
ON CHARACTERIZATIONS OF CLASSICAL

POLYNOMIALS

R. ÁLVAREZ-NODARSE

Abstract. It is well known that the classical families of Jacobi, La-
guerre, Hermite, and Bessel polynomials are characterized as eigenvec-
tors of a second order linear differential operator with polynomial co-
efficients, Rodrigues formula, etc. In this paper we present an unified
study of the classical discrete polynomials and q-polynomials of the q-
Hahn tableau by using the difference calculus on linear-type lattices.
We obtain in a straightforward way several characterization theorems
for the classical discrete and q-polynomials of the q-Hahn tableau. Fi-
nally, a detailed discussion of the Marcelln et. al. characterization is
presented.

1. Introduction

The classical polynomials (those of Hermite, Laguerre, Jacobi, and Bessel)
are the most important instances of orthogonal polynomials. One of the
reasons is because they satisfy not only a three-term recurrence relation
(TTRR)

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x), γn 6= 0,

P−1(x) = 0, P0(x) = 1,
(1.1)

but also other useful properties: they are the eigenvectors of a second order
linear differential equation with polynomial coefficients, their derivatives
also constitute an orthogonal family, their generation functions can be given
explicitly, among others (see for instances [1, 8, 24, 25] or the more recent
work [3]). Among all these properties there are very important ones that
characterize the classical families.

In fact not every property characterizes the classical polynomials. The
simplest example is the TTRR (1.1). It is well known (see e.g. [8]) that
the TTRR characterizes the orthogonal polynomials if γn 6= 0 for all n ∈ N.
This is the so-called Favard Theorem (for a review see [18]). Nevertheless
there exist several families that satisfy the TTRR but not a linear differential
equation with polynomial coefficients, or a Rodrigues-type formula. In fact
only few families of orthogonal polynomials satisfy these properties as we
will show. For reviews on the characterization theorems see [1, 3, 8].
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The oldest characterization is the so called Hahn characterization —unless
this was firstly observed and proved for the Jacobi, Laguerre, and Hermite
polynomials by N. Sonin in 1887—. In [11], Hahn proved the following

Theorem 1.1 (Sonin-Hahn [11, 19]). Given a sequence of orthogonal poly-
nomials (Pn)n, it is a classical sequence if an only if the sequence of their
derivatives (P ′

n)n is an orthogonal sequence.

In fact the following theorem holds (see the nice survey paper [1] and also
[19, 20])

Theorem 1.2. The following properties are equivalent:

(1) (Pn)n is a classical orthogonal polynomial sequence (COPS),
(2) The sequence of their derivatives (P ′

n)n is an COPS1,
(3) (Pn)n satisfies the second order linear differential equation with poly-

nomial coefficients (Bochner [7])

σ(x)P ′′
n (x) + τ(x)P ′

n(x) + λPn(x) = 0,

where deg(σ) ≤ 2, deg(τ) = 1, and are independent of n, and λ is a
constant independent of x.

(4) (Pn)n can be expressed by the Rodrigues formula (Tricomi [27] and

Cryer [9]) Pn(x) =
Bn

ρ(x)

dn

dxn
[σn(x)ρ(x)].

(5) The polynomials are orthogonal with respect to a weight function ρ
that satisfies the Pearson differential equation [σ(x)ρ(x)]′ = τ(x)ρ(x),
where the polynomials σ and τ are such that deg(σ) ≤ 2, deg(τ) = 1
(Hildebrandt [14]).

(6) There exist three sequences (an)n, (bn)n, (cn)n, and a polynomial σ,
deg(σ) ≤ 2, such that (Al-Salam & Chihara [2])

σ(x)P ′
n(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 1. (1.2)

(7) There exist two sequences (fn)n and (gn)n such that the following
relation for the monic polynomials holds (Marcellán et al [19])

Pn(x) =
P ′

n+1(x)

n+ 1
+ fnP

′
n(x) + gnP

′
n−1(x), n ≥ 1. (1.3)

The proof of this theorem can be found in the appendix A.
A natural extension of the classical polynomials are the so-called discrete

polynomials (those of Charlier, Meixner, Kravchuk, and Hahn, see e.g. [8,
24, 25]) and the q-polynomials (see e.g. [6, 24, 25]). In fact, Hahn in 1949
[13] posed the problem of finding all the orthogonal polynomial sequences
that satisfy the conditions 2–5 from theorem 1.2 but instead of using the

1Notice that this is not the Hahn theorem. In the Hahn theorem the orthogonality
of both sequences it is impossed whereas here a more restrictive conditions is supposed:
(Pn)n or (P ′

n)n is a classical family.
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derivatives, he use the linear operator Lq,w

Lq,wf(x) =
f(qx+ w) − f(x)

(q − 1)x+ w
, q,w ∈ R

+.

Hahn solved the problem for the case when q ∈ (0, 1) and w = 0, that leads
to the q-Hahn tableau (see e.g. [16] and [5]). The case w = q = 1, leads
to the classical discrete polynomials of Charlier, Meixner, Kravchuk, and
Hahn (see [8, 17, 24]). A complete study of the characterization theorems
for these two cases has been performed using a functional approach in the
papers [10] (discrete case) and [21] (“q” case). The main aim of the present
paper is twice: on one hand to present a very simple and unified approach to
the afore said two cases using the theory of difference equations on lattices
presented in [24, 25], and on the other hand to complete the study started
in [10, 20, 21].

The structure of the paper is as follows: In section 2 we introduce the
“linear” lattices x(s) and characterize them. In section 3 the characteri-
zation theorem is presented and proved for any linear-type lattice and, as
corollaries, the corresponding theorems for the uniform lattice x(s) = s and
the q-linear lattice x(s) = c1q

s + c2 are obtained. Finally, in Section 4, we
discuss each case in details as well as the classical case (that can be obtained
taking an appropriate limit q → 1−). In particular, some problems related
with the Marcellán et al. characterization [19] are discussed.

