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Abstract

Let X be a Banach space whose characteristic of noncompact convexity is less
than 1 and satisfies the non-strict Opial condition. Let C' be a bounded closed
convex subset of X, KC(X) the family of all compact convex subsets of X and T’
a nonexpansive mapping from C into KC(X) with bounded range. We prove that
T has a fixed point. The non-strict Opial condition can be removed if, in addition,

T is an 1-x-contractive mapping.
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1 Introduction

Let C' be a bounded closed convex subset of a Banach space X and T : C' — C'
a nonexpansive mapping. The problem of finding suitable geometrical condi-
tions on X which assure the existence of a fixed point for 7" has been widely
studied in the last 40 years (see, for instance, [7]). In the case of multivalued
nonexpansive mappings 7' : C' — K(C') a very general problem is the following:
Does T have a fixed point under the suitable conditions on X which assure the
existence of fixed point for univalued mappings? The answer to this question
is unknown, but some papers have appeared showing geometrical properties

on X which let state fixed point results for multivalued mappings.

One of the most general fixed point theorems for multivalued nonexpansive
self-mappings was obtained by W. A. Kirk and S. Massa in 1990 [9], proving
the existence of fixed points in Banach spaces for which the asymptotic center
of a bounded sequence in a closed bounded convex subset is nonempty and
compact. This occurs if X is, for instance, a uniformly convex space but it
is known (see [10]) that when X is nearly uniformly convex (see definition in
Section 2) the asymptotic center of a bounded sequence can be a noncompact
set. Due to this fact, in [5] the authors establish a generalization of the Kirk-
Massa theorem to a class of Banach spaces where the asymptotic center of a
sequence is not necessary a compact set. Specifically, they give a fixed point
theorem for a multivalued nonexpansive and 1-y-contractive compact convex
valued mapping 7' : C — 2¢ in the framework of a Banach space whose
characteristic of noncompact convexity associated to the separation measure
of noncompactness is less than 1. Also it is proved that the y-contractiveness

assumption can be removed when, in addition, the space satisfies the non-strict



Opial condition.

In this paper we obtain similar results for non-self mappings T : C' — 2% sat-
isfying a inwardness condition. In spite of the analogy between both problems,
the arguments must be different. Indeed, in the case of a self-mapping, we can
restrict to a separable setting. In this case a basic tool is the existence of a
regular and asymptotically uniform subsequence of each bounded sequence.
However, in the non-separable setting we need to use ultranets and to state
(Theorem 3.1) a relationship between the Chebyshev radius of the asymptotic
center of nets and the modulus of noncompact convexity of a Banach space

associated to the Kuratowski measure of noncompactness.

2 Preliminaries

Let X be a Banach space and C' a nonempty closed subset of X. We denote by
CB(C) the family of all nonempty closed bounded subsets of C' and by K (C)
(resp. KC(C)) the family of all nonempty compact (resp. compact convex)

subsets of C.
On C'B(X) we have the Hausdorff metric H given by

H(A,B) = max{supd(a, B),supd(b, A)}, A, B e CB(X)

a€A beB

where for z € X and £ C X d(z, F) := inf{d(z,y) : y € E} is the distance

from the point = to the subset E.

A multivalued mapping 7' : C' — C'B(X) is said to be a contraction if there



exists a constant k € [0, 1) such that

H(Tz,Ty) < kllz —yll, w,yeC,

and T is said to be nonexpansive if

H(Tx>Ty> S ||Jf—y||7 x,yGC’.

Recall that the Kuratowski and Hausdorff measures of noncompactness of a

nonempty bounded subset B of X are respectively defined as the numbers:
a(B) = inf{d > 0 : B can be covered by finitely many sets of diameter < d},

X(B) = inf{d > 0 : B can be covered by finitely many balls of radius < d}.

Then a multivalued mapping 7' : C' — C'B(X) is called y-condensing (resp.
1-y-contractive) where v = «(-) or x(-) if, for each bounded subset B of C

with v(B) > 0, there holds the inequality

YT(B)) <v(B) (resp. ~(T(B)) <~(B)).
Here T'(B) = UgepT'x.

Note that a multivalued mapping 7" : C' — 2% is said to be upper semicontin-
uous on C'if {x € C : Tx C V} is open in C' whenever V C X is open; T is
said to be lower semicontinuous if T-H(V) :={z € C: Tz NV # ()} is open
in C' whenever V' C X is open; and 7' is said to be continuous if it is both
upper and lower semicontinuous. There is another different kind of continuity
for set-valued operators: T : C' — C'B(X) is said to be continuous on C' (with

respect to the Hausdorff metric H) if H(Tx,,Tz) — 0 whenever z,, — .



