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Abstract

The existence of a dense linear manifold of holomorphic functions on a
Jordan domain having except for zero maximal cluster set along any curve
tending to the boundary with nontotal oscillation value set is shown.
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1 Introduction and notation

Throughout this paper we will use the following standard notations: N is the set
of positive integers, C is the complex plane, D := {z ∈ C : |z| < 1} is the open unit
disk, B(a, r) (B(a, r)) is the euclidean open (closed, resp.) ball with center a ∈ C
and radius r > 0. Moreover, if G is a domain (:= connected, nonempty open subset)
of C, then H(G) will stand for the space of holomorphic functions on G. It becomes
a completely metrizable space (hence a Baire space) when it is endowed with the
compact open topology (see [11, pages 238–239]). Finally, if A is a subset of C then
A denotes its closure in C while ∂A denotes its boundary in the extended complex
plane C∞ := C ∪ {∞}. In particular, T will stand for the unit circle ∂D.

A well-known interpolation theorem due to Weierstrass (see [13, Chapter 15])
asserts that if a domain G ⊂ C, a sequence {an}∞n=1 ⊂ G with no limit points in G
–that is, tending to the boundary– and a sequence {wn}∞n=1 ⊂ C are prescribed, then
there exists a function f ∈ H(G) such that f(an) = wn for all n ∈ N. In particular,
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if we choose as {wn}∞n=1 an enumeration of the complex numbers having rational real
and imaginary parts then a function f ∈ H(G) with {f(an) : n ∈ N} dense in C is
obtained. Since a dense set with finitely many points deleted continues to be a dense
set, we get a function f ∈ H(G) with maximal cluster set along the set {an}∞n=1, in the
sense expressed in the following paragraph. Note also that, equivalently, the density
of f(A) for some f ∈ H(G) can be achieved for every fixed nonrelatively compact
subset A of G.

Assume that G is a domain in C, that F : G→ C is a function defined on G and
that A is a subset of G. The cluster set of F along A is defined as the set

CA(F ) = {w ∈ C : there exists a sequence {zn}∞n=1 ⊂ A tending to
some point of ∂G such that limn→∞ F (zn) = w}.

It is clear that CA(F ) is always closed and that if CA(F ) ̸= ∅ then A is not relatively
compact in G. The reader is referred to [5] and [12] for surveys of results about cluster
sets. If t0 ∈ ∂G then the cluster set of F along A at t0 is defined as

CA(F, t0) = {w ∈ C : there exists a sequence {zn}∞n=1 ⊂ A tending to t0
such that limn→∞ F (zn) = w}.

Again, CA(F, t0) is always closed. In addition, CA(F ) =
∪
t∈∂G

CA(F, t). If A = G

then the subscript “A” is often deleted and the expression “along A” is dropped. An
important special case is the radial cluster set at t0, which is defined as Cϱ(F, t0) :=
CA(F ) = CA(F, t0), where A is the radius A = {u t0 : u ∈ [0, 1)}.

It is an interesting problem to obtain holomorphic functions with maximal cluster
sets, that is, with cluster sets equal to C. In [1] it is shown that the functions
f ∈ H(G) having maximal cluster set at every boundary point form a residual subset
(i.e. its complement is of first category) in H(G), while in [2] it is proved that for a
prescribed nonrelatively compact subset A ⊂ G the set {f ∈ H(G) : f(A) = C} is
residual in H(G), from which it is easy to conclude that for A as before there exists a
residual subset of H(G) all of whose functions have maximal cluster set along A. An
important special instance is that of a curve in G tending to the boundary, that is,
a continuous map γ : [0, 1) → G such that limu→1− γ(u) = ω := the infinity point of
the one-point compactification of G or, equivalently, such that for each compact set
K ⊂ G there is u0 = u0(K) ∈ [0, 1) with γ(u) ∈ G \K for all u > u0 (in particular if
G = D then γ tends to the boundary if and only if limu→1− |γ(u)| = 1). By abuse of
lenguage we sometimes identify γ = γ([0, 1)). From the above-mentioned result of [2]
and from the fact that a countable intersection of residual subsets is again residual
(so dense) one can extract that if Γ is a given countable family of curves in G tending
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to the boundary then there is a dense subset M ⊂ H(G) such that Cγ(f) is maximal
for all f ∈M and all γ ∈ Γ.