2. The linear-type lattices x(s)

Definition 2.1. We say that x(s) is a linear-type lattice if

x(s+ ζ) = F (ζ)x(s) +G(ζ), ∀s, ζ ∈ C, F (ζ) 6= 0. (2.1)

Obviously for the linear lattice x(s) = s we have F (ζ) = 1 and G(ζ) = ζ.
Another important instance of the linear-type lattice is the q-linear lattice,
(q 6= {0,±1}), i.e., the functions of the form x(s) = Aqs + B. In this case
x(s+ ζ) = F (ζ)x(s) +G(ζ), where F (ζ) = qζ and G(ζ) = B(1 − qζ).

Proposition 2.2. Let q 6= {0,±1}. The function x(z) is a q-linear lattice
of z if and only if it satisfies x(z + 1) = qx(z) +C.

Proof. A straightforward computation shows that if x(z) is a q-linear func-
tion of n, i.e., x(z) = cqz + d then it satisfies the recurrence formula
x(z + 1) = qx(z) + C, where C = d(1 − q) is a constant. But the general
solution of the difference equation x(z + 1) = qx(z) +C is x(z) = Aqz +D,
where A and D are, in general, non-zero constants. �

Notice that for the linear-type lattices, if Qm(x(s)) is a polynomial of
degree m in x(s), Qm(x(s + α)) is also a m−th degree polynomial in x(s),

i.e., Qm(x(s + α)) = Q̃m(x(s)). Moreover, for the linear-type lattices we
have the following
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Lemma 2.3. Let x(s) be a linear-type lattice and Qm(x(s)) a polynomial of
degree m in x(s). Then

∆Qm(x(s+ α))

∆x(s+ β)
= Rm−1(x(s)), ∀α, β ∈ C,

where Rm−1(x(s)) is again a polynomial in x(s) but of degree m − 1 and
∆f(s) = f(s+ 1) − f(s).

Proof. It is sufficient to prove the lema for the powers xn(s). Since x(s) is
a linear-type lattice

∆xn(s+ α)

∆x(s+ β)
=

∆(F (α)x(s) +G(α))n

F (β)∆x(s)
=

n∑

k=0

(
n

k

)
F (α)kG(α)n−k

F (β)

∆xk(s)

∆x(s)
.

But ∆xk(s)/∆x(s) is a polynomial of degree k − 1 in x(s) and therefore
∆xn(s+ α)/∆x(s+ β) also is. �

To conclude this section let point out the following

Remark 2.4. From Proposition 2.2 and Definition 2.1 it follows that the
only linear-type lattices are those corresponding to F (1) = 1 (the linear
lattice x(s) = C1s+C2) and the ones when F (1) = q 6= {0,±1} (the q-linear
lattices x(s) = c1q

s + c2).

3. The characterization theorem for classical polynomials

In the sequel we will assume that (Pn[x(s)])n is a sequence of orthogonal
polynomials on a linear-type lattice x(s). For sake of simplicity we will
denote Pn(s) := Pn[x(s)]. Since Pn(s) are orthogonal they satisfy the TRRR

x(s)Pn(s) = αnPn+1(s) + βnPn(s) + γnPn−1(s),

P−1(s) = 0, P0(s) = 1.
(3.1)

Let us point out that if γn 6= 0, for all n ∈ N, then the above TTRR
defines an orthogonal polynomial sequence. Nevertheless there are several
examples for which γn = 0 for some n0 ∈ N (e.g. the Hahn and q-Hahn
polynomials). In this case we have a finite family of orthogonal polynomials
(see e.g. [8, 25]). In the first case, i.e., when γn 6= 0, for all n ∈ N we
say that it is a quasi-definite case [8] (also called the regular case) whereas
in the second one, we get a weak-quasi-definite case or weak-regular case.
Here we will deal with the “classical” polynomials and we will assume that
γn 6= 0 for all n ∈ N where by N we denote the set N = 1, 2, . . . , n0 for
some n0 ∈ N or N := N.

Here we will use the notation of the theory of difference calculus on non-
uniform lattices (for more details see [25, §13] or [24, chapter 3]).

Let s = a, a + 1, a + 2, . . . . We will define the forward and backward
differences in x(s) by

∆y[x(s)]

∆x(s)
,

∇y[x(s)]

∇x(s)
,
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respectively, where ∇f(s) = f(s) − f(s− 1), ∆f(s) = f(s+ 1) − f(s).
For the operator ∆ we have

∆{f(s)g(s)} = g(s){∆f(s)} + f(s+ 1){∆g(s)}. (3.2)

Thus the following formula of summation by parts holds

b∑

s=a

f(s)∆g(s) = f(s)g(s)

∣∣∣∣∣

b+1

a

−
b∑

s=a

(
∆f(s)

)
g(s+ 1). (3.3)

Also we define the k-th forward difference of a function f(s) by

∆(k)f(s) :=
∆

∆xk−1(s)

∆

∆xk−2(s)
. . .

∆

∆x(s)
f(s), xm(s) = x

(
s+

m

2

)
.

Remark 3.1. Notice that the differences ∆(k)Pn(s) can be written in the

linear-type lattice, up to a constant factor, as (∆/∆x(s))k Pn(s). Moreover,
the operator ∆/∆x(s) for the q-linear lattice x(s) = c1q

s becomes into the
classical Jackson operator Dq defined by

DςP (x) =
P (ςx) − P (x)

x(ς − 1)
, ς 6= 0,±1. (3.4)

Next we state the Hahn-Lesky theorem:

Theorem 3.2. Given a sequence of orthogonal polynomials (Pn)n, it is a
classical sequence if an only if

• The sequence of their finite differences (∆Pn)n is an orthogonal se-
quence [17, 10].

• The sequence of their q-differences (DqPn)n is an orthogonal se-
quence [13, 21].

Notice that since we are deal with linear lattices the statement of the
theorem can be replaced by the following equivalent one:

Theorem 3.2. A sequence of orthogonal polynomials (Pn)n is classical if
and only if the sequence of their finite differences (∆/∆x(s)Pn)n is an or-
thogonal sequence.

The standard proof of this theorem can be found in [17] for the linear
lattice x(s) = s, and in [10] using the functional technique developed by
Maroni. For the q-linear lattice x(s) = qs it has been done by Hahn in [13]
and using a functional approach in [21].

