Fixed point theorems for multivalued nonexpansive mappings satisfying inwardness conditions

T. Domínguez Benavides¹, P. Lorenzo Ramírez¹

Departamento de Análisis Matemático, Facultad de Matemáticas, Apdo. 1160, Avda. Reina Mercedes, 41080 Sevilla, Spain

Abstract

Let X be a Banach space whose characteristic of noncompact convexity is less than 1 and satisfies the non-strict Opial condition. Let C be a bounded closed convex subset of X, KC(X) the family of all compact convex subsets of X and T a nonexpansive mapping from C into KC(X) with bounded range. We prove that T has a fixed point. The non-strict Opial condition can be removed if, in addition, T is an 1- χ -contractive mapping.

Key words: Fixed point, multivalued nonexpansive mapping, inwardness condition, characteristic of noncompact convexity of a Banach space, Opial condition.

2000 MSC: 47H04, 47H09, 47H10, 47H40.

Email addresses: tomasdQus.es (T. Domínguez Benavides), plorenQus.es (,P. Lorenzo Ramírez).

¹ This research is partially supported by D.G.E.S. BFM-2000 0344-C02-C01 and FQM-127.

Preprint submitted to Elsevier Science

1 Introduction

Let C be a bounded closed convex subset of a Banach space X and $T: C \to C$ a nonexpansive mapping. The problem of finding suitable geometrical conditions on X which assure the existence of a fixed point for T has been widely studied in the last 40 years (see, for instance, [7]). In the case of multivalued nonexpansive mappings $T: C \to K(C)$ a very general problem is the following: Does T have a fixed point under the suitable conditions on X which assure the existence of fixed point for univalued mappings? The answer to this question is unknown, but some papers have appeared showing geometrical properties on X which let state fixed point results for multivalued mappings.

One of the most general fixed point theorems for multivalued nonexpansive self-mappings was obtained by W. A. Kirk and S. Massa in 1990 [9], proving the existence of fixed points in Banach spaces for which the asymptotic center of a bounded sequence in a closed bounded convex subset is nonempty and compact. This occurs if X is, for instance, a uniformly convex space but it is known (see [10]) that when X is nearly uniformly convex (see definition in Section 2) the asymptotic center of a bounded sequence can be a noncompact set. Due to this fact, in [5] the authors establish a generalization of the Kirk-Massa theorem to a class of Banach spaces where the asymptotic center of a sequence is not necessary a compact set. Specifically, they give a fixed point theorem for a multivalued nonexpansive and 1- χ -contractive compact convex valued mapping $T : C \rightarrow 2^C$ in the framework of a Banach space whose characteristic of noncompact convexity associated to the separation measure of noncompactness is less than 1. Also it is proved that the χ -contractiveness assumption can be removed when, in addition, the space satisfies the non-strict Opial condition.

In this paper we obtain similar results for non-self mappings $T: C \to 2^X$ satisfying a inwardness condition. In spite of the analogy between both problems, the arguments must be different. Indeed, in the case of a self-mapping, we can restrict to a separable setting. In this case a basic tool is the existence of a regular and asymptotically uniform subsequence of each bounded sequence. However, in the non-separable setting we need to use ultranets and to state (Theorem 3.1) a relationship between the Chebyshev radius of the asymptotic center of nets and the modulus of noncompact convexity of a Banach space associated to the Kuratowski measure of noncompactness.

2 Preliminaries

Let X be a Banach space and C a nonempty closed subset of X. We denote by CB(C) the family of all nonempty closed bounded subsets of C and by K(C) (resp. KC(C)) the family of all nonempty compact (resp. compact convex) subsets of C.

On CB(X) we have the Hausdorff metric H given by

$$H(A,B) := \max\left\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\right\}, \quad A,B \in CB(X)$$

where for $x \in X$ and $E \subset X$ $d(x, E) := \inf\{d(x, y) : y \in E\}$ is the distance from the point x to the subset E.

