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Abstract

The existence of infinite dimensional closed linear spaces of holo-
morphic functions f on a domain G in the complex plane such that
Tf has dense images on certain subsets of G, where T is a continuous
linear operator, is analyzed. Necessary and sufficient conditions for T
to have the latter property are provided and applied to obtain a number
of concrete examples: infinite order differential operators, composition
operators and multiplication operators, among others.
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1 Introduction

In this paper we are concerned with the existence of holomorphic functions
that, under the action of certain operators, have dense images on prefixed
subsets of the domain of definition. A classical interpolation theorem due to
Weierstrass (see [17, Chapter 15]) asserts that, if (an) is a sequence of distinct
points in a domain G of the complex plane C without accumulation points
in G and (bn) ⊂ C, then there is a holomorphic function f in G such that
f(an) = bn for all n. In particular, if we choose as (bn) an enumeration of
all complex rational numbers, one obtain a function f such that the sequence
(f(an)) is dense in C. Equivalently, if A is a subset of G that is not relatively
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compact, then there is a holomorphic function f in G with dense image f(A).
Kierst and Szpilrajn [15] started the study of this kind of phenomenons under
the point of view of the topological size, showing the residuality of the subset
of such functions f for certain sets A. In [4] and [5], holomorphic operators are
introduced in this topic, see below. In this paper, we try to find an additional
linear structure –not only a topological structure– in the set of functions with
dense images when certain operators act on them.

Let us fix the notation that will be used along this paper. Firstly, N will
be the set of positive integers and N0 = N ∪ {0}. The symbol (nk) will stand
for a strictly increasing sequence in N0. If A is a subset of C then A, A0, ∂A
denotes, respectively, its closure in C, its interior in C, and its boundary in
the extended complex plane C∞ := C ∪ {∞}. As usual, D is the open unit
disk {z ∈ C : |z| < 1} and T = ∂D is the unit circle. If f is a complex valued
function defined on a set A ⊂ C, then ‖f‖A := supz∈A |f(z)|. If G is a domain
(:= nonempty, connected open subset) of C, then H(G) denotes the space
of holomorphic functions on G. It becomes a completely metrizable space
(hence a Baire space) when it is endowed with the compact open topology
[14, pp. 238–239]. We denote by K(G) the family of compact subsets K of G
such that G\K has no non-relatively compact connected components, and by
K1(G) the subfamily of compacta K ⊂ G such that C \K is connected. It is
always possible to construct an exhaustive sequence (Kn)n of compact subsets
of G –that is,

⋃
n∈N0

Kn = G and Kn ⊂ K0
n+1 for all n ∈ N0– contained in K(G)

[9]. If (An)n≥0 is a sequence of subsets of G, then it is said that (An)n≥0 tends
to ∂G provided that, given a compact subset K ⊂ C, there exists n0 ∈ N0

such that K ∩An = ∅ for all n ≥ n0. The symbol NRC(G) will stand for the
family of all subsets of G which are not relatively compact in G.

In 1995, it was proved [4] that, if A ∈ NRC(G), then there are many

functions f ∈ H(G) such that f (j)(A) = C for every j ∈ N0, and in 2002,
this result was extended [8] by considering sums of infinite order differential
operators and integral operators instead of the differential operators Djf :=
f (j). In fact, it was proved that for these operators T on H(G) the set

M(T, A) := {f ∈ H(G) : (Tf)(A) = C}
is residual (in fact, Gδ-dense). In [5], the study of this boundary behavior on
plane sets was translated to large classes of operators. Following [5], a –not
necessarily linear– continuous operator T : H(G) → H(G) is a dense-image
operator (in short, a DI operator) if the set M(T, A) is residual in H(G) for
any A ∈ NRC(G). Hence, we can say that the topological size of M(T, A) is
large for these kinds of operators.
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In this paper we are interested in the algebraic size of M(T, A), where now
T is continuous and linear. Our aim is to determine when M(T, A) is large
also in this sense, see below.