In this paper we obtain that at least for each Jordan domain there exists a dense
linear manifold of holomorphic functions having –except for zero– maximal cluster set
along any curve tending to the boundary with nontotal oscillation value set. Hence
we can say that the set of functions with such approximation property is large not
only topologically but also algebraically.

2 The main result

By a Jordan domain we mean a domain in C whose boundary in C∞ is a topological
image of the unit circle T. If G ⊂ C is a domain and A ⊂ G is nonrelatively compact
then its oscillation value set is the (nonempty) set

Osc (A) = {t ∈ ∂G : there exists a sequence {zn}∞n=1 ⊂ A
with limn→∞ zn = t}.

We are now ready to state our main result.

Theorem 2.1. Let G be a Jordan domain. Then there is a dense linear manifold
D in H(G) such that for every f ∈ D \ {0} and every curve γ ⊂ G tending to the
boundary with Osc (γ) ̸= ∂G we have Cγ(f) = C. In particular, f(γ) is dense in C
for each pair f , γ as before.

Proof. By the Osgood-Carathéodory theorem (see [9]) there exists an homeomor-
phism φ from the C∞-closure of G onto D whose restriction on G is a holomorphic
isomorphism from G onto D. Then if D were the dense linear manifold obtained for
H(D) then the set D1 := {f ◦ φ : f ∈ D} would be the desired linear manifold in
H(G). The details are many but easy, and they are left to the reader.

Hence we may suppose that G = D from now on. Assume that {P ∗
n}∞n=1 is a

countable dense subset of H(D) (for instance, an enumeration of the holomorphic
polynomials having coefficients with rational real and imaginary parts). Then we
consider a sequence {Pn}∞n=1 where each P ∗

n occurs infinitely many times. We also
fix two sequences {rn}, {sn} of positive real numbers satisfying r1 < s1 < r2 < s2 <
· · · < rn < sn < · · · and limn→∞ rn = 1 = limn→∞ sn. Let us divide N into infinitely
many strictly increasing sequences {p(n, j) : j = 1, 2, . . .} (n ∈ N). For fixed n ∈ N
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we consider the set Fn ⊂ D given by the disjoint union

Fn = B(0,
n

n+ 1
) ∪

∞∪
j=J(n)

Kj,

where J(n) := min{j ∈ N : rj >
n

n+1
} and each Kj is the spiral compact set

Kj = {(rj +
sj − rj
4π

θ) exp(iθ) : θ ∈ [0, 4π]}.

Observe that each Kj has connected complement and that the sequence {Kj}∞j=1 goes
to T. Note also that every Fn is closed in D. By D∞ we will denote the one-point
compactification of D, whereas ω will stand for its infinity point. A simple glance
reveals that D∞\Fn is connected (indeed, D\Fn is connected and D\Fn ⊂ D∞\Fn ⊂
the closure in D∞ of D \ Fn) and locally connected at ω (by a similar reason). In
addition, Fn satisfies the following property: For every compact subset K ⊂ D there
exists a neighbourhood V of ω in D∞ such that no component of the interior F 0

n of
Fn intersects both K and V ; indeed, F 0

n = B(0, n
n+1

) and for any K we can choose
V := {ω} ∪ { n

n+1
< |z| < 1}. Under these three topological conditions the Nersesjan

theorem (see [7]) asserts the existence of a function fn ∈ H(D) approaching a given
continuous function gn : Fn → C with gn holomorphic in F 0

n within a prescribed error

function (= continuous positive function on Fn) ε(z). If we select ε(z) := 1−|z|
n

then
we obtain

|fn(z)− gn(z)| <
1− |z|
n

(z ∈ Fn), (1)

where gn : Fn → C is the function defined as

gn(z) =


Pn(z) if z ∈ B(0, n

n+1
)

qj if z ∈ Kp(n,j) and p(n, j) ≥ J(n)
0 if z ∈ Kp(k,j) (k ̸= n) and p(k, j) ≥ J(n).

