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Abstract

Let X be a Banach space whose characteristic of noncompact convexity is less

than 1 and satisfies the non-strict Opial condition. Let C be a bounded closed

convex subset of X, KC(X) the family of all compact convex subsets of X and T

a nonexpansive mapping from C into KC(X) with bounded range. We prove that

T has a fixed point. The non-strict Opial condition can be removed if, in addition,

T is an 1-χ-contractive mapping.
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1 Introduction

Let C be a bounded closed convex subset of a Banach space X and T : C → C

a nonexpansive mapping. The problem of finding suitable geometrical condi-

tions on X which assure the existence of a fixed point for T has been widely

studied in the last 40 years (see, for instance, [7]). In the case of multivalued

nonexpansive mappings T : C → K(C) a very general problem is the following:

Does T have a fixed point under the suitable conditions on X which assure the

existence of fixed point for univalued mappings? The answer to this question

is unknown, but some papers have appeared showing geometrical properties

on X which let state fixed point results for multivalued mappings.

One of the most general fixed point theorems for multivalued nonexpansive

self-mappings was obtained by W. A. Kirk and S. Massa in 1990 [9], proving

the existence of fixed points in Banach spaces for which the asymptotic center

of a bounded sequence in a closed bounded convex subset is nonempty and

compact. This occurs if X is, for instance, a uniformly convex space but it

is known (see [10]) that when X is nearly uniformly convex (see definition in

Section 2) the asymptotic center of a bounded sequence can be a noncompact

set. Due to this fact, in [5] the authors establish a generalization of the Kirk-

Massa theorem to a class of Banach spaces where the asymptotic center of a

sequence is not necessary a compact set. Specifically, they give a fixed point

theorem for a multivalued nonexpansive and 1-χ-contractive compact convex

valued mapping T : C → 2C in the framework of a Banach space whose

characteristic of noncompact convexity associated to the separation measure

of noncompactness is less than 1. Also it is proved that the χ-contractiveness

assumption can be removed when, in addition, the space satisfies the non-strict
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Opial condition.

In this paper we obtain similar results for non-self mappings T : C → 2X sat-

isfying a inwardness condition. In spite of the analogy between both problems,

the arguments must be different. Indeed, in the case of a self-mapping, we can

restrict to a separable setting. In this case a basic tool is the existence of a

regular and asymptotically uniform subsequence of each bounded sequence.

However, in the non-separable setting we need to use ultranets and to state

(Theorem 3.1) a relationship between the Chebyshev radius of the asymptotic

center of nets and the modulus of noncompact convexity of a Banach space

associated to the Kuratowski measure of noncompactness.

2 Preliminaries

Let X be a Banach space and C a nonempty closed subset of X. We denote by

CB(C) the family of all nonempty closed bounded subsets of C and by K(C)

(resp. KC(C)) the family of all nonempty compact (resp. compact convex)

subsets of C.

On CB(X) we have the Hausdorff metric H given by

H(A,B) := max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
, A, B ∈ CB(X)

where for x ∈ X and E ⊂ X d(x,E) := inf{d(x, y) : y ∈ E} is the distance

from the point x to the subset E.

A multivalued mapping T : C → CB(X) is said to be a contraction if there
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exists a constant k ∈ [0, 1) such that

H(Tx, Ty) ≤ k‖x− y‖, x, y ∈ C,

and T is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖, x, y ∈ C.

Recall that the Kuratowski and Hausdorff measures of noncompactness of a

nonempty bounded subset B of X are respectively defined as the numbers:

α(B) = inf{d > 0 : B can be covered by finitely many sets of diameter ≤ d},

χ(B) = inf{d > 0 : B can be covered by finitely many balls of radius ≤ d}.

Then a multivalued mapping T : C → CB(X) is called γ-condensing (resp.

1-γ-contractive) where γ = α(·) or χ(·) if, for each bounded subset B of C

with γ(B) > 0, there holds the inequality

γ(T (B)) < γ(B) (resp. γ(T (B)) ≤ γ(B)).

Here T (B) = ∪x∈BTx.