Assume that G ⊂ C is a simply connected domain, and denote by I the
identity operator on H(G). Let (ϕn) ⊂ Aut (G) := {automorphisms of G} be
a run-away sequence, that is, for any compact subset K ⊂ G there is m ∈ N
with K ∩ ϕm(K) = ∅. In 1995, Montes and the first author [7] showed the
existence of an infinite-dimensional closed linear subspace F of H(G) such that
for any f ∈ F \{0} the set {f◦ϕn : n ∈ N} is dense in H(G). In particular, one
obtains that for every prescribed set A ∈ NRC(G) there exists a subspace F as
above such that F \{0} ⊂ M(I, A). To see this, observe that, for any sequence
(an) ⊂ A with an → t ∈ ∂G and any z0 ∈ G, there exists a run-away sequence
(ϕn) ⊂ Aut (G) with ϕn(z0) = an (n ∈ N). Indeed, the case G = D, z0 = 0
is clear, just by considering ψn(z) = (z + an)/(1 + anz); then (ψn) ⊂ Aut (D)
is run-away because limn→∞ |an| = |t| = 1 (see [6]). For the general case it
suffices to take ϕn = h−1 ◦ ψn ◦ h, where h : G → D is an isomorphism with
h(z0) = 0 and (ψn) ⊂ Aut (D) is run-away with ψn(0) = h(an) (n ∈ N).

Unfortunately, if G ⊂ C is a domain with finite connectedness such that
its complement has more than two components then it supports only finitely
many automorphisms [13], so there are no run-away sequences. Hence the
above reasoning does not work in general.

These facts motivate the following natural question: If G ⊂ C is any
domain, T is a continuous linear operator on H(G) and A ∈ NRC(G), does
an infinite-dimensional closed subspace F of H(G) exist satisfying F \ {0} ⊂
M(T,A)?

In the Section 2 of this paper we will provide general and, in some sense,
minimal conditions on T for the existence of such a subspace F , even without
loss of residuality for each M(T, A), see Theorems 2.1–2.2. Several classical
examples –including differential, composition and multiplication operators–
will be analyzed in Section 3.

2 Existence of large subspaces

Firstly, we need to introduce a sort of “continuity near the boundary” for
operators, compare with [5, Condition (P) before Theorem 3.4].

Definition 2.1. We say that a continuous linear operator T : H(G) → H(G)
is boundary pointwise stable if and only if the following property holds: For
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each compact set K ⊂ G there exists a compact subset L ⊂ G such that for
each point a ∈ G\L and each positive number ε > 0 there are a set B ∈ K1(G)
with B ⊂ G \K and a number δ > 0 such that, if f ∈ H(G) and ‖f‖B < δ,
then |Tf(a)| < ε.

For instance, using Cauchy’s integral formula for derivatives it is easy to
verify that the derivative operator D (Df := f ′) is boundary pointwise stable;
see Section 3 for more examples. Note that the notion of stability in [5,
Condition (P)] is slightly more restrictive (the set B is a closed ball there)
than the one defined here, but it is easy to check that all results in [5] hold
with this new definition.

We are now ready to state the first of our main results.

Theorem 2.1. Let G ⊂ C be a domain, T : H(G) → H(G) a continuous
linear operator and A ∈ NRC(G). Suppose that T satisfies the following
conditions:

(A) T is boundary pointwise stable.

(B) For every compact subset K ⊂ G there exist a point a ∈ A \ K and a
function h ∈ H(G) such that Th(a) 6= 0.

Then there exists an infinite-dimensional closed linear subspace F of H(G)
with F \ {0} ⊂ M(T, A).

Proof. Firstly, we fix a dense subset (qn)n≥0 of C, a sequence (%m)m≥0 of posi-
tive numbers such that

∑
m≥0 %m < 1, and an exhaustive sequence of compact

subsets (Kj)j≥0 ⊂ K(G). Without loss of generality we can assume that
D ⊂ K0 ⊂ G. Fix also a bijective mapping i : (m,n) ∈ N2

0 7→ i(m,n) ∈ N0

such that i is nondecreasing in m and n. Finally we define the sequence (pi)i≥0

as pi(m,n) = qn for all m ≥ 0.