We have denoted here by {qj}∞j=1 any fixed dense sequence in C. Observe that,
trivially, gn is continuous on Fn and holomorphic in F 0

n , so Nersesjan’s theorem applies
properly.

Let us define D as the linear span

D = span {fn : n ∈ N}.

Of course, D is a linear submanifold of H(D), and D is dense because {fn}∞n=1 is.
Indeed, from (1) we have that

|fn(z)− Pn(z)| <
1

n
for all z ∈ B(0,

n

n+ 1
).
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Then if we fix a function P ∗
m there exists a sequence n1 < n2 < · · · with Pnj

= P ∗
m for

all j ∈ N. Now if K ⊂ D is compact then there is j0 ∈ N such that K ⊂ B(0,
nj

nj+1
)

for every j > j0. Therefore

|fnj
(z)− P ∗

m(z)| <
1

nj

for all z ∈ K and all j > j0,

so fnj
→ P ∗

m (j → ∞) uniformly on compacta in H(D). Hence the closure of {fn :
n ∈ N} in H(D) contains the dense set {P ∗

m : m ∈ N}, which proves the density of
{fn}∞n=1.

It remains to show that for every prescribed curve γ ∈ G as in the hypothesis and
for every function f ∈ D\{0} we have Cγ(f) = C. Note that for such function f there
exist N ∈ N and complex scalars λ1, . . . , λN such that λN ̸= 0 and f = λ1f1 + · · · +
λNfN . Since Osc (γ) ̸= T and γ should escape towards T, this curve must intersect
all spirals Kj except finitely many of them; indeed, if this were not the case then
the shape of Kj’s together with the continuity of γ would force γ to make infinitely
many windings around the origin while approaching T, which would contradict the
hypothesis Osc (γ) ̸= T. Therefore there exists j0 ∈ N such that p(k, j0) ≥ J(N)
(k = 1, . . . , N) and γ ∩Kp(N,j) ̸= ∅ (j ≥ j0). Choose points zj ∈ γ ∩Kp(N,j) (j ≥ j0).
Then by (1) we obtain, for every j ≥ j0,

|fN(zj)− qj| = |fN(zj)− gN(zj)| <
1− |zj|
N

≤ 1− |zj| ≤ 1− rj

and

|fn(zj)| = |fn(zj)− gn(zj)| <
1− |zj|
n

≤ 1− rj (n = 1, . . . , N − 1).

Hence we get

|f(zj)− λNqj| = |λ1f1(zj) + · · ·+ λNfN(zj)− λNqj|

≤ |λN | · |fN(zj)− qj|+
N−1∑
n=1

|λnfn(zj)|

<

(
N∑

n=1

|λn|

)
(1− rj) → 0 (j → ∞).

But since λN ̸= 0 the sequence {λNqj : j ∈ N} is dense in C, so for given α ∈ C
there is a sequence {j1 < j2 < · · ·} ⊂ N with λNqjk → α as k → ∞. Now we can
select a sequence {k(1) < k(2) < · · ·} ⊂ N and a point t ∈ T with wl := zjk(l) → t
(l → ∞). Then {wl}∞l=1 ⊂ γ and f(wl) = f(wl)− λNqjk(l) + λNqjk(l) → α (l → ∞), so
α ∈ Cγ(f). In other words, Cγ(f) = C, as required.
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In view of Theorem 2.1, two natural questions arise, namely:

(a) Is it possible to replace the arbitrary curve γ to an arbitrary sequence {zn}∞n=1

tending to the boundary (even with Osc ({zn}∞n=1) ̸= ∂G)? The elementary
Proposition 2.2 below answers this question in the negative.

(b) It is clear that a similar result to Theorem 2.1 falls down if one desires that f
belongs to a subspace of bounded functions. But even without this boundedness
restriction the statement may be false. For instance, if f is in the Hardy space
Hp (see below) of the unit disk then Fatou’s theorem asserts that the radial
limit limr→1− f(re

iθ) exists and is finite for all θ ∈ A, where A = Af is a subset
of [0, 2π] such that the Lebesgue measure of [0, 2π]\A is zero, see [6]. Therefore
Cγ(f) is a singleton for each radial curve γ = {reiθ : r ∈ [0, 1)} (θ ∈ A).
Nevertheless, making a link to a motivating result mentioned in Section 1, we
could ask whether at least for a prescribed countable family of curves in D
tending to T the assertion of Theorem 2.1 holds in Hp. Theorem 2.5 below will
provide this time a positive answer, even without the restriction Osc (γ) ̸= T.

