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Abstract

Here we consider the 2D free boundary incompressible Euler equation with surface
tension. We prove that the surface tension does not prevent a finite time splash or splat
singularity, i.e. that the curve touches itself either in a point or along an arc. To do so,
the main ingredients of the proof are a transformation to desingularize the curve and a
priori energy estimates.
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I Introduction

In this paper we continue the work in [8] and [9] where we show the formation of singularities
for the free boundary incompressible Euler equations. Here we prove that in two space
dimensions the free boundary problem develops finite time “splash” and “splat” singularities
when surface tension is taken into account (see below, in Section III, the precise definition of
the splash and splat curves).

In order to describe the evolution of a fluid with a moving domain Q(t) C R?, the 2D
incompressible Euler equations are used:

(Ut +v- Vv)(a:,y,t) = _VP(xayat) - (0’ 1)’ (l’,y) € Q(t) (Il)
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with the fluid velocity v(x,%,t) € R? and the pressure p(x,y,t) € R. The vector —(0,1)
represents the external gravitational force (the acceleration due to gravity is taken equal to
one for the sake of simplicity). The free boundary

oN(t) = {z(a,t) = (z21(e, 1), 22(v, ) : v € R} (I.2)
is smooth and convected by the velocity field
Zt(Ot, t) ’ Z(Jx_(a7 t) = ’U(Z(Oé, t)7 t) ’ Zi_ (Oé, t)a (13)

which is assumed to be incompressible and irrotational

V-v(x,y,t) =0, v v(z,y,t) =0, (z,y) € Q(t). (L.4)
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Here we study the relevance of considering the Laplace-Young condition for which the pressure
on the interface 9€)(¢) is proportional to its curvature, meaning that the surface tension effect
is considered:

T Zaa(o,t) - 2 (ayt) T
2 Jza(at)P T2

Above 7 > 0 is the surface tension coefficient.
The results in this paper can be shown for three different scenarios:

—p(z(ayt),t) = K. (I.5)

1. Q(t) a compact domain: z(a,t) is a 27-periodic function in a.
2. Asymptotically flat case: z(«,t) — (o,0) = 0 as a — 0.
3. Q(t) periodic in the horizontal variable: z(a,t) — (e, 0) is a 2w-periodic function in a.

The problem to study here is the potential formation of singularities for the system (I.1-
[.5) with smooth interface and smooth velocity field with finite energy as initial data:

Q(O) = QQ, 0Qy = {Zo(a) OAS R},

1.6
oe.0) = ol [ o) Py < +oc. o
Qo
The smooth initial curve zo(a)) must satisfy the arc-chord condition:
|z0(a) — 20(B)| > cacla— B], forall a, f € R, (L.7)

where cac > 0 is the arc-chord constant. The study of this quantity has been employed by
other authors to prove local existence (see for example [23], [24]). We will quantify how our
curve z(«) satisfies the arc-chord condition through the following quantity

5]
2(a) = z(a = )|’
Throughout the paper we will only focus on scenario 3 for the sake of simplicity. From
now on, we will denote Qg N [—7, 7] x R by Qy by abuse of notation (a fundamental domain
in the period).
We establish the main result in the paper for the system (I.1-1.5).

Flz) =

a,f € [—m, 7.

Theorem 1.1 Consider zy(a) — (a,0) € H*(T) for k > 5. Then there exist a family of
initial data satisfying (1.6) and the arc-chord condition (1.7) and a time Ts > 0 such that the
interface z(a, t) € HR(T) from the unique smooth solution of the system (I.1-1.7) on the time
interval [0, Ts] touches itself at a single point (“splash” singularity) or along an arc (“splat”
singularity) at time t = Ts.

These solutions can be extended to the periodic 3D setting considering scenarios invariant
under translations in one coordinate direction. In [14], Coutand-Shkoller consider additional
3D splash and splat singularities. The case with small initial data was treated by Wu in
the two dimensional case [25] and the three dimensional case was studied by Wu [26] and
Germain et al. [16].



For other long time behaviour results see Alvarez-Lannes [3], Castro et al. [10] and the
references therein.

In order to prove this theorem we proceed as in [8] and [9]. Using (I.4) it is easy to
declare that v is harmonic in (¢). This fact allows us to introduce the moment w(a,t) by
elementary potential theory as follows:

_ PV [ (@—2(Bt),y — 2(8,1)))
v(z,y,t) = 27T/R (z,y) — (B, 1) ]2

where PV denotes principal value at infinity. This moment is also known in the literature
as the vorticity amplitude. Then the system (I.1-1.5) is equivalent to the following evolution
equations which are only written in terms of the free boundary z(«a,t) and the amplitude
w(a,t):

i
w(p,t)dps, (L.8)

zi(a,t) = BR(z,w)(a,t) + c(a, t)zq (a, t), (L.9)
w2
wi(oyt) = —2BR(z,w) (e, 1) - za(a,t) — <W>a(a,t) + (cw)ala, t)

Zaa -zol[ a,
+2¢(cr, t) BRa(2,w) (1) - za(a,t) — 2(22)al(as t) +T< (1) - 25 ( t))

|2a (e, )
(L.10)

(for details see for example [12, Section 2]). Above BR(z,w) is the Birkhoff-Rott integral
defined by

BR(Z,O.)):LPV (Z(Oé,t)-Z(B,t))J'
2 Jr |2(ayt) = 2(8, 1)
and c(q, t) is arbitrary since the boundary is convected by the normal velocity (I1.3).

Local existence in Sobolev spaces was first achieved by Wu [23] assuming initially the
arc-chord condition. For other variations and results see [15, 21, 7, 27, 24, 11, 20, 13, 22, 28,
18, 6, 4, 19, 1, 2, 12].