1. Given M0 := K0, let L0 be the compact subset given by the stability of
T . By (B) and the exhaustivity of (Kj), there exist k0 ∈ N0, a point a0 and a
function h0 ∈ H(G) such that a0 ∈ A \Kk0 ⊂ G \ L0 and Th0(a0) 6= 0. Let
ε0 := 1. By (A), there exist a compact set B0 ⊂ G \ M0 with B0 ∈ K1(G)
and a δ0 > 0 such that for each function f ∈ H(G) we have that ‖f‖B0 < δ0

implies |Tf(a0)| < ε0 = 1.

Now, we proceed by induction to construct sequences (δn)n≥0 ⊂ (0, +∞),
(kn)n≥0 ⊂ N0, (Bn)n≥0 ⊂ K1(G), (an)n≥0 ⊂ A and (hn)n≥0 ⊂ H(G). As-
sume that δ0, δ1, . . . , δn−1, k0, k1, . . . , kn−1, B0, B1, . . . , Bn−1, a0, a1, . . . , an−1,
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h0, h1, . . . , hn−1 have been already determined, and let Mn be the compact

set Mn := Kn ∪
(⋃n−1

j=0 Bj

)
. Let Ln be the compact subset given by the

stability condition as applied on Mn. Again by (B) and the exhaustivity of
(Kj), there exist kn ≥ kn−1, a point an and a function hn ∈ H(G) satisfying
an ∈ A \Kkn ⊂ G \ Ln and Thn(an) 6= 0. Let εn := 1/2n. By (A), there exist
a set Bn ⊂ G \Mn with Bn ∈ K1(G) and a δn ∈ (0, δn−1) such that, for each
function f ∈ H(G),

‖f‖Bn < δn =⇒ |Tf(an)| < 1

2n
. (1)

Now, we define gn(z) :=
pn

Thn(an)
· hn(z) (z ∈ G). Then gn ∈ H(G); and

Tgn(an) = pn for all n ≥ 0.

2. Consider the set M := D ∪
(⋃∞

j=0 Bj

)
. Observe that, by construction,

the sets B1, B2, . . . , Bn, . . . are closed, pairwise disjoint, tend to ∂G and belong
to K1(G). From this, we derive that M is a relatively closed subset of G
and that G∞ \ M is connected and locally connected in G∞, the one-point
compactification of G. Furthermore, since (Mn) is exhaustive –because (Kn)
is– and Bn ⊂ G \ Mn (n ≥ 0), we conclude that for every compact subset
K ⊂ G there exists a neighborhood V of the infinity point of G∞ such that no
component of M intersects both K and V . On the other hand, given m ∈ N,
the functions εm : M → (0, +∞) and Fm : M → C defined as

εm(z) =





%m if z ∈ D
δi(m,n) if z ∈ Bi(m,n) and n ∈ N0

%mδi(k,n) if z ∈ Bi(k,n) and k, n ∈ N0 with k 6= m,

Fm(z) =





zm if z ∈ D
gi(m,n)(z) if z ∈ Bi(m,n) and n ∈ N0

0 if z ∈ Bi(k,n) and k, n ∈ N0 with k 6= m,

are continuous on M . In addition, Fm is holomorphic in M0. Hence, the Ner-
sesjan tangential approximation theorem (see [11, p. 157] or [16]) guarantees
the existence of a function fm ∈ H(G) such that

|fm(z)− Fm(z)| < εm(z) for all z ∈ M.