Proposition 2.2. If G ⊂ C is a bounded domain and f ∈ H(G) then there are a
point t ∈ ∂G, a value A ∈ C and a sequence {zn}∞n=1 ⊂ G tending to t such that
limn→∞ f(zn) = A.

Proof. If f has infinitely many zeros then the result follows from the Analytic Con-
tinuation Principle. Suppose now that f has finitely many zeros. Define g = f/P ,
where P ≡ 1 if f has no zeros whereas P (z) ≡ (z − a1) · · · (z − ap) if a1, . . . , ap are
the zeros of f , counting according their multiplicities. Then g is in H(G) and has
no zeros. Let us fix a sequence {Kn}∞n=1 of compact subsets of G which is exhaus-
tive, in the sense that its union is G and Kn ⊂ K0

n+1 (n ∈ N). Without loss of
generality, we can suppose K0

1 ̸= ∅. Choose any point a ∈ K0
1 , so a ∈ K0

n for all
n. Since g has no zeros, the Minimum Modulus Principle tells us that the minimum
of |g| on Kn is attained at some point an ∈ ∂Kn, therefore |g(an)| ≤ |g(a)|. Then
|f(an)| = |P (an)| · |g(an)| ≤ M := |g(a)| · supz∈G |P (z)| (n ∈ N), where M is finite
because G is bounded. Summarizing, we have obtained a sequence {an}∞n=1 ⊂ G
such that {f(an)}∞n=1 is bounded. But the exhaustivity property of {Kn}∞n=1 im-
plies that for a given compact set K ⊂ G there is n0 ∈ N with K ⊂ Kn0 , so
{an : n > n0} ∩K = ∅, whence the compactness of G leads us up to a point t ∈ ∂G
with bn → t (n→ ∞) for some subsequence {bn}∞n=1 of {an}∞n=1. Finally, the bound-
edness of {f(bn)}∞n=1 guarantees that f(zn) → A (n→ ∞) for some A ∈ C and some
subsequence {zn}∞n=1 of {bn}∞n=1.
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Recall that a sequence Tn : X → Y (n ∈ N) of continuous linear mappings between
two topological vector spaces X, Y is called universal or hypercyclic whenever there
exists a vector x ∈ X –called universal for {Tn}∞n=1– whose orbit {Tnx : n ∈ N} is
dense in Y . By U({Tn}) we will denote the set of such universal vectors. If this set
is dense in Y then we say that {Tn}∞n=1 is densely universal. See [8] for an excellent
survey (updated till 1999) about concepts, history and results related to this topic.
The following auxiliary result can be found in [3, Theorem 3.1].

Lemma 2.3. Assume that X, Y are metrizable topological vector spaces and that X
is Baire and separable. Suppose that, for each k ∈ N, T (k)

n : X → Y (n ∈ N) is a
sequence of continuous linear mappings between X and Y . Assume that for every k
and every sequence {n1 < n2 < · · ·} ⊂ N the sequence {T (k)

nj }∞j=1 is densely universal.
Then there exists a dense linear manifold M ⊂ X such that

M \ {0} ⊂
∩
k∈N

U({T (k)
n }).