A multivalued mapping $T: C \to CB(X)$ is said to be a contraction if there

exists a constant $k \in [0, 1)$ such that

$$H(Tx, Ty) \le k ||x - y||, \quad x, y \in C,$$

and T is said to be nonexpansive if

$$H(Tx, Ty) \le ||x - y||, \quad x, y \in C.$$

Recall that the Kuratowski and Hausdorff measures of noncompactness of a nonempty bounded subset B of X are respectively defined as the numbers:

 $\alpha(B) = \inf\{d > 0 : B \text{ can be covered by finitely many sets of diameter} \le d\},\$

 $\chi(B) = \inf\{d > 0 : B \text{ can be covered by finitely many balls of radius} \le d\}.$

Then a multivalued mapping $T : C \to CB(X)$ is called γ -condensing (resp. 1- γ -contractive) where $\gamma = \alpha(\cdot)$ or $\chi(\cdot)$ if, for each bounded subset B of C with $\gamma(B) > 0$, there holds the inequality

$$\gamma(T(B)) < \gamma(B) \quad (\text{resp.} \quad \gamma(T(B)) \le \gamma(B)).$$

Here $T(B) = \bigcup_{x \in B} Tx$.

Note that a multivalued mapping $T: C \to 2^X$ is said to be upper semicontinuous on C if $\{x \in C : Tx \subset V\}$ is open in C whenever $V \subset X$ is open; T is said to be lower semicontinuous if $T^{-1}(V) := \{x \in C : Tx \cap V \neq \emptyset\}$ is open in C whenever $V \subset X$ is open; and T is said to be continuous if it is both upper and lower semicontinuous. There is another different kind of continuity for set-valued operators: $T: C \to CB(X)$ is said to be continuous on C (with respect to the Hausdorff metric H) if $H(Tx_n, Tx) \to 0$ whenever $x_n \to x$. It is not hard to see (see [1] and [4]) that both definitions of continuity are equivalent if Tx is compact for every $x \in C$. We say that $x \in C$ is a fixed point of T if and only if x is contained in Tx.

Recall that the inward set of C at $x \in C$ is defined by

$$I_C(x) := \{ x + \lambda(y - x) : \lambda \ge 0, y \in C \}.$$

Clearly $C \subset I_C(x)$ and it is not hard to show that $I_C(x)$ is a convex set as C does.

Next theorems will be very useful in order to prove our results on fixed points for multivalued mappings.

Theorem 2.1 ([12],[13]) Let C be a closed convex subset of a Banach space X and $F: C \to K(X)$ a contraction mapping. If $Fx \subset \overline{I_C(x)}$ for all $x \in C$, then F has a fixed point.

Theorem 2.2 ([3],[13]) Let X be a Banach space and $\emptyset \neq D \subset X$ be closed bounded convex. Let $F : D \to 2^X$ be upper semicontinuous γ -condensing with closed convex values, where $\gamma(\cdot) = \alpha(\cdot)$ or $\chi(\cdot)$. If $Fx \cap \overline{I_D(x)} \neq \emptyset$ on D then F has a fixed point.

Let us recall some geometric properties which are defined using the measures of noncompactness.

Definition 2.3 Let X be a Banach space and $\phi = \alpha$ or χ . The modulus of noncompact convexity associated to ϕ is defined in the following way

$$\Delta_{X,\phi}(\epsilon) = \inf\{1 - d(0,A) : A \subset B_X \text{ is convex, } \phi(A) \ge \epsilon\}.$$

 $(B_X \text{ is the unit ball of } X).$

The characteristic of noncompact convexity of X associated with the measure of noncompactness ϕ is defined by

$$\epsilon_{\phi}(X) = \sup\{\epsilon \ge 0 : \Delta_{X,\phi}(\epsilon) = 0\}.$$

The following relationships among the different moduli are easy to obtain

$$\Delta_{X,\alpha}(\epsilon) \le \Delta_{X,\chi}(\epsilon),$$

and consequently

$$\epsilon_{\alpha}(X) \ge \epsilon_{\chi}(X).$$

The space X is said to be nearly uniformly convex if $\epsilon_{\phi}(X) = 0$.