It is not hard to see (see [1] and [4]) that both definitions of continuity are
equivalent if T'x is compact for every x € C'. We say that x € C' is a fixed

point of T"if and only if x is contained in T'z.

Recall that the inward set of C' at x € C' is defined by
Ie(z) ={z+ ANy —2): A>0,y € C}.

Clearly C' C Io(z) and it is not hard to show that I-(x) is a convex set as C'

does.

Next theorems will be very useful in order to prove our results on fixed points

for multivalued mappings.

Theorem 2.1 ([12],[13]) Let C be a closed convex subset of a Banach space

X and F : C — K(X) a contraction mapping. If Fx C Ic(x) for all x € C,

then F' has a fixed point.

Theorem 2.2 ([3],[13]) Let X be a Banach space and ) # D C X be closed
bounded convex. Let F : D — 2% be upper semicontinuous y-condensing with

closed convex values, where ¥(-) = a(-) or x(+). If Fx N Ip(x) # O on D then

F has a fixed point.

Let us recall some geometric properties which are defined using the measures

of noncompactness.

Definition 2.3 Let X be a Banach space and ¢ = « or x. The modulus of

noncompact convexity associated to ¢ is defined in the following way

Ax 4(e) =1inf{1 — d(0, A) : A C Bx is convez, ¢p(A) > €}.



(Bx is the unit ball of X ).

The characteristic of noncompact convexity of X associated with the measure

of noncompactness ¢ is defined by

€s(X) =sup{e > 0: Ax 4(e) = 0}.

The following relationships among the different moduli are easy to obtain
AX,Q(E) < AX,x(e)u

and consequently

€a(X) > 6,(X).

The space X is said to be nearly uniformly convex if €,(X) = 0.

Let C be a subset of a Banach space X, D be a directed set and {z, : a € D}

a bounded net in X. For any x € C, define

r(z,{za}) = inf{sup{|lzg — z|| : B > a}: a € D} :=limsup ||z, — z||;

r(C,{z}) = nf{r(z, {x,}) : x € C};

A(CAzo}) ={x € C:r(z,{xa}) = r(C,{za})}.
The number r(C,{z,}) and the (possibly empty) set A(C,{z,}) are called,
respectively, the asymptotic radius and the asymptotic center of {z,, : « € D}

in C.



Obviously, the convexity of C' implies that A(C, {z,}) is convex. Notice that
A(C,{z,}) is a nonempty weakly compact set if C' is weakly compact, or C'is

a closed convex subset of a reflexive Banach space.

Let S be a set and H C S. We shall say that a net {z, : « € D} in S is

eventually in H if there exists o, € D such that x, € H for all a > a,.

Definition 2.4 A net {z,: a € D} in a set S is called an ultranet if for each
subset G C S, either {z, : a € D} is eventually in G or {z, : a € D} is

eventually in S\ G.

The following facts concerning ultranets can be found in [8]:

(a) Every net in a set has a subnet which is an ultranet.

(b) Let Sy and Sy be two sets and f : S; — So. If {z, : @ € D} is an ultranet

S1, then {f(z,) : @ € D} is an ultranet in S.

(c) If S is a compact Hausdorff topological space and {z, : a € D} is an

ultranet in S, then the limit lim x,, exists.
(0%

Finally recall that if D is a bounded subset of X, the Chebyshev radius of D

relative to C' is defined by

re(D) := inf{sup{||lz —y|| : y € D} : 2 € C}.



3  Modulus of noncompact convexity. Fixed point theorems

Let us begin this Section by proving a connection between the asymptotic
center of an ultranet and Ax ,(-). We shall use the following result which can

be proved by standard arguments.

Lemma 3.1 Let X be a Banach space and {x, : a € D} a net weakly con-
vergent to x € X. Let A, =co({zg: B > a}). Then

N Ao = {z}.

aeD

Theorem 3.2 Let C' be a closed convex subset of a reflexive Banach space X

and let {x3: B € D} be a bounded ultranet in C. Then

ro(A(C{zs})) < (1= Axa(17))r(C {zp})-

PROOF. Denote r = r(C,{zs}) and A = A(C,{zs}) which is a nonempty
set. Since co({zg : f € D}) C C is a weakly compact set, the ultranet {zs :
B € D} converges weakly to an element z € C. Furthermore, for each = € C,

the limit limg ||xg — z|| exists.

Let us first show that a({zz: 3 € D}) > r.

Indeed, let d > a({zs : B € D}). There exist By, ..., B,, disjoint subsets of C'

such that {z5 : 8 € D} is contained in | J B; and diam(B;) < d.

i=1
According to the definition of ultranet, {z5 : B € D} is either eventually in

By or eventually in U]_,B;. Suppose {xg : § € D} is eventually in By, then



{zs: B > B,} C By, for some 3, € D. In view of this, for every x € B; we

have
s — 2l < d, forall 5> 6,
Hence
< i —
r < lim flzg — 2l < d,

and thus a({zz: 8 € D}) >r.

