) belongs to (f)O).
The sheaf of logarithmic derivations is denoted by Der(log Y ), and is a coherent
OX -submodule of DerC(OX) and a Lie subalgebra. We denote by Der(log f), or
Der(log I), the stalks at x of Der(log Y ):

Der(log f) = {δ ∈ DerC(O) / δ(f) ∈ (f)}.

We say that a meromorphic q-form ω with poles along Y , defined in an open
set U , is a logarithmic q-form along Y or, simply, a logarithmic q-form, if for
every point x in U , fω and df ∧ω are holomorphic at x. The sheaf of logarithmic
q-forms along Y in U is denoted by Ωq

X(log Y )(U). This definition gives rise to
a coherent OX -module Ωq

X(log Y ), whose stalks are:

Ωq(log f) = Ωq
X(log Y )x = {ω ∈ Ωq

X [⋆Y ]x / fω ∈ Ωq, df ∧ ω ∈ Ωq+1}.
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The logarithmic q-forms along Y define a subcomplex of the meromorphic
de Rham complex along Y , that we call the logarithmic de Rham complex and
denote by Ω•

X(log Y ).
Contraction of forms by vector fields defines a perfect duality between the

OX -modules Ω1
X(log Y ) and Der(log Y ), that we denote by 〈 , 〉. Thus, both

of them are reflexive. In particular, when n = dimCX = 2, Ω1
X(log Y ) and

Der(log Y ) are locally free OX-modules of rank 2.
We say that Y is free at x, or I is a free ideal of O, if Der(log I) is free as

O-module (of rank n). If f ∈ O, we say that f is free if the ideal I = (f) is free.
We say that Y is free if it is at every point x. In this case, Der(log Y ) is a locally
free OX -module of rank n. We can use the following criterion to determine when
an hypersurface Y is free at x:

Saito’s Criterion: The O-module Der(log f) is free if and only if there exist
n elements δ1, δ2, · · · , δn in Der(log f), with δi =

∑n
j=1 aij(z)

∂
∂zj

(i = 1, . . . , n),

where z = (z1, z2, · · · , zn) is a system of coordinates of X centered in x, such that
the determinant det(aij) is equal to af , with a ∈ O a unit. Moreover, in this
case, {δ1, δ2, · · · , δn} is a basis of Der(log f).

When Y is free, we have the equality: Ωp
X(log Y ) =

p

∧ Ω1
X(log Y ). Using

the fact that Ω1
X(log Y ) ∼= HomOX

(Der(log Y ),OX), we can construct a natural
isomorphism:

Ωp
X(log Y )

γp

∼= HomOX
(
p

∧ Der(log Y ),OX),

defined locally by γp(ω1 ∧ · · · ∧ ωp)(δ1 ∧ · · · ∧ δp) = det(〈ωi, δj〉)1≤i,j≤p.

1.2 V-filtration

We define the V-filtration relative to Y on DX as in the smooth case ([10], [9]):

VYk (DX) = {P ∈ DX / P (Ij) ⊂ Ij−k, ∀j ∈ Z}, k ∈ Z,

where Ip = OX when p is negative. Similarly, VIk(D) = {P ∈ D / P (Ij) ⊂
Ij−k, ∀j ∈ Z}, with k an integer, and Ip = O when p ≥ 0. In the case of I = (f),
we note Vfk (D) = VIk(D).

Definition 1.2.1.– A logarithmic differential operator (or, simplify, a logarith-
mic operator) is a differential operator of degree 0 with respect to the V-filtration.

We see that:

Der(log Y ) = DerC(OX) ∩ VY0 (DX) = Gr1
F •

(
VY0 (DX)

)
,

F 1(VY0 (DX)) = OX ⊕Der(log Y ),

where the last expression is consequence of F 1(DX) = OX ⊕DerC(OX).

3



Remark 1.2.2.– The inclusion Der(log Y ) ⊂ GrF •

(
VY0 (DX)

)
gives rise to a

canonical graded morphism of graded algebras:

κ : SymOX
(Der(log Y )) −→ GrF •

(
VY0 (DX)

)
.

Similarly, we have a canonical graded morphism of graded O-algebras:
κx : SymO (Der(log I)) −→ GrF •

(
VI0 (D)

)
, which is the stalk of κ at x.

2 Logarithmic operators relative to a free divi-

sor

2.1 The Structure Theorem

We denote by { , } the Poisson bracket defined in the graded ring GrF •(D) (cf.
[12], [8]). Given two polynomials F,G in GrF •(D) = O[ξ1, · · · , ξn]:

{F,G} =
n∑

i=1

∂F

∂ξi

∂G

∂xi
−

n∑

i=1

∂F

∂xi

∂G

∂ξi
.

Proposition 2.1.1.– Let f be free. Consider a minimal system of generators
{δ1, δ2, · · · , δn} of Der(log f). Let R0 be a polynomial in GrF •(D), homogeneous
of order d, and such that there exist other polynomials Rk in GrF •(D), with
k = 1, · · · , d, homogeneous of order d− k such that:

{Rk, f} = fRk+1, (0 ≤ k < d) (1)

(we will say that R0 verifies the property (1) for R1, R2, · · · , Rd). Then there exist
polynomials Hk

j in GrF •(D), homogeneous of order d − k − 1, with j = 1, · · · , n
and k = 1, · · · , d− 1, such that:

a) Rk =
∑n
j=1H

k
j σ(δj), where σ(δj) denotes the principal symbol of δj .

b) {Hk
j , f} = fHk+1

j (1 ≤ j ≤ n, 0 ≤ k < d − 1). This is the same as saying:

Hk
j verifies the property (1) for Hk+1

j , · · · , Hd−1
j .

Proof: Let A = (αji ) be the square matrix whose rows are the coefficients of
the basis {δ1, δ2, · · · , δn} of Der(log f) with respect to the basis ∂

∂x1
, ∂
∂x2
, · · · , ∂

∂xn

of DerC(OX):

δj =
n∑

i=1

αji
∂

∂xi
= αj • ∂t,

with j = 1, · · · , n, where we write ∂ instead of
(

∂
∂x1
, · · · , ∂

∂xn

)
. We consider the

ring O2n = C{x1, · · · , x2, ξ1, · · · , ξn}. Thanks to the Saito’s Criterion, we know
that the set

{δ1, · · · , δn,
∂

∂ξ1
, · · · ,

∂

∂ξn
}
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is a basis of the O2n-module DerO2n
(log f). So, as we have, for k = 1, · · · , d,

(f) ∋ {Rk, f} =
n∑

i=1

(Rk)ξifxi
,

where fxi
represents ∂f

∂xi
and (Rk)ξi represents ∂Rk

∂ξi
, then there exist homogeneous

polynomials Gk
j in GrF •(D), of degree d − k − 1, or null, with j = 1, · · · , n and

k = 1, · · · , d− 1, such that

((Rk)ξ1 , (Rk)ξ2 , · · · , (Rk)ξn) =
n∑

j=1

Gk
jα

j .