Note that a multivalued mapping T : C → 2X is said to be upper semicontin-

uous on C if {x ∈ C : Tx ⊂ V } is open in C whenever V ⊂ X is open; T is

said to be lower semicontinuous if T−1(V ) := {x ∈ C : Tx ∩ V 6= ∅} is open

in C whenever V ⊂ X is open; and T is said to be continuous if it is both

upper and lower semicontinuous. There is another different kind of continuity

for set-valued operators: T : C → CB(X) is said to be continuous on C (with

respect to the Hausdorff metric H) if H(Txn, Tx) → 0 whenever xn → x.
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It is not hard to see (see [1] and [4]) that both definitions of continuity are

equivalent if Tx is compact for every x ∈ C. We say that x ∈ C is a fixed

point of T if and only if x is contained in Tx.

Recall that the inward set of C at x ∈ C is defined by

IC(x) := {x + λ(y − x) : λ ≥ 0, y ∈ C}.

Clearly C ⊂ IC(x) and it is not hard to show that IC(x) is a convex set as C

does.

Next theorems will be very useful in order to prove our results on fixed points

for multivalued mappings.

Theorem 2.1 ([12],[13]) Let C be a closed convex subset of a Banach space

X and F : C → K(X) a contraction mapping. If Fx ⊂ IC(x) for all x ∈ C,

then F has a fixed point.

Theorem 2.2 ([3],[13]) Let X be a Banach space and ∅ 6= D ⊂ X be closed

bounded convex. Let F : D → 2X be upper semicontinuous γ-condensing with

closed convex values, where γ(·) = α(·) or χ(·). If Fx ∩ ID(x) 6= ∅ on D then

F has a fixed point.

Let us recall some geometric properties which are defined using the measures

of noncompactness.

Definition 2.3 Let X be a Banach space and φ = α or χ. The modulus of

noncompact convexity associated to φ is defined in the following way

∆X,φ(ε) = inf{1− d(0, A) : A ⊂ BX is convex, φ(A) ≥ ε}.
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(BX is the unit ball of X).

The characteristic of noncompact convexity of X associated with the measure

of noncompactness φ is defined by

εφ(X) = sup{ε ≥ 0 : ∆X,φ(ε) = 0}.

The following relationships among the different moduli are easy to obtain

∆X,α(ε) ≤ ∆X,χ(ε),

and consequently

εα(X) ≥ εχ(X).

The space X is said to be nearly uniformly convex if εφ(X) = 0.

Let C be a subset of a Banach space X, D be a directed set and {xα : α ∈ D}
a bounded net in X. For any x ∈ C, define

r(x, {xα}) = inf{sup{‖xβ − x‖ : β ≥ α} : α ∈ D} := lim sup
α

‖xα − x‖;

r(C, {xα}) = inf{r(x, {xα}) : x ∈ C};

A(C, {xα}) = {x ∈ C : r(x, {xα}) = r(C, {xα})}.

The number r(C, {xα}) and the (possibly empty) set A(C, {xα}) are called,

respectively, the asymptotic radius and the asymptotic center of {xα : α ∈ D}
in C.
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Obviously, the convexity of C implies that A(C, {xα}) is convex. Notice that

A(C, {xα}) is a nonempty weakly compact set if C is weakly compact, or C is

a closed convex subset of a reflexive Banach space.

Let S be a set and H ⊂ S. We shall say that a net {xα : α ∈ D} in S is

eventually in H if there exists αo ∈ D such that xα ∈ H for all α ≥ αo.

Definition 2.4 A net {xα : α ∈ D} in a set S is called an ultranet if for each

subset G ⊂ S, either {xα : α ∈ D} is eventually in G or {xα : α ∈ D} is

eventually in S \G.

The following facts concerning ultranets can be found in [8]:

(a) Every net in a set has a subnet which is an ultranet.

(b) Let S1 and S2 be two sets and f : S1 → S2. If {xα : α ∈ D} is an ultranet

S1, then {f(xα) : α ∈ D} is an ultranet in S2.

(c) If S is a compact Hausdorff topological space and {xα : α ∈ D} is an

ultranet in S, then the limit lim
α

xα exists.

Finally recall that if D is a bounded subset of X, the Chebyshev radius of D

relative to C is defined by

rC(D) := inf{sup{‖x− y‖ : y ∈ D} : x ∈ C}.
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3 Modulus of noncompact convexity. Fixed point theorems

Let us begin this Section by proving a connection between the asymptotic

center of an ultranet and ∆X,α(·). We shall use the following result which can

be proved by standard arguments.