We start with the following

Definition 3.3. We say that the sequence (Pn)n is a classical family on the
linear-type lattice if they are orthogonal with respect to the discrete measure
ρ(s)∇x1(s), i.e.,

b−1∑

s=a

Pn(s)Pm(s)ρ(s)∇x1(s) = δnmd
2
n, ∆s = 1, (3.5)
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where ρ is the solution of the Pearson-type equation

∆

∆x(s− 1/2)
[σ(s)ρ(s)] = τ(s)ρ(s), (3.6)

and σ and τ are fixed polynomials on x(s) of degree at most 2 and exactly 1.
The function ρ is usually called the orthogonalizing weight function of the
polynomial family (Pn)n.

Now we are ready to enunciate our main result:

Theorem 3.4. Let x(s) be a linear-type lattice and let σ(s) and ρ(s) be two
functions such that akσ(a)ρ(a) = bkσ(b)ρ(b) = 0, forall k ≤ 0. Then, the
following properties are equivalent

(1) (Pn)n is a classical orthogonal polynomial sequence (COPS).

(2) The sequence of their differences
(
∆(1)Pn

)
n

also is an COPS.
(3) (Pn)n satisfies the second order linear difference equation with poly-

nomial coefficients

σ(s)
∆

∆x(s−1/2)

∇Pn(s)

∇x(s)
+ τ(s)

∆Pn(s)

∆x(s)
+ λPn(s) = 0, (3.7)

where deg(σ) ≤ 2, deg(τ) = 1, are independent of n and λ is a
constant independent of x.

(4) (Pn)n can be expressed by the Rodrigues-type formula2

Pn(s) =
Bn

ρ(s)

∇

∇x1(s)

∇

∇x2(s)
· · ·

∇

∇xn(s)
[ρn(s)]. (3.8)

(5) The polynomials are orthogonal with respect to a weight function ρ
that satisfies the Pearson-type difference equation

(3.6), where deg(σ) ≤ 2, deg(τ) = 1.
(6) There exist three sequences (an)n, (bn)n, (cn)n, and a polynomial φ,

deg(φ) ≤ 2, such that

φ(x)
∆Pn(s)

∆x(s)
= anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 1.

(7) There exist three sequences (en)n, (fn)n, (gn)n such that the follow-
ing relation holds for all n ≥ 1

Pn(x) = en
∆Pn+1(s)

∆x(s)
+ fn

∆Pn(s)

∆x(s)
+ gn

∆Pn−1(s)

∆x(s)
, en 6= 0, gn 6= γn,

where γn is the corresponding coefficient of the TTRR (1.1).

As a simple consequence of the above theorem we have the following

Corollary 3.5 ([10, 21]). The discrete polynomials on the linear lattice
x(s) = s are classical. The q-polynomials in the q-linear lattice (or expo-
nential lattice) x(s) = c1q

s + c2 are classical.

2The operator ∇

∇x1(s)
∇

∇x2(s)
· · · ∇

∇xn(s)
in the linear type lattices can be rewritten in

the form ∇n for the linear lattice and q−n(n+1)/2
“

∇

∇x(s)

”n

for the q-linear ones.
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Proof. It follows from the fact that x(s) = s and x(s) = c1q
s + c2 are linear-

type lattices. �

Let us prove the Theorem 3.4. The idea of the proof is summarized in
the next figure:

���* HHHj
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We start proving that (1)→(2):

Proposition 3.6. Let x(s) be a linear-type lattice and let (Pn)n be a clas-
sical family orthogonal with respect to a weight function ρ, solution of the
Pearson-type equation (3.6) and such that3

σ(a)ρ(a) = σ(b)ρ(b) = 0. (3.9)

Then the sequence
(
∆(1)Pn(s)

)
n
, where ∆(1)Pn(s) =

∆Pn(s)

∆x(s)
, is also a clas-

sical orthogonal family with respect to the function ρ1(s)∆x(s), where the
weight function is ρ1(s) = σ(s+ 1)ρ(s+ 1).

Proof. Let Qk(s) be an arbitrary k-th degree polynomial on x(s), k < n.
The orthogonality conditions for (Pn)n yield, for all k < n,

0 =

b−1∑

s=a

Pn(s)Qk−1(s)τ(s)ρ(s)∇x1(s) (from (3.6))

=

b−1∑

s=a

Pn(s)Qk−1(s)∆(σ(s)ρ(s)) (from (3.3), (3.9))

= −
b−1∑

s=a

∆(Pn(s)Qk−1(s))σ(s+ 1)ρ(s+ 1)

Applying the Leibniz rule (3.2)

0 = −
b−1∑

s=a

(∆Pn(s))Qk−1(s)σ(s+ 1)ρ(s+ 1)+

b−1∑

s=a

Pn(s+ 1)(∆Qk−1(s))σ(s+ 1)ρ(s+ 1) (s→ s−1, and (3.9))

3This condition leads to the so-called discrete orthogonal polynomials, i.e., polynomials
with a discrete orthogonality of the form (3.5). For the q-linear lattices (3.5) becomes into
the q-Jackson integral (see e.g. [5, 15, 16]). For the continuous orthogonality see [24,
§3.10].
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= −
b−2∑

s=a

(∆Pn(s)

∆x(s)

)
Qk−1(s)σ(s+ 1)ρ(s+ 1)∇x1(s+ 1/2)+

b∑

s=a+1

Pn(s)
(∆Qk−1(s− 1)

∆x(s− 1/2)

)
σ(s)ρ(s)∇x1(s)

Next, we use Lemma 2.3 as well as the conditions (3.9), then

0 = −
b−2∑

s=a

(∆Pn(s)

∆x(s)

)
Qk−1(s)σ(s+ 1)ρ(s+ 1)∇x1(s+1/2)+

b−1∑

s=a

Pn(s)
(
Rk−2(s)

)
σ(s)

︸ ︷︷ ︸
degree ≤ n

ρ(s)∇x1(s) (from (3.9), (3.5))

= −
b−2∑

s=a

(∆Pn(s)

∆x(s)

)
Qk−1(s)σ(s+ 1)ρ(s+ 1)∇x1(s).