The strategy of the proof of the main result is to establish a local existence theorem from
the initial data that has a splash or a splat singularity (notice that the equations are time
reversible invariant). Since the curve self-intersects (failure of the arc-chord condition), it
is not clear if the amplitude of the vorticity remains smooth and the meaning of equations
(I.9-1.10). In order to deal with these obstacles we use a conformal map

P(w) = (tan (%))1/2, w € C,

w(p,t)ds, (I.11)

whose intention is to keep apart the self-intersecting points taking the branch of the square
root above passing through those crucial points. Here P(z) will refer to a 2 dimensional
vector whose components are the real and imaginary parts of P(z; +i22). We also make sure
that Q(t) U0Q(t) do not contain any singular point of the transformation P. Then potential
theory helps us to get the following analogous evolution equations for the new curve

Z(a,t) = P(z(ayt))



and the new amplitude @:

Z(a,t) = Q*(a,t)BR(2,0)(a, t) + é(a, t) 2 (a, 1), (1.12)

2(a, )0(a, t)?
D, t) = — 2BRy(2,@)(, 1) - Zala,t) — | BR(Z,@)[2(QY)ala, t) — (Q( LCICID) ).

3
+7 <‘§(§7t)‘:,’(§ZHP2‘1§aVPf1 Za— ELHP'2,VPy T 5a)>

s <Q2aa(oz, t) - Za(a, t))a (1.13)

|Za(a, t)[?

where
dp 2

Q(a,) = | 3 (P (3(a 1)

)

and H PZ-_1 denotes the Hessian matrix of Pi_l, which is the i-th (i = {1,2}) component
of the transformation P~1.

Here, we choose ¢(a,t) in such a way that |Z,(a,t)] = A(t). This particular choice of ¢
was first introduced by Hou et al. in [17] and was later used by Ambrose [4] and Ambrose-
Masmoudi [5]. The choice of ¢ implies

. B o+ ™ o gﬁ(ﬁat)
flont) = — /_W(Q2BR(Z,W))B(5J) NERT R
| @ BRE@) 50 G

It is easy to check that if we take @ =1 in (1.12-1.13) we recover (1.9-1.10).
We also define the function
- Q*(a,t)@(a,t) _
ooy t) = R éla,t)|Za(a,t)] (I.14)
introduced by Beale et al. for the linear case [7] and by Ambrose-Masmoudi for the nonlinear
one [5]. This function will be used to prove local existence in Sobolev spaces.

In the sections below, we show a local existence theorem based on energy estimates. Sec-
tion III is devoted to provide the appropriate initial data for the splash and splat singularities.
In Section IV we choose an energy which does not need a precise sign on the Rayleigh-Taylor
function. In Section V we choose a different energy that involves the sign of the Rayleigh-
Taylor function and the estimates are uniform with respect to the surface tension coefficient.

These two energies are based on the ones obtained in the non-tilde domain by Ambrose ([4])
and Ambrose-Masmoudi ([6]).



The Rayleigh-Taylor function is given by the following formula

- p o - w - p . -
o= <BRt(z,w) + %BRJZ,@) . zj + W <zat + %zaa> . zj
e (115)
~ ~ W ~ o~ _ ~ o~
+Q|BRES) + 52 (VO -2+ (VR

All solutions that we will consider throughout the paper will have finite energy, as dis-
cussed in [8]. The system satisfies the conservation of the mechanical energy. We define it
this way: (not to be confused with the subsequent definitions of some other energies, see
sections IV and V).

&@zéj’|Wmme@+§/<@mwﬁmamww+f/|@4mmw
Qp(t)

- 2 )

= E(t) + Ep(t) + & (1),

where z(a,t) = (21(, 1), 22(, 1)), u(a, t) = v(z(,t),t), and Q¢(t) = Q) N [-7, 7] x R
is a fundamental domain in the water region in a period, then it follows that the energy is
conserved.

o / v(z,y, 1) (vi(z,y,t) + v(z, y,t) - Volz,y,t))dedy
dt 2 (1)

= [ olaO(=Tp.p.t) = 0, 1)dedy
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do

— " . € T " . L agz(avt) ) 8QZJ_(a7t)
= /_7r zo(a, t)u(a, t) - Opz— (a, t)da + 5 /_ﬂ u(a,t) - Oz (a,t) (o 1)
(L.16)

where we have used the incompressibility of the fluid (V-v = 0) and Laplace-Young’s condition
for the pressure on the interface. Next

%t(t) :/ zg(a,t)atzg(a,t)aazl(a,t)da+%/ (22(c, 1))?0100 21 (, t)dax
:/ zQ(oz,t)@tzg(a,t)aazl(a,t)da—/ zo(av, t)0p 22 (cr, t)Op 21 (v, t)do
:/ zo(a, t)u(a, t) - Oaz™(a, t)de. (I.17)



|0az(a; t))| 2 J)n |Oaz(a;t)|
T 02z(a,t) - Opzt (e, t) N
ERCE u(a, t) - 0y z(a, t)do
(I.18)

de-(t) 7 /7r Onz(a,t) - 8a8tz(oz,t)da T /7T d2z(a,t) - 9yz(a,t) do

T/’T 02 2(a,t) -u(a,t)da: _I/
2 =T \8az(a,t)\ 2 -

Adding all the derivatives we get the desired result.

ITI Properties of the curvature in the tilde domain

In this section we will rewrite the term corresponding to the curvature K (z(a,t)) in the new

tilde variables Z(a, t).
We will proceed step by step. Let us recall that the curvature is defined by

ZaalO,t 'zé a,t
Klat) = Bt

We begin with the term |z, (c, t)[3. We have that
|Za(a, 1) 2 = (0o P(2(a, 1)), 0 P(2(a, 1)) = (VP(2(a,t)) - zala,t), VP(2(a,t)) - za(a,t))
Since P and P~! are conformal, by the Cauchy-Riemann equations
VP(z(a,t)TVP(z(a, 1)) = Q*(ar, t)1ds,

that implies that
Zala, )P = Q% (e, 1) 20 (0, )

We move to the other term
(zaa (0, 1), 22 (o, 1)) = (Dq (VP_I(E(a,t)) Za(a,t)) (VP (a,t) - Zalo, t)h)
= (VP (Z(a, 1)) - Zaa(ont), (VP (Z (s 1)) - Zala,t)h)
+ (0a (VP HZ(a,1))) - Zalant), (VP HE (1) - Zalant) ) = W + X
Again, by the Cauchy-Riemann equations

(Zaala,t), Zo(a, t)h)

!
- Qo)

Developing the terms in X, we get

(VP (E(,1)) - Zalast) = ( (o t) - HPy(



where H PZ-_1 denotes the Hessian of the i-th component of P~! (i = 1,2). Hence, we can
write X as