If 0 < p <∞ then the Hardy spaceHp is the class of functions f ∈ H(D) for which

∥f∥p := sup
0<r<1

(

∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p < ∞. It becomes a Banach space for 1 ≤ p < ∞

when endowed with the norm ∥f∥p. In the nineties P. Bourdon and J.H. Shapiro
were able to prove that for p = 2 there is a residual subset of functions f ∈ Hp for
which the orbit {f ◦ ψn : n ∈ N} is dense in Hp, where ψn is the nth-iterate of an
automorphism ψ of D without fixed points in D (see [4] and [14, Chapter 7], where
many results of this kind can be found). Their proof equally works for 1 ≤ p < ∞
because it is ultimately based on the facts that except for perhaps one point of T
the sequence ψn(z) tends to a constant value α ∈ T and that for every β ̸∈ T the
collection of polynomials vanishing at β is dense in Hp, which in turn is a consequence
of Beurling’s approximation theorem, see [6, pages 113–114]. Now we denote by φa

(a ∈ D) the automorphism of D given by φa(z) =
z+a
1+az

. It is a straighforward exercise
to check that if {an}∞n=1 ⊂ D and an → α ∈ T then φan(t) → α (n → ∞) for every
t ∈ T \ {−α}. With these hints the interested reader will find no difficulty in proving
the following extension of Bourdon-Shapiro’s result.

Lemma 2.4. Let be prescribed a number p ∈ [1,∞) and a sequence {an}∞n=1 ⊂ D
tending to a boundary point. Then the functions f ∈ Hp for which the orbit {f ◦φan :
n ∈ N} is dense in Hp form a residual subset.

With the help of the latter two lemmas we can conclude this section by proving
the following theorem. We remark that since Hp-convergence is stronger than local
uniform convergence, the manifold D obtained below becomes dense also in H(D).
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Theorem 2.5. Suppose that p ∈ [1,∞) and that Γ is a countable collection of curves
in D tending to the boundary. Then there is a dense linear manifold D in Hp such
that Cγ(f) = C for every f ∈ D \ {0} and every γ ∈ Γ.

Proof. Since Γ is countable, we can write Γ = {γk : k ∈ N} where each γk is a curve

in D tending to T, whence for every k we can pick a sequence {a(k)n : n ∈ N} ⊂ γk
tending to some point αk ∈ T. If {n1 < n2 < · · ·} ⊂ N then we have also that

a
(k)
nj → αk as j → ∞. Thus by Lemma 2.4 the functions f ∈ Hp for which the orbit

{f ◦ φ
a
(k)
nj

: j ∈ N} is dense in Hp form a residual (so dense) subset of Hp for every

k ∈ N. In other words, each sequence {T (k)
nj }∞j=1 (k ∈ N) is densely universal, where

T
(k)
n denotes the composition operator f ∈ Hp 7→ f ◦ φ

a
(k)
n

∈ Hp. But X := Hp =: Y
is a Baire metrizable separable topological vector space, hence Lemma 2.3 yields the
existence of a dense linear manifold D ⊂ Hp such that D \ {0} ⊂

∩
k∈N U({T

(k)
n }).

Finally, take a function f ∈ D\{0} and a curve γ = γk ∈ Γ. Then f ∈ U({T (k)
n }),

which implies that {f ◦ φ
a
(k)
n

: n ∈ N} is dense in Hp, so in H(D). In particular, the

set {(f ◦ φ
a
(k)
n
)(0) : n ∈ N} = {f(a(k)n ) : n ∈ N} is dense in {g(0) : g ∈ H(D)} = C.

But {a(k)n : n ∈ N} ⊂ γ and a
(k)
n → αk ∈ T, so C ⊂ Cγ(f) and we are done.

3 Final remarks

1. R. Tenthoff has recently constructed (see [15, Kapitel 3]) a dense set of functions
f ∈ H(D) satisfying the following property: For every t0 ∈ T, every compact
subset K ⊂ D with connected complement and every continuous function g :
K → C with g ∈ H(K0), there exists a sequence of functions tn : K →
{u t0 : u ∈ [0, 1)} –not necessarily holomorphic nor continuous– such that
limn→∞ tn(z) = z0 for all z ∈ K and f ◦ tn → g uniformly on K. If we choose
specially K = {0} then it is derived the following particular case of Theorem
2.1: There is a dense set of functions f ∈ H(D) all of whose radial cluster sets
Cϱ(f, t0) are maximal.