Thus, we have to our disposal a sequence of functions (fm)m≥0 ⊂ H(G)
satisfying the next properties:

‖fm(z)− zm‖D < %m for all m ≥ 0 (2)
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‖fm(z)− gi(m,n)(z)‖Bi(m,n)
< δi(m,n) for all m,n ≥ 0 and (3)

‖fm(z)‖Bi(k,n)
< %mδi(k,n) for all m,n ≥ 0 and all k 6= m. (4)

¿From (1), (3), (4), and taking in mind that T (fm − gi(m,n))(ai(m,n)) =
Tfm(ai(m,n)) − Tgi(m,n)(ai(m,n)) = Tfm(ai(m,n)) − pi(m,n) = Tfm(ai(m,n)) − qn,
we obtain

|Tfm(ai(m,n))− qn| < 1

2i(m,n)
≤ 1

2n
(m,n ≥ 0) (5)

and
|Tfm(ai(k,n))| < %m

2i(k,n)
≤ %m

2n
(m,n ≥ 0, k 6= m). (6)

Note that in the last inequality the homogeneity of T has also been used.

3. Let E be the linear span of (fm)m≥0 and denote by F its closure in
H(G). Obviously F is a closed linear subspace of H(G).

¿From the property (2) and by using a well known basis perturbation the-
orem (see [10, p. 46]) as in [7, Second step of the proof of Theorem 1.2] it
can be shown that (fm)m is a basic sequence in L2(T), the Hilbert space of
all square-integrable complex functions on T endowed with the norm ‖f‖2 :=(

1
2π

∫ 2π

0
|f(eit)|2dt

)1/2

. Therefore the functions fm are linearly independent,

so F is an infinite-dimensional vector space. In addition, (fm)m≥0 is equi-
valent to the basic sequence (zm)m≥0. In particular, the linear mapping
S :

∑∞
m=0 cmfm ∈ X 7→ ∑∞

m=0 cmzm ∈ Y is a topological isomorphism. Here
X and Y are, respectively, the closure in L2(T) of the linear span of (fm) and
of (zm).

Our goal is to prove that F \ {0} ⊂ M(T, A). Let f ∈ F \ {0} and let

f =
∞∑

m=0

αmfm its representation on L2(T). As f 6= 0, there exists some k ≥ 0

such that αk 6= 0, in fact we can suppose that αk = 1 because if f ∈ M(T, A)
then λf ∈ M(T, A) for all λ ∈ C \ {0}.

Since F = E, there is a sequence

(
hl :=

Nl∑
m=0

α(l)
m fm

)

l≥0

⊂ E converging

to f in H(G) and we always can assume that α
(l)
k = 1 (l ≥ 0). Indeed, if this

where not the case, we would decompose hl = h∗l + (α
(l)
k − 1)fk; then each h∗l

has the desired property for its kth-coefficient and h∗l → f in H(G) because

(α
(l)
k −1)fk → 0 (l →∞) compactly, which in turn is true since (fm)m is a basis

of L2(T), from where one derives in particular that α
(l)
k → αk = 1 (l →∞). As
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Bi(k,n) is compact, there is an integer l ≥ 0 such that ‖hl − f‖Bi(k,n)
< δi(k,n),

hence, by (1) and the linearity of T , we have

|Thl(ai(k,n))− Tf(ai(k,n))| < 1

2i(k,n)
≤ 1

2n
.

Then, by (5), (6) and the triangle inequality,

|Tf(ai(k,n))− qn| ≤ |Tf(ai(k,n))− Thl(ai(k,n))|+ |Thl(ai(k,n))− qn|

≤ 1

2n
+ |Tfk(ai(k,n))− qn|+

Nl∑
m=0
m6=k

|α(l)
m Tfm(ai(k,n))|

≤ 1

2n
+

1

2n
+

Nl∑
m=0
m6=k

|α(l)
m |%m

1

2n
=

C

2n
,

where C is a finite constant (to be determined later) not depending on n.
Hence

lim
n→∞

(
Tf(ai(k,n))− qn

)
= 0.

Finally, (qn) is a dense subset of C, so {Tf(ai(k,n)) : n ∈ N} (⊂ (Tf)(A)) is
also dense and we have that f ∈ M(T, A), as desired.