Lemma 3.1 Let X be a Banach space and {xα : α ∈ D} a net weakly con-

vergent to x ∈ X. Let Aα = co({xβ : β ≥ α}). Then

⋂

α∈D
Aα = {x}.

Theorem 3.2 Let C be a closed convex subset of a reflexive Banach space X

and let {xβ : β ∈ D} be a bounded ultranet in C. Then

rC(A(C, {xβ})) ≤ (1−∆X,α(1−))r(C, {xβ}).

PROOF. Denote r = r(C, {xβ}) and A = A(C, {xβ}) which is a nonempty

set. Since co({xβ : β ∈ D}) ⊂ C is a weakly compact set, the ultranet {xβ :

β ∈ D} converges weakly to an element z ∈ C. Furthermore, for each x ∈ C,

the limit limβ ‖xβ − x‖ exists.

Let us first show that α({xβ : β ∈ D}) ≥ r.

Indeed, let d > α({xβ : β ∈ D}). There exist B1, ..., Bn disjoint subsets of C

such that {xβ : β ∈ D} is contained in
n⋃

i=1

Bi and diam(Bi) ≤ d.

According to the definition of ultranet, {xβ : β ∈ D} is either eventually in

B1 or eventually in ∪n
i=2Bi. Suppose {xβ : β ∈ D} is eventually in B1, then
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{xβ : β ≥ βo} ⊂ B1, for some βo ∈ D. In view of this, for every x ∈ B1 we

have

‖xβ − x‖ ≤ d, for all β ≥ βo.

Hence

r ≤ lim
β≥βo

‖xβ − x‖ ≤ d,

and thus α({xβ : β ∈ D}) ≥ r.

In the second case, there exists βo ∈ D such that {xβ : β ≥ βo} ⊂ ∪n
i=2Bi.

Since {xβ : β ≥ βo} is an ultranet, this net is either in B2 or eventually in

∪n
i=3Bi. In the first assumption, it is possible to repeat the above argument

to obtain α({xβ : β ∈ D}) ≥ r. Following this finite process we obtain the

desired result.

It must be noted that this reasoning also allow us to prove that α({xγ : γ ≥
β}) ≥ r, for every β ∈ D.

Assume that x lies in A. Since lim
β
‖xβ − x‖ = r, given ε > 0 we can find

β0 ∈ D such that ‖xβ − x‖ < r + ε for all β ≥ βo.

Thus, if we denote Aβ = co({xγ − x}γ≥β) we have that Aβ ⊂ B(0, r + ε) for

each β ∈ D, β ≥ βo, and α(Aβ) = α({xγ − x}γ≥β) ≥ r.

From the definition of ∆X,α(·) we deduce

inf
y∈Aβ

‖y‖ = d(0, Aβ) ≤
(
1−∆X,α

(
r

r + ε

))
(r + ε),

for each β ≥ βo.

Since the set Aβ is a weakly compact set, it must have inf
y∈Aβ

‖y‖ = ‖yβ‖ for

some yβ ∈ Aβ.
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On the other hand, the net {yβ : β ≥ βo} ⊂ Aβo has a subnet weakly conver-

gent to a point, say y, which clearly is a cluster point of Aβ for all β ≥ βo.

Thus, it follows from Lemma 3.1 that y = z − x = w − lim
β

yβ.

Then the weakly lower semicontinuity of the norm implies

‖z − x‖ ≤
(
1−∆X,α

(
r

r + ε

))
(r + ε).

Since the last inequality is true for every ε, we have

‖z − x‖ ≤
(
1−∆X,α(1−)

)
r.

This ends the proof because the last inequality holds for every x ∈ A(C, {xβ}).