Let C be a subset of a Banach space X, \mathcal{D} be a directed set and $\{x_{\alpha} : \alpha \in \mathcal{D}\}$ a bounded net in X. For any $x \in C$, define

$$r(x, \{x_{\alpha}\}) = \inf\{\sup\{\|x_{\beta} - x\| : \beta \ge \alpha\} : \alpha \in \mathcal{D}\} := \limsup_{\alpha} \|x_{\alpha} - x\|;$$

$$r(C, \{x_{\alpha}\}) = \inf\{r(x, \{x_{\alpha}\}) : x \in C\};\$$

$$A(C, \{x_{\alpha}\}) = \{x \in C : r(x, \{x_{\alpha}\}) = r(C, \{x_{\alpha}\})\}.$$

The number $r(C, \{x_{\alpha}\})$ and the (possibly empty) set $A(C, \{x_{\alpha}\})$ are called, respectively, the asymptotic radius and the asymptotic center of $\{x_{\alpha} : \alpha \in \mathcal{D}\}$ in C. Obviously, the convexity of C implies that $A(C, \{x_{\alpha}\})$ is convex. Notice that $A(C, \{x_{\alpha}\})$ is a nonempty weakly compact set if C is weakly compact, or C is a closed convex subset of a reflexive Banach space.

Let S be a set and $H \subset S$. We shall say that a net $\{x_{\alpha} : \alpha \in \mathcal{D}\}$ in S is eventually in H if there exists $\alpha_o \in \mathcal{D}$ such that $x_{\alpha} \in H$ for all $\alpha \geq \alpha_o$.

Definition 2.4 A net $\{x_{\alpha} : \alpha \in \mathcal{D}\}$ in a set S is called an ultranet if for each subset $G \subset S$, either $\{x_{\alpha} : \alpha \in \mathcal{D}\}$ is eventually in G or $\{x_{\alpha} : \alpha \in \mathcal{D}\}$ is eventually in $S \setminus G$.

The following facts concerning ultranets can be found in [8]:

(a) Every net in a set has a subnet which is an ultranet.

(b) Let S_1 and S_2 be two sets and $f : S_1 \to S_2$. If $\{x_\alpha : \alpha \in \mathcal{D}\}$ is an ultranet S_1 , then $\{f(x_\alpha) : \alpha \in \mathcal{D}\}$ is an ultranet in S_2 .

(c) If S is a compact Hausdorff topological space and $\{x_{\alpha} : \alpha \in \mathcal{D}\}$ is an ultranet in S, then the limit $\lim_{\alpha} x_{\alpha}$ exists.

Finally recall that if D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by

$$r_C(D) := \inf\{\sup\{\|x - y\| : y \in D\} : x \in C\}.$$

3 Modulus of noncompact convexity. Fixed point theorems

Let us begin this Section by proving a connection between the asymptotic center of an ultranet and $\Delta_{X,\alpha}(\cdot)$. We shall use the following result which can be proved by standard arguments.

Lemma 3.1 Let X be a Banach space and $\{x_{\alpha} : \alpha \in \mathcal{D}\}$ a net weakly convergent to $x \in X$. Let $A_{\alpha} = \overline{co}(\{x_{\beta} : \beta \geq \alpha\})$. Then

$$\bigcap_{\alpha \in \mathcal{D}} A_{\alpha} = \{x\}.$$

Theorem 3.2 Let C be a closed convex subset of a reflexive Banach space X and let $\{x_{\beta} : \beta \in D\}$ be a bounded ultranet in C. Then

$$r_C(A(C, \{x_\beta\})) \le (1 - \Delta_{X,\alpha}(1^-))r(C, \{x_\beta\}).$$

PROOF. Denote $r = r(C, \{x_{\beta}\})$ and $A = A(C, \{x_{\beta}\})$ which is a nonempty set. Since $\overline{co}(\{x_{\beta} : \beta \in D\}) \subset C$ is a weakly compact set, the ultranet $\{x_{\beta} : \beta \in D\}$ converges weakly to an element $z \in C$. Furthermore, for each $x \in C$, the limit $\lim_{\beta} ||x_{\beta} - x||$ exists.

Let us first show that $\alpha(\{x_{\beta} : \beta \in D\}) \ge r$.