Thus, ∆Pn(s)/∆x(s) is orthogonal with respect to ρ1(s)∇x1(s+1/2) =

σ(s + 1)ρ(s + 1)∆x(s). We only need now to prove that ∆(1)Pn(s) is a
classical family. For doing this notice that the weight function ρ1(s) satisfy
the Pearson type equation (see e.g. [24, §3.2.2])

∆

∆x1(s−1/2)
[σ(s)ρ1(s)] = τ1(s)ρ1(s)

where τ1 is a first degree polynomial on x(s) given by

τ1(s) =
σ(s+ 1) − σ(s) + τ(s+ 1)∆x1(s)

∆x(s)
.

Thus ρ1 satisfies a difference equation of the form (3.6). This complete the
proof. �

In the same way, using induction we have

Corollary 3.7. Let x(s) be a linear-type lattice and let (Pn)n be a classical

family. Then, the sequence of their k-th finite differences ∆(k)Pn(s), where

∆(k) := ∆
∆xk−1(s)

∆
∆xk−2(s)

. . . ∆
∆x(s) , also is a classical family.

Now we prove that (1)+(2)→(3):

Proposition 3.8. Let x(s) be a linear-type lattice. If the sequences (Pn)n

and
(
∆(1)Pn

)
n

are classical, then (Pn)n satisfies the second order linear
difference equation of hypergeometric type (3.7).
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Proof. Let k < n. Then, using the orthogonality of ∆(1)Pn,

0 =

b−2∑

s=a

∆Pn(s)

∆x(s)

∆Qk(s)

∆x(s)
σ(s+ 1)ρ(s+ 1)∇x1(s+1/2) (from (3.9))

=

b−1∑

s=a

∆Pn(s)

∆x(s)
∆Qk(s)σ(s+ 1)ρ(s+ 1) (from (3.3), (3.9))

= −
b−1∑

s=a

Qk(s)∆
(∆Pn(s− 1)

∆x(s− 1)
σ(s)ρ(s)

)
(∆f(s) = ∇f(s+ 1))

= −
b−1∑

s=a

Qk(s)∆
(∇Pn(s)

∇x(s)
σ(s)ρ(s)

)
(from (3.2))

= −
b−1∑

s=a

Qk(s)
(
σ(s)ρ(s)∆

∇Pn(s)

∇x(s)
+
∇Pn(s+1)

∇x(s+1)
∆[σ(s)ρ(s)]

)
(from (3.6))

= −
b−1∑

s=a

Qk(s)

(
σ(s)

∆

∆x(s−1/2)

∇Pn(s)

∇x(s)
+τ(s)

∆Pn(s)

∆x(s)

)
ρ(s)∇x1(s).

But, since the lattice x(s) is of the linear type,

Q(s) := σ(s)
∆

∆x(s−1/2)

∇Pn(s)

∇x(s)
+ τ(s)

∆Pn(s)

∆x(s)

is a polynomial of degree n in x(s). Therefore, it should be, up to a constant
factor (in general depending on n) the polynomial Pn(s). Thus Q(s) =
−λPn(s). �

Remark 3.9. The proof of the last proposition in the linear lattice x(s) = s
can be found in the first Russian edition of the book [25].

The last proposition is very important because it gives a very simple
method for finding the classical polynomials on the linear-type lattice. In
fact, it was the key in the proofs of Hahn and Lesky for proving the Theorem
3.2.

The solutions of the difference equation (3.7) have been extensively stud-
ied (see e.g. [6, 24, 25]). In particular they can be written by the Rodrigues-
type formula (3.8) [24, 25], so (3)→(4). Let us mention that from the
Rodrigues-type formula (3.8) one can obtain an explicit expression for the
classical polynomials in terms of the hypergeometric or basic hypergeometric
series as it is shown in several previous works (see e.g. [6, 24]).

Another consequence of the Rodrigues formula is the following: Putting
n = 1 in (3.8) we obtain

P1(s) =
B1

ρ(s)

∆

∆x(s−1/2)
[σ(s)ρ(s)] ⇒

∆

∆x(s−1/2)
[σ(s)ρ(s)] = ρ(s)τ(s),

i.e. the Pearson-type equation (3.6) thus (4)→(5).
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Remark 3.10. Notice that from the above results the equivalence of (1)–(5)
in Theorem 3.4 follows.

Now we prove that (6)→(2).

Proposition 3.11. Let x(s) be a linear-type lattice and φ(s) a polynomial
such that deg(φ) ≤ 2. If (Pn)n is an OPS and there exist three sequences
(an)n, (bn)n, and (cn)n, ∀n ∈ N , such that

φ(x)
∆Pn(s)

∆x(s)
= anPn+1(x) + bnPn(x) + cnPn−1(x), (3.10)

then (Pn)n is a classical family.

Proof. We start computing the following sum for all k < n− 1

b−1∑

s=a

Qk(s)
∆Pn(s)

∆x(s)
φ(s)ρ(s)∆x(s)

=

b−1∑

s=a

Qk(s) [anPn+1(x) + bnPn(x) + cnPn−1(x)] ρ(s)∆x(s)

=F (−1/2)

b−1∑

s=a

Qk(s) [anPn+1(x) + bnPn(x) + cnPn−1(x)] ρ(s)∇x1(s) = 0.

Therefore the sequence (∆Pn(s)
∆x(s) )n is an OPS, and then by Theorem 3.2 Pn

is a classical family. �

Remark 3.12. From the above proposition it follows that φ(s)ρ(s) = ρ1(s) =
σ(s+1)ρ(s+1). Therefore, comparison with the Pearson-type equation leads
to the expression φ(s) = σ(s)+ τ(s)∆(s−1/2). Notice also that since (Pn)n

is an orthogonal family then the relation (3.10), usually called the structure
relation of Al-Salam & Chihara type, is equivalent to the following relations
(I is the identity operator)

LnPn(x) :=

(
φ(x)

∆

∆x(s)
+ ψ1(x, n)I

)
Pn(x) = c̃nPn−1(x), deg(ψ1) = 1,

RnPn(x) :=

(
φ(x)

∆

∆x(s)
+ ψ2(x, n)I

)
Pn(x) = ãnPn+1(x), deg(ψ2) = 1.