Remark 3.3

In [5] the authors give a similar result to Theorem 3.2 for the asymptotic center

of a regular sequence with respect to C and the modulus ∆X,β(·), where β is

the separation measure of noncompactness ([2]). A sequence is called regular

with respect to C if each of its subsequences has the same asymptotic radius in

C. Furthermore, they prove that the modulus ∆X,χ(·) can be considered when

X satisfies the non-strict Opial condition (notice that ∆X,β(·) ≤ ∆X,χ(·)). A

Banach space X is said to satisfy the non-strict Opial condition if, whenever

a sequence {xn} in X converges weakly to x, then for y ∈ X

lim sup
n

‖xn − x‖ ≤ lim sup
n

‖xn − y‖.

Now we are ready to prove the main result of this paper.
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Theorem 3.4 Let X be a Banach space such that εα(X) < 1 and C be a

closed bounded convex subset of X. If T : C → KC(X) is a nonexpansive and

1-χ-contractive mapping such that T (C) is a bounded set, and which satisfies

Tx ⊂ IC(x) ∀x ∈ C,

then T has a fixed point.

PROOF. Let x0 ∈ C be fixed and consider for each n ≥ 1 the contraction

Tn : C → KC(X) defined by

Tnx :=
1

n
x0 + (1− 1

n
)Tx, x ∈ C.

Bearing in mind that for each x ∈ C the set IC(x) is convex and contains C,

it is easily seen that Tnx ⊂ IC(x) for all x ∈ C. We can apply Theorem 2.1 to

obtain a fixed point xn ∈ C of Tn. Thus, we have a sequence {xn} in C such

that lim
n

d(xn, Txn) = 0. Let {nα} be an ultranet of the positive integers {n}.

Denote A = A(C, {xnα}). We start by proving that

Tx ∩ IA(x) 6= ∅ ∀x ∈ A.

Indeed, the compactness of Txnα implies that for each nα, we can take ynα ∈
Txnα such that

‖xnα − ynα‖ = d(xnα , Txnα).

Since Tx is compact, for each x ∈ A, we can find znα ∈ Tx such that

‖ynα − znα‖ = d(ynα , Tx) ≤ H(Txnα , Tx) ≤ ‖xnα − x‖.

Let z = lim
α

znα ∈ Tx. It should remain to prove z ∈ IA(x).
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If r = r(C, {xnα}), on the one hand we have

lim
α
‖xnα − z‖ = lim

α
‖ynα − znα‖ ≤ lim

α
‖xnα − x‖ = r,

and on the other hand, since z ∈ Tx ⊂ IC(x) there exists λ ≥ 0 such that

z = x + λ(v − x) for some v ∈ C. If λ ≤ 1 it is clear that z ∈ C and hence,

from the above inequality, z ∈ A ⊂ IA(x). So assume λ > 1 and write

v = µz + (1− µ)x, µ =
1

λ
∈ (0, 1).

Therefore we have

lim
α
‖xnα − v‖ ≤ µ lim

α
‖xnα − z‖+ (1− µ) lim

α
‖xnα − x‖ ≤ r.

Hence v ∈ A and thus z ∈ IA(x).

In this way, the mapping T : A → KC(X) is nonexpansive, 1-χ-contractive

and satisfies

Tx ∩ IA(x) 6= ∅ ∀x ∈ A.

Moreover, we can apply Theorem 3.2 to obtain

rC(A) ≤ λr(C, {xnα}),

where λ := 1−∆X,α(1−) < 1.

Now fix x1 ∈ A and for each number µ ∈ (0, 1] consider the contraction

Tµ : A → KC(X) defined by

Tµx = µx1 + (1− µ)Tx x ∈ A.
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It is easily seen that Tµ is χ-condensing (see [5]). Furthermore, since IA(x) is

convex we also obtain

Tµx ∩ IA(x) 6= ∅, ∀x ∈ A.

Hence by Theorem 2.2, Tµ has a fixed point. Consequently, we can get a

sequence {x1
n} in A satisfying lim

n
d(x1

n, Tx1
n) = 0. We proceed as before to

obtain that

Tx ∩ IA1(x) 6= ∅, ∀x ∈ A1 := A(C, {x1
nα
}),

and

rC(A1) ≤ λr(C, {x1
nα
}) ≤ λrC(A).

By induction, for each integer m ≥ 1 we take a sequence {xm
n }n ⊂ Am−1 such

that lim
n

d(xm
n , Txm

n ) = 0. By means of the ultranet {xm
nα
}α we construct the

set Am := A(C, {xm
nα
}) such that

rC(Am) ≤ λmrC(A).