X = —22:(01,75) ’ HPI_I(Z(avt)) ’ Za(avt)vpgl(g((%t)) ’ Z(Clvt)
+ 28 (a, t) - HPy Y (3(, 1)) - Zalo, ) VP (Z(a 1)) - Z(as ).
This means that

a,t) - Z-(a,t)
Z(e, )

a 3 ~
% = Q(a, t)K (a, t) + M(av, 1)

~

K(at) = Q(a, 1) 22l + X(at)

We will now try to simplify further by exploiting the Cauchy-Riemann equations. We can
calculate the Hessian and the gradient terms as:

- 4z
Pml(z) = §R<1+24> = R(a)
1~ 41z
P17;(z):§)?<1+§4 = —S(a)
1~ 4z
P27m1(z):%<1+§4 = Y(a)

e = () = wo
ce =0 (M) = s
P =s () =s0
Pl = (R = woy

Therefore the Hessians are
HP ' = <

Calculating further:
Za HP; 20 = R(0)(22,27) + S(0)((22)? — (22)%)

ZaHPT 2o = RO)((20)? — (22)%) — (0)(22222)

a



X1 = R(@)R(0)(2(24)°22) + R(a)S(0)((Za)*Za — (22)°Za)
+S(a)R(b)(-224(22)%) + S(OS(0)((Za)*2 — (22)°22)

Xa = RORO)((20)°72 — (22)°22) + R()I(b) (-274(22)°)
+S(a)3(0)(2(2)722) + S(@RO)((22)* 20 — (22)%2a)

by the Cauchy-Riemann equations.
If we take one derivative in space of X, we obtain

0aX = ((22)* + (Z2)*NVG(Z) - Zas Za) + ((22)* + (22)°)(G(2), Zaa)
= ((Za)* + GNVG(Z) - Za, Za) + |2 K(G(2), 22)

N CARNCAR I CORENEREEND )
This implies
~ ~ 3 ~ ~
K=QK — Qg% = K, = (QK)q + g—,(VG(Z) Zos Za) — KQo = (QK) o + My + My

Later, we will see that the M; is a low order term and can be absorbed by the energy.

IIT Initial data

For initial data we are interested in considering a self-intersecting curve in one point. More
precisely, we will use as initial data splash curves which are defined this way:

Definition ITI.1 We say that z(c) = (21(«), 22(«)) is a splash curve if



1. z1(a) — a, z9(cr) are smooth functions and 2m-periodic.

2. z(«v) satisfies the arc-chord condition at every point except at oy and ag, with aq < ag
where z(a1) = z(a2) and |zo(a1)|, |2za(a2)| > 0. This means z(a1) = z(a2), but if we
remove either a neighborhood of ay or a neighborhood of cs in parameter space, then
the arc-chord condition holds.

3. The curve z(a) separates the complex plane into two regions; a connected water region
and a vacuum region (not necessarily connected). The water region contains each point
x+1iy for which y is large negative. We choose the parametrization such that the normal
vector n = (_8“726(;2(’23]'21(0‘)) points to the vacuum region. We regard the interface to be

part of the water region.

4. We can choose a branch of the function P on the water region such that the curve
Z(a) = (Z1(), 22(a0)) = P(z(«)) satisfies:
(a) Zi() and Za(a) are smooth and 2m-periodic.
(b) Z is a closed contour.

(c) Z satisfies the arc-chord condition.

We will choose the branch of the root that produces that

lim P(x+ iy) = —e /4

Yy——00
independently of x.

5. P(w) is analytic at w and g—i(w) # 0 if w belongs to the interior of the water region.
Furthermore, (+m,0) and (0,0) belong to the vacuum region.

6. 2(a) # ¢ forl=0,...,4, where

e o= () 0GR -(GA) (D)

(
Moreover, we will define a splat curve as a splash curve but replacing condition (2) by
the fact that the curve touches itself along an arc, instead of a point.
Let us note that in order to measure when the transformation P is regular, we need to
control the distance to the points ¢'. In order to do so, we introduce the function

—_

m(ql)(aat) = ’2(04,15) - ql‘
for1=0,...,4.
We have performed numerical simulations, as explained in [9] with the following initial
data on the non-tilde domain:
1 3T 1

2a) =a+ 1 <—7 - 1.9> sin(a) + %sin(2a) + 1 (g — 1.9) sin(3«)

9



1 3 1
29(a) = 1 cos(a) — 10 cos(2a) + 10 cos(3a)

Note that z (%) =z (—%) (splash). Instead of prescribing an initial condition for @, we
prescribed the normal component of the velocity to ensure a more controlled direction of
the fluid. From that we got the initial @(«,0) using the following relations. Let ¢ be such
that V¢ = v and ¥(a) its restriction to the interface. The initial normal velocity is then
prescribed by setting

ud ()] 20 ()] = o) = 3 - cos(a) — 3.4 - cos(2a) + cos(3a) + 0.2 cos(4a).

The reader may easily check that the above 2 and 29 yield a splash curve, i.e. the
conditions in Definition III.1 are satisfied. See Figure 1.

0.35

0.3F |
ost 7\ T~ i

0.2- Y A 1
=~ o1 T

0.051 N

—-0.051 N
-0.11 N

Figure 1: Splash singularity. The interface self intersects in a point.

In order to get an initial data for the splat singularity, one only needs to perturb the
splash curve so that it z}(a) = 0 on a neighbourhood of both o = +3. The normal velocity
can be the same since it has the right sign (the one that separates the curve). By continuity,
the Rayleigh-Taylor function should remain positive.

For the case where the energy is independent on the surface tension coefficient (see Section
V), we need the curve to satisfy the Rayleigh-Taylor condition initially. This is always the
case when the surface tension coefficient is small enough. To illustrate this phenomenon,
we have plotted in the next figure the Rayleigh-Taylor condition for different values of the
surface tension coefficient and the initial condition described above. We can see that for
small enough values of 7 (0 and 0.1): the Rayleigh-Taylor condition o is strictly positive. For
bigger values of 7, the Rayleigh-Taylor condition ¢ has distinct sign.