Using the Euler relation Rk = 1
d

∑n
i=1(Rk)ξiξi, and as σ(δi) = αi • ξt, we obtain

Rk =
1

d

n∑

i=1

n∑

j=1

Gk
jα

j
i ξi =

1

d

n∑

j=1

Gk
jσ(δj).

By Saito’s Criterion, the determinant of the matrix A is equal to uf , with u ∈ O
invertible. Let B = (bij) = Adj(A)t. We have:

((Rk)ξ1 , (Rk)ξ2 , · · · , (Rk)ξn) =
(
Gk

1, G
k
2, · · · , G

k
n

)
A,

so
((Rk)ξ1 , (Rk)ξ2 , · · · , (Rk)ξn)B = g

(
Gk

1, G
k
2, · · · , G

k
n

)
.

Now:

g{Gk
j , f} = {gGk

j , f} =
n∑

i=1

fxi

∂(gGk
j )

∂ξi
=

n∑

i=1

fxi

n∑

l=1

∂(Rk)ξl
∂ξi

blj =

n∑

l=1

blj
n∑

i=1

∂2Rk

∂ξl∂ξi
fxi

=
n∑

l=1

blj
∂({Rk, f})

∂ξl
= f

n∑

l=1

blj
∂Rk+1

∂ξl
= f

n∑

l=1

blj(Rk+1)ξl =

f
n∑

l=1

blj
n∑

p=1

Gk+1
p αpl = f

n∑

p=1

Gk+1
p

n∑

l=1

bljα
p
l = fgGk+1

j .

Therefore,
{Gk

j , f} = fGk+1
j ,

with k = 0, · · · , d − 2 and j = 0, · · · , n. We conclude by setting Hk
j = 1

d
Gk
j , for

j = 1, · · · , n and k = 0, · · · , d− 1. ✷

Proposition 2.1.2.– Let be {δ1, δ2, · · · , δn} a basis of Der(log f). If a poly-
nomial R0 of GrF •(D) is homogeneous and verifies the property (1) of the last
proposition, we can find a differential operator Q in O[δ1, δ2, · · · , δn] such that R0

is the symbol of Q.
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Proof: We will do the proof by induction on the order of R0. If R0 ∈ O, it is
obvious. We suppose that the result holds if the order of R0 is less than d. Now
let R0 of order d verifying (1). By the last proposition there exist n homogeneous
polynomials H0

j of order d− 1 such that:

R0 =
n∑

j=1

H0
j σ(δj), H

0
j verifies (1) (j = 1, . . . , n).

By induction hypothesis, there exist Qj ∈ O[δ1, δ2, · · · , δn] such that H0
j = σ(Qj).

So

R0 =
n∑

i=1

σ(Qi)σ(δi) =
n∑

i=1

σ(Qiδi) = σ(
n∑

i=1

Qiδi) = σ(Q)

and Q =
∑n
i=1Qiδi ∈ O[δ1, δ2, · · · , δn]. ✷

Remark 2.1.3.– Really, the previous argument proves that if R0 verifies (1),
then R0 is a polynomial in O[σ(δ1), · · · , σ(δn)].

Theorem 2.1.4.– If f is free and {δ1, δ2, · · · , δn} is a basis of the O-module
Der(log f), each logarithmic operator P can be written in a unique way as a
polynomial

P =
∑

βi1···inδ
i1
1 δ

i2
2 · · · δ

in
n , βi1···in ∈ O.

In other words, the ring of logarithmic operators is the O-subalgebra of D gen-
erated by logarithmic derivations:

VI0 (D) = O[δ1, δ2, · · · , δn] = O[Der(log f)].

Proof: The inclusion O[δ1, δ2, · · · , δn] ⊆ V
I
0 (D) is clear. We will prove the

other inclusion by induction on the order of P0 ∈ V
I
0 (D). If the order of P0 is

zero, then it is a holomorphic function and the result is obvious. We suppose the
result is true for every logarithmic operator Q whose order is strictly less than d.
Let P0 be a logarithmic operator of order d. We know that:

[P0, f ] = fP1,

with P1 ∈ V
I
0 (D). So, there exist several Pk, with k = 0, · · · , d, such that [Pk, f ] =

fPk+1. If we set Rk = σ(Pk), in the case that Pk has order d − k, and Rk = 0
otherwise, we obtain:

{Rk, f} = {σd−k(Pk), f} = σd−k−1([Pk, f ]) = fσd−k−1(Pk+1) = fRk+1.

By the previous proposition, there exists Q in O[δ1, δ2, · · · , δn] of order d and such
that σ(P0) = σ(Q). As the order of P0 − Q ∈ V

I
0 (D) is strictly less than d, we

apply the induction hypothesis to P0 −Q and obtain

P0 = P0 −Q+Q ∈ O[δ1, δ2, · · · , δn],

6



as we wanted.
On the other hand, using the structure of Lie algebra it is clear that we can write
a logarithmic operator as a O-linear combination of the monomials {δi11 , · · · , δ

in
n }.

The uniqueness of this expression follows from the fact that these monomials are
linearly independent over O.

✷

Remark 2.1.5.– As a immediate consequence of the theorem (see the previous
remark), we obtain an isomorphism:

GrF •

(
VI0 (D)

) α
∼= O[σ(δ1), · · · , σ(δn)].

Corollary 2.1.6.– If Y is free at x, the morphism κx from the symmetric
algebra SymO(Der(log f)) to GrF •

(
Vf0 (D)

)
(see remark 1.2.2) is an isomorphism

of graded O-algebras. As a consequence, if Y is a free divisor, the canonical
morphism

κ : SymOX
(Der(log Y ))→ GrF •

(
VY0 (DX)

)

is an isomorphism.

Proof: Let x be in X and f ∈ O a local reduced equation of Y at a
neighbourhood of x. Let {δ1, · · · , δn} be a basis of Der(log f).

Der(log f) = ⊕ni=1Oδi
∼= ⊕ni=1Oσ(δi).