2. In connection with the last remark the following question arises: Is the set
{f ∈ H(D) : Cϱ(f, t0) = C for all t0 ∈ T} residual in H(D)? We do not
know the answer, but we are able at least to show the next result: The set
{f ∈ H(D) : Cϱ(f, t0) = C for all t0 belonging to some residual set A = Af ⊂ T}
is residual in H(D). Indeed, by [1] the functions f ∈ H(D) with maximal cluster
set C(f, t0) at any t0 ∈ T is residual, and by Collingwood’s maximality theorem
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(see [5, Theorem 4.8]) if F : D → C is continuous, γ is a curve in D terminating
at 1 (in particular, γ can be the radius [0, 1)) and γt := t · γ (t ∈ T) then
Cγt(F, t) = C(F, t) on a residual set (depending on F ) of points t on T.

3. Proposition 2.2 showed that at least for a bounded domain G ⊂ C, there is no
function in H(G) with maximal cluster set along any sequence {zn}∞n=1 ⊂ G
tending to the boundary ∂G. However, if we drop the amount of sequences
{zn}∞n=1 then it is possible to get a positive result. Given A ⊂ C, we denote by
A′ the set of its accumulation points in C∞.

Proposition 3.1. Let A be a nonrelatively compact subset of a domain G ⊂ C.
Then the set

M := {f ∈ H(G) : CA(f, t) = C for all t ∈ A′ ∩ ∂G}

is residual in H(G).

Proof. Let {tk}∞k=1 be a countable dense subset of A′ ∩ ∂G. For each k, we

choose a sequence {a(k)n }∞n=1 ⊂ A with a
(k)
n → tk (n → ∞). By [2], it is known

that the sets {f ∈ H(G) : C{a(k)n : n∈N}(f, tk) = C} (k ∈ N) are residual, hence

by Baire’s theorem

D :=
∩
k∈N

{f ∈ H(G) : C{a(k)n : n∈N}(f, tk) = C}

is residual.

Let f ∈ D and t ∈ A′ ∩ ∂G. If we prove that CA(f, t) = C, then we would have
f ∈ M. Thus D ⊂ M and M would be residual.

Let {wn}∞n=1 be a countable dense subset of C. By induction, we can construct
an increasing sequence {mn}∞n=1 ⊂ N such that

|f(a(k)mn
)− wn| <

1

n
(k = 1, . . . , n; n ∈ N). (2)

Fix a value w ∈ C. There is an increasing sequence {in}∞n=1 ⊂ N with

|win − w| < 1

in
(n ∈ N). (3)

The point t is an accumulation point of the set

{a(k)min
: k = 1, . . . , in; n ∈ N}
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and there exist an incresing sequence {j(n)}∞n=1 ⊂ N and a sequence {kn}∞n=1,
1 ≤ kn ≤ ij(n), such that

a(kn)mij(n)
→ t (n→ ∞).

Moreover, by (2) and (3),

|f(a(kn)mij(n)
)− w| ≤ |f(a(kn)mij(n)

)− wij(n)
|+ |wij(n)

− w|

<
1

ij(n)
+

1

ij(n)
→ 0 (n→ ∞).

Hence w ∈ CA(f, t) and CA(f, t) = C for any t ∈ A′ ∩ ∂G. The proof is
finished.

Observe that if in particular we consider as A the union of the sets of points
of countable many prescribed sequences {a(k)n }∞n=1 ⊂ G (k ∈ N) with a(k)n → tk
(n → ∞), where {tk}∞k=1 is a countable dense subset of ∂G, we obtain (from
the proof) a residual set of functions in H(G) with maximal cluster set along

{a(k)n }∞n=1 at tk (k ∈ N) and with maximal cluster set along {a(k)n : n, k ∈ N}
also at the rest of the points t ∈ ∂G. This statement raises the following open
problem: Assume that for each point t ∈ ∂G we fix a sequence {a(t)n }∞n=1 ⊂ G

with a
(t)
n → t (n → ∞). Is there any function f ∈ H(G) with maximal cluster

set along {a(t)n }∞n=1 for any t ∈ ∂G?

4. In view of Theorem 2.1 it is natural to wonder whether there is an entire function
F : C → C such that Cγ(F ) is maximal for every curve γ tending to ∞. This
is false. In fact, every nonconstant entire function F satisfies limz→∞

z∈γ
F (z) = ∞

along at least one curve γ → ∞, see [10, pages 159–161].
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