IV  Energy without the Rayleigh-Taylor condition

In this section, we prove local existence in the tilde domain, where the time of existence
depends on the surface tension coefficient. This theorem has the advantage that the initial

10
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Figure 2: Rayleigh-Taylor function for different values of 7: 7 = 0 (blue), 7 = 0.1 (red),
7 =0.5 (green), 7 =1 (black)

data does not need to satisfy the Rayleigh-Taylor condition and it works for every 7 > 0.

Theorem IV.1 Letk > 3. Let 2°(a) be the image of a splash curve by the map P parametrized

in such a way that |0,2°(a)| = %, where L is the length of the curve in a fundamen-

tal period, and such that #(a),29(a) € H*2(T). Let &(a,0) € Hk+%(']1‘). Then there
exist a finite time T > 0, a time-varying curve %(a,t) € C([0,T); H**2), and a function
o(a,t) € C’([O,T];H'”%) providing a solution of the water wave equations (1.12 - 1.13).

The proof below is based in the following energy estimates:

IV.A The energy
We will define the energy for k£ > 3 as

1
2|Zq |2

BH(0) = ey 2lzal® [ Q1 (Ah(R)) 41 [ @b @A) + g [ Q@)

A B C

M=

EE2(t) = |IZI1Z2 + IolZ2 + I F (27 () +

2 () ()

Il
o

11



where m(¢')(t) = minger ¢*(a, t) for 1 =0,...,4 and A = (—=A)"/2. From now on, we will
denote the Hilbert transform of a function f by H(f), where

a(He="" %dﬁ-
™ 2tan ( 5

Recall that the operator A can also be written as A(f) = 0. H(f).

IV.B The energy estimates

The energy estimates for £ were proved in [12] and in [8]. In this section we will focus on
the new terms (A, B and C).

IV.B.1 K

Proposition TV.2

Q2

K; = NICE3 + 5o
2|24

H(Goo) + @(Q%H@a),

where NICES3 means
/ QION(K)OE(NICE3) < CEX(t)

for some positive constants C,p and any j.

Proof: We start writing K

A
By

Calculating further Py we get that

Zat * ZaZao Z + =3 <Zaat Z + Zaa Z ) PBh+P+ P

|Zal?

-3
Py=—3 (Q*BR + ¢20)a - Zafaa - 5 = NICE3,

|2l

by the estimates proved in the Appendix.
On the one hand, developing P,, we obtain

1 1 /. -
Pr= = (%0 2) =~ (- Far) =
|2l |Zal
1

= 5.5 (@BR)a + (Ea)a) - 2o

NICE3 ! ‘% =2 H(@q) + EaZa | - Zan = NICE3
= — 7= 2 Wa CaZa | " 2o = ;
ZalP \ 2 [Z]?



since ¢, is as regular as @, Z,o and therefore bounded in H k. On the other, P, gives rise to

1 N . 1 o -
P = W (Zaat : Z(i_) = 1= ((Q2BR)aa + (Cza)aa) : Zi_ = Pl,l + P1,2
@

We can further develop P 2 to obtain
Py » = NICE3,

since the terms vanish either by integrating by parts, by being a dot product between two
orthogonal vectors or because ¢, = NICE3. We also have that

Py =NICE3 + —— (2(Q®)aBRa + Q°BRaq) - Zy = NICE3 + Pi11+ Py

|Za|

The only term in BR,, which is not NICES3 is when we hit with the derivative in @. Therefore

Pri1=NICE3 + =5 |3 (Qz) H(@a)
O[
Finally, regarding P; 1 2 and keeping in mind that hitting with all the derivatives in 2 leads us
to a term which has the factor Zpaa * 2o = —\EMF, giving us the extra regularity we needed
to integrate the term.

Q . (1 (Z(a)—é(ﬁ))lw
Py 15 = NICE3 TP (277/ EOEEGIE aa(ﬁ)dﬁ>

Q2
2|Zq3

IS

= NICE3 + —%— H (@aa)-

We should notice that there doesn’t appear a term proportional to H(&,) since the kernel
that results from subtracting the Hilbert transform has room for two derivatives instead of
one.

Adding all the previous estimates together we get the desired result. O

IV.B.2

We first notice that Mj (one of the terms in the curvature) is of the order of z, and therefore
it can be absorbed by the energy. Hence

0aK = (KQ)o — KQq + low order terms

We will follow the proof done by Ambrose in [4]. Taking into account the estimates for
the implicit operator done in [12], we are left to see the impact of the @) factor in the singular
term (¢W)q, since the impact into the others is either trivial (the ones that come from the
factor proportional to the curvature) or is zero (the rest of the terms).

13



Lemma IV.3
ki ~ Q*@* k7
05 (Caw) = NICE35 + B ‘H(ﬁa(K)),

where NICES35 means
/ Q7 (0" () NICES5 < CEP (1)

for some positive constants C,p and any j.
Proof: The most singular term is when we hit all the derivatives in ¢, since if we hit all of

them in @, that term would belong to NICE35. Developing the new terms

0% (¢a@) = NICE35 — &0 <(Q2 BR), \;—ap )
_ _ Q2d) o (5. (Ea(a) _ Na(ﬁ))J_a)
= NICE35 |Zal? I ( o / EOEEGE (ﬂ)dﬁ)

Q& i (- 1

= NICE — o H
CE35 2’2a’480 <z (zaa)>

- Q2(IJ2 =

= NICES5 + Z=- T <8a(K)) .

Lemma IV.4
% (60a) = NICES35

where NICE35 means
/ QN9 (@))NICE35 < CEL(t)

for some positive constants C,p and any j.
Proof: The most singular term is when we hit all the derivatives in @, since if we hit all of

them in ¢, that term would belong to NICE35. Thus, we have to estimate

[ @i @at@e = - [ohri@ ek @)
;[ @ (e @) - HEs @) < cBle)
O

2

and therefore it is NICE35.