Indeed, let $d > \alpha(\{x_{\beta} : \beta \in D\})$. There exist $B_1, ..., B_n$ disjoint subsets of C such that $\{x_{\beta} : \beta \in D\}$ is contained in $\bigcup_{i=1}^{n} B_i$ and diam $(B_i) \leq d$.

According to the definition of ultranet, $\{x_{\beta} : \beta \in D\}$ is either eventually in B_1 or eventually in $\bigcup_{i=2}^n B_i$. Suppose $\{x_{\beta} : \beta \in D\}$ is eventually in B_1 , then

 $\{x_{\beta} : \beta \geq \beta_o\} \subset B_1$, for some $\beta_o \in D$. In view of this, for every $x \in B_1$ we have

$$||x_{\beta} - x|| \le d$$
, for all $\beta \ge \beta_o$.

Hence

$$r \le \lim_{\beta \ge \beta_o} \|x_\beta - x\| \le d,$$

and thus $\alpha(\{x_{\beta} : \beta \in D\}) \ge r$.

In the second case, there exists $\beta_o \in D$ such that $\{x_\beta : \beta \ge \beta_o\} \subset \bigcup_{i=2}^n B_i$. Since $\{x_\beta : \beta \ge \beta_o\}$ is an ultranet, this net is either in B_2 or eventually in $\bigcup_{i=3}^n B_i$. In the first assumption, it is possible to repeat the above argument to obtain $\alpha(\{x_\beta : \beta \in D\}) \ge r$. Following this finite process we obtain the desired result.

It must be noted that this reasoning also allow us to prove that $\alpha(\{x_{\gamma} : \gamma \geq \beta\}) \geq r$, for every $\beta \in \mathcal{D}$.

Assume that x lies in A. Since $\lim_{\beta} ||x_{\beta} - x|| = r$, given $\epsilon > 0$ we can find $\beta_0 \in \mathcal{D}$ such that $||x_{\beta} - x|| < r + \epsilon$ for all $\beta \ge \beta_o$.

Thus, if we denote $A_{\beta} = \overline{co}(\{x_{\gamma} - x\}_{\gamma \geq \beta})$ we have that $A_{\beta} \subset B(0, r + \epsilon)$ for each $\beta \in \mathcal{D}, \beta \geq \beta_o$, and $\alpha(A_{\beta}) = \alpha(\{x_{\gamma} - x\}_{\gamma \geq \beta}) \geq r$.

From the definition of $\Delta_{X,\alpha}(\cdot)$ we deduce

$$\inf_{y \in A_{\beta}} \|y\| = d(0, A_{\beta}) \le \left(1 - \Delta_{X, \alpha}\left(\frac{r}{r+\epsilon}\right)\right)(r+\epsilon),$$

for each $\beta \geq \beta_o$.

Since the set A_{β} is a weakly compact set, it must have $\inf_{y \in A_{\beta}} ||y|| = ||y_{\beta}||$ for some $y_{\beta} \in A_{\beta}$.

On the other hand, the net $\{y_{\beta} : \beta \geq \beta_o\} \subset A_{\beta_o}$ has a subnet weakly convergent to a point, say y, which clearly is a cluster point of A_{β} for all $\beta \geq \beta_o$. Thus, it follows from Lemma 3.1 that $y = z - x = w - \lim_{\beta} y_{\beta}$.

Then the weakly lower semicontinuity of the norm implies

$$||z - x|| \le \left(1 - \Delta_{X,\alpha}\left(\frac{r}{r+\epsilon}\right)\right)(r+\epsilon).$$

Since the last inequality is true for every ϵ , we have

$$||z - x|| \le (1 - \Delta_{X,\alpha}(1^{-}))r.$$

This ends the proof because the last inequality holds for every $x \in A(C, \{x_{\beta}\})$.