The operators Ln and Rn are usually called the lowering and raising opera-
tors for the polynomial family (Pn)n.

Proposition 3.13 ((7)→(2)). Let x(s) be a linear-type lattice. If (Pn)n

is an monic OPS and there exist three sequences (en)n, (fn)n, and (gn)n,
en 6= 0, gn 6= γn, ∀n ∈ N , such that

Pn(x) = en
∆Pn+1(s)

∆x(s)
+ fn

∆Pn(s)

∆x(s)
+ gn

∆Pn−1(s)

∆x(s)
, (3.11)

then (Pn)n is a classical family.
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Proof. For a sake of simplicity we will suppose that (Pn)n is a monic se-
quence. Since (Pn)n is an OPS they satisfy a TTRR (3.1). Taking the
difference to both sides of (3.1), using (3.2) as well as the linearity property
(2.1) we get

Pn(s)+ [F (1)x(s)+G(1)]
∆Pn(s)

∆x(s)
=

∆Pn+1(s)

∆x(s)
+βn

∆Pn(s)

∆x(s)
+ γn

∆Pn−1(s)

∆x(s)
.

Then substituting the value of Pn(s) from (3.11) we find

F (1)x(s)
∆Pn(s)

∆x(s)
= (1 − en)

∆Pn+1(s)

∆x(s)
+ (βn −G(1) − fn)

∆Pn(s)

∆x(s)

+(γn − gn)
∆Pn−1(s)

∆x(s)
.

If gn 6= γn, ∀n ∈ N , then from the Favard theorem (see e.g. [8]) the

sequence (
∆Pn(s)
∆x(s) )n is an OPS, and therefore by Theorem 3.2) Pn is a classical

family. �

To conclude the proof we should show that if (Pn)n is a classical family,
then (3.10) and (3.11) take place. The first one follows directly from the
Rodrigues-type formula as it is shown in [3, 4] so (4)→(6), and the second
one follows from the first one, i.e., (6)→(7) (see [3, 4]). For the sake of
completeness we will present it here and alternative proof for the second
case taken from [3] (the first relation can be proven using the same ideas
and we leave it as an exercise to the reader). In fact we will show that
(1)+(2)→(7).

Let be Qn(s) = ∆Pn+1(s)/∆x(s). Using the linearity of x(s) we have
Pn(s) =

∑n
k=0 cn,kQk(s). Since (Pn)n is a classical family, then (Qn)n also

is, and therefore

cn,k =

(
b−2∑

s=a

Pn(s)Qk(s)ρ1(s)∆x(s)

)

d2
1 k

, ρ1(s) = ρ(s+ 1)σ(s+ 1),

where d2
1 k is the square of the norm of Qk. Using the condition (3.9) the

numerator becomes

b−2∑

s=a−1

Pn(s)Qk(s)ρ1(s)∆x(s) =
b−2∑

s=a−1

Pn(s)∆[Pk+1(s)]ρ1(s)

= Pn(s)Pk+1(s)ρ1(s)

∣∣∣∣∣

b−1

a−1

−
b−2∑

s=a−1

Pk+1(s+ 1)∆[Pn(s)ρ1(s)]
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= −
b−2∑

s=a−1

Pk+1(s+ 1)Pn(s+ 1)∆[ρ1(s)] −
b−2∑

s=a−1

Pk+1(s+1)∆[Pn(s)]ρ1(s)

= −
b−1∑

s=a

Pk+1(s)Pn(s)τ(s)ρ(s)∇x1(s) −
b−2∑

s=a

Pk+1(s+1)
∆Pn(s)

∆x(s)
ρ1(s)∆x(s).

where we use the condition (3.9), the formula (3.2) as well as the Pearson-
type equation (3.6). Now, from the orthogonality of the classical polynomials
we conclude that the first sum vanishes for all k < n−2. But the second one
also vanishes for all k < n−2 since ∆Pn(s)/∆x(s) is an orthogonal sequence
with respect to ρ1(s)∆x(s) and Pk+1(s+ 1) is a polynomial of degree k + 1
in x(s).

This completes the proof of Theorem 3.4. �

Remark 3.14. Notice that if we consider monic polynomials, then for the
linear lattice x(s), en = 1/(n + 1) 6= 0 and F (1) = 1 and for the q-linear
one en = (1 − q)/(1 − qn+1) 6= 0 and F (1) = q.

It is important to notice that in the proof of Proposition 3.11 there is
not any restriction on cn but for the classical “continuous”, discrete and q
cases the condition cn 6= 0 was imposed (see e.g. [10, 19, 21]). A similar
situation happens in the proof of the Proposition 3.13, in the same aforesaid
papers the condition gn 6= 0 is imposed. Nevertheless, we see from the proof
presented here that a more restricted condition should be imposed: gn 6= γn.
Notice that since γn 6= 0 (by Favard theorem) the last conditions implies the
first one γn 6= 0. In the next section we will discuss what happens if these
conditions are not fulfilled.

4. The classical polynomials: further discussion

4.1. The q-linear lattices: The q-Hahn Tableau. Here we will discuss
the q-case. The classical case follows from the limit q → 1−. For the sake
of simplicity and without lost of generality we will consider the most simple
q-lattice x(s) = qs. In the following we will use the classical notation

DqP (x) =
∆P (s)

∆x(s)
, D1/qP (x) =

∇P (s)

∇x(s)
, x(s) := x = qs,

where Dς denotes, as before, the classical q-Jackson derivative (3.4). With
this notation we have that (3.7), (3.10), and (3.11) become

φ(x)ΘPn(x) − σ(x)Θ?Pn(x) − x(1 − q)q−1/2λnPn(x) = 0, x := qs, (4.1)

φ(x)DqPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), x := qs, (4.2)

Pn(x) =
1

[n+ 1]q
DqPn+1(x) + fnDqPn(x) + gnDqPn−1(x), x := qs, (4.3)

respectively.
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The general polynomial solution of (4.1) is [6, 24].