14



IV.C Calculations of the time derivative of the energy

Using the previous lemmas and propositions, we can get the following estimates for the
derivative of the energy:

dA

A= 0K 12 / Q¥+ (DK(K)) 0 (Q*H (Goa) + 4QQuH (30)

_ 0K +2/2kQ2k+2Qa< E(K)) 07 (H (@00)
2 [ Q8 (04(R)) 0 (H(50n)

2 [ 407+, (94(F)) 0k (H(5.)
= Al + A%+ 4%

where we will say that a term is OK if it is controlled by the energy.
We should be careful while estimating B, because

dB _ g 41 / Q208 @) AOF(@)) + / Q*+20(3) A (D (1)

dt
= OK +— / Q™ F20) () MO (@ / M@0k (@) 0% (@)

0K+ | QZ’“”GQ(@)A(%(@)H% [@ . m@k@)ok@)

Hence

dB
= OK +2 [ Qrrak@)

Q2~2
2|Za|
Q3

EAE
" / (2K + 2)Q*HQu H (05 (2)) 0 (RQ))

2~2
0K +2 [ QMA@ (@) g HOK(R))
/ QHH2N (8 (@)L (QK)a) - / QF+2Qu A (D8 (@))0k (K)

L / (2 + 2)QHH2Q H (9" (@))ok L (K)
—OK +B'+ B2+ B3+ B*

H(95(K))

/ QPN (DR (@) (QR + =2 X))
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ac 1 Uet4 ~2 Ak k(R 1
dt_OK+|ga|T/Q 220k (@)U (K) = OK +C

IV.D Development of the derivative in B
We start from the development of B', B2, B3 and B*. We trivially have:

B =1 [ @ eaohe) L nk i)
— -2 [ Q*2QuA(@h(@) 0k (R)
B' = OK — [ (2h+2)@*Q, H (05" @)k ()
We now look at B2, We can decompose it in the following way

B = / QPN (08 ()08 (Qu K + QR )

= 0K +2 / QM 2N(05(20))(Qudk (K) + QO (K) + kQadk (K))
= OK + B*! + B?? 4 B23

We can write down the terms B%! and B?3 in the form
B2,1 /Q2k+2H(ak+1( ))Qaak( )
B2,3 _ 2k/@2k+2H(ak+l( ))Qaak( )

Integrating by parts in B%? we establish

B2’2 /Q2k+3A(8k+l( ))8k( )
22k +3) / QP 2Qu A (O (@))0k (K)
_ p221, p222

Again, B%?? can easily be reduced to the canonical form

B222 — _9(2%k + 3)/Q2k+2QaH(a§+1(@))8§(f()

IV.E Collection of the terms

We will split all the uncontrolled terms into three categories: high order and low order types
I and II and we will see that the sum of the terms in each category adds up to low enough
order terms, denoted by OK.
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IV.E.1 High Order

From A:

2 Q23 (0h()) 0k (H(@ua)) (47
From B:

2 [ @A @)ah(E) (B2
From C:

No terms from C.

IV.E.2 Low Order Type I

From A:
- 2 [ 3G, (0h(50)) 047 (H(@n)) (41
2 1072, (3k(R)) ok (@) (49)
From B:
“2 [ @*QuA@k @)k () (B%)
- v+ Qo EE @Ok (R) (B
2 [ QP2 H(EE(@)Qudk(K) (B21)
2k [ QP20 (@) Quok(R) (B23)
“2(2h+3) [ QF1QuHE @)O(R) (B2?)
From C:

No terms from C.

IV.E.3 Low Order Type 11

From A:
No terms from A.
From B:
1 Wb (o -y @D k(7 1
- [ @ eaeh@) k) (5
From C:
= [ @rrak@ekt®) (o)
ol
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IV.F Regularized system
Now, let 259 (a, t) be a solution of the following system (compare with (I1.12 - 1.13)):

50 (0 t) = 65 05+ (QUEMBRED,G) ) (1) + by v (0 (6,4 0227 ) (1),
(IV.1)

a)?&ﬂ _ ¢6 % ¢6 * (_2BRt(§a,6,u7 a)e,é,u) . 53,6,u o ’BR(§€767M,@8767M)‘2(Q2(5867u))a

QP (w02 5 ) Sy | 76,0 S =26 12,6
— (7) + 2657 7MBRa(z57 7#7 wev 7#) . z(i? M + (Eav 7Mw€7 7”) — 2 <P2_ (Zav 7”(@, t)))
(03 [e%

4175042 a

Q?)(ée,é,u) ~&,0,u\T —1ze,0,1 -1 ze0n  (ze,6,u\T —1ze,0,1 -1  ze,0,u
T\ ———= ) HPy 2NV P - 2 (Z0M)  HPy 2000V Pyt - 25%1)

22 (o, )3 a
Zgg,u . (22,5,u)¢ 5 1
~,€,0,
@ «

7201, 0) = Zp(ar) and @ (a, 0) = @p(a) for € > 0, 6 > 0, > 0. The functions ¢ and bu
are even mollifiers,

T 5,0,
Fon) =207 [ 1325553‘2 - 95 + 65+ (D5(QAE4)(B) BR(Z*OH, 2°%4)) (8))dB
« ’“’8,5“&
-/ H - @5 % 65 % (95(Q2(Z ) (B) BR(Z, 554)) (8))dB,
and

e + T gEeom B ~e s€ ~e
Fina) = [  OlQH O (B) BRE, 7)) (3))ds

ah S€,0,
-/ H (05(Q* (501 (B)BR("04,&7%4)) (8))d,

The RHS of the evolution equations for 259# and @®%* are Lipschitz in the spaces H*12 (T)
and H k+%(T) since they are mollified. Therefore we can solve (IV.1-IV.2) for short time,
thanks to Picard’s theorem.

Now, we can perform energy estimates to get uniform bounds in p (we just deal with a
transport term and a dissipative) and we can let p go to zero. The energy estimates that we
can get are the following:

4
d [ s e -y 1
i (u% s+ WFE N 4 15y + 3 oy | ©

4 J
1
=€,0 ~&,0 ~€,0.
< C(9) (Hze’ s + IFE [T + 1552 5y + > W) (t)-
=0
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We should note that for the new system without the ¢, mollifier, the length of the tangent

vector |0,2%| is now constant in space and depends only on time. Next we will perform energy
estimates as in the previous case by using the curvature K° from the curve 2°.