Remark 3.3

In [5] the authors give a similar result to Theorem 3.2 for the asymptotic center of a regular sequence with respect to C and the modulus $\Delta_{X,\beta}(\cdot)$, where β is the separation measure of noncompactness ([2]). A sequence is called *regular* with respect to C if each of its subsequences has the same asymptotic radius in C. Furthermore, they prove that the modulus $\Delta_{X,\chi}(\cdot)$ can be considered when X satisfies the non-strict Opial condition (notice that $\Delta_{X,\beta}(\cdot) \leq \Delta_{X,\chi}(\cdot)$). A Banach space X is said to satisfy the non-strict Opial condition if, whenever a sequence $\{x_n\}$ in X converges weakly to x, then for $y \in X$

$$\limsup_{n} \|x_n - x\| \le \limsup_{n} \|x_n - y\|.$$

Now we are ready to prove the main result of this paper.

Theorem 3.4 Let X be a Banach space such that $\epsilon_{\alpha}(X) < 1$ and C be a closed bounded convex subset of X. If $T : C \to KC(X)$ is a nonexpansive and $1-\chi$ -contractive mapping such that T(C) is a bounded set, and which satisfies

$$Tx \subset I_C(x) \quad \forall x \in C,$$

then T has a fixed point.

PROOF. Let $x_0 \in C$ be fixed and consider for each $n \ge 1$ the contraction

 $T_n: C \to KC(X)$ defined by

$$T_n x := \frac{1}{n} x_0 + (1 - \frac{1}{n}) T x, \quad x \in C.$$

Bearing in mind that for each $x \in C$ the set $I_C(x)$ is convex and contains C, it is easily seen that $T_n x \subset I_C(x)$ for all $x \in C$. We can apply Theorem 2.1 to obtain a fixed point $x_n \in C$ of T_n . Thus, we have a sequence $\{x_n\}$ in C such that $\lim_n d(x_n, Tx_n) = 0$. Let $\{n_\alpha\}$ be an ultranet of the positive integers $\{n\}$.

Denote $A = A(C, \{x_{n_{\alpha}}\})$. We start by proving that

$$Tx \cap I_A(x) \neq \emptyset \quad \forall x \in A.$$

Indeed, the compactness of $Tx_{n_{\alpha}}$ implies that for each n_{α} , we can take $y_{n_{\alpha}} \in Tx_{n_{\alpha}}$ such that

$$||x_{n_{\alpha}} - y_{n_{\alpha}}|| = d(x_{n_{\alpha}}, Tx_{n_{\alpha}}).$$

Since Tx is compact, for each $x \in A$, we can find $z_{n_{\alpha}} \in Tx$ such that

$$||y_{n_{\alpha}} - z_{n_{\alpha}}|| = d(y_{n_{\alpha}}, Tx) \le H(Tx_{n_{\alpha}}, Tx) \le ||x_{n_{\alpha}} - x||.$$

Let $z = \lim_{\alpha} z_{n_{\alpha}} \in Tx$. It should remain to prove $z \in I_A(x)$.

If $r = r(C, \{x_{n_{\alpha}}\})$, on the one hand we have

$$\lim_{\alpha} ||x_{n_{\alpha}} - z|| = \lim_{\alpha} ||y_{n_{\alpha}} - z_{n_{\alpha}}|| \le \lim_{\alpha} ||x_{n_{\alpha}} - x|| = r,$$

and on the other hand, since $z \in Tx \subset I_C(x)$ there exists $\lambda \ge 0$ such that $z = x + \lambda(v - x)$ for some $v \in C$. If $\lambda \le 1$ it is clear that $z \in C$ and hence, from the above inequality, $z \in A \subset I_A(x)$. So assume $\lambda > 1$ and write

$$v = \mu z + (1 - \mu)x, \quad \mu = \frac{1}{\lambda} \in (0, 1).$$

Therefore we have

$$\lim_{\alpha} \|x_{n_{\alpha}} - v\| \le \mu \lim_{\alpha} \|x_{n_{\alpha}} - z\| + (1 - \mu) \lim_{\alpha} \|x_{n_{\alpha}} - x\| \le r.$$

Hence $v \in A$ and thus $z \in I_A(x)$.

In this way, the mapping $T: A \to KC(X)$ is nonexpansive, 1- χ -contractive and satisfies

$$Tx \cap I_A(x) \neq \emptyset \quad \forall x \in A.$$

Moreover, we can apply Theorem 3.2 to obtain

$$r_C(A) \le \lambda r(C, \{x_{n_\alpha}\}),$$

where $\lambda := 1 - \Delta_{X,\alpha}(1^{-}) < 1$.