Pn(s) = 3ϕ2

(
q−n, qs1+s2−s̄1−s̄2+n−1, x q−s̄2

qs1−s̄2, qs2−s̄2

∣∣∣∣ q , q
)
, (4.4)

where the basic hypergeometric series 3ϕ2 is defined by

rϕp

(
a1, . . . , ar

b1, . . . , bp
; q , z

)
=

∞∑

k=0

(a1; q)k · · · (ar; q)k

(b1; q)k · · · (bp; q)k

zk

(q; q)k

[
(−1)kq

k(k−1)
2

]p−r+1

,

being (a; q)k =
∏k−1

m=0(1 − aqm), (a; q)0 := 1, the q-shifted factorial. It
corresponds to the functions

σ(x) = C(x−qs1)(x−qs2), φ(x) = C ′(x−qs̄1)(x−qs̄2), Cqs1qs2 = C ′qs̄1qs̄2 ,

and the eigenvalues are given by

λn = −
C q−n+ 3

2

c21(1 − q)2
(1 − qn)(1 − qs1+s2−s̄1−s̄2+n−1).

In particular, choosing φ = aq(x−1)(bx−c) and σ = q−1(x−aq)(x−cq),
we obtain the big q-Jacobi polynomials introduced by Hahn in [13], i.e.,

pn(x; a, b, c; q) = 3ϕ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣∣q; q
)
,

and, in the particular case c = q−N−1, the aforesaid q−Hahn polynomials
Qn(x; a, b,N |q) are deduced.

Remark 4.1. The general solution of the equation (4.1) defines the so-called
q-Hahn tableau [16]. A detailed study of this class has been done in [5]. In
particular, in [5] comparison with the q-analog of the Askey tableau [15] and
the Nikiforov & Uvarov tableau [26] has been performed and all possible limit
cases obtained from (4.4) have been analyzed, identifying them with several
known classical families of q-polynomials as well as two new ones.

In the following we will use the notation introduced in [21]

φ(x) = âx2 + ax+ ã, ψ(x) := q−1/2τ(s) = b̂x+ b̄, b̂ 6= 0. (4.5)

In the paper [21] the values of the coefficients of the TTRR (3.1), and
the structure relations (4.2) and (4.3) have been obtained in terms of the
coefficients of φ and ψ defined in (4.5). In particular,

γn = −
qn−1[n]q

(
[n− 2]q â+ b̂

)

(
[2n− 1]qâ+ b̂

)(
[2n− 2]qâ+ b̂

)2(
[2n− 3]q â+ b̂

)× (4.6)

×

[
qn−1

(
[n−1]qa+b

)(
qn−1âb−a([n−1]q â+b̂)

)
+ã
(
[2n−2]q â+b̂

)2
]
, n ≥ 1 ,

cn = −
[n]q−1

(
[n− 1]q â+ b̂

)

[n]q
γn, n ≥ 1, (4.7)
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and

gn = −
qn−2[n− 1]q â

[n− 2]q â+ b̂
γn , n ≥ 2, (4.8)

where we use the standard notation for the q-numbers

[x]ς =
ςx − 1

ς − 1
.

From the above relations it follows that if we want to have an infinite
orthogonal polynomial sequence (Pn)n≥0 (the so called quasi-definite or reg-
ular case) γn should be different from zero for all n ≥ 0. But, as we already
pointed out, there exist some examples when γn = 0 for some n0 (e.g. the
q-Hahn and q-Kravchuk polynomials for n = N +1). In these cases we have
a finite family of polynomials (strictly speaking this case does not constitute
a regular case) that corresponds to a weak-regular case. Notice that from
formula (4.6) it follows that the corresponding family exists, at least in the
weak-regular sense, if the square bracket in (4.6) is different from zero and
a sufficient condition is

[n]q â+ b̂ 6= 0, for n ∈ 1, 2, . . . , n0. (4.9)

The last condition is usually called the admissibility condition (for a de-
tailed study of this condition see [22, 23] and references therein). That this
condition was necessary was established in [21].

Now, from the expression (4.7) and taking into account that γn 6= 0 for
all n ∈ N , the condition cn 6= 0, for all n ∈ N , follows. This condition is
equivalent to the admissibility condition.

Let now analyze the expression (4.8). In this case we see that for the
quasi-definite case gn 6= 0. But in our proof we see that gn 6= γn for all
n ∈ N . Thus, the following question arises: what happens if gn = γn for
n = 1, 2, . . . , n0?

To answer this question we use (4.8). Then

gn = γn ⇐⇒ [2n− 3]qâ+ b̂ = 0, ∀n = 2, 3, . . . ,

which is in contradiction with the admissibility condition (4.9).

Remark 4.2. In [21] the condition gn 6= 0 for all n ∈ N was imposed but
not the more restrictive one gn 6= γn, from where the first one immediately

follows. Of course in [21] the admissibility condition [n]qâ + b̂ 6= 0 it is
assumed and it implies that gn 6= γn for all n ∈ N .

From the above discussion follows that the q-classical polynomials are
completely characterized by the relation (4.3) with the restriction gn 6= γn

for all n ∈ N . Moreover, if gn = γn for all n = 1, 2, . . . , n0, then the
corresponding orthogonal polynomial sequence, if such a sequence exists, is
not a classical one.
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4.2. The linear lattice x(s) = s. For the linear lattice x := x(s) = s the
second order linear difference equation is

[σ(x) + τ(x)]∆Pn(x) − σ(x)∇Pn(x) + λnPn(x) = 0, (4.10)

where

σ(x) = A(x− x1)(x− x2), φ(x) := σ(x) + τ(x) = A(x− x̄1)(x− x̄2),

and its general solution is of the form

Pn(x) = 3F2

(
−n, x1 + x2 − x̄1 − x̄2 + n− 1, x1 − x

x1 − x̄1, x1 − x̄2

∣∣∣∣1
)
, (4.11)

and

λn = −An (x1 + x2 − x̄1 − x̄2 + n− 1).