Similarly, we get (let us omit the superscript §,¢ in 2 and @%°)

°
~ 2

1
K, =NICE3 + 2’?—‘3% * s * H (Do) + W(Qz)a% x5 % H(Qq),

ok (¢,@) = NICE35 Q2@2H oF (K
a(caw) + 2 ( a( ))7

|Zal
¥ (¢) = NICE35 |
and the following collection of terms:

IV.F.1 High Order

From A:

2/Q2k+3 (32(}2)) s * ¢5 * (H(@aa)) (A?)
From B:

—2 [ QFINQOET(@))ds * ¢5 x I4(K) (B>>)

2ok e, )
From C:

No terms from C.

IV.F.2 Low Order Type I

From A:
2 [ 24Q™42Qq (04(R)) 0165 05+ (H(@n) (A1)
2 [ 1072, (0K(R)) 65 05 -0 (H(@) (A7)
From B:
=2 [ @72QuA(0k@)05 + 65 + 0K (R) (B%)
- [+ QI QuH@L T @)os 05 OEE) (B
2 [ QP H(Ok (@) Quts x b5 + OK(R)) (B21)
2k [ QPO (@) Qus < 65 4 OK(R) (B2%)

~2(2k+3) [ QFPQuIOEY @)as w05 OK(R) (5222)
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From C:
No terms from C'.

IV.F.3 Low Order Type II

From A:
No terms from A.
From B:
2~9 ~
© [ @ aok@) s s+ HEMR)) (B
T «a
From C:
= [ @00 < 05 05 (R) (CY)
ol

We note that throughout this section we have repeatedly used the following commutator
estimate for convolutions:

165 % (Dafg) — 9b5 % (Oaf)ll L2 < CllOagllLee || fl L2, (IV.3)

where the constant C' is independent of 4, f and g.

Also using this commutator estimate we can find all the cancelations we need in the
previous collection of terms of low order type I and II to obtain a suitable energy estimate.

Regarding the high order terms, we will do the estimates in detail. We will see the need
for the dissipative term since there are terms that escape for half of a derivative.

A2 220D =2 [ QU (G4(R)) s+ 05+ (H(0417%))
9 / QP H (92 (@)) by + s O (K) — 26081652,

—2 [ OL(R) (@305 x 65+ HI0KYD) = 5 0 (P H(0470)) ) — 22[04 713 3
< OB K 112106 @% o0 0515 2 — 26012113 < C(e)EP(1),

which is uniform in §. This proves that we can pass to the limit 6 — 0.

Finally, by applying the a priori energy estimates to the new system (which only depend
on ¢) we can pass to the limit ¢ — 0 since now we don’t have the previous problems and
A? + B%21 = .

V Energy with the Rayleigh-Taylor condition

In this section, we prove local existence in the tilde domain, where the time of existence does
not depend on the surface tension coefficient. In this theorem, we need initial data to satisfy
the Rayleigh-Taylor condition as we explain in Section III. This Rayleigh-Taylor condition
will hold in particular if the surface tension coefficient is small enough.
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Theorem V.1 Letk > 3. Let 2°(a) be the image of a splash curve by the map P parametrized
in such a way that |0,2°(a)| = %, where L is the length of the curve in a fundamen-

tal period, and such that 29(a),29(a) € H*2(T). Let $(a,0) € Hk+%(']l‘) be as in (1.14)
and let &(a,0) € HFY(T). Then there exist a finite time T > 0, a time-varying curve
2o, t) € C([0,T); H*+2), and functions &(a,t) € C([0,T]; H*) and ¢ € C([0,T]; H*3)
providing a solution of the water wave equations (1.12 - 1.13). Assume that initially, the
Rayleigh- Taylor condition is strictly positive.

In order to prove this theorem we will use the solutions we have obtained in theorem IV.1

for 7 > 0. We will perform energy estimates on these solutions.

V.A The energy
We will define the energy for k > 3 as

B (0) = e + w2l [ (ok0)) + [ @2k on k(o)
A B
~ ~ ~ ~ ~ 2
P [(CHRWIn + R0Q*10 EOME () +2020] [ IR Q™ (05(5))

C D

+laf? [ 0@ (9h7(F) +

E

where m(Q%* o) = minger Q?*(2(, t))o(, t) and C is a sufficiently large constant such that
C is strictly positive. Remember that ¢ was introduced in Equation 1.14.
At this point is important to notice the following.

Lemma V.2 The following sentences hold.
1. Let 3 € H33, & € H? and » € H* with k > 4. Then & € H5.
2. Let g€ H3*2, & € H3 and z € H* with k > 5. Then & € H35.
3. Letw € H3+%, and 2 € H* with k > 5. Then GRS H35.

This lemma shows that for a fixed 7 > 0 the energy of this section is equivalent to this one in
section IV.A. This allows us to use this energy to extend the solutions of the theorem IV.1
up to a time 7" which does not depend on 7 (for a small enough 7).

V.B The energy estimates

Again, we will only focus on the new terms (A — E) since the estimates for the other ones
were proved in [12] and in [8].
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V.B1 K
Proposition V.3

2
1
K; = NICE3B + 2’Q g H(@aa) + W(Qz)aH(a@)
1 1, -
= NICE3B + E |2H(cz>aa) = W(Kcﬁ)a,

where NICESB means
/ QIok (K)o (NICE3B) < CE(t)

for some positive constants C,p and any j.

Proof: The first equality follows from the proof from the last section since the energies are
equivalent (see Lemma V.2). We now prove the second one. We begin by using the relation

(I.14) to get
v (3] ) ().
()20 ((2) 1

We can easily see that

Go = — =2~ . (@Q*BR), = NICE3B

|Za|

since it is at the level of @, Zoo but we gain one derivative by multiplying by the tangential
direction. This proves that

_ 2Q%)a [ Pa
J=NICESB + =521 ( 55 )

Looking now to ¢,. we can see that

: a2 ’ (QQBR)Q - g

|Za|

5" (Q2BR)aa — Il + 12-

Caa:—
|Zal

Using the standard estimates, the only thing that causes trouble in I is when all the deriva-
tives hit @ and therefore

Q2

I = NICE3B — K—
2|Za|

H(&w).

Regarding I, again, we need all the derivatives to hit BR to get the most singular terms,
which are
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I, = NICE3B — @ [3 /7r (Za(a) = 2‘“(5))Lwa(a - B)dﬁ]

Zal?

|
Ay oL C

TP on ) ) 2 ()P
Q2 1 T (gaa(a) _gaa(ﬁ))l~
\ar”'[%/_n Fo) 2R 5)‘”}
B 2Q% 12,35, . Q% Zy -, . Q*1 & N
R X A Al N N R R PR N

Collecting all the terms from [; and Is, we obtain

Can 1
—— = NICE3B + —
Q* 2|Za |

— NICE3B + éH((K@)a).