Now fix $x_1 \in A$ and for each number $\mu \in (0, 1]$ consider the contraction $T_{\mu}: A \to KC(X)$ defined by

$$T_{\mu}x = \mu x_1 + (1-\mu)Tx \quad x \in A.$$

It is easily seen that T_{μ} is χ -condensing (see [5]). Furthermore, since $I_A(x)$ is convex we also obtain

$$T_{\mu}x \cap I_A(x) \neq \emptyset, \quad \forall x \in A.$$

Hence by Theorem 2.2, T_{μ} has a fixed point. Consequently, we can get a sequence $\{x_n^1\}$ in A satisfying $\lim_n d(x_n^1, Tx_n^1) = 0$. We proceed as before to obtain that

$$Tx \cap I_{A^1}(x) \neq \emptyset, \quad \forall x \in A^1 := A(C, \{x_{n_\alpha}^1\}),$$

and

$$r_C(A^1) \le \lambda r(C, \{x_{n_\alpha}^1\}) \le \lambda r_C(A).$$

By induction, for each integer $m \ge 1$ we take a sequence $\{x_n^m\}_n \subset A^{m-1}$ such that $\lim_n d(x_n^m, Tx_n^m) = 0$. By means of the ultranet $\{x_{n_\alpha}^m\}_\alpha$ we construct the set $A^m := A(C, \{x_{n_\alpha}^m\})$ such that

$$r_C(A^m) \le \lambda^m r_C(A).$$

Choose $x_m \in A^m$. We shall prove that $\{x_m\}_m$ is a Cauchy sequence. For each $m \ge 1$ we have for any positive integer n

$$||x_{m-1} - x_m|| \le ||x_{m-1} - x_n^m|| + ||x_n^m - x_m|| \le \operatorname{diam} A^{m-1} + ||x_n^m - x_m||.$$

Taking upper limit as $n \to \infty$

$$||x_{m-1} - x_m|| \le \operatorname{diam} A^{m-1} + \lim \sup_n ||x_n^m - x_m|| = \operatorname{diam} A^{m-1} + r(C, \{x_n^m\})$$
$$\le \operatorname{diam} A^{m-1} + r_C(A^{m-1})$$
$$\le 2r_C(A^{m-1}) + r_C(A^{m-1}) = 3r_C(A^{m-1}) \le 3\lambda^{m-1}r_C(A).$$

Since $\lambda < 1$, we conclude that there exists $x \in C$ such that x_m converges to x. Let us see that x is a fixed point of T. For each $m \ge 1$,

$$d(x_m, Tx_m) \le \|x_m - x_n^m\| + d(x_n^m, Tx_n^m) + H(Tx_n^m, Tx_m) \le 2\|x_m - x_n^m\| + d(x_n^m, Tx_n^m)$$

Taking upper limit as $n \to \infty$

$$d(x_m, Tx_m) \le 2 \limsup_n \|x_m - x_n^m\| \le 2\lambda^{m-1} r_C(A).$$

Finally, taking limit in m in both sides we obtain $\lim_{m} d(x_m, Tx_m) = 0$ and the continuity of T implies that d(x, Tx) = 0 i.e. $x \in Tx$.

Simple examples show that we can not avoid nonexpansiveness assumption in the above theorem (see [5]). We do not know if χ -contractiveness condition can be dropped in Theorem 3.4. In fact, it is an open problem if every nonexpansive mapping T from C to either K(C) or K(X) is 1- χ -contractive even for single valued mappings. However, when C is a weakly compact subset of a reflexive Banach space satisfying the non-strict Opial condition, we can follow the proof of Theorem 4.5 in [5] to deduce that a nonexpansive mapping $T : C \to K(X)$ with bounded range is 1- χ -contractive. Then, in view of Theorem 3.4, we can state the following corollary. **Corollary 3.5** Let X be a Banach space such that $\epsilon_{\alpha}(X) < 1$ satisfying the non-strict Opial condition and C be closed bounded convex subset of X. If $T: C \to KC(X)$ is a nonexpansive mapping such that T(C) is a bounded set, and which satisfies

$$Tx \subset I_C(x) \quad \forall x \in C,$$

then T has a fixed point.