In the second case, there exists 3, € D such that {zg : 8 > (,} C Ul ,B,.
Since {xz : § > [,} is an ultranet, this net is either in By or eventually in
Ui 3B;. In the first assumption, it is possible to repeat the above argument
to obtain a({zg : B € D}) > r. Following this finite process we obtain the

desired result.

It must be noted that this reasoning also allow us to prove that a({z, : v >

B}) > r, for every (€ D.

Assume that z lies in A. Since lién |lzg — x| = r, given € > 0 we can find

Bo € D such that ||xz — x| < r + € for all § > f,.

Thus, if we denote Ag = co({z, — r},>53) we have that Ag C B(0,r + ¢) for

each B € D, B> f,, and a(Ag) = a({zy —x}\>5) > 7.

From the definition of Ax ,(-) we deduce

,
- — <(1-—
i [yl = d(0.4) <(1 - Axa (=) )+,
for each 6 > (,.

Since the set Ag is a weakly compact set, it must have iGHE lyll = llygl for
yeAs

some yg € Ag.



On the other hand, the net {yz : 5 > 5,} C Ap, has a subnet weakly conver-
gent to a point, say y, which clearly is a cluster point of As for all 3 > f,.

Thus, it follows from Lemma 3.1 that y = 2z —x = w — lién Ya-
Then the weakly lower semicontinuity of the norm implies
Iz = ol (1= Axa() )+
Z—x — ol — ) ) (r+e).
- ey +€
Since the last inequality is true for every e, we have
|2 — || < (1 _ Ax,a(r))r.

This ends the proof because the last inequality holds for every x € A(C, {zz}).

Remark 3.3

In [5] the authors give a similar result to Theorem 3.2 for the asymptotic center
of a regular sequence with respect to C' and the modulus Ax s(-), where 3 is
the separation measure of noncompactness ([2]). A sequence is called regular
with respect to C'if each of its subsequences has the same asymptotic radius in
C'. Furthermore, they prove that the modulus Ax ,(-) can be considered when
X satisfies the non-strict Opial condition (notice that Axs(-) < Ax, (). A
Banach space X is said to satisfy the non-strict Opial condition if, whenever

a sequence {x,} in X converges weakly to z, then for y € X

limsup ||z, — z|| < limsup ||z, — y||.
n n

Now we are ready to prove the main result of this paper.
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Theorem 3.4 Let X be a Banach space such that €,(X) < 1 and C be a
closed bounded convex subset of X. If T : C'— KC(X) is a nonezxpansive and

1-x-contractive mapping such that T(C) is a bounded set, and which satisfies

Tz C Io(x) Yz el

then T has a fized point.

PROOF. Let zy € C be fixed and consider for each n > 1 the contraction

T, : C — KC(X) defined by

1 1
Thx:=—xo+ (1——)Tx, ze€C.
n n

Bearing in mind that for each x € C the set I¢(z) is convex and contains C,
it is easily seen that T,z C I¢(x) for all x € C. We can apply Theorem 2.1 to
obtain a fixed point z,, € C' of T,,. Thus, we have a sequence {z,} in C' such

that lim d(xy, Tx,) = 0. Let {n,} be an ultranet of the positive integers {n}.
Denote A = A(C,{x,,}). We start by proving that
TxNIa(x)#0 Ve A

Indeed, the compactness of Tz, implies that for each n,, we can take y,_, €

Tz, such that
||xna - yna || = d(xncﬂ Txna)'

Since T'x is compact, for each x € A, we can find z,_, € Tz such that
[Yna = Zna | = d(yne, T) < H(Twn,, Tx) < ||z, — 2|.

Let z = lim z,, € Tz. It should remain to prove z € I4(x).
6
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If r =7r(C,{x,,}), on the one hand we have
lim [z, — 2] =l [|yn, — 2z, || <1 [z, — 2l =7,

and on the other hand, since z € Tx C Io(z) there exists A > 0 such that
z=x+ ANv —x) for some v € C. If A <1 it is clear that z € C' and hence,

from the above inequality, z € A C I4(z). So assume A > 1 and write

€ (0,1).

>l =

v=pz+ (1 —pz, p=
Therefore we have
i 2, — ol < el o, — 2+ (1= ) i s, — o] < 7
Hence v € A and thus z € 14(x).

In this way, the mapping 7' : A — KC(X) is nonexpansive, 1-y-contractive

and satisfies

TrNls(z)#0 Vre A

Moreover, we can apply Theorem 3.2 to obtain
ro(A) < Ar(C{zn, }),
where A :=1—Ax,(17) < L.