H((K®)a)

We can finally write the total contribution as

K, = NICE3B + @ H<¢aa> @ H<4Qa¢a>

’206‘2 Q2 ‘EQP Q3
1 - 2(Q%)a (%)
——(KQ)a+ —5-H | =
|Za|( o) |Za|2 Q2
Q2 (@aa) 1 [~
et g )~ P
1 1, -
= NICE3B + WH (@aa) - ﬁ(K‘ﬁ)a

as we wanted to prove.

V.B.2

Throughout this section, we will use the following estimate which was proved in [8] for the
case without surface tension. The proof is exactly the same for the case with it.

PPan 2 Q2
Yot = NICE2B + BN — Q% K—|—7'2’ ’ (KQ)o + M,,),
(07 Oc

where NICE2B means
[ @in@kenak (vice2s) < el

for some positive constants C,p and any j.
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V.C Calculations of the time derivative of the energy

Using the previous lemmas and propositions, we can get the following estimates for the
derivative of the energy:

dA 2%h+1 gk () F [ 0219k (FVok
dt_OK+|a|/Q 0 (K)04 (H(faa) /Q Oa(K) 05 ((K$)a)

— OK +ﬁ/Q2k+lak( )8k( ((Paoa _T/Q2k+lak( )ak—l—l( )K OK +A1+A2

Again, we need to be careful while computing the derivative of B as in Section IV. We obtain
dB _ _ 1-
T =2 [ Q@I Gur) + (@) H(0E()2 (o)
- ox -2 [ QR (S

|Za|

2 / QF2A (98 (9)0E Q%0 K)
/ QH2A(OH(3)) 0K (QHQEK)a)

|Za|

|a|/c22’“c2a (04(8))0k(R)

+ [ Ll = 0@ k()2 ()
—OK +B'+ B2+ B>+ B*4+ B°

V.D Development of the derivative of the B term

We begin noticing that B! = OK, as it was proved in [12]. Integrating by parts in B, we
have that

/| a| Q2k+2Qo¢ (8k+1( ))8k( )

Furthermore, the only singular terms arising from B? are when all derivatives hit either
K or o, this gives us

~ 0K — /Q%A(a’f( )0k (0) K /szA(ak( )0 (K)o = OK + B2 + B2,

However, the only singular term of the Rayleigh-Taylor condition that is not in H*~! is
the one belonging to BRy(Z,®) - Z, when the time derivative hits w, this means

B2 — OK —r / QP A0k (2)) K H(0E(KQ))
S / QP A0k (3) K H(9L(K))
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Finally, developing B3 we obtain
- ﬁ [ @ aeke)oh @ k)
+ = [ @ A05(2)05(Q*QuK)

Ial

— B31+Bg72

Modulo lower order terms we can see that

32 _ T 2k ko ~\\ak/
B - 0K + L / Q¥ QuA(DE(3))0k (K)

We can continue splitting B! into

= OK + 7 [ QU @A)k () + / 31Q* QuA (9L ()08 (K)

|Zal

_ _ 2k+1 A (Ak+1 k _ 2k k i
_ 0K w/Q A@EL(B)0E(R) + |/ 1)Q%QuA(0)(5))dk (K)
— OK _1_33,1,1 _1_33,1,2

where in the last equality we have performed an integration by parts. We can observe that

B3,2 +B4 _ 33’1’2 +B5 _ 0’ B3,171 + Al =0
We will now see that B2 cancels with the term arising from the derivative of £. Taking
into account the previous lemmas

d -
o =2 [ 0@ (01 (R)) HkH () = OK - B2

Finally, we will see that the contributions from the time derivatives of C' and D cancel
B%! and A?. We start by noticing that, modulo lower order terms A? = B*!. Furthermore

% _OK +2r / (CIR®) |+ K)Q¥H H@E (¢) A (K))

dD - A
“F = OK +2r [ IR ®)m Q™ (ak(s) b (),

which, by integration by parts results in

dC dD
— + — + A+ B* = OK.
dt - dt "
Adding all the contributions, we can bound the derivative in time of the energy by a

power of the energy.
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A Helpful estimates for the Birkhoff-Rott operator

In this Appendix we will prove some of the estimates used throughout the paper for the sake

of clarity to the reader.
We begin with a classical decomposition of the Birkhoff-Rott operator. We should notice

that we can write it in the following ways. On one hand:

ol L [T (E@ =Bt akEe) N
BRG.&)e) = 5 [ <|z<a>_z<a—5>|2 2|aaz<a>|2tan<5/2>> (o= F)d5

N i/n < 0L%(a) )d)(a—ﬂ)dﬂ
_ 1T <<2<a — i - B)" G > oo - B)ds + =222 @) (a)

21 J_. \|Z(a) — Z(a — B)|? B 2|00 2(0)|? tan(8/2) 2|00 2(0)|?
8&2(@) V) (a o.t(w
S H @)@ +1ot(@)

- 1 (™ (Z(a) = 3a—B)* . . w(a) M (Z(a) — Z(«a -
BREO) @) =5 [ T G- ) - atanas + 52 [ EO I A
1 [T (2(a) = Z(a = B)*
|

See [5], [12] for more details concerning the lower order terms.
We will now prove energy estimates for the Birkhoff-Rott integral, showing that it is as
regular as J,2. The proof is taken from [12, Section 6].

