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Abstract
We consider the problem of the evolution of the interface given by two incompressible fluids

through a porous medium, which is known as the Muskat problem and in two dimensions it is
mathematically analogous to the two-phase Hele-Shaw cell. We focus on a fluid interface given
by a jump of densities, being the equation of the evolution obtained using Darcy’s law. We prove
local well-posedness when the smaller density is above (stable case) and in the unstable case we
show ill-posedness.

1 Introduction

The evolution of a fluid in a porous medium is an important and interesting topic of fluid mechanics
(see [3]). This phenomena is based on an experimental physical principle given by H. Darcy in 1856.
Darcy’s law for a 3-D fluid is given by the momentum equation

µ

κ
v = −∇p− (0, 0, g ρ),

where v is the incompressible velocity, p is the pressure, µ is the dynamic viscosity, κ is the permeability
of the medium, ρ is the liquid density and g is the acceleration due to gravity.

A different problem is the motion of a 2-D fluid in a Hele–Shaw cell (see [12]). In this case the
fluid is set between two fixed parallel plates. These plates are close enough in such a way that the
mean velocity is described by

12µ

b2
v = −∇p− (0, g ρ),

where b denotes the distance between the plates.
Considering that the fluid in the porous medium only moves in two directions suppressing one

of the variables in the horizontal plane, these two different physical phenomena of fluid dynamics
become nevertheless mathematically analogous if we identify the permeability of the medium κ and
the constant b2/12.

The Muskat problem (see [14]) and the two-phase Hele-Shaw flow (see [17]) model the evolution
of an interface between two fluids (in a porous medium and in a Hele–Shaw cell respectively) with
different viscosities and densities. A lot of information can be found in the literature about both
problems (see references in [9] and [13]). These free boundary problems are considered with surface
tension using the Laplace–Young condition and also without surface tension in which case the pressures
are equal on the interface. With surface tension, in the two dimensional case has been proven that the
problems have classical solutions (see [11]). Without surface tension, Siegel, Caflisch and Howison [18]
proved ill-posedness in an unstable 2-D case, namely when the higher-viscosity fluid contracts, and
they show global-in-time existence of small initial data in the stable case when the higher-viscosity
fluid expands. The results rely on the assumption that the Atwood number

Aµ =
µ1 − µ2

µ1 + µ2

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51407732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


X
2 X

1

X
3

Ω
2
(t)

Ω
1
(t)

is nonzero where µ1 and µ2 are the viscosities of the fluids. In the same year, Ambrose [1] treated the
2-D problem with an initial data fulfilling

(ρ2 − ρ1)g cos(θ(α, 0)) + 2AµU(α, 0) > 0,

and the following condition

(x(α, 0)− x(α′, 0))2 + (y(α, 0)− y(α′, 0))2

(α− α′)2
> 0, (1)

where the interface is the curve (x(α, t), y(α, t)), ρ1 and ρ2 are the densities of the fluids, θ is the angle
that the tangent to the curve forms with the horizontal and U is the normal velocity (given by the
Birkhoff-Rott integral).

We are interested in the case Aµ = 0 that presents the evolution of the interface for different
densities. This case, for example, models moist and dry regions in a porous medium. Meanwhile the
work of Ambrose is based on the arclength and the tangent angle formulation used by Hou, Lowengrub
and Shelley [13], due to the particular form of the vorticity in the case Aµ = 0, we get to parameterize
the curve in the two dimensional problem getting the condition (1) for any time (see equation (16)).

The free boundary problems given by fluids with different densities are been intensely studied.
Notice the classical paper of Taylor [22] and the works of Wu [23] and [24] where the full water wave
problem is solved considering the water with positive density and the air with zero density. A study
of the two-dimensional case can be found in [2] due to Ambrose and Masmoudi.

In order to simplify the notation, we consider µ/k = 12µ/b2 = 1 and g = 1. Thus, the 3-D system
is written as

v(x1, x2, x3, t) = −∇p(x1, x2, x3, t)− (0, 0, ρ(x1, x2, x3, t)), (2)

where (x1, x2, x3) ∈ R3 are the spatial variables and t ≥ 0 denotes the time. Here ρ is defined by

ρ(x1, x2, x3, t) =
{

ρ1 in Ω1(t)
ρ2 in Ω2(t),

with ρ1, ρ2 ≥ 0 constants and ρ1 6= ρ2.
We show in section 2 that in this case it is not necessary to assume any condition on the pressure

along the interface to obtain the contour equation. Furthermore, we illustrate below that the solutions
to this model are weak solutions to the following conservation of mass equation

Dρ

Dt
= ρt + v · ∇ρ = 0, (3)
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where div v = 0.
We notice the similarity with the 2-D vortex patch problem given by the two-dimensional Euler

equation where the vorticity is conserved along trajectories in a weak sense. The vorticity is consid-
ered to be a characteristic function of a domain. Chemin [8] proved global-in-time existence using
paradifferential calculus. A simpler proof can be found in [4] due to Bertozzi and Constantin.

In section 2 we show that due to (2) the velocity can be determined from the density by singular
integral operators (see [21]). It makes the equation more singular than the 2-D vortex patch problem
where the velocity is given by the Biot-Savart law.

A singular problem, more analogous to (3), is the evolution of the 2-D quasi-geostrophic (QG)
equation for sharp fronts. The QG equation models the dynamics of cold and hot air and the formation
of fronts. Here the temperature θ is conserved along particle trajectories and the velocity is given by
singular integral operators in the following form

v = (−R2θ, R1θ),

where R1 and R2 are the Riesz transforms (see [10] for more details of the QG equation). Rodrigo
[19] proposed the contour equation of the sharp fronts where the temperature is concentrated in a
domain and proved local existence and uniqueness.

The paper is organized as follows. In section 2 we derive the contour equation. We show that this
equation fulfills the conservation of mass equation in section 3. In section 4 we prove local existence
and uniqueness of the stable case. In section 5 we get a family of global solutions of the 2-D stable case
with small initial data. Finally, as a consequence of the previous section, in 6 we prove ill-posedness
for the 3-D unstable case.

2 The Contour Equation

We consider the equation with (x1, x2, x3) ∈ R3 where the fluid has different densities, that is ρ is
represented by

ρ(x1, x2, x3, t) =
{

ρ1, {x3 > f(x1, x2, t)}
ρ2, {x3 < f(x1, x2, t)}, (4)

being f the interface. Using Darcy’s Law we get

curl curl v = (−∂x1∂x3ρ,−∂x2∂x3ρ, (∂2
x1

+ ∂2
x2

)ρ).

Since div v = 0 we have curl curl v = −∆v, therefore it follows

v = (∂x1∆
−1∂x3ρ, ∂x2∆

−1∂x3ρ,−(∂2
x1

+ ∂2
x2

)∆−1ρ). (5)

The integral operators ∂x1∆
−1 and ∂x2∆

−1 are given by the kernels

K1(x1, x2, x3) =
1
4π

x1

(x2
1 + x2

2 + x2
3)3/2

, K2(x1, x2, x3) =
1
4π

x2

(x2
1 + x2

2 + x2
3)3/2

,

respectively, thus the velocity can be expressed by

v = (K1 ∗ ∂x3ρ, K2 ∗ ∂x3ρ,−K1 ∗ ∂x1ρ−K2 ∗ ∂x2ρ). (6)

Since ρ satisfies (4) we have

∇ρ = (ρ2 − ρ1)(∂x1f(x1, x2, t), ∂x2f(x1, x2, t),−1)δ(x3 − f(x1, x2, t)), (7)
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where δ is the Dirac distribution. Using (6) we obtain

v(x1, x2, x3, t) =− ρ2 − ρ1

4π
PV

∫

R2

(y1, y2,∇f(x− y, t) · y)
[|y|2 + (x3 − f(x− y, t))2]3/2

dy, (8)

where we note x = (x1, x2), y = (y1, y2) and ∇f(x − y, t) · y = ∂x1f(x − y, t)y1 + ∂x2f(x − y, t)y2.
In (8) x3 6= f(x, t) and the principal value is taken at infinity (see [21]). When x3 approaches f(x, t)
in the normal direction, we get a discontinuity on the velocity due to the fact that the vorticity is
concentrated on the interface. Thus, for ε > 0 we define

v1(x, f(x, t), t) = lim
ε→0

v(x1 − ε∂x1f(x, t), x2 − ε∂x2f(x, t), f(x, t) + ε, t),

and

v2(x, f(x, t), t) = lim
ε→0

v(x1 + ε∂x1f(x, t), x2 + ε∂x2f(x, t), f(x, t)− ε, t).

It follows

v1(x, f(x, t), t) = −ρ2 − ρ1

4π
PV

∫

R2

(y1, y2,∇f(x− y, t) · y)
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

dy

+
ρ2 − ρ1

2
∂x1f(x, t)(1, 0, ∂x1f(x, t))

1 + (∂x1f(x, t))2 + (∂x2f(x, t))2

+
ρ2 − ρ1

2
∂x2f(x, t)(0, 1, ∂x2f(x, t))

1 + (∂x1f(x, t))2 + (∂x2f(x, t))2
,

(9)

v2(x, f(x, t), t) = −ρ2 − ρ1

4π
PV

∫

R2

(y1, y2,∇f(x− y, t) · y)
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

dy

− ρ2 − ρ1

2
∂x1f(x, t)(1, 0, ∂x1f(x, t))

1 + (∂x1f(x, t))2 + (∂x2f(x, t))2

− ρ2 − ρ1

2
∂x2f(x, t)(0, 1, ∂x2f(x, t))

1 + (∂x1f(x, t))2 + (∂x2f(x, t))2
.

(10)

The velocity in the tangential directions only moves the particles on the surface f(x, t); i.e., if we
rewrite the velocity in the tangential directions, we only make a change on the parametrization and
do not alter the shape of the interface. Thus, it follows that

v(x, f(x, t), t) =− ρ2 − ρ1

4π
PV

∫

R2

(y1, y2,∇f(x− y, t) · y)
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

dy, (11)

due to the fact that the terms

±ρ2 − ρ1

2
∂x1f(x, t)(1, 0, ∂x1f(x, t))

1 + (∂x1f(x, t))2 + (∂x2f(x, t))2
,

±ρ2 − ρ1

2
∂x2f(x, t)(0, 1, ∂x2f(x, t))

1 + (∂x1f(x, t))2 + (∂x2f(x, t))2
,

are in the tangential directions. Moreover, if we add the following tangential terms to (11)

ρ2 − ρ1

4π
PV

∫

R2

y1

[|y|2 + (f(x, t)− f(x− y, t))2]3/2
dy(1, 0, ∂x1f(x, t)),
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ρ2 − ρ1

4π
PV

∫

R2

y2

[|y|2 + (f(x, t)− f(x− y, t))2]3/2
dy(0, 1, ∂x2f(x, t)),

we obtain

v(x, f(x, t), t) =
ρ2 − ρ1

4π
(0, 0, PV

∫

R2

(∇f(x, t)−∇f(x− y, t)) · y
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

dy). (12)

Finally we have the contour equation given by

df

dt
(x, t) =

ρ2 − ρ1

4π
PV

∫

R2

(∇f(x, t)−∇f(x− y, t)) · y
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

dy,

f(x, 0) = f0(x).
(13)

In the periodic case, we can obtain an equivalent equation to (13) due to the integral operators
∂x1∆

−1 and ∂x2∆
−1 can be presented by the kernels

Kp
1 (x1, x2, x3) =

1
4π

(
x1

(x2
1 + x2

2 + x2
3)3/2

L(x1, x2, x3) + M(x1, x2, x3)),

Kp
2 (x1, x2, x3) =

1
4π

(
x2

(x2
1 + x2

2 + x2
3)3/2

L(x1, x2, x3) + M(x1, x2, x3)),

respectively for (x1, x2, x3) ∈ T2 × R with T2 = [−π, π]2 and the functions L,M ∈ C∞(T2 × R)
(see [20] for the kernel of the Riesz potentials on the n-torus). Adding an appropiate function to the
singular part of Kp

1 and KP
2 , we can choose

L ∈ C∞c (T2 × R), L ≥ 0, supp L ⊂ {x2
1 + x2

2 + x2
3 ≤ 4},

L = 1 in {x2
1 + x2

2 + x2
3 ≤ 1} and L(−x1,−x2,−x3) = L(x1, x2, x3).

(14)

The function M belongs to C∞b (T2 × R) and M(0, 0, 0) = 0. The velocity can be expressed by

v = (Kp
1 ∗ ∂x3ρ,Kp

2 ∗ ∂x3ρ,−Kp
1 ∗ ∂x1ρ−Kp

2 ∗ ∂x2ρ),

and due to (7) it follows (suppressing the dependence on t)

v(x1, x2, x3) =− ρ2 − ρ1

4π
PV

∫

T2

(y1, y2,∇f(x− y) · y)
[|y|2 + (x3 − f(x− y))2]3/2

L(y, x3 − f(x− y))dy

− ρ2 − ρ1

4π

∫

T2
(1, 1,∇f(x− y) · (1, 1))M(y, x3 − f(x− y))dy,

if x3 6= f(x). Adding a term in the tangential direction we obtain

v(x, f(x)) =
ρ2 − ρ1

4π
(0, 0,

∫

T2

(∇f(x)−∇f(x− y)) · y
[|y|2 + (f(x)− f(x− y))2]3/2

L(y, f(x)− f(x− y))dy

+
∫

T2
(∇f(x)−∇f(x− y)) · (1, 1))M(y, f(x)− f(x− y))dy).

Finally we have the contour equation in the periodic case given by

df

dt
(x, t) =

ρ2 − ρ1

4π

∫

T2

(∇f(x, t)−∇f(x− y, t)) · y
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

L(y, f(x, t)− f(x− y, t))dy

+
ρ2 − ρ1

4π

∫

T2
(∇f(x, t)−∇f(x− y, t)) · (1, 1))M(y, f(x, t)− f(x− y, t))dy,

f(x, 0) =f0(x).

(15)
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We use both formulations throughout the paper. Suppose that the function f(x) only depends on x1

in equation (13). Then the contour equation in the 2-D case (with a 1-D interface) follows

df

dt
(x, t) =

ρ2 − ρ1

2π
PV

∫

R

(∂xf(x, t)− ∂xf(x− α, t))α
α2 + (f(x, t)− f(x− α, t))2

dα,

f(x, 0) = f0(x); x ∈ R.

(16)

This equation can be obtained in a similar way that (13) using the stream function. Performing a
two-dimensional analysis using the stream function, we obtain an equivalent equation to (16) in the
two dimensional periodic case as follows

df

dt
(x, t) =

ρ2 − ρ1

2π

∫

T

(∂xf(x, t)− ∂xf(x− α, t))α
α2 + (f(x, t)− f(x− α, t))2

P (α, f(x, t)− f(x− α, t))dα

+
ρ2 − ρ1

2π

∫

T
(∂xf(x, t)− ∂xf(x− α, t))Q(α, f(x, t)− f(x− α, t))dα,

f(x, 0) =f0(x),

(17)

with
P (x1, x2) ∈ C∞c (T× R), P ≥ 0, supp P ⊂ {x2

1 + x2
2 ≤ 4},

P = 1 in {x2
1 + x2

2 ≤ 1} and P (−x1,−x2) = P (x1, x2).

The function Q(x1, x2) belongs to C∞b (T× R) and Q(0, 0) = 0.
If we consider the linearized equation of the motion, we obtain a dissipative equation when ρ1 < ρ2

(the greater density is below) and an unstable equation when ρ1 > ρ2. The unstable linearized equation
presents an instability similar to the Kelvin-Helmholtz’s (see [6]).

As usual, we note the Riesz transforms in R2 (see [21])

R1f(x) =
1
2π

P.V.

∫

R2

y1

|y|3 f(x− y)dy,

R2f(x) =
1
2π

P.V.

∫

R2

y2

|y|3 f(x− y)dy,

and the operator Λsf defined by the fourier transform Λ̂sf(ξ) = |ξ|sf̂(ξ).
Suppose that f(x) is uniformly small and we can neglect the terms of order grater than one in

(13), then it reduces to the following linear equation

ft =
ρ1 − ρ2

2
(R1∂x1f + R2∂x2f) =

ρ1 − ρ2

2
Λf,

f(x, 0) = f0(x).
(18)

Applying the fourier transform we get

f̂(ξ) = f̂0(ξ)e
ρ1−ρ2

2 |ξ|t,

and therefore (18) is a dissipative equation when ρ1 < ρ2 and an ill posed problem in the case ρ1 > ρ2

with a general initial data in the Schwartz class. We need an analytic initial data in order to get a
well posed problem for ρ1 > ρ2.
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3 The conservation of mass equation

We show that if ρ is defined by (4) and f(x, t) is convected by the velocity (12) then ρ is a weak
solution of the conservation of mass equation (3) and conversely. From now on, Ω is equal to R2 or
T2 and x̃ = (x1, x2, x3).

Definition 3.1 The density ρ is a weak solution of the conservation of mass equation if for any
ϕ ∈ C∞(Ω × R × (0, T )), ϕ with compact support in the real case and periodic in (x1, x2) otherwise,
we have ∫ T

0

∫

Ω

∫

R
(ρ(x̃, t)∂tϕ(x̃, t) + v(x̃, t)ρ(x̃, t)∇ϕ(x̃, t))dx̃dt = 0, (19)

where the incompressible velocity v is given by Darcy’s law.

Then

Proposition 3.2 If f(x, t) satisfies (13) and ρ(x̃, t) is defined by (4), then ρ is a weak solution of
the conservation of mass equation. Furthermore, if ρ is a weak solution of the conservation of mass
equation given by (4), then f(x, t) satisfies (13).

Proof: Let ρ be a weak solution of (3) defined by (4). Integrating by parts we have

I =
∫ T

0

∫

Ω

∫

R
ρ∂tϕdx̃dt = ρ1

∫ T

0

∫

{x3>f}
∂tϕdx̃dt + ρ2

∫ T

0

∫

{x3<f}
∂tϕdx̃dt

= (ρ1 − ρ2)
∫ T

0

∫

Ω

ϕ(x, f(x, t), t)∂tf(x, t)dxdt.

On the other hand, due to (9) and (10) we obtain

J =
∫ T

0

∫

Ω

∫

R
ρv∇ϕ dx̃dt = ρ1

∫ T

0

∫

{x3>f}
v∇ϕdx̃dt + ρ2

∫ T

0

∫

{x3<f}
v∇ϕdx̃dt

=
∫ T

0

∫

Ω

ϕ(x, f(x, t), t)(ρ1v
1(x, f(x, t), t)− ρ2v

2(x, f(x, t), t))·(∂x1f(x, t), ∂x2f(x, t),−1)dxdt

= (ρ1 − ρ2)
∫ T

0

∫

Ω

ϕ(x, f(x, t), t)v(x, f(x, t), t) · (∂x1f(x, t), ∂x2f(x, t),−1)dxdt,

where v(x, f(x, t), t) is given by (11). We get

J =
(ρ1 − ρ2)2

4π

∫ T

0

∫

Ω

ϕ(x, f(x, t), t)PV

∫

R2

(∇f(x, t)−∇f(x− y, t)) · y
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

dydxdt.

Then I + J = 0 due to (19). Thus, if we choose ϕ(x̃, t) = ϕ(x, t) for x3 ∈ [−‖f‖L∞ , ‖f‖L∞ ] follows
that f(x, t) fulfils (13).

Following the same arguments it is easy to check that if f(x, t) satisfies (13), then ρ is a weak
solution given by (4).¤

Remark 3.3 Note that due to (5), the velocity satisfies

v = (R1(R3ρ), R2(R3ρ), −(R2
1 + R2

2)(ρ)),

where the operators R1, R2 and R3 are the Riesz transforms in three dimensions (see [21]). Since
ρ ∈ L∞(Ω × R) then v belongs to BMO (bounded mean oscillation) and therefore v is in L2(Ω × R)
locally (see [21] for the definitions and properties of the BMO space).
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4 Local well-posedness for the stable case

In this section we prove local existence and uniqueness for the stable case using energy estimates.
First we study the case Ω = R2 and at the end of the section we give the main differences with the
periodic domain. Denote the Sobolev spaces by Hk, the Holder spaces by Ck,δ with 0 ≤ δ < 1 the
Holder continuity and the hessian matrix of a function f(x) by ∇2f(x). The norms of Hk and Ck,δ

are defined as follows
‖f‖2Hk = ‖f‖2L2 + ‖Λkf‖2L2 ,

‖f‖Ck,δ = ‖f‖Ck + max
i+j=k

max
x 6=y

|∂i
x1

∂j
x2

f(x)− ∂i
x1

∂j
x2

f(y)|
|x− y|δ .

4.1 Case Ω = R2

The main theorem in this section is the following

Theorem 4.1 Let f0(x) ∈ Hk(R2) for k ≥ 4 and ρ2 > ρ1. Then there exists a time T > 0 so that
there is a unique solution to (13) in C1([0, T ];Hk(R2)) with f(x, 0) = f0(x).

We choose ρ2 − ρ1 = 4π without loss of generality, then

df

dt
(x, t) = PV

∫

R2

(∇f(x, t)−∇f(x− y, t)) · y
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

dy,

f(x, 0) = f0(x).
(20)

We show the proof with k = 4 being analogous for k > 4. We apply energy methods (see [5] for more
details). Then

1
2

d

dt
‖f‖2L2(t) =

∫

R2
f(x)PV

∫

R2

(∇f(x)−∇f(x− y)) · y
[|y|2 + (f(x)− f(x− y))2]3/2

dydx

=
∫

R2
f(x)

∫

|y|<1

(∇f(x)−∇f(x− y)) · y
[|y|2 + (f(x)− f(x− y))2]3/2

dydx

+
∫

R2
f(x)PV

∫

|y|>1

∇f(x) · y
[|y|2 + (f(x)− f(x− y))2]3/2

dydx

−
∫

R2
f(x)PV

∫

|y|>1

∇f(x− y) · y
[|y|2 + (f(x)− f(x− y))2]3/2

dydx

= I1 + I2 + I3.

The identity

∂xif(x)− ∂xif(x− y) =
∫ 1

0

∇∂xif(x + (s− 1)y) · y ds,

yields

I1 ≤ C

∫ 1

0

ds

∫

|y|<1

|y|−1

∫

R2

|f(x)||∇2f(x + (s− 1)y)|
[1 + ((f(x)− f(x− y))2|y|−2]3/2

dxdy

≤ C

∫ 1

0

ds

∫

|y|<1

|y|−1dy‖f‖L2

∑

i+j=2

‖∂i
x1

∂j
x2

f‖L2 ≤ C‖f‖2H2 .
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Integrating by parts, the term I2 is written

I2 =
3
2

∫

|y|>1

∫

R2
|f(x)|2 (f(x)− f(x− y))(∇f(x)−∇f(x− y)) · y

[|y|2 + ((f(x)− f(x− y))2]5/2
dxdy

≤ C

∫

|y|>1

|y|−3

∫

R2
|f(x)|2 |f(x)− f(x− y)||y|−1|∇f(x)−∇f(x− y)|

[1 + ((f(x)− f(x− y))2|y|−2]5/2
dxdy

≤ C‖f‖L∞‖f‖2H1 .

Integrating by parts in I3, it follows

I3 =
∫

|y|>1

∫

R2
f(x)f(x− y)

|y|2 − 2(f(x)− f(x− y))2

[|y|2 + (f(x)− f(x− y))2]5/2
dxdy

+ 3
∫

|y|>1

∫

R2
f(x)f(x− y)

(f(x)− f(x− y))∇f(x− y) · y
[|y|2 + (f(x)− f(x− y))2]5/2

dxdy

−
∫

|y|=1

∫

R2
f(x)f(x− y)

|y|2
[|y|2 + (f(x)− f(x− y))2]3/2

dxdσ(y)

≤ C(‖f‖L∞ + 1)‖f‖2H1 .

Using Sobolev inequalities, we get finally

d

dt
‖f‖2L2(t) ≤ C(‖f‖3H2(t) + 1). (21)

We consider the quantity

1
2

d

dt
‖∂4

x1
f‖2L2(t) = I4 + I5 + I6 + I7 + I8,

where

I4 =
∫

R2
∂4

x1
f(x)PV

∫

R2

(∇∂4
x1

f(x)−∇∂4
x1

f(x− y)) · y
[|y|2 + (f(x)− f(x− y))2]3/2

dydx,

I5 = 4
∫

R2
∂4

x1
f(x)

∫

R2
(∇∂3

x1
f(x)−∇∂3

x1
f(x− y)) · y ∂x1A(x, y)dydx,

I6 = 6
∫

R2
∂4

x1
f(x)

∫

R2
(∇∂2

x1
f(x)−∇∂2

x1
f(x− y)) · y ∂2

x1
A(x, y)dydx,

I7 = 4
∫

R2
∂4

x1
f(x)

∫

R2
(∇∂x1f(x)−∇∂x1f(x− y)) · y ∂3

x1
A(x, y)dydx,

I8 =
∫

R2
∂4

x1
f(x)

∫

R2
(∇f(x)−∇f(x− y)) · y ∂4

x1
A(x, y)dydx,

and
A(x, y) = [|y|2 + (f(x)− f(x− y))2]−3/2.

The most singular term is I4. In order to estimate it

I4 =
∫

R2
∂4

x1
f(x)PV

∫

R2

∇∂4
x1

f(x, t) · y
[|y|2 + (f(x, t)− f(x− y, t))2]3/2

dydx

−
∫

R2
∂4

x1
f(x)PV

∫

R2

∇∂4
x1

f(y, t) · (x− y)
[|x− y|2 + (f(x, t)− f(y, t))2]3/2

dydx

= J1 + J2.
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Integrating by parts

J1 =
3
2

∫

R2
|∂4

x1
f(x)|2PV

∫

R2

(f(x)− f(x− y))(∇f(x)−∇f(x− y)) · y
[|y|2 + ((f(x)− f(x− y))2]5/2

dydx

=
3
2

∫

R2
|∂4

x1
f(x)|2(

∫

|y|>1

dy + PV

∫

|y|<1

dy)dx

≤ 3
2
‖f‖C1‖∂4

x1
f‖2L2 +

3
2
M(f)‖∂4

x1
f‖2L2 ,

(22)

where

M(f) = max
x

∣∣∣PV

∫

|y|<1

(f(x)− f(x− y))(∇f(x)−∇f(x− y)) · y
[|y|2 + ((f(x)− f(x− y))2]5/2

dy
∣∣∣.

We estimate this maximum in the following form

M(f) ≤ max
x

∣∣∣
∫

|y|<1

(f(x)− f(x− y)−∇f(x) · y)(∇f(x)−∇f(x− y)) · y
[|y|2 + ((f(x)− f(x− y))2]5/2

dy
∣∣∣

+ max
x

∣∣∣
∫

|y|<1

(∇f(x) · y)((∇f(x)−∇f(x− y)) · y − y · ∇2f(x) · y)
[|y|2 + ((f(x)− f(x− y))2]5/2

dy
∣∣∣

+ max
x

∣∣∣
∫

|y|<1

(∇f(x) · y)(y · ∇2f(x) · y)(B(x, y)− C(x, y))dy
∣∣∣

+ max
x

∣∣∣PV

∫

|y|<1

(∇f(x) · y)(y · ∇2f(x) · y)
[|y|2 + (∇f(x) · y)2]5/2

dy
∣∣∣,

(23)

where

B(x, y) = [|y|2 + ((f(x)− f(x− y))2]−5/2, C(x, y) = [|y|2 + (∇f(x) · y)2]−5/2.

Making the change of variables y = −z, we obtain that the last integral in (23) is null, then we can
estimate M(f) by

M(f) ≤ ‖f‖2C2 max
x

∣∣∣
∫

|y|<1

|y|−1

[1 + ((f(x)− f(x− y))|y|−1)2]5/2
dy

∣∣∣

+ ‖f‖C1‖f‖C2,δ

∣∣∣
∫

|y|<1

|y|−2+δdy
∣∣∣ + ‖f‖2C1‖f‖2C2

∣∣∣
∫

|y|<1

|y|−1dy
∣∣∣

≤ C(‖f‖2C2 + ‖f‖C1‖f‖C2,δ + ‖f‖2C1‖f‖2C2),

with 0 < δ < 1, having finally
J1 ≤ C(‖f‖4C2,δ + 1)‖∂4

x1
f‖2L2 . (24)

In order to estimate J2, we integrate by parts getting

J2 =
∫

R2
∂4

x1
f(x)PV

∫

R2

∇y(∂4
x1

f(x)− ∂4
x1

f(y)) · (x− y)
[|x− y|2 + (f(x)− f(y))2]3/2

dydx

= K1 + K2,

with

K1 = −
∫

R2
∂4

x1
f(x)PV

∫

R2

∂4
x1

f(x)− ∂4
x1

f(y)
[|x− y|2 + (f(x)− f(y))2]3/2

dydx,
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and

K2 =
∫

R2
∂4

x1
f(x)

∫

R2
(∂4

x1
f(x)− ∂4

x1
f(y))

3(f(x)− f(y))(f(x)− f(y)−∇f(y) · (x− y))
[|x− y|2 + (f(x)− f(y))2]5/2

dydx.

Making a change of variables we can obtain

K1 = −PV

∫

R2

∫

R2
∂4

x1
f(x)

∂4
x1

f(x)− ∂4
x1

f(y)
[|x− y|2 + (f(x)− f(y))2]3/2

dydx

= PV

∫

R2

∫

R2
∂4

x1
f(y)

∂4
x1

f(x)− ∂4
x1

f(y)
[|x− y|2 + (f(x)− f(y))2]3/2

dydx

= −1
2

∫

R2

∫

R2

(∂4
x1

f(x)− ∂4
x1

f(y))2

[|x− y|2 + (f(x)− f(y))2]3/2
dydx

≤ 0.

Here we observe the main difference with the unstable case in which we obtain the opposite sign. Now
we consider

K2 = L1 + L2 + L3,

being

L1 = 3
∫

R2
|∂4

x1
f(x)|2PV

∫

R2

(f(x)− f(y))(f(x)− f(y)−∇f(y) · (x− y))
[|x− y|2 + (f(x)− f(y))2]5/2

dydx,

L2 = −3
4
PV

∫

R2

∫

R2
∂4

x1
f(x)∂4

x1
f(y)

(f(x)− f(y))(x− y) · (∇2f(x) +∇2f(y)) · (x− y)
[|x− y|2 + (f(x)− f(y))2]5/2

dydx,

L3 = −3
∫

R2

∫

R2
∂4

x1
f(x)∂4

x1
f(y)(f(x)− f(y))D(x, y)dydx,

with

D(x, y) =
(f(x)− f(y)−∇f(y) · (x− y)− 1

4 (x− y) · (∇2f(x) +∇2f(y)) · (x− y))
[|x− y|2 + (f(x)− f(y))2]5/2

.

The term L1 can be estimated like J1 in (22) and one finds that

L1 ≤ C(1 + ‖f‖4C2,δ)‖∂4
x1

f‖2L2 .

Exchanging x for y we obtain that L2 = 0.
For the last term L3, it follows

L3 ≤ C

∫

R2
|∂4

x1
f(x)|2

∫

R2
|f(x)− f(y)||D(x, y)|dydx

+ C

∫

R2
|∂4

x1
f(y)|2

∫

R2
|f(x)− f(y)||D(x, y)|dxdy

≤ C

∫

R2
|∂4

x1
f(x)|2

∫

R2
|f(x)− f(x− y)||D(x, x− y)|dydx

+ C

∫

R2
|∂4

x1
f(y)|2

∫

R2
|f(x + y)− f(y)||D(x + y, y)|dxdy

≤ C

∫

R2
|∂4

x1
f(x)|2dx(

∫

|y|<1

dy +
∫

|y|>1

dy) +
∫

R2
|∂4

x1
f(y)|2dy(

∫

|x|<1

dx +
∫

|x|>1

dx)

≤ C‖f‖C1‖f‖C2,δ‖∂4
x1

f‖2L2 .
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Finally
J2 = K1 + K2 ≤ K2 = L1 + L2 + L3 = L1 + L3 ≤ C(‖f‖4C2,δ + 1)‖∂4

x1
f‖2L2 ,

and due to (24) we obtain
I4 ≤ C(‖f‖4C2,δ + 1)‖∂4

x1
f‖2L2 . (25)

Now we estimate the integral I5. We have I5 = J3 + J4 where

J3 = 4
∫

R2
∂4

x1
f(x)∇∂3

x1
f(x) · PV

∫

R2
y
(f(x)− f(x− y))(∂x1f(x)− ∂x1f(x− y))

[|y|2 + (f(x)− f(x− y))2]5/2
dydx,

and

J4 = −4PV

∫

R2

∫

R2
∂4

x1
f(x)∇∂3

x1
f(y) · (x− y)

(f(x)− f(y))(∂x1f(x)− ∂x1f(y))
[|x− y|2 + (f(x)− f(y))2]5/2

dydx

= −4PV

∫

R2

∫

R2
∂4

x1
f(x)∂x2∂

3
x1

f(y)(x2 − y2)
(f(x)− f(y))(∂x1f(x)− ∂x1f(y))

[|x− y|2 + (f(x)− f(y))2]5/2
dydx.

The way to estimate J3 is similar to the term J1 in (22), and we find that

J3 ≤ C(1 + ‖f‖4C2,δ)‖f‖2H4 .

We decompose the term J4 = K3 + K4 + K5 + K6 as follows

K3 = −4PV

∫

R2

∫

R2
∂4

x1
f(x)∂x2∂

3
x1

f(x− y)y2E(x, y)dydx,

K4 = −4PV

∫

R2

∫

R2
∂4

x1
f(x)∂x2∂

3
x1

f(x− y)y2F (x, y)dydx,

K5 = −4PV

∫

R2

∫

|y|<1

∂4
x1

f(x)∂x2∂
3
x1

f(x− y)y2(∇f(x) · y)(∇∂x1f(x) · y)(B(x, y)− C(x, y))dydx

and

K6 = −4PV

∫

R2

∫

|y|<1

∂4
x1

f(x)∂x2∂
3
x1

f(x− y)y2
(∇f(x) · y)(∇∂x1f(x) · y)
[|y|2 + (∇f(x) · y)2]5/2

dydx,

where

E(x, y) =
(f(x)− f(x− y)−∇f(x) · y)(∂x1f(x)− ∂x1f(x− y))

[|y|2 + (f(x)− f(x− y))2]5/2
,

and

F (x, y) =
(∇f(x) · y)(∂x1f(x)− ∂x1f(x− y)−∇∂x1f(x) · yX{|y|<1})

[|y|2 + (f(x)− f(x− y))2]5/2
.

The terms K3,K4, and K5 are estimated as J1. Then we find that

K3 ≤ C(1 + ‖f‖2C2)‖f‖2H4 ,

K4 ≤ C(1 + ‖f‖C1‖f‖C2,δ)‖f‖2H4

and
K5 ≤ C(1 + ‖f‖2C1‖f‖2C2)‖f‖2H4 .

We rewrite K6 and we get

K6 = −4PV

∫

R2
∂4

x1
f(x)S(∂x2∂

3
x1

f)(x)dx,
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with the operator S defined by

S(g)(x) = PV

∫

|y|<1

Σ(x, y)
|y|2 g(x− y)dy,

and

Σ(x, y) =
y2

|y|
(∇f(x) · y

|y| )(∇∂x1f(x) · y
|y| )

[1 + (∇f(x) · y
|y| )

2]5/2
. (26)

The function Σ(x, y) satisfies that

(i) Σ(x, λy) = Σ(x, y), ∀λ > 0,

(ii) Σ(x,−y) = −Σ(x, y),
(iii) sup

x
|Σ(x, y)| ≤ ‖∇∂x1f‖L∞ ,

and therefore S is a bounded linear map on Lp(R2) for 1 < p < ∞ and ‖S‖p ≤ C‖∇∂x1f‖L∞ (see [21]
and references therein for more details). Then K6 ≤ C‖f‖C2‖∂4

x1
f‖L2‖∂x2∂

3
x1

f‖L2 . We obtain finally

I5 ≤ C(1 + ‖f‖4C2,δ)‖f‖2H4 .

In order to estimate the term I6 we take

I6 = 6
∫ 1

0

ds

∫

R2
dy

∫

R2
∂4

x1
f(x) y · (∇2∂2

x1
f(x + (s− 1)y)) · y ∂2

x1
A(x, y)dx

≤
∫ 1

0

ds(
∫

|y|<1

dy +
∫

|y|>1

dy)
∫

R2
|∂4

x1
f(x)||∇2∂2

x1
f(x + (s− 1)y)||∂2

x1
A(x, y)||y|2 dx

≤ C(
∫

|y|<1

|y|−2+δdy +
∫

|y|>1

|y|−3dy)(1 + ‖f‖4C2,δ)‖f‖2H4 .

The most singular term of I7 is K7

K7 = −12
∫

R2

∫

R2
∂4

x1
f(x)(∇∂x1f(x)−∇∂x1f(x− y)) · y G(x, y)dydx,

where

G(x, y) =
(f(x)− f(x− y))(∂3

x1
f(x)− ∂3

x1
f(x− y))

[|y|2 + (f(x)− f(x− y))2]5/2
.

Due to |∇∂x1f(x)−∇∂x1f(x− y)| ≤ ‖f‖C2,δ |y|δ and writing

∂3
x1

f(x)− ∂3
x1

f(x− y) =
∫ 1

0

∇∂3
x1

f(x + (s− 1)y) · y ds,

we obtain K7 ≤ C(‖f‖2C2,δ + 1)‖f‖2H4 and I7 ≤ C(1 + ‖f‖4C2,δ)‖f‖2H4 .
The most singular term of I8 is K8

K8 = −12
∫

R2

∫

R2
∂4

x1
f(x)(∂4

x1
f(x)− ∂4

x1
f(x− y)) H(x, y)dydx,

where

H(x, y) =
(f(x)− f(x− y))(∇f(x)−∇f(x− y)) · y

[|y|2 + (f(x)− f(x− y))2]5/2
.
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Then

K8 = −12
∫

R2
|∂4

x1
f(x)|2PV

∫

R2

(f(x)− f(x− y))(∇f(x)−∇f(x− y)) · y
[|y|2 + (f(x)− f(x− y))2]5/2

dydx,

is controlled as before. We obtain K8 ≤ C(1 + ‖f‖4C2,δ)‖∂4
x1

f‖2L2 and I8 ≤ C(1 + ‖f‖4C2,δ)‖f‖2H4 .
Finally, we have

d

dt
‖∂4

x1
f‖2L2(t) ≤ C(1 + ‖f‖4C2,δ(t))‖f‖2H4(t),

and using Sobolev inequalities we get

d

dt
‖∂4

x1
f‖2L2(t) ≤ C(‖f‖6H4(t) + 1). (27)

In a similar way we obtain
d

dt
‖∂4

x2
f‖2L2(t) ≤ C(‖f‖6H4(t) + 1), (28)

and since we can define ‖f‖2H4 = ‖f‖2L2 + ‖∂4
x1

f‖2L2 + ‖∂4
x2

f‖2L2 , due to (21), (27) and (28) it follows

d

dt
‖f‖H4(t) ≤ C(‖f‖5H4(t) + 1).

Using Gronwall’s inequality we get that the quantity ‖f‖H4 is bounded up to a time T = T (‖f0‖H4).
Then, applying energy methods the local existence result follows.

Let the functions f1(x, t), f2(x, t) be two solutions of equation (13) with f1(x, 0) = f2(x, 0) = f0(x),
and f = f1 − f2. Then

d

dt
‖f‖2L2(t) = I9 + I10 + I11,

with
I9 =

∫

R2
f(x)∇f(x) · PV

∫

R2
y[|y|2 + (f1(x)− f1(x− y))2]−3/2dydx,

I10 = −
∫

R2
f(x)PV

∫

R2
∇f(y, t) · (x− y)[|x− y|2 + (f1(x)− f1(y))2]−3/2dydx

and
I11 =

∫

R2
f(x)PV

∫

R2
(∇f2(x)−∇f2(x− y)) · yN(x, y)dydx,

with
N(x, y) = [|y|2 + (f1(x)− f1(x− y))2]−3/2 − [|y|2 + (f2(x)− f2(x− y))2]−3/2.

Integrating by part in I9 we have I9 ≤ C(‖f1‖H4)‖f‖2L2 , and I11 ≤ C(‖f1‖H4 , ‖f2‖H4)‖f‖2L2 . The
term

I10 = −
∫

R2
f(x)PV

∫

R2
∇y(f(y)− f(x)) · (x− y)[|x− y|2 + (f1(x)− f1(y))2]−3/2dydx

= −PV

∫

R2

∫

R2
f(x)(f(x)− f(y))[|x− y|2 + (f1(x)− f1(y))2]−3/2dydx

+ PV

∫

R2

∫

R2
f(x)(f(x)− f(y))

3(f1(x)− f1(y))(f1(x)− f1(y)−∇f1(x)(x− y))
[|x− y|2 + (f1(x)− f1(y))2]5/2

dydx.

Then we have that I10 ≤ J5 + J6 where

J5 =
∫

R2
|f(x)|2PV

∫

R2

3(f1(x)− f1(y))(f1(x)− f1(y)−∇f1(x)(x− y))
[|x− y|2 + (f1(x)− f1(y))2]5/2

dydx
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and

J6 = −
∫

R2
f(x)PV

∫

R2
f(x− y)

3(f1(x)− f1(x− y))(f1(x)− f1(x− y)−∇f1(x) · y)
[|y|2 + (f1(x)− f1(x− y))2]5/2

dydx.

The term J5 is estimated as J1 obtaining J5 ≤ C(‖f1‖H4)‖f‖2L2 . The term J6 can be expressed as
J6 = K9 + K10 with

K9 = −3
∫

R2
f(x)

∫

R2
f(x− y)

(f1(x)− f1(x− y))G(x, y)
[|y|2 + (f1(x)− f1(x− y))2]5/2

dydx,

where the function G(x, y) is given by

G(x, y) = f1(x)− f1(x− y)−∇f1(x) · y − 1
4
y · (∇2f1(x) +∇2f1(x− y)) · y.

One finds that the principal value K10 is null. Therefore, we obtain finally J6 ≤ C(‖f1‖H4)‖f‖2L2 .
Applying Gronwall’s inequality we get uniqueness.

4.2 Case Ω = T2

In the periodic case we give the theorem of local well-posedness and the differences with Ω = R2.

Theorem 4.2 Let f0(x) ∈ Hk(T2) for k ≥ 4 and ρ2 > ρ1. Then there exists a time T > 0 so that
there is a unique solution to (15) in C1([0, T ];Hk(T2)) with f(x, 0) = f0(x).

The proof is similar to the theorem 4.1 but we must use the properties of the function L in (14).
We consider without loss of generality ρ2 − ρ1 = 4π. In order to control the evolution of the quantity
‖∂4

x1
f‖L2 , the most singular term is

I =
∫

T2
∂4

x1
f(x)

∫

T2

(∇∂4
x1

f(x)−∇∂4
x1

f(x− y)) · y
[|y|2 + (f(x)− f(x− y))2]3/2

L(y, f(x)− f(x− y))dydx

=
∫

T2
∂4

x1
f(x)∇∂4

x1
f(x) · PV

∫

T2
y

L(y, f(x)− f(x− y))
[|y|2 + (f(x)− f(x− y))2]3/2

dydx

−
∫

T2
∂4

x1
f(x)PV

∫

T2

∇∂4
x1

f(y) · (x− y)
[|x− y|2 + (f(x)− f(y))2]3/2

L(x− y, f(x)− f(y))dydx

= J1 + J2.

Integrating by parts

J1 =
3
2

∫

T2
|∂4

x1
f(x)|2PV

∫

T2
A(x, y)L(y, f(x)− f(x− y))dydx

− 1
2

∫

T2
|∂4

x1
f(x)|2PV

∫

T2

Lx3(y, f(x)− f(x− y))(∇f(x)−∇f(x− y)) · y
[|y|2 + (f(x)− f(x− y))2]3/2

dydx

= K1 + K2,

(29)

where

A(x, y) =
(f(x)− f(x− y))(∇f(x)−∇f(x− y)) · y

[|y|2 + ((f(x)− f(x− y))2]5/2

and
Lx3(x1, x2, x3) = ∂x3L(x1, x2, x3).

15



Due to |L(x1, x2, x3)− 1| ≤ C|(x1, x2, x3)| we have

K1 ≤ C(1 + ‖f‖4C2,δ)‖f‖2H4 + C‖∂4
x1

f‖2L2 max
x

∣∣∣PV

∫

T2

(∇f(x) · y)(y · ∇2f(x) · y)
[|y|2 + (∇f(x) · y))2]5/2

dy
∣∣∣

≤ C(1 + ‖f‖4C2,δ)‖f‖2H4 .

Using that |f(x)− f(x− y)| ≤ ‖f‖C1 |y| and Lx3 = 0 in {x2
1 + x2

2 + x2
3 ≤ 4}, we have that

K2 = −1
2

∫

T2
|∂4

x1
f(x)|2

∫

|y|> 2
1+‖f‖

C1

Lx3(y, f(x)− f(x− y))(∇f(x)−∇f(x− y)) · y
[|y|2 + (f(x)− f(x− y))2]3/2

dydx

≤ C(‖f‖4C2,δ + 1)‖f‖2H4 .

In order to estimates J2, we integrate by parts getting

J2 = −
∫

T2
∂4

x1
f(x)PV

∫

T2

∇y(∂4
x1

f(y)− ∂4
x1

f(x)) · (x− y)
[|x− y|2 + (f(x)− f(y))2]3/2

L(x− y, f(x)− f(y))dydx

= K3 + K4 + K5 + K6

with

K3 = −
∫

T2
∂4

x1
f(x)PV

∫

T2

∂4
x1

f(x)− ∂4
x1

f(y)
[|x− y|2 + (f(x)− f(y))2]3/2

L(x− y, f(x)− f(y))dydx,

K4 =
∫

T2
∂4

x1
f(x)

∫

T2
(∂4

x1
f(x)− ∂4

x1
f(y))B(x, y)L(x− y, f(x)− f(y))dydx,

K5 =
∫

T2

∫

T2
∂4

x1
f(x)(∂4

x1
f(y)− ∂4

x1
f(x))C(x, y)Lx3(x− y, f(x)− f(y))dydx,

K6 =
∫

T2

∫

T2
∂4

x1
f(x)(∂4

x1
f(y)− ∂4

x1
f(x))D(x, y)dydx,

and

B(x, y) =
3(f(x)− f(y))(f(x)− f(y)−∇f(y) · (x− y))

[|x− y|2 + (f(x)− f(y))2]5/2
,

C(x, y) = − ∇f(y) · (x− y)
[|x− y|2 + (f(x)− f(y))2]3/2

,

D(x, y) = −Lx1(x− y, f(x)− f(y))(x1 − y1) + Lx2(x− y, f(x)− f(y))(x2 − y2)
[|x− y|2 + (f(x)− f(y))2]3/2

,

Lx1(x1, x2, x3) = ∂x1L(x1, x2, x3), Lx2(x1, x2, x3) = ∂x2L(x1, x2, x3).

Exchanging the variables x and y we can obtain K3 ≤ 0. The terms K4,K5 and K6 can be estimated
in a similar way as K1.

Therefore, we obtain
d

dt
‖∂4

x1
f‖L2(t) ≤ C(‖f‖5H4(t) + 1),

and analogously
d

dt
‖∂4

x2
f‖L2(t) ≤ C(‖f‖5H4(t) + 1).

This proves local existence.
The proof of the uniqueness is similar to the case Ω = R2.
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4.3 2-D case

Using the equation (16) in R and the equation (17) in the periodic case we obtain the following
theorem

Theorem 4.3 Let f0(x) ∈ Hk for k ≥ 3 and ρ2 > ρ1. Then there exists a time T > 0 so that there
is a unique solution to (16) in C1([0, T ]; Hk) with f(x, 0) = f0(x).

The proof is similar to the theorem’s 4.1 and 4.2.

5 Global solution for the 2-D stable case

In this section we obtain a family of global solutions for the 2-D stable case with a small initial data
with respect to a fixed norm. Indeed, we can get the result with an initial data with the property
‖f0‖Hs = ∞ for s > 3/2.

In this section we consider x ∈ R and

‖f‖a =
∑

|f̂(k)|ea|k|.

For a > 0, if ‖f‖a < ∞, then the function f can be extended analytically on the strip |=z| < a.
Furthermore

‖∂xf‖a ≤ C
‖f‖b

b− a
, (30)

for b > a. The main result of this section is

Theorem 5.1 Let f0(x) be a function such that
∫
T f0(x) dx = 0, ‖∂xf0‖0 ≤ ε for ε small enough and

‖∂2
xf0‖b(t) ≤ εeb(t)(1 + |b(t)|γ−1), (31)

with 0 < γ < 1, b(t) = a − (ρ2 − ρ1)t/2, ρ2 > ρ1 and a ≤ (ρ2 − ρ1)t/2. Then, there exists a unique
solution of (16) with f(x, 0) = f0(x) and ρ2 > ρ1 satisfying

‖∂xf‖a(t) ≤ C(ε) exp((2σa− (ρ2 − ρ1)t)/4), (32)

and

‖∂2
xf‖a(t) ≤ C(ε)(1 + |σa− ρ2 − ρ1

2
t|γ−1) exp((2σa− (ρ2 − ρ1)t)/4), (33)

for a ≤ ρ2−ρ1
2σ t, σ = 1 + δ and 0 < δ < 1.

The condition (31) can be satisfied for example if ‖Λ1+γf0‖0 < ε and f̂0(0) = f̂0(1) = f̂0(−1) = 0
since

‖∂2
xf0‖b(t) ≤ eb(t)‖Λ1+γf0‖0 max

k≥2
|k|1−γeb(t)(|k|−1).

In order to prove the theorem, we use the Cauchy-Kowalewski method (see [15] and [16]) in a
similar way as Caflisch and Orellana [7] and Siegel, Caflisch and Howison [18]. We show the proof
with ρ2 − ρ1 = 2 without loss of generality.

Let g(x, t) and h(x, t) be functions satisfying

gt = −Λg,

g(x, 0) = f0(x),
ht = −Λh + T (g + h),
h(x, 0) = 0,

(34)
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with

T (f) = −π−1

∫

R

∂xf(x)− ∂xf(x− α)
α

( f(x)−f(x−α)
α

)2

1 +
( f(x)−f(x−α)

α

)2 dα. (35)

Then the function f(x, t) = g(x, t) + h(x, t) is a solution of (16).
First, we show some properties of the nonlinear operator T .

Lemma 5.2 If ‖∂xf‖a, ‖∂xg‖a < 1 for a ≥ 0 then

T̂ (f)(0) = 0, (36)

‖∂xT (f)‖a ≤ C1‖∂2
xf‖a‖∂xf‖a, (37)

and

‖∂xT (f)− ∂xT (g)‖a ≤ C2(‖∂2
xf‖a + ‖∂2

xg‖a)‖∂xf − ∂xg‖a

+ C2(‖∂xf‖a + ‖∂xg‖a)‖∂2
xf − ∂2

xg‖a,
(38)

with C1 = 4(1− ‖∂xf‖2a)−2 and C2 = 4(1− ‖∂xf‖2a)−2 + (1− ‖∂xg‖2a)−2.

Proof of the Lemma: Due to the inequality |∂xf(x)| ≤ ‖∂xf‖a < 1 and by (35) we obtain

T (f) = π−1
∑

n≥1

(−1)n

∫

R

∂xf(x)− ∂xf(x− α)
α

(
f(x)− f(x− α)

α

)2n

dα, (39)

and

T (f) = π−1∂x

∑

n≥1

(−1)n

2n + 1

∫

R

(
f(x)− f(x− α)

α

)2n+1

dα.

Thus T̂ (f)(0) = 0. Using (39)

T̂ (f)(k) = π−1
∑

n≥1

(−1)n

∫

R

∑

k0,...,k2n

δ(
2n∑

j=0

kj , k)ik0

2n∏

j=0

f̂(kj)
1− e−iαkj

α
dα

=
∑

n≥1

(−1)n
∑

k0,...,k2n

δ(
2n∑

j=0

kj , k)Mn(k0, ..., k2n) ik0

2n∏

j=0

f̂(kj),

where

Mn(k0, ..., k2n) = π−1

∫

R

2n∏

j=0

1− e−iαkj

α
dα. (40)

We get

Mn(k0, ..., k2n) = (−1)nmn(k0, ..., k2n)
2n∏

j=1

kj ,
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with

mn(k0, ..., k2n) = π−1

∫ 1

0

ds1...

∫ 1

0

ds2n

∫

R

1− e−iαk0

α
exp

(
iα

2n∑

j=1

(sj − 1)kj

)
dα

= π−1

∫ 1

0

ds1...

∫ 1

0

ds2nPV

∫

R
exp

(
iα

2n∑

j=1

(sj − 1)kj

)dα

α

− π−1

∫ 1

0

ds1...

∫ 1

0

ds2nPV

∫

R
exp

(
− iαk0 + iα

2n∑

j=1

(sj − 1)kj

)dα

α

= i

∫ 1

0

ds1...

∫ 1

0

ds2n(sing A− sing B),

and

A =
2n∑

j=1

(sj − 1)kj , B = −k +
2n∑

j=1

sjkj .

It follows

T̂ (f)(k) =
∑

n≥1

∑

k0,...,kn

δ(
2n∑

j=0

kj , k)mn(k0, ..., k2n)
2n∏

j=0

kj f̂(kj),

with |mn(k0, ..., k2n)| ≤ 2.
We have

∑

k

ea|k||k||T̂ (f)(k)| ≤ 2
∑

k

∑

n≥1

∑

k0,...,kn

ea|k||k|δ(
2n∑

j=0

kj , k)
2n∏

j=0

|kj ||f̂(kj)|

≤ 2
∑

n≥1

(2n + 1)
∑

k0,...,kn

ea|k0||k0|2|f̂(k0)|
2n∏

j=1

ea|kj ||kj ||f̂(kj)|,

and therefore

‖∂xT (f)‖a ≤ 2‖∂2
xf‖a

∑

n≥1

(2n + 1)‖∂xf‖2n
a = 2‖∂2

xf‖a
3‖∂xf‖3a − ‖∂xf‖4a

(1− ‖∂xf‖2a)2
.

We get (37) for ‖∂xf‖a < 1. In a similar way we obtain (38).¤

From (34) g can be expressed as follows

ĝ(k, t) = e−|k|tf̂0(k),

and by the hypothesis of the initial data we have

‖∂xg‖a(t) ≤ εea−t, (41)

‖∂2
xg‖a(t) ≤ εea−t(1 + (t− a)γ−1), (42)

for t ≥ a. We will prove the existence of h by an induction argument on the iterative equation