It remains only to determine the constant C above. Since (hl) tends to f
uniformly on compacta in G as l → ∞, we have that, in particular, hl → f
uniformly on D, hence hl → f in L2(T), so S(hl) → S(f) in L2(T). Therefore
the sequence (S(hl))l≥0 is bounded in L2(T), or equivalently, there exists a

constant M ∈ (0, +∞) such that
(∑∞

m=0 |α(l)
m |2

)1/2

≤ M for all l ∈ N0, where

we have set α
(l)
m := 0 for m > Nl. Thus, we get

Nl∑
m=0
m6=k

|α(l)
m |%m ≤

( ∞∑
m=0

|α(l)
m |2

)1/2 ( ∞∑
m=0

%2
m

)1/2

≤ M

∞∑
m=0

%m ≤ M (l ∈ N0).

Consequently, it is enough to choose C := M + 2, and we are done.

As a consequence of Theorem 2.1 we obtain the next general statement, in
which it is asserted that, under pointwise stability, the properties “M(T, A) is
not empty”, “M(T, A) is topologically large”, “M(T,A) is algebraically large”
(for any A ∈ NRC(G)) are equivalent. In addition, it is provided a condition
–see (a) below– that is easy to check and is equivalent to the mentioned ones.
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Theorem 2.2. Let G ⊂ C be a domain and let T : H(G) → H(G) be a conti-
nuous linear operator that is boundary pointwise stable. Then the following
conditions are equivalent:

(a) T collapses at no point outside some compact set, that is, there is a
compact subset K ⊂ G with the property that for every a ∈ G \K there
exists h ∈ H(G) such that Th(a) 6= 0.

(b) For every A ∈ NRC(G), there exists an infinite-dimensional closed li-
near subspace F of H(G) with F \ {0} ⊂ M(T,A).

(c) For every A ∈ NRC(G), the set M(T, A) is not empty.

(d) The operator T is dense-image.

Proof. It is trivial that (b) implies (c) and that (d) implies (c). That (c)
implies (d) is due to [5, Theorem 3.4].

Assume now that (c) holds and, by way of contradiction, that (a) is not
true. Then we can select an increasing exhausting sequence (Kn)n≥0 of com-
pact sets in G as well as a sequence of points (an)n≥0 such that an ∈ G \Kn

(n ≥ 0) and Th(an) = 0 for all h ∈ H(G). In particular, for A := {an : n ∈
N0} and h ∈ M(T, A), we would have Th(A) = {0}, which is absurd. Thus,
(c) implies (a).

Finally, suppose that (a) is true, that is, there is a compact set K0 ⊂ G such
that, for every a ∈ G \K0, there exists a function h ∈ H(G) with Th(a) 6= 0.
Fix a set A ∈ NRC(G) and a compact set K ⊂ G. Since K0 ∪K is compact,
we have that there exists at least one point a ∈ A\(K0∪K). Then a ∈ G\K0,
so we can find h ∈ H(G) with Th(a) 6= 0. Moreover, a ∈ A \K, so condition
(B) in Theorem 2.1 is fulfilled. Since T is boundary pointwise stable, from the
mentioned theorem we obtain (b).

Theorem 2.2 motivates the following definition.

Definition 2.2. We say that a linear continuous operator T on H(G) has
large dense images, or that T is an LDI operator, if for each A ∈ NRC(G)
the set M(T, A) is residual and contains, except for the zero function, an
infinite-dimensional closed linear subspace F of H(G).

Remarks 2.3. 1. The condition (a) in Theorem 2.2 is easily satisfied. For
instance, it suffices that the range of T contains the constants.

2. The notion of LDI operator can be stated, equivalently, in terms of se-
quences, as follows: T is an LDI operator if and only if for each sequence
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(an)n ⊂ G tending to ∂G the set M(T, (an)n) is residual and there exists
an infinite-dimensional closed subspace F such that F \ {0} ⊂ M(T, (an)n).
Just take into account that M(T, B) ⊂ M(T, A) if B ⊂ A and that every set
A ∈ NRC(G) contains a sequence tending to the boundary.