Here 3F2 is the generalized hypergeometric series

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣x
)

=

∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k!
,

where (a)k =
∏k−1

m=0(a+m), (a)0 := 1, is the Pochhammer symbol.
A particular choice x1 = 0, x2 = N + α, x̄1 = −β − 1, and x̄2 = N − 1

leads to the Hahn polynomials. Taking several limits from (4.11) we can
obtain the other classical families: Kravchuk, Meixner, and Charlier (see
e.g. [3, 15, 24, 26]). In this case the structure relations are

φ(x)∆Pn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x),

Pn(x) =
1

n+ 1
∆Pn+1(x) + fn∆Pn(x) + gn∆Pn−1(x). (4.12)

Next we compute γn. For doing that we use the expression (we are using
monic polynomials) γn = ln − ln+1 − lnβn obtained when we identify the
coefficients of xn−1 in the TTRR (1.1), where kn and ln are the coefficients
of the monomials xn−1 and xn−2 in Pn(x) = xn + knx

n−1 + lnx
n−2 + · · · ,

n ≥ 3. To compute the values of kn and ln we substitute Pn in the second
order linear difference equation (4.10) and identify the coefficients of the
monomials xn−1 and xn−2 (for more details see [3]). All these yield

γn = −
(p+ a(n− 2))n

(p+ 2a(n− 1))2 (p+ a (2n− 3)) (p+ a (2n− 1))
×

[
c(p+ 2a(n− 1))2 − bp

(
q + p(n− 1) + a(n− 1)2

)

+a
(
q + p(n− 1)a(n− 1)2

)2
− b2 (p+ a(n− 1)) (n− 1)

]
, n ≥ 1,

where the notation σ(x) = ax2 + bx+ c and τ(x) = px+ q has been used.
From the above expression we see that the corresponding orthogonal poly-

nomial sequence exists (at least in the weak-regular sense) when the expres-
sion in the square bracket is different from zero and a sufficient condition
for this is p+ na 6= 0, for all n = 1, 2, . . . , n0.
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But now, using the expression (see e.g. [3, page 108]) cn = λnγn/n, we
see that for all n ≥ 1, cn 6= 0. The condition p+na 6= 0 for all n ∈ N is the
admissibility condition in this case.

Let us now analyze the structure relation (4.12). In this case [3, page 109]

gn = − (n−1)aγn

p+(n−2)a , therefore in the quasi-definite case gn 6= 0. If γn = gn for all

n, then we obtain that p+ (2n− 3)a = 0, for all n which is in contradiction
with the admissibility condition.

Remark 4.3. In [10] the condition gn 6= 0 for all n ∈ N was imposed but
not the more restrictive one gn 6= γn, from where the first one immediately
follows. For the discrete case in [10] the admissibility condition p+ na 6= 0
it is assumed and therefore gn 6= γn for all n ∈ N .

From the above discussion also follows that the classical discrete polyno-
mials are completely characterized by the relation (4.12) with the restriction
gn 6= γn for all n ∈ N . Moreover, if gn = γn for all n ∈ N , then the corre-
sponding orthogonal polynomial sequence, if such a sequence exists, is not
a classical one.

4.3. The classical case. The classical case can be obtained from the q-case
taking the limit q → 1−. Nevertheless the Theorem 1.2 can be proven using
the same scheme section 3. The only difference is that here one uses he
standard integral calculus and integration by parts instead of the calculus
with the difference operator. Of particular interest is the proof of property
7 so we will provide it here: Taking derivatives of the TTRR (1.1) and using
(1.3), we have the expression

xP ′
n(x) =

n

n+ 1
P ′

n+1(x) + (βn − fn)P ′
n(x) + (γn − gn)P ′

n−1(x), (4.13)

from where, if gn 6= γn, ∀n ∈ N , and using the Favard theorem the sequence
(P ′

n)n is an OPS, and therefore by the Sonin-Hahn Theorem 1.1 Pn is a
classical family. Notice again that the condition gn 6= γn should be imposed.
Using the formulas in [20] it is easy to see that this condition is equivalent
to the condition nσ′′/2 + τ ′ = 0 which is nothing else that the admissibility
condition for the classical polynomials [20]. Let us point out that the more
restrictive condition γn 6= gn for all n ∈ N was not considered in [19] (they
considered only the regular case, i.e., γn 6= 0). As in the cases already dis-
cussed we conclude that the classical continuous polynomials are completely
characterized by the relation (1.3) with the restriction gn 6= γn for all n ∈ N.
Moreover, if gn = γn for n = 1, 2, . . . , n0, then the corresponding orthogonal
polynomial sequence, if such a sequence exists, is not a classical one.

4.4. The Marcellán et al. characterization. At this point the following
question arises: what happens if we do not impose the condition gn 6= γn,
∀n = 1, 2, . . . , n0? There is any family of orthogonal polynomials, necessarily
non classical, that satisfies the TTRR (1.1) where γn 6= 0 for n ∈ N , and
the relation (1.3) with gn = γn for all n ∈ N ? i.e.,
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Pn(x) =
P ′

n+1(x)

n+ 1
+ fnP

′
n(x) + γnP

′
n−1(x) . (4.14)

To answer this question we can use (4.13) but rewritten in the form4

P ′
n+1(x) =

n+ 1

n
(x− βn + fn)P ′

n(x),

that leads to

P ′
n(x) = n

n−1∏

j=1

(x− βj + fj), n ≥ 2.

Therefore, substituting the last expression in (4.14) we get, denoting ξj =
βj − fj ,

Pn(x) = [(x−ξn)(x−ξn−1) + nfn(x−ξn−1) + (n−1)γn]

n−2∏

j=1

(x−ξj).

But this implies that for n ≥ 3, two consecutive polynomials have common
zeros that is a contradiction. Therefore there is not any family of orthogonal
polynomials that satisfy (4.14).

For the linear lattices x(s) = s and x(s) = qs the situation is the same. We
present here the computations only for the q-case, the other case is analogous
—in fact the final expression for the polynomials Pn coincide with the one
in the classical “continuous” case.

For the q-case we proceed as before, i.e., we take the q-derivatives of the
TTRR (3.1) and use the relation (4.3) where en = 1/[n]q, gn = γn, F (1) = 1,
G(1) = 0, we obtain

DqPn+1(x) =
[n+ 1]q

[n]q
(x− ξn/q), ξj = βj − fj .