Now fix ; € A and for each number p € (0,1] consider the contraction

T,:A— KC(X) defined by

T,x=pry+(1—p)Tr xe A

12



It is easily seen that 7}, is x-condensing (see [5]). Furthermore, since I4(x) is

convex we also obtain

T,xNla(x) #0, Ve A

Hence by Theorem 2.2, T, has a fixed point. Consequently, we can get a
sequence {z.} in A satisfying lirrln d(x},Tx}) = 0. We proceed as before to

obtain that

TeNIp(z)#0, Vaoe A :=AC {z, }),

and

ro(AY) < Ar(C, {m,lla}) < Arg(A).

By induction, for each integer m > 1 we take a sequence {z™},, C A" ! such
that lim d(x,',Tx;') = 0. By means of the ultranet {z]’ }, we construct the

set A™ := A(C,{x]} }) such that

Tc(Am> S )\mTc(A).
Choose z,,, € A™. We shall prove that {z,,},, is a Cauchy sequence. For each
m > 1 we have for any positive integer n

et = Tmll < mes — 22l + e — 2l < diamA™ " + 2 = 2,0

13



Taking upper limit as n — oo

|Zm_1 — T < diamA™ ! + limsup,, |27 — z,,|| = diamA™ ™ + r(C, {z™})
< diamA™ 4+ ro(A™)
< 27“C(Am_1) + Tc(Am_l) = 37“C(Am_1> < 3)\m_17°o(14).

Since A < 1, we conclude that there exists x € C' such that z,, converges to

x. Let us see that x is a fixed point of T'. For each m > 1,

A, Tp) < Jtm — 2] + d(a, Tal) + H(Ta, Tp) < 2 — a2 + (2, Ta).

Taking upper limit as n — oo
d(2p, Txy) < 2limsup ||z, — 27 < 20 e (A).

Finally, taking limit in m in both sides we obtain lim,, d(z,, Tx,,) = 0 and

the continuity of 7" implies that d(z,Tx) =0 i.e. x € Tx.

Simple examples show that we can not avoid nonexpansiveness assumption in
the above theorem (see [5]). We do not know if y-contractiveness condition can
be dropped in Theorem 3.4. In fact, it is an open problem if every nonexpansive
mapping 7" from C' to either K(C) or K(X) is 1-x-contractive even for single
valued mappings. However, when C' is a weakly compact subset of a reflexive
Banach space satisfying the non-strict Opial condition, we can follow the proof
of Theorem 4.5 in [5] to deduce that a nonexpansive mapping 7' : C' — K(X)
with bounded range is 1-x-contractive. Then, in view of Theorem 3.4, we can

state the following corollary.

14



Corollary 3.5 Let X be a Banach space such that €,(X) < 1 satisfying the
non-strict Opial condition and C' be closed bounded conver subset of X. If
T:C — KC(X) is a nonexpansive mapping such that T'(C) is a bounded set,
and which satisfies

Tz C Io(x) Yz e,

then T has a fized point.

Regarding the proof of Theorem 3.4 it is worthwhile to note that ultranets are
needed due to the fact that the range of T" is not assumed to be contained in
its domain and hence we cannot restrict to the case of a separable set C' (see
[7] and [14]). However, if we assume that C' is separable and recall the first
step of the induction method as applied in Theorem 3.4, then we can take a
sequence of approximate fixed points of 7" in C' such that it is regular and
asymptotically uniform with respect to C' (see [6] and [11]). A sequence is said
to be asymptotically uniform with respect to C' if each of its subsequences has
the same asymptotic center in C'. Under this situation it is enough to consider

a subsequence {z,} of the above-mentioned sequence such that
TxNIa(x)#£D Ve A,

where A = A(C,{z,}). The boundary condition imposed on 7" allows us to
rewrite the proof of Theorem 3.4 to the § and x moduli of noncompact con-

vexity (see Remark 3.3). The following results are consequence of this fact.

Theorem 3.6 Let X be a Banach space such that eg(X) < 1 and C be a
closed bounded convex and separable subset of X. If T : C — KC(X) is a
nonezpansive and 1-x-contractive mapping such that T(C') is a bounded set,

and which satisfies

15



Tz C Io(x) Yz el

then T has a fixed point.

Theorem 3.7 Let X be a Banach space such that €,(X) < 1 satisfying the
non-strict Opial condition and C' be a closed bounded convexr and separable
subset of X. If T : C' — KC(X) is a nonexpansive mapping such that T'(C')

1s a bounded set which satisfies
Tx C Io(x) Yx e,

then T has a fized point.
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