3. In the terminology of the recent paper [12] (see also [1] and [2]), an operator
T on H(G) is LDI if and only if, for every A ∈ NRC(G), the set M(T,A) is
residual and spaceable.

3 Examples of LDI operators

1. Let G ⊂ C be a domain. If Φ(z) =
∑

n≥0 anz
n is an entire func-

tion of subexponential (exponential) type, that is, limn→∞(n!|an|)1/n = 0
(lim supn→∞(n!|an|)1/n < +∞, resp.), then Φ(D) =

∑
n≥0 anD

n defines a con-
tinuous linear operator on H(G) (H(C), resp.) [3, §6.4], where D0 = I. By
using Cauchy’s estimates we can show that Φ(D) is boundary pointwise stable
(take L = K in Definition 2.1, and choose as B a small closed disk around a);
and it is clear that if Φ 6≡ 0 then the range of Φ(D) contains all constants.
Hence, by Theorem 2.2 and Remark 2.3.1 we obtain the following.

Theorem 3.1. If Φ 6≡ 0 is an entire function of subexponential type and
G ⊂ C is a domain, then the differential operator Φ(D) is LDI. If G = C,
then the same holds even if Φ is of exponential type.

In particular, if Φ(z) ≡ 1 (Φ(z) ≡ z, Φ(z) ≡ ebz with b ∈ C\{0}, resp.), we
obtain that the identity operator I (the differential operator D, the translation
operator τbf(z) := f(z + b), resp.) has large dense images (in the translation
case, we are assuming that G = C). In the case that G ⊂ C is a domain
such that b + G = G (for instance, G = {z : |=z| < r}, b ∈ R) we can show
that τb is boundary pointwise stable, just by taking L = −b + K, δ = ε and
B ∈ K1(G) with a + b ∈ B ⊂ G \ K in Definition 2.1. And it is evident
that all the constants are in the range of τb. Hence, by Theorem 2.2, τb is an
LDI operator. This can also be derived from Theorem 3.2 or Theorem 3.5, see
below.

It is not possible to apply Theorem 2.2 to the antiderivative operator D−N
a

on H(G) (N ∈ N, a ∈ G, G simply connected) defined as D−N
a f = [the

unique function g ∈ H(G) such that DNg = f and g(a) = (Dg)(a) = · · · =
(DN−1g)(a) = 0]. This is so because D−N

a is not boundary pointwise stable.
We do not know whether D−N

a is an LDI operator. Nevertheless, these ope-
rators are DI (see [5] or [8]). The same problem arises if we consider the
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general case of the Volterra operator Vϕ generated by an analytic function
ϕ : G×G → C, namely, Vϕf(z) :=

∫ z

a
ϕ(z, t)f(t)dt.

2. If ϕ ∈ H(G,G) := {f ∈ H(G) : f(G) ⊂ G}, then the composition
operator defined as Cϕ : f ∈ H(G) 7→ f ◦ ϕ ∈ H(G) is a continuous linear
operator. We recall that a self-map ψ : X → X on a topological space X
is said to be proper whenever the preimage under ψ of any compact subset
is again a compact subset. This topological property characterizes the LDI
composition operators, as the following theorem shows.

Theorem 3.2. The composition operator Cϕ on H(G) is LDI if and only if
ϕ is proper. In particular, if G = C, we have that Cϕ is LDI if and only if ϕ
is a non-constant polynomial.

Proof. By the last example, the identity operator is LDI. On the other hand,
M(Cϕ, A) = M(I, ϕ(A)) for every A ⊂ G. But it is easy to see that for a
continuous self-map ϕ : G → G, it is proper if and only if ϕ(A) ∈ NRC(G)
for every A ∈ NRC(G). The part ‘only if’ is trivial because M(T, B) is empty
if B ⊂ G is relatively compact in G. As for the case G = C, just take into
account that the Casorati-Weierstrass theorem prevents ϕ to be proper if it is
transcendental.