Substituting it in (4.3) when gn = γn we obtain the following expression for
the polynomials Pn

Pn(x) = [(x−ξn/q)(x−ξn−1/q) + [n]qfn(x−ξn−1/q) + [n−1]qγn]
n−2∏

j=1

(x−ξj/q).

As before, from this expression follows that for n ≥ 3, two consecutive
polynomials has common zeros, that is in contradiction with the fact that
they constitutes an orthogonal sequence.

From the above discussion follows that the structure relation (3.11) when
gn 6= γn for all n ∈ N completely characterizes the classical orthogonal
polynomials.

4As in section 4.3 we will take the derivative of the TTRR (1.1) but now use (4.14).
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Appendix A. The classical polynomials

In this appendix we will present the proof of the Theorem 1.2. We will
follow the same scheme in Section 3 (see figure 1).

As starting point we will use the Pearson equation, i.e., we say that the
classical polynomials are the polynomials orthogonal with respect to a con-
tinuous weight function ρ supported in the interval (a, b), solution of the
Pearson equation

[σ(x)ρ(x)]′ = τ(x)ρ(x), (A.1)

where σ and τ are polynomials of degree at least two and exactly one, re-
spectively, and such that the following boundary conditions hold5 σ(a)ρ(a) =
σ(b)ρ(b) = 0.

(1)→(2): Using the orthogonality of the classical family (Pn)n with respect
to ρ we have that for any polynomial of degree less than or equal to k − 1,
Qk−1, with k < n,

0 =

∫ b

a
Pn(x)Qk−1(x)τ(x)︸ ︷︷ ︸

degree≤k<n

ρ(x)dx =

∫ b

a
Pn(x)Qk−1(x)[σ(x)ρ(x)]′dx

=Pn(x)Qk−1(x)σ(x)ρ(x)
∣∣∣
b

a︸ ︷︷ ︸
=0

−

∫ b

a
[Pn(x)Qk−1(x)]

′σ(x)ρ(x)dx

= −

∫ b

a
Pn(x)

degree<n︷ ︸︸ ︷
Q′

k−1(x)σ(x) ρ(x)dx

︸ ︷︷ ︸
=0

−

∫ b

a
P ′

n(x)Qk−1(x)[σ(x)ρ(x)]dx.

Thus P ′
n is orthogonal to any polynomial of degree k− 1 < n− 1, i.e., (P ′

n)n

is also an orthogonal family. Furthermore, since the weight function for the
sequence (P ′

n)n is ρ1(x) = σ(x)ρ(x), we have that they satisfy the equation
[σ(x)ρ1(x)]

′ = [τ(x) + σ′(x)]ρ1(x), i.e., a Pearson equation (A.1).

5These conditions follow from the fact that for the classical families the moments
µn =

R b

a
xnρ(x)dx, n ≥ 0, of the measure associated with ρ(x) are be finite.
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(2)→(3): We use now that (P ′
n)n is an orthogonal family with respect to the

weight function ρ1(x) = σ(x)ρ(x). Thus

0 =

∫ b

a
P ′

n(x)Q′
k(x)τ(x)ρ1(x)dx

=P ′
n(x)Qk(x)σ(x)ρ(x)

∣∣∣
b

a︸ ︷︷ ︸
=0

−

∫ b

a
[σ(x)ρ(x)P ′

n(x)]′Qk(x)dx

= −

∫ b

a
Qk(x){[σ(x)ρ(x)]′︸ ︷︷ ︸

=τ(x)ρ(x)

P ′
n(x) + σ(x)ρ(x)P ′′

n (x)}

=

∫ b

a
Qk(x)[σ(x)P ′′

n (x) + τ(x)P ′
n(x)]ρ(x)dx.

But since the last integral vanishes for every polynomial Qk of degree k < n
then σ(x)P ′′

n (x)+τ(x)P ′′
n (x) should be proportional to Pn, i.e., σ(x)P ′′

n (x)+
τ(x)P ′′

n (x) = −λnPn, where λn is a constant, in general depending on n.
(3)→(4): The solution of the above differential equation can be written in
the following compact form (see e.g. [25, §2] or [24, §1.2]) usually called the
Rodrigues formula

Pn(x) =
Bn

ρ(x)

dn

dxn
[σn(x)ρ(x)],

where Bn is a constant.
(4)→(5): It follows from the Rodrigues formula just putting n = 1.
(4)→(6): From the Rodrigues formula the following expression (see e.g. [25,
Eq. (7) page 25]) immediately follows

σ(x)P ′
n(x) =

λn

nτ ′n

[
τn(x)Pn(x) −

Bn

Bn+1
Pn+1(x)

]
, τn(x) = τ(x) + nσ′(x),

from where, using the three-term recurrence relation for the family (Pn)n

the structure relation (1.2) follows.
(6)→(2): Suppose that (1.2) holds where deg σ ≤ 2 and (Pn)n is an orthog-
onal family. Notice that the integral
∫ b

a
Qk(x)P

′
n(x)σ(x)ρ(x)dx=

∫ b

a
Qk(x)ρ(x)[anPn+1(x)+bnPn(x)+cnPn−1(x)]dx

vanishes for all k < n− 1. Then (P ′
n)n is an orthogonal family with respect

to the weight function ρ1(x) = σ(x)ρ(x) and therefore by the Sonin-Hahn
Theorem 1.1 (Pn)n is a classical family.
(1)+(2)→(7): For proving this we suppose that (Pn)n and (P ′

n)n are orthog-
onal with respect to ρ(x) and ρ1(x) = σ(x)ρ(x), respectively. If (Pn)n is a
monic sequence then

Pn(x) =
1

n+ 1
P ′

n+1 + fnP
′
n(x) + gnP

′
n−1(x) +

n−2∑

k=1

ck(n)P ′
k(x).
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But

ck(n) =

∫ b
a Pn(x)P ′

k(x)σ(x)ρ(x)dx
∫ b
a [P ′

k(x)]
2σ(x)ρ(x)dx

= 0,

since degP ′
kσ ≤ k + 1 < n − 2 and (Pn)n is and orthogonal family with

respect to ρ(x).
Finally the proof (7)→(2) is presented in section 4.3.
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