The symmetric algebra of the O-module Der(log f) is isomorphic to a polynomial
ring:

SymO (Der(log f))
β
∼= O[σ(δ1), · · · , σ(δn)].

We also have the inclusion:

⊕ni=1Oσ(δi) = Gr1F •

(
VI0 (D)

)
⊂ GrF •

(
VI0 (D)

)
,

where σ(δi) is the image of δi by the morphism κx. Therefore we conclude that
the morphism κx = α−1β is an isomorphism (see remark 2.1.5). On the other
hand, the inclusion

Der(log Y ) = Gr1
F •

(
VY0 (DX)

)
⊂ GrF •

(
VY0 (DX)

)

gives rise to a canonical graded morphism of graded OX -algebras (see remark

1.2.2): κ : SymOX
(Der(log Y )) −→ GrF •

(
VY0 (DX)

)
, whose stalk at each point

x of Y is the canonical graded isomorphism κx. So, κ is also an isomorphism. ✷

Corollary 2.1.7.– VY0 (DX) is a coherent sheaf of rings.

Proof: By theorem 9.16 of [1] (p. 83), we have only to prove that GrF •

(
VY0 (DX)

)

is coherent, but this sheaf is locally isomorphic to the polynomial ringOX [T1, · · · , Tn],
which is coherent ([3, lemma 3.2, VI, pg. 205]). ✷
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2.2 Equivalence between OX-modules with a logarithmic

connection and left VY

0 (DX)-modules.

Definition 2.2.1.– (cf. [6]) Let M be a OX-module. A connection on M,
with logarithmic poles along Y , (or logarithmic connection on M), is a C-
homomorphism ∇,

∇ : M → Ω1
X(log Y )⊗M,

that verifies Leibniz’s identity: ∇(hm) = dh ·m+h ·∇(m), where d is the exterior
derivative over OX . We will note Ωq

X(log Y )(M) = Ωq
X(log Y )⊗M.

If δ is a logarithmic derivation along Y , it defines a C-morphism:

Der(log Y ) −→ EndC(M),
δ 7→ ∇δ

where ∇δ(m) = 〈δ,∇(m)〉

Remark 2.2.2.– A logarithmic connection ∇ on M gives rise to a morphism
of OX -modules

∇′ : Der(log Y ) → HomC(M,M)

which verifies Leibniz’s condition: ∇′
δ(fm) = δ(f) ·m+ f · ∇′

δ(m).
Conversely, given ∇′ verifying this condition, we define

∇ :M→ Ω1
X(log Y )(M),

with ∇(m) the element of Ω1
X(log Y )(M) = HomOX

(Der(log Y ),M) such that:

∇(m)(δ) = ∇′
δ(m).

Definition 2.2.3.– A logarithmic connection ∇ is integrable if, for each pair δ
and δ′ of logarithmic derivations, it verifies:

∇[δ,δ′] = [∇δ,∇δ′ ],

where [ , ] represents the Lie bracket in Der(log Y ) and the commutator in
HomC(M,M).

Given a logarithmic connection ∇ and the exterior derivative d, we can con-
struct a morphism:

∇q : Ωq
X(log Y )(M)→ Ωq+1

X (log Y )(M),

for each q = 1, · · · , n. If ω and m are sections of the sheaves Ωp
X(log Y ) andM:

∇q(ω ⊗m) = dω ⊗m+ (−1)qω ∧ ∇(m).

8



The integrability condition is equivalent to ∇q ◦ ∇q−1 = 0, for every q (cf. [6]).

Definition 2.2.4.– Let M be a OX -module, and ∇ an integrable logarithmic
connection along Y on M. With the above notation, we call the logarithmic de
Rham complex ofM, and we denote by Ω•

X(log Y )(M), the complex (of sheaves
of C-vector spaces):

0→M
∇
→ Ω1

X(log Y )(M)
∇1

→ · · ·
∇q−1

→ Ωq
X(log Y )(M)

∇q

→

Ωq+1
X (log Y )(M)

∇q+1

→ · · ·
∇n−1

→ Ωn
X(log Y )(M)→ 0.

In the particular case where the OX-moduleM is equal to OX and the logarith-
mic connection ∇ is equal to the exterior derivative d : OX → Ω1

X(log Y ), the
morphisms

∇q : Ωq
X(log Y ) −→ Ωq+1

X (log Y ),

define the logarithmic de Rham complex of Saito.

We consider the rings R0 = OX ⊂ R1 and R = VY0 (DX) =
⋃
k≥0Rk (1 ∈ R0 ⊂

R), with Rk = F k(VY0 (DX)). The ring Gr(R) is commutative and verifies
(1) The canonical morphism α : SymR0

(Gr1(R))→ Gr(R), defined by α(s1⊗
· · · ⊗ st) = s1 · · · st, is an isomorphism (see Corollary 2.1.6).
With these conditions, R1 is an (R0, R0)-bimodule, and a Lie algebra ([x, y] =
xy − yx ∈ R1, because Gr(R) is conmutative). Moreover, R0 is a sub-(R0, R0)-
bimodule of R1 such that the two induced structures of R0-module over the
quotient R1/R0 are the same.

Let TR0
(R1) = R0⊕R1⊕(R1⊗R0

R1)⊕· · · be the tensor algebra of the (R0, R0)-
bimodule R1, and let ψ : TR0

(R1)→ R be the canonical morphism defined by the
inclusion R1 ⊂ R. We prove a reciprocal theorem of one Poincaré-Birkhoff-Witt
theorem [13, theorem 3.1,p.198] .

Proposition 2.2.5.– The morphism ψ induces an isomorphism:

φ : S =
TR0

(R1)

J
∼= R, φ((i(x1)⊗ · · · ⊗ i(xt)) + J) = x1x2 · · ·xt,

where i the inclusion of R1 in the tensor algebra, and J is the two sided ideal
generated by the elements:

a) a− i(a), a ∈ R0 ⊂ R1, b) i(x)⊗ i(y)− i(y)⊗ i(x)− i([x, y]), x, y ∈ R1.

Proof: First, we check that the morphism φ : S→ R is well defined:

ψ(a− i(a)) = a− a = 0, a ∈ R0,
ψ(i(x)⊗ i(y)− i(y)⊗ i(x)− i([x, y])) = xy − yx− [x, y] = 0, x, y ∈ R1.

9



The algebra TR0
(R1) is graded, so it is filtered, and induces a filtration on the

quotient. The induced morphism φ : S→ R is filtered:

ψ(a) = a ∈ R0, ψ(i(x1)⊗ · · · ⊗ i(xt)) = x1x2 · · ·xt ∈ Rt.