The conclusion of Theorem 3.2 holds specially when ϕ ∈ Aut (G). For
instance, if r > 0, α ∈ [0, 2π) and we denote rD := {z ∈ C : |z| < r}, then
the rotation operator Rα defined on H(rD) as (Rαf)(z) = f(zeiα) is an LDI
operator.

3. Let T be a linear continuous operator on H(G) and ψ ∈ H(G). Then
the generalized multiplication operator defined as

MψT : f(z) ∈ H(G) 7→ ψ(z)Tf(z) ∈ H(G)

is also a linear continuous operator. In particular case T = I, we obtain the
ordinary multiplication operator Mψ.

Theorem 3.3. Let T be a linear continuous operator on H(G) that is boundary
pointwise stable and satisfies the condition (a) of Theorem 2.2. Let ψ ∈ H(G)
such that the set Z(ψ) of zeros of ψ is finite. Then MψT is LDI.

Proof. Firstly, we prove that MψT is boundary pointwise stable. Let K ⊂ G
be a compact set and L be the compact subset given by the stability of T .
Then L̃ := L∪Z(ψ) ⊂ G is compact. Fix a ∈ G\L̃ and ε > 0. Hence ψ(a) 6= 0.
By stability, there exist a compact set B ∈ K1(G) with B ⊂ G\K and a δ > 0
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such that for each f ∈ H(G) with ‖f‖B < δ we have |Tf(a)| < ε/|ψ(a)|.
Hence, |MψTf(a)| = |ψ(a)| · |Tf(a)| < ε, whence MψT is boundary pointwise
stable.

On the other hand, since Z(ψ) is finite and T satisfies the condition (a) of
Theorem 2.2, the operator MψT satisfies the same condition. Indeed, replace
the compact set K assigned to T by the compact set K∪Z(ψ). Then Theorem
2.2 concludes the proof.

Corollary 3.4. Let ψ ∈ H(G), ψ 6≡ 0. Then Mψ is LDI if and only if Z(ψ)
is finite.

Proof. That the finiteness of Z(ψ) implies that Mψ is LDI follows from The-
orem 3.3 just by taking T = I. As for the converse, assume, by way of
contradiction, that Z(ψ) is infinite. Then Z(ψ) ∈ NRC(G), because ψ 6≡ 0.
But M(Mψ, Z(ψ)) = ∅ and this contradicts the hypothesis.

4. We finish this paper with two assertions involving composition, sum or
multiplication of operators. This allows to construct new operators with large
dense images from known ones.

Theorem 3.5. Assume that T , S : H(G) → H(G) are continuous linear
operators, in such a way that T is LDI and S is onto. Then TS is LDI. In
particular, every onto continuous linear operator is LDI.

Proof. It is evident that M(TS, A) = S−1(M(T, A)) for every set A ⊂ G,
so the residuality part is as in [5]. Assume now that A ∈ NRC(G). Then
there exists a infinite-dimensional closed linear space F ⊂ M(T,A) ∪ {0}.
Then, by linearity and continuity, S−1(F ) is a closed linear space contained in
M(TS, A) ∪ {0}. If S−1(F ) were finite-dimensional, then dim (S(S−1(F ))) =
dim (F ) would be also finite (note that F = SS−1(F ) because S is onto),
which is a contradiction. This proves the first part of the statement. The
second part follows because the operator T = I is LDI.

Theorem 3.6. Let T, S : H(G) → H(G) be two linear continuous operators
with T LDI. Suppose that for each function f ∈ H(G) and each point t ∈ ∂G,
there exists lim

z→t
(Sf)(z) ∈ C (∈ C \ {0}). Then T + S (T · S, resp.) is LDI.

The proof is elementary and left to the interested reader.

11



References
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