Choose xm ∈ Am. We shall prove that {xm}m is a Cauchy sequence. For each

m ≥ 1 we have for any positive integer n

‖xm−1 − xm‖ ≤ ‖xm−1 − xm
n ‖+ ‖xm

n − xm‖ ≤ diamAm−1 + ‖xm
n − xm‖.
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Taking upper limit as n →∞

‖xm−1 − xm‖ ≤ diamAm−1 + lim supn ‖xm
n − xm‖ = diamAm−1 + r(C, {xm

n })

≤ diamAm−1 + rC(Am−1)

≤ 2rC(Am−1) + rC(Am−1) = 3rC(Am−1) ≤ 3λm−1rC(A).

Since λ < 1, we conclude that there exists x ∈ C such that xm converges to

x. Let us see that x is a fixed point of T . For each m ≥ 1,

d(xm, Txm) ≤ ‖xm − xm
n ‖+ d(xm

n , Txm
n ) + H(Txm

n , Txm) ≤ 2‖xm − xm
n ‖+ d(xm

n , Txm
n ).

Taking upper limit as n →∞

d(xm, Txm) ≤ 2 lim sup
n

‖xm − xm
n ‖ ≤ 2λm−1rC(A).

Finally, taking limit in m in both sides we obtain limm d(xm, Txm) = 0 and

the continuity of T implies that d(x, Tx) = 0 i.e. x ∈ Tx.

Simple examples show that we can not avoid nonexpansiveness assumption in

the above theorem (see [5]). We do not know if χ-contractiveness condition can

be dropped in Theorem 3.4. In fact, it is an open problem if every nonexpansive

mapping T from C to either K(C) or K(X) is 1-χ-contractive even for single

valued mappings. However, when C is a weakly compact subset of a reflexive

Banach space satisfying the non-strict Opial condition, we can follow the proof

of Theorem 4.5 in [5] to deduce that a nonexpansive mapping T : C → K(X)

with bounded range is 1-χ-contractive. Then, in view of Theorem 3.4, we can

state the following corollary.
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Corollary 3.5 Let X be a Banach space such that εα(X) < 1 satisfying the

non-strict Opial condition and C be closed bounded convex subset of X. If

T : C → KC(X) is a nonexpansive mapping such that T (C) is a bounded set,

and which satisfies

Tx ⊂ IC(x) ∀x ∈ C,

then T has a fixed point.

Regarding the proof of Theorem 3.4 it is worthwhile to note that ultranets are

needed due to the fact that the range of T is not assumed to be contained in

its domain and hence we cannot restrict to the case of a separable set C (see

[7] and [14]). However, if we assume that C is separable and recall the first

step of the induction method as applied in Theorem 3.4, then we can take a

sequence of approximate fixed points of T in C such that it is regular and

asymptotically uniform with respect to C (see [6] and [11]). A sequence is said

to be asymptotically uniform with respect to C if each of its subsequences has

the same asymptotic center in C. Under this situation it is enough to consider

a subsequence {xn} of the above-mentioned sequence such that

Tx ∩ IA(x) 6= ∅ ∀x ∈ A,

where A = A(C, {xn}). The boundary condition imposed on T allows us to

rewrite the proof of Theorem 3.4 to the β and χ moduli of noncompact con-

vexity (see Remark 3.3). The following results are consequence of this fact.

Theorem 3.6 Let X be a Banach space such that εβ(X) < 1 and C be a

closed bounded convex and separable subset of X. If T : C → KC(X) is a

nonexpansive and 1-χ-contractive mapping such that T (C) is a bounded set,

and which satisfies
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Tx ⊂ IC(x) ∀x ∈ C,

then T has a fixed point.

Theorem 3.7 Let X be a Banach space such that εχ(X) < 1 satisfying the

non-strict Opial condition and C be a closed bounded convex and separable

subset of X. If T : C → KC(X) is a nonexpansive mapping such that T (C)

is a bounded set which satisfies

Tx ⊂ IC(x) ∀x ∈ C,

then T has a fixed point.
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(1990).

[2] J.M. Ayerbe, T. Domı́nguez Benavides, G. López Acedo, “Measures of
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