So, we can define a graded morphism of R0-rings.

π : Gr (S)→ Gr(R),

π(σt(i(x1)⊗ · · · ⊗ i(xt) + J)) = σ′
t(x1 · · ·xt) = x1 · · ·xt,

where xi ∈ R1, xi = σ′
1(x1) is the class of xi in R1/R0, σt(P ) is the class of

P ∈ S in Grt(S), and σ′
t(Q) the class of Q ∈ Rt in Grt(R). Note that Gr(S) is

conmutative: it is generated by the elements σ0(a+J), σ1(i(x)+J), with a ∈ R0,
x ∈ R1, and

[i(x) + J, i(y) + J ] = i([x, y]) + J ,
[a + J, i(x) + J ] = i(ax− xa) + J = b+ J, b = ax− xa ∈ R0.

On the other hand, the image of R0 ⊂ R1 in S is exactly the part of degree
zero of S, and then we obtain a morphism of R0-modules from Gr1(R) = R1/R0

to Gr1(S) which induces a morphism of R0-algebras:

ρ : SymR0

(
R1

R0

)
→ Gr (S) ,

ρ(x1 ⊗ · · · ⊗ xt) = σt(i(x1)⊗ · · · ⊗ i(xt) + J),

which is obviously surjective. The composition πρ is equal to α, and, by property
(1) of R, we deduce that ρ is injective. As ρ and πρ are isomorphisms, π is as
well, as we wanted to prove. ✷

Corollary 2.2.6.– Let Y be a free divisor. Let M be a OX -module. An
integrable logarithmic connection onM gives rise to a left VY0 (DX)-structure on
M, and vice versa.

Proof: A OX-moduleM with an integrable logarithmic connection ∇ has a
natural structure of left VY0 (DX)-module defined by its structure as OX -module.
Let µ be the morphism of (OX ,OX)-bimodules:

µ : R1 = OX ⊕Der(log Y )→ EndC(M), µ(a)(m) = am, µ(δ)(m) = ∇δ(m).

µ induces a morphism ν : TR0
(R1) → EndC(M), and, as ν(J) = 0, we have a

morphism

VY0 (DX) ≃
TR0

(R1)

J
→ EndC(M),

which defines an structure of VY0 (DX)-module onM.
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On the other hand, a left VY0 (DX)-module structure on M defines an inte-
grable logarithmic connection ∇ on the OX -moduleM:

∇ : Der(log Y )→ EndC(M), ∇δ(m) = δ ·m.

✷

Remark 2.2.7.– A left VY0 (DX)-module structure on M defines a logarithmic
de Rham complex. In local coordinates (U ; x1, · · · , xn), with {δ1, · · · , δn} a local
basis of Der(log Y ) and {ω1, · · · , ωn} its dual basis, the differential of the complex
is defined by:

∇p(U)(ω ⊗m) = dω ⊗m+
n∑

i=1

((ωi ∧ ω)⊗ δi ·m) ,

for any sections ω ∈ Ω1
X(log Y ) and m ∈ M. In the particular case of the left

VY0 (DX)-module OX , defined as VY0 (DX)-module in a natural way (P · g = P (g),
with g a holomorphic function and P a logarithmic operator), this canonical
structure of OX as left VY0 (DX)-module is obviously equivalent to the integrable
logarithmic connection over OX defined naturally by the exterior derivative (∇ =
d):

∇δ(g) = 〈δ, dg〉 = δ(g).

3 The Logarithmic de Rham Complex

In this section, Y will be a free divisor.

3.1 The Logarithmic Spencer Complex

Definition 3.1.1.– We call the logarithmic Spencer complex, and denote by
Sp•(log Y ), the complex:

0→ VY0 (DX)⊗OX

n
∧ Der(log Y )

ε−n
→ · · ·

· · ·
ε−2

→ VY0 (DX)⊗OX

1
∧ Der(log Y )

ε−1

→ VY0 (DX),

where

ε
−p(P ⊗ (δ1 ∧ · · · ∧ δp)) =

p∑

i=1

(−1)i−1Pδi ⊗ (δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δp)+

∑

1≤i<j≤p

(−1)i+jP ⊗ ([δi, δj] ∧ δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δ̂j ∧ · · · ∧ δp), (2 ≤ p ≤ n).
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ε
−1(P ⊗ δ) = Pδ.

We can augment this complex of left VY0 (DX)-modules by another morphism:

ε0 : VY0 (DX)→ OX , ε0(P ) = P (1).

We call the new complex S̃p•(log Y ).

This definition is essentially the same as the definition of the usual Spencer
complex Sp• of OX (cf. [11, 2.1]) and generalizes the definition given by Esnault
and Viehweg [7, App. A] in the case of a normal crossing divisor. We denote by
Sp•[⋆Y ] = DX [⋆Y ]⊗DX

Sp• the meromorphic Spencer complex of OX [⋆Y ].

Theorem 3.1.2.– The complex Sp•(log Y ) is a locally free resolution of OX as
left VY0 (DX)-module.

Proof: To see the exactness of S̃p•(log Y ) we define a discrete filtration G•

such that it induces an exact graded complex (cf. [1, lemma 3.16]):

Gk

(
VY0 (DX)⊗

p
∧ Der(log Y )

)
= F k−p

(
VY0 (DX)

)
⊗

p
∧ Der(log Y ),

Gk(OX) = OX .

We have

GrG•

(
VY0 (DX)⊗

p

∧ Der(log Y )
)

= GrF •

(
VY0 (DX)

)
[−p]⊗

p

∧ Der(log Y ),

GrG•(OX) = OX .

As the above filtrations are compatible with the differential of the complex
S̃p•(log Y ), we can consider the complex GrG•

(
S̃p•(log Y )

)
:

0→ GrF •

(
VY0 (DX)

)
[−n]⊗OX

n
∧ Der(log Y )

ψ−n
→ · · ·

ψ−2

→ GrF •

(
VY0 (DX)

)
[−1]⊗OX

1
∧ Der(log Y )

ψ−1

→ GrF •

(
VY0 (DX)

)
ψ0
→ OX → 0,

where the local expression of the differential is defined by:

ψ−p(G⊗δj1∧· · ·∧δjp) =
p∑

i=1

(−1)i−1Gσ(δji)⊗δj1∧· · ·∧ δ̂ji∧· · ·∧δjp, (2 ≤ p ≤ n).

ψ−1(G⊗ δi) = Gσ(δi), ψ0(G) = G0,

with {δ1, · · · , δn} a (local) basis of Der(log Y ). This complex is the Koszul com-
plex of the ring

GrF •

(
VY0 (DX)

)
∼= SymOX

(Der(log Y ))
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with respect to the GrF •

(
VY0 (DX)

)
-regular sequence σ(δ1), · · · , σ(δn) in the ring

GrF •

(
VY0 (DX)

)
. Consequently, it is exact. ✷

Lemma 3.1.3.– For every logarithmic operator P ∈ Vf0 (D), there exist, for
each integer p, a logarithmic operator Q ∈ Vf0 (D) and an integer k such that
f−pP = Qf−k.

Proof: We will prove the lemma by induction on the order of the logarithmic
operator. If P has order 0, it is in O, and it is clear that f−pP = Pf−p. Let P
be of order d, and consider the logarithmic operator [P, f p], of order d − 1. By
induction hypothesis, there exists an integer m such that:

[P, f−p]fm ∈ Vf0 (D).

Let k be the greatest of the integers m and p. It is clear that:

f−pPfk = Pfk−p − [P, f−p]fk ∈ Vf0 (D).

This proves the result: Q = Pfk−p − [P, f−p]fk. ✷

Remark 3.1.4.– For every operator Q in DX [⋆Y ]x, we can always find a strictly
positive integer m such that fmQ ∈ Vf0 (D). Equivalently, for each meromorphic
differential operatorQ, there exists a positive integer p and a logarithmic operator
Q′ such that we can write:

Q = f−pQ′.

Now we introduce several morphisms that we will use later.

Lemma 3.1.5.– We have the following isomorphisms:

1. OX [⋆Y ]⊗OX
VY0 (DX)

∼
→֒ DX [⋆Y ]

∼
←֓ VY0 (DX)⊗OX

OX [⋆Y ].

2. α : DX [⋆Y ]⊗VY
0

(DX) OX
∼= OX [⋆Y ], α(P ⊗ g) = P (g).

3. ρ : DX [⋆Y ]⊗VY
0

(DX) DX [⋆Y ] ∼= DX [⋆Y ], ρ(P ⊗Q) = PQ.

Proof:

1. The inclusions VY0 (DX),OX [⋆Y ] ⊂ DX [⋆Y ] give rise to the previous iso-
morphisms of (VY0 (DX),OX [⋆Y ])-modules. Locally:

af−k ⊗ P = af−kP = aQ⊗ f−p,

with P and Q logarithmic operators such that f−kP = Qf−p. We have seen how
to obtain Q from P (lemma 3.1.3), and we can obtain P from Q in the same way.
On the other hand, we saw in the previous remark how to express a meromorphic
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differential operator as a product of a meromorphic function and a logarithmic
operator.

2. We have to compose the following isomorphisms of left DX [⋆Y ]-modules:

OX [⋆Y ]⊗OX
VY0 (DX)⊗VY

0
(DX) OX

∼= OX [⋆Y ]⊗OX
OX ∼= OX [⋆Y ].

3. We obtain this isomorphism of DX [⋆Y ]-bimodules from the composition of
the following isomorphisms:

OX [⋆Y ]⊗OX
VY0 (DX)⊗VY

0
(DX) DX [⋆Y ] ∼= OX [⋆Y ]⊗OX

DX [⋆Y ] ∼=

OX [⋆Y ]⊗OX
OX [⋆Y ]⊗OX

VY0 (DX) ∼= OX [⋆Y ]⊗OX
VY0 (DX) ∼= DX [⋆Y ],

where the isomorphism OX [⋆Y ]⊗OX
OX [⋆Y ] ∼= OX [⋆Y ] sends (locally) the tensor

product g1 ⊗ g2 to the meromorphic function g1g2. ✷

Proposition 3.1.6.– We have the following isomorphisms of complexes of
DX [⋆Y ]-modules:

(a) DX [⋆Y ]⊗VY
0

(DX) Sp
• ∼= Sp•[⋆Y ].

(b) DX [⋆Y ]⊗VY
0

(DX) Sp
•(log Y ) ∼= Sp•[⋆Y ].

Proof: (a) As Sp• is a subcomplex of DX -modules of Sp•[⋆Y ], and DX [⋆Y ]
is flat over ø VY0 (DX), the complex DX [⋆Y ] ⊗VY

0
(DX) `ffløSp• is a subcomplex of

DX [⋆Y ] ⊗VY
0

(DX) Sp
•[⋆Y ], (see lemma 3.1.5, 1.). But, by the third isomorphism

of lemma 3.1.5, this complex is the same as Sp•[⋆Y ]. Hence, we have an injective
morphism of complexes:

DX [⋆Y ]⊗VY
0

(DX) Sp
• −→ Sp•[⋆Y ],

defined locally in each degree by: P ⊗ Q⊗ δ1 ∧ · · · ∧ δp 7→ PQ⊗ (δ1 ∧ · · · ∧ δp).
This morphism is clearly surjective and, consequently, an isomorphism.

(b) We consider VY0 (DX) as a subsheaf of O-modules of DX . Using the fact

that
p
∧ Der(log Y ) is OX-free, we have an inclusion

VY0 (DX)⊗OX

p

∧ Der(log Y ) →֒ DX⊗OX

p

∧ Der(log Y ).

On the other hand, as Y is free, we have a natural injective morphism from
p

∧ Der(log Y ) to
p

∧ DerC(OX) (cf. [2, AIII 88, Cor.]). As DX is flat over OX , we
have other inclusion:

DX⊗OX

p
∧ Der(log Y ) →֒ DX⊗OX

p
∧ DerC(OX) (p ≥ 0).

Composing both of them, we obtain a new inclusion:

VY0 (DX)⊗OX

p

∧ Der(log Y ) →֒ DX⊗OX

p

∧ DerC(OX),

14



for p = 0, · · · , n. These inclusions give rise to an injective morphism of complexes
of VY0 (DX)-modules

Sp•(log Y ) →֒ Sp•.

As DX [⋆Y ] is flat over VY0 (DX) (see lemma 3.1.5, 1.) we have an injective mor-
phism of complexes of DX [⋆Y ]-modules:

θ′ : DX [⋆Y ]⊗VY
0

(DX) Sp
•(log Y ) →֒ DX [⋆Y ]⊗VY

0
(DX) Sp

•,

defined by: θ′ (P ⊗Q⊗ (δ1 ∧ · · · ∧ δp)) = P ⊗Q⊗ (δ1 ∧ · · · ∧ δp). This morphism
is surjective, given P local section of DX [⋆Y ], Q in D and δ1, · · · , δn in DerC(O),
we have:

P ⊗Q⊗ (δ1 ∧ · · · ∧ δp) = θ′
(
(Pf−k)⊗Q′ ⊗ (fδ1 ∧ · · · ∧ fδp)

)
,

with k > 0 and Q′ a local section of VY0 (DX) verifying fkQ = Q′f p (see lemma
3.1.3). Composing θ′ with the isomorphism of (a), we obtain the isomorphism:

θ : DX [⋆Y ]⊗VY
0

(DX) Sp
•(log Y )

∼
→ Sp•[⋆Y ],

with local expression: θ(P ⊗Q⊗ (δ1 ∧ · · · ∧ δp)) = PQ⊗ (δ1 ∧ · · · ∧ δp). ✷

3.2 The Logarithmic de Rham Complex

For each divisor Y , we have a standard canonical isomorphism:

HomOX

(
p

∧ Der(log Y ),OX

)
λp

∼= HomVY
0

(DX)

(
VY0 (DX)⊗OX

p

∧ Der(log Y ),OX

)
,

defined by: λp(α)(P ⊗ δ1 ∧ · · · ∧ δp) = P (α(δ1 ∧ · · · ∧ δp)) .
Composing this isomorphism with the isomorphism γp defined in section 1.1,

we can construct a natural morphism ψp = λp ◦ γp :

Ωp
X(log Y )

ψp

∼= HomVY
0

(DX)

(
VY0 (DX)⊗

p
∧ Der(log Y ),OX

)
,

for p = 0, · · · , n. Locally:

ψp(ω1 ∧ · · · ∧ ωp)(P ⊗ δ1 ∧ · · · ∧ δp) = P (det(〈ωi, δj〉)1≤i,j≤p) .

with ωi (i = 1, · · · , n) local sections of Ω1
X(log Y ) and P a logarithmic operator.

Similarly, if M is a left VY0 (DX)-module, given an integer p ∈ {1, · · · , n},
there exist the following canonical isomorphisms:

γpM : Ωp
X(log Y )⊗OX

M
∼
→HomOX

(
p
∧ Der(log Y ),MX

)
,
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λpM : HomOX

(
p

∧ Der(log Y ),M
)

∼
→ HomVY

0

(
VY0 (DX)⊗OX

p

∧ Der(log Y ),M
)
,

ψpM = λpM ◦ γ
p
M : Ωp

X(log Y )(M)
∼
→HomVY

0
(DX)

(
VY0 (DX)⊗

p
∧ Der(log Y ),M

)
.

Locally:

ψpM(ω1 ∧ · · · ∧ ωp ⊗m)(P ⊗ δ1 ∧ · · · ∧ δp) = P · det(〈ωi, δj〉)1≤i,j≤p ·m.

Theorem 3.2.1.– If M is a left VY0 (DX)-module (or, equivalently, is a OX-
module with an integrable logarithmic connection), the complexes of sheaves of
C-vector spaces Ω•

X(log Y )(M) and HomVY
0

(DX) (Sp•(log Y ),M) are canonically
isomorphic.

Proof: The general case is solved if we prove the case M = VY0 (DX), using
the isomorphisms:

Ω•
X(log Y )(M) ∼= Ω•

X(log Y )(VY0 (DX))⊗VY
0

(DX)M,

HomVY
0

(DX) (Sp•(log Y ),M) ∼= HomVY
0

(DX)

(
Sp•(log Y ),VY0 (DX)

)
⊗VY

0
(DX)M.

ForM = VY0 (DX), we obtain the right VY0 (DX)-isomorphisms

φp = ψp
VY

0
(DX)

: Ωp
X(log Y )(VY0 (DX))→HomVY

0
(DX)

(
Sp−p(log Y ),VY0 (DX)

)
,

whose local expression are:

φp ((ω1 ∧ · · · ∧ ωp)⊗Q) (P ⊗ (δ1 ∧ · · · ∧ δp)) = P · det (〈ωi, δj〉) ·Q.

To prove that these isomorphisms produce a isomorphism of complexes we have
to check that they commute with the differential of the complex. Thanks to the
isomorphism (b) of the proposition 3.1.6,

DX [⋆Y ]⊗VY
0

(DX) Sp
•(log Y ) ≃ Sp•[⋆Y ],

we obtain a natural morphism of complexes of sheaves of right VY0 (DX)-modules:

τ • : HomVY
0

(DX)

(
Sp•(log Y ),VY0 (DX)

)
−→ HomDX [⋆Y ] (Sp

•[⋆Y ],DX [⋆Y ]) ,

locally defined by:

τp(α) (R⊗ (δ1 ∧ · · · ∧ δp)) = f−kα (P ⊗ (fδ1 ∧ · · · ∧ fδp))

(for any local sections α of HomVY
0

(DX)

(
Sp•(log Y ),VY0 (DX)

)
, R of DX [⋆Y ] and

δ1, · · · , δp of DerC(OX)), where P is a local section of VY0 (DX) such that Rf−p =
f−kP (see lemma 3.1.3). The morphisms τ i are injective, because:

α (P ⊗ (δ1 ∧ · · · ∧ δp)) = τ i(α) (P ⊗ (δ1 ∧ · · · ∧ δp)) .
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Let us see the following diagram commutes:

Ωp
X(log Y )(VY0 (DX))

jp

−→ Ωp
X [⋆Y ] (DX [⋆Y ])

↓ φp # ↓ Φp

HomVY
0

(DX)(Sp
p
(
log Y ),VY0 (DX)

)
τp

−→ HomDX [⋆Y ](Sp
p[⋆Y ],DX [⋆Y ])

for each p ≥ 0, where the Φp are the isomorphisms:

Φp : Ωp
X [⋆Y ] (DX [⋆Y ]) −→ HomDX [⋆Y ]

(
DX [⋆Y ]⊗

p

∧ DerC(OX),DX [⋆Y ]
)
,

Φp((ω1 ∧ · · · ∧ ωp)⊗Q) (P ⊗ (δ1 ∧ · · · ∧ δp)) = P · det (〈ωi · δj〉1≤i,j≤p) ·Q.

Given ω1, · · · , ωp local sections of Ω1
X(log Y ), Q and R local sections of DX [⋆Y ]

and δ1, · · · , δp local sections of DerC(OX), we have

(τp ◦ φp)((ω1 ∧ · · · ∧ ωp)⊗Q)[R⊗ (δ1 · · · ∧ δp)] =

f−kφp((ω1 ∧ · · · ∧ ωp)⊗Q)[P ⊗ (fδ1 ∧ · · · ∧ fδp)] =

f−kP · det(〈ωifδj〉) ·Q = R · f−p det(〈ωifδj〉) ·Q = R · det(〈ωiδj〉) ·Q =

Φp ◦ jp((ω1 ∧ · · · ∧ ωp)⊗Q)[R⊗ (δ1 ∧ · · · ∧ δp)],

with P a local section of VY0 (DX) such that Rf−p = f−kP .

But Φ•, j• and τ • are morphisms of complexes, and τ • is injective, hence we
deduce that the φp commute with the differential and so define a isomorphism of
complexes:

φ• : Ω•
X(log Y )

(
VY0 (DX)

)
−→ HomVY

0
(DX)

(
Sp•(log Y ),VY0 (DX)

)
,

as we wanted to prove.
✷

Corollary 3.2.2.– There exists a canonical isomorphism in the derived category:

Ω•
X(log Y )(M) ∼= RHomVY

0
(DX) (OX ,M) .

Proof: By theorem 3.1.2, the complex Sp•(log Y ) is a locally free resolution
of OX as left VY0 (DX)-module. So, we have only to apply the theorem 3.2.1. ✷

Remark 3.2.3.– In the specific case thatM = OX , we have that the complexes
Ω•
X(log Y ) and HomVY

0
(DX) (Sp•(log Y ),OX) are canonically isomorphic and so,

there exists a canonical isomorphism:

Ω•
X(log Y ) ∼= RHomVY

0
(DX) (OX ,OX) .
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Remark 3.2.4.– A classical problem is the comparison between the logarithmic
de Rham complex and the meromorphic de Rham complex relative to a divisor
Y ,

Ω•
X [⋆Y ] ∼= RHomDX

(OX ,OX [⋆Y ]) ∼= RHomVY
0

(DX) (OX ,OX [⋆Y ]) .

If Y is a normal crossing divisor, an easy calculation shows that they are quasi-
isomorph (cf. [6]). The same result is true if Y is a strongly weighted homoge-
neous free divisor [5]. As a consequence of theorem 2.1.4, if Y is an arbitrary
free divisor, the meromorphic de Rham complex and the logarithmic de Rham
complex are quasi-isomorphic if and only if:

0 = RHomDX

(
DX ⊗

L

VY
0

(DX) OX ,
OX [⋆Y ]

OX

)(
= RHomVY

0
(DX)

(
OX ,

OX [⋆Y ]

OX

))
.

4 Perversity of the logarithmic complex

Now we consider the complex DX ⊗VY
0

(DX) Sp
•(log Y ):

0→ DX⊗OX

n
∧ Der(log Y )

ε−n
→ · · · · · ·

ε−2

→ DX⊗OX

1
∧ Der(log Y )

ε−1

→ DX ,

where the local expressions of the morphisms are defined by:

ε
−p(P ⊗ (δ1 ∧ · · · ∧ δp)) =

p∑

i=1

(−1)i−1Pδi ⊗ (δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δp)+

∑

1≤i<j≤p

(−1)i+jP ⊗ ([δi, δj] ∧ δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δ̂j ∧ · · · ∧ δp), (2 ≤ p ≤ n).

ε
−1(P ⊗ δ) = Pδ.

In the case that Y is a free divisor, we can work at each point x of Y with a basis
{δ1, · · · , δn} of Der(log f), with f a local reduced equation of Y at x.

Proposition 4.0.5.– If {δ1, · · · , δn} is a basis of Der(log f), and the sequence
{σ(δ1), · · · , σ(δn)} is GrF •(D)-regular, it verifies

σ (D(δ1, · · · , δn)) = GrF •(D)(σ(δ1), · · · , σ(δn)).

Proof: The inclusion GrF •(D)(σ(δ1), · · · , σ(δn)) ⊂ σ (D(δ1, · · · , δn)) is clair.
Let F be the symbol of an operator P of order d, with

P =
n∑

i=1

Piδi ∈ D(δ1, · · · , δn).
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We will prove by induction that F = σ(P ) belongs to GrF •(D)(σ1, · · · , σn), with
σi = σ(δi). We will do the induction on the maximum order of the Pi (i =
1, · · · , n), order that we will denote by k0. As P has order d, k0 is greater or
equal to d− 1. If k0 = d− 1, we have:

σ(P ) =
∑

i∈K

σ(Pi)σi,

with K the set of subindexes j such that Pj has order k0 in D. We suppose that
the result holds when d − 1 ≤ k0 < m. Let F = σ(P ), with P =

∑n
i=1 Piδi and

k0 = m. There are two possibilities:

1. F = σ(P ) =
∑
i∈K σ(Pi)σi ∈ GrF •(D)(σ1, · · · , σn), as we wanted to prove.

2.
∑
i∈K σ(Pi)σi = 0.

In this last case, as {σ1, · · · , σn} is a GrF •(D)-regular sequence, if we call Fi the
symbol σ(Pi) in the case that i ∈ K and 0 otherwise, we have:

(F1, · · · , Fn) =
∑

i<j

Fij(0, · · · , 0,
i
⌣
σj , 0, · · · , 0,

j
⌣
−σi, 0, · · · , 0),

with Fij ∈ GrF •(D) homogeneous polynomials of order m − 1. We choose, for
1 ≤ i < j ≤ n, operators Qij , of order m − 1 in D, such that σ(Qij) = Fij , and
define:

(Q1, · · · , Qn) = (P1, · · · , Pn)−
∑

i<j

Qij


(0, · · · , 0,

i
⌣

δj , 0, · · · , 0,

j
⌣

−δi, 0, · · · , 0)− αij


 ,

where αij are the vectors with n coordinates in O defined by the relations:

[δi, δj] =
n∑

k=1

akijδk = αij • δ,

with δ = (δ1, · · · , δn). These Qi, of order m in D, verify

(σm(Q1), · · · , σm(Qn)) =

(F1, · · · , Fn)−
∑

i<j

Fij(0, · · · , 0,
i
⌣
σj , 0, · · · , 0,

j
⌣
−σi, 0, · · · , 0) = 0.

So, Qi has order m− 1 in D. Moreover,

n∑

i=1

Qiδi =
n∑

i=1

Piδi −
∑

i<j

Qij (δiδj − δjδi − [δi, δj]) =
n∑

i=1

Piδi = P.
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We apply the induction hypothesis to F = σ(P ), with P =
∑n
i=1Qiδi, and obtain:

σ(P ) ∈ GrF •(D)(σ1, · · · , σn).

✷

Proposition 4.0.6.– Let {δ1, · · · , δn} be a basis of Der(log f). If the sequence
σ(δ1), · · · , σ(δn) is a GrF •(D)-regular sequence in GrF •(D), the complex D⊗

V
f
0
(D)

Sp•(log f) is a resolution of the quotient module D

D(δ1,···,δn)
.

Proof: We consider the complex D⊗
V

f
0
(D) Sp

•(log f). We can augment this

complex of D-modules by another morphism:

ε0 : D →
D

D(δ1, · · · , δn)
, ε0(P ) = P +D(δ1, · · · , δn).

We denote by D ⊗
V

f
0
(D) S̃p

•(log f) the new complex. To prove that this new

complex is exact, we define a discrete filtration G• such that the graded complex
be exact (cf. [1, lemma 3.16]):

Gk

(
D ⊗O

p
∧ Der(log f)

)
= F k−p (D)⊗O

p
∧ Der(log f),

Gk

(
D

D(δ1, · · · , δn)

)
=
F k(D) +D · (δ1, · · · , δn)

D(δ1, · · · , δn)
.

Clairly the filtration is compatible with the differential of the complex. Moreover:

GrG•

(
D ⊗

p

∧ Der(log f)
)

= GrF •(D)[−p]⊗
p

∧ Der(log f),

and, by the previous proposition,

GrG•

(
D

D(δ1, · · · , δn)

)
=

GrF •(D)

σ (D · (δ1, · · · , δn))
=

GrF •(D)

GrF •(D) · (σ(δ1), · · · , σ(δn))
.

We consider the complex GrG•

(
D ⊗

V
f
0
(D) S̃p

•(log f)
)

:

0→ GrF •(D)[−n]⊗O

n
∧ Der(log f)

ψ−n
→ · · ·

ψ−2

→ GrF •(D)[−1]⊗O

1
∧ Der(log f)

ψ−1

→ GrF •(D)
ψ0
→

GrF •(D)

GrF •(D) · (σ(δ1), · · · , σ(δn))
→ 0,

where the local expression of the differential is defined by:

ψ−p(G⊗δj1∧· · ·∧δjp) =
p∑

i=1

(−1)i−1Gσ(δji)⊗δj1∧· · ·∧ δ̂ji∧· · ·∧δjp, (2 ≤ p ≤ n),
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ψ−1(G⊗ δi) = Gσ(δi),

ψ0(G) = G+ GrF •(D) · (σ(δ1), · · · , σ(δn)).

This complex is the Koszul complex of the ring GrF •(D) with respect to the
sequence σ(δ1), · · · , σ(δn). So we deduce that, if the sequence σ(δ1), · · · , σ(δn) is
GrF •(D)-regular in GrF •(D), the complex

GrG•

(
D ⊗

V
f
0
(D) S̃p

•(log f)
)

is exact. So, the complex D⊗
V

f
0
(D)S̃p

•(log f) is exact too, and D⊗
V

f
0
(D)Sp

•(log f)

is a resolution of D

D(δ1,···,δn)
. ✷

Corollary 4.0.7.– Let Y be a free divisor. With the conditions of the previous
proposition (for each point x of Y , there exists a basis {δ1, · · · , δn} of Der(log f)
such that the sequence σ(δ1), · · · , σ(δn) is a GrF •(D)-regular sequence), the sheaf
Ω•
X(log Y ) is a perverse sheaf.

Proof: With the same conditions of the previous proposition, the homol-
ogy of the complex DX ⊗VY

0
(DX) Sp

•(log Y ) is concentrated in degree 0. All its
homology groups are zero except the group in degree 0, which verifies:

h0
(
DX ⊗VY

0
(DX) Sp

•(log Y )
)

=
DX

DX · Der(log Y )
=

DX
DX · (δ1, · · · , δn)

= E ,

where {δ1, · · · , δn} is a local basis of Der(log Y ). But E is a holonomic DX-module
because:

GrF (E) =
GrF •(DX)

(σ(δ1), · · · , σ(δn))

has dimension n (using the fact that σ(δ1), · · · , σ(δn) is a GrF •(DX)-regular se-
quence). So (using remark 3.2.3 for the first equality and teorema 3.1.2 for the
last equality)):

Ω•
X(log Y ) = RHomDX

(
DX ⊗

L

VY
0

(DX) OX ,OX
)

=

RHomDX

(
DX ⊗VY

0
(DX) Sp

•(log Y ),OX
)

= RHomDX

(
DX

DX(δ1, · · · , δn)
,OX

)

is a perverse sheaf (as solution of a holonomic DX -module, cf. [11]).
✷

Corollary 4.0.8.– Let Y be any divisor in X, with dimCX = 2. Then Ω•
X(log

Y ) is a perverse sheaf.

Proof: We know that, if dimCX = 2, any divisor Y in X is free [14].
So, we have only to check that the other hypothesis of the previous corollary
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holds. We consider the symbols {σ1, σ2} of a basis {δ1, δ2} of Der(log f), where
f is a reduced equation of Y . We have to see that they form a GrF •(D)-regular
sequence. If they do not, they have a common factor g ∈ O, because they are
symbols of operators of order 1. If g is a unit, we divide one of them by g and
eliminate the common factor. If g is not a unit, it would be in contradiction with
Saito’s Criterion, because the determinant of the coefficients of the basis {δ1, δ2}
would have as factor g2, with g not invertible, and this determinant has to be
equal to f multiplied by a unit. ✷

Remark 4.0.9.– The regularity of the sequence of the symbols of a basis of
Der(log f) in GrF •(D) is not necessary for the perversity of the logarithmic de
Rham complex. For example, if X = C

3 and Y ≡ {f = 0}, with f = xy(x +
y)(y + tx), f is a free divisor such that the graded complex

GrG•(DX ⊗VY
0

(DX) Sp
•(log Y )) = K(σ(δ1), σ(δ1), σ(δ3);GrF •(DX))

is not concentrated in degree 0, but the complex

DX ⊗VY
0

(DX) Sp
•(log Y )

is. Moreover, in this case the dimension of DX

DX ·(δ1,δ2,δ3)
is 3 and so, Ω•

X(log Y ) is a
perverse sheaf.
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