Regarding the proof of Theorem 3.4 it is worthwhile to note that ultranets are needed due to the fact that the range of T is not assumed to be contained in its domain and hence we cannot restrict to the case of a separable set C (see [7] and [14]). However, if we assume that C is separable and recall the first step of the induction method as applied in Theorem 3.4, then we can take a sequence of approximate fixed points of T in C such that it is regular and asymptotically uniform with respect to C (see [6] and [11]). A sequence is said to be asymptotically uniform with respect to C if each of its subsequences has the same asymptotic center in C. Under this situation it is enough to consider a subsequence $\{x_n\}$ of the above-mentioned sequence such that

$$Tx \cap I_A(x) \neq \emptyset \quad \forall x \in A,$$

where $A = A(C, \{x_n\})$. The boundary condition imposed on T allows us to rewrite the proof of Theorem 3.4 to the β and χ moduli of noncompact convexity (see Remark 3.3). The following results are consequence of this fact.

Theorem 3.6 Let X be a Banach space such that $\epsilon_{\beta}(X) < 1$ and C be a closed bounded convex and separable subset of X. If $T : C \to KC(X)$ is a nonexpansive and 1- χ -contractive mapping such that T(C) is a bounded set, and which satisfies

$$Tx \subset I_C(x) \quad \forall x \in C,$$

then T has a fixed point.

Theorem 3.7 Let X be a Banach space such that $\epsilon_{\chi}(X) < 1$ satisfying the non-strict Opial condition and C be a closed bounded convex and separable subset of X. If $T : C \to KC(X)$ is a nonexpansive mapping such that T(C)is a bounded set which satisfies

$$Tx \subset I_C(x) \quad \forall x \in C,$$

then T has a fixed point.

Acknowledgement

The authors would like to thank the referee for his careful reading and suggestions which led to an improved presentation of the manuscript.

References

 J.P. Aubin, H. Frankowska, "Set-valued Analysis", Birkhäuser, Boston (1990).

[2] J.M. Ayerbe, T. Domínguez Benavides, G. López Acedo, "Measures of Noncompactness in Metric Fixed Point Theory", Operator Theory: Advances and Applications, vol. 99, Birkäuser, Basel, 1997.

[3] K. Deimling, "Multivalued Differential Equations", Walter de Gruyter, Berlin/New York, 1992. [4] K. Deimling, "Nonlinear Functional Analysis", Springer-Verlag, Berlin and Heidelberg, 1974.

[5] T. Domínguez Benavides, P. Lorenzo Ramírez, Fixed point theorems for multivalued nonexpansive mappings without uniform convexity, *Abstr. Appl. Anal.* 2003 (2003), no. 6, 375-386.

[6] K. Goebel, On a fixed point theorem for multivalued nonexpansive mappings, Ann. Univ. Marie Curie-Sklodowska 29 (1975), 70-72.

[7] K. Goebel, W.A. Kirk, "Topics in metric fixed point theory", Cambridge Univ. Press, 1990.

[8] J.L. Kelley, "General Topology", van Nostrand, Princeton, NJ, 1955.

[9] W. A. Kirk, S. Massa, Remarks on asymptotic and Chebyshev centers, *Houston J. Math.* 16 (1990), no. 3, 357-364.

[10] T. Kuczumov, S. Prus, Asymptotic centers and fixed points of multivalued nonexpansive mappings, *Houston J. Math.* 16 (1990), 465-468.

[11] T. C. Lim, Remarks on some fixed point theorems, *Proc. Amer. Math. Soc.* 60 (1976), 179-182.

[12] T. C. Lim, A fixed point theorem for weakly inward multivalued contractions, J. Math. Anal. Appl. 247 (2000), 323-327.

[13] S. Reich, Fixed points in locally convex spaces, Math. Z. 125 (1972), 17-31.

[14] H.-K. Xu, Multivalued nonexpansive mappings in Banach spaces, Nonlinear Anal. 43 (2001) 693-706.