Lemma A.1 The following estimate holds

IBR(Z,&)|lgx < CUFE)Te + 121 Fker + 10176, (A1)
for k > 2, where C and j are constants independent of Z and &.
Remark A.2 Using this estimate for k = 2 we find easily that

10 BR(Z,®)||L < CUFE) L + 12l + I@1132) (A-2)
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Proof: We shall present the proof for k = 2. Let us write

T J_ a
BRE&) e = - [ Culaplata - 905 + 5220 H(@) )
where C is given by
Cl(aa/@) — (Z(O()—Z(a—ﬁ))l o 83_2(0[) (A3)

2(@) = Z(a = B)I*  2|0aZ()]? tan(8/2)’
We shall show that ||C [z < C||F(2)]|7||IZ]|Z2- To do so we split C; = D1 + Dy + Ds

where

 (3(a) — Ha— B) — BuF(a)B)- o 8 o
= EOEE R O Ny "2 — P ~ 1aE (@B
and ( ) .
Dy = ra s T
The inequality
15(0) — 2 — B) — Bu3(@)B] < ||Z]lc[82 (A1)

yields easily [D;] < [|Z]|c2||F(2) |-
Then we can rewrite Dy as follows:

_ 8¢5(a)[(8a5(a)5 — (E() = Z(a = B))) - (Baz(a)B + (3(a) — Z(a — B)))
: 2(@) — Z(a — B)?|0a ()

I,

and, in particular, we have

0az(a) 8 — (2(ar) — Z(ar — ))\(\3 Z(a)Bl + |2(a) — Z(a = B)|)
2(@) = Z(a = B)?|0az(a)||B] '
Using (A.4) we find that [Do| < 2|12]|c2 || F(2)]2 .

Next let us observe that since § € [—m, 7| gives | D3| < C||F(2)| -
The boundedness of the term C] in L™ gives us easily

|Ds| <

IBR(Z,®)llz2 < CIFE) L 122216 2 (A.5)
In 92BR(%,&), the most singular terms are given by

(3(a) — 3o — B)-
F) —sa—pE

Lo (@250) - 25— B)
=V [ LA T R 2@ B

Pi(a) = %PV /_ﬂ 2o (o — B)

dg,




Again we have the expression

L (6%
/ Ci(a — B)dp + ﬁf[(@g@)(a)da,
giving us
1P ()] < CIIFE) | oellZ e (102022 + [H(20) (). (A.6)

Next let us write Py = Q1 + Q2 + Q3 where

o 1 Sa— B) — ola (027(a) — 022(a = B))*
Qo) = 5 | (@la—p) - ole) =BT s,
a—@ i 22(a) — 02 2(a — L — !

Q2(0) = —— /_ﬂ_(aa (@) = 032(a = B)) (| () — (a AP 10a 2(a)|2|5|2)d5,
Qst0) = 5 s [ G 2RE o) () P e A O o)
where A = 0, H.

Using that

|022(cr) = 022(c = B)| < IBI°|1Z]| 2,
we get |Q1 ()] + |Q2(e)] < |l@llcr [ F(Z) 7 [|2][Ls.5, while for Qs we have
Q3(a)| < Cll@l|z< IF )|z (IZllc2 + A2 (@))),
that is _ '
|Pa(@)| < (1+ MA@ (@D @l IFEINZ .- (A7)
Let us now consider P3 = Q4 + Q5 + Qg + Q7 + Qs + @9, where
— g 2(a)—Z(a—B))*
Q1= 2 [ @a-p)-a(a) BN 2P (50) - 20— 8))- (922(0) - 325(a— 8))) B,
P 2(a) = Z(a—B)|

8 [T @) =FHaB)=0uH@B)

Qs =~ [ HA e Sl (2(0)~(a—4) - (923() ~023(a— ) B
D)0y E() [T B(E(a) = E(a—B) = BuZ()B) - (022(a) =2z (a—p))
L H(0)—a=A)f "

__@(a)aollg(a) 3a) "o 22 (o 25— 1 o 1
Qr = 2,20 B (0R2(0) 0220 ez T

__dz(a)@éé(a) o) - " 2200) — 923(or — R L
Qg— 7T|aa2(a)|4 80! ( )/_W(aa ( ) aa ( B))(|B|2 4Sin2(5/2))d57
and
__cb(a)aéé(a) 3a) - 22 (o
Qo = BaZ ()] Oaz(a) - A(052(c)).



Proceeding as before we get
|P3(a)] < O+ [A@2E) @D @ ller IF () 1o 1215
which together with (A.6) and (A.7) gives us the estimate
(P + Py + Py)(@)| < C(1+ [A@22)(a)| + [HOZD) @)D I@ o (1 F ()00 + 12]15)-

For the rest of the terms in 92 BR(Z,&) we obtain analogous estimates allowing us to conclude
the equality

102 BR(Z,@)| 12 < C(1+ 9322 + 1020 2) Il cr I F L oe 111 s
Finally the Sobolev inequalities yield (A.9) for k = 2. O
Lemma A.3 The following estimate will also be helpful
106 BR(2,@) - 8aZ|| g < CUIF(2) o0 + 1207002 + 0] 70 ), (A.8)
for k > 2, where C' and j are constants independent of Z and &.

Proof: In 0,BR(Z,®) - 052, the most singular terms are given by

" Z(a) - (3(a) — Z(a — B)*t
Ri(0) = 5PV [ dufa— )% <| 2)(@() ( ;(a _<ﬁ)|25>> "
" z(a) - ag o) — ag o — €L
Rafe) = 5=V [ afa— )2 >‘§<&>£;(a<‘jﬂ§‘2 DN
i 3(a) - (3(a) — 3(a — B))*
R3(C¥) = —%PV/_ a)(a—,@)aa (’;(a()(_;(a _(/8)’4/8)) (g(a)—5(04—/8)).(aag(a)_aag(a_/@)))d/B'

Ry can be estimated in the same way as P%». Regarding R;, one can write it as

1 LR 0aZ(a) - (2(a) — Z(a — Bt OnZa - OuZi
i) =3PV [ onota o) [ RHLE IS RO
Now, since dqw(a— ) = —0gw(a—f3), one can integrate by parts and bound the resulting

kernel (which has order -1) giving
|Ri| < CUIFE)Lee + 121 k2 + 100170 ) -

Finally, Rs can be written in the form

T Za) - (3(a) = Z(a— B)*t
Rafa) =~V [ ata— ) | 2L ZEECI (20) — st - ) - @ui(e) - duita - 5)

—Tr

and bound Rj3 by the kernel (which has order 0) in L* norm and w in L? norm. This
completes the proof.
O
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Then, the following corollary is immediate
Corollary A.4
eallzx < CUFEN N Too + 121 Frs2 + @170)7, (A.9)

for k > 2, where C and j are constants independent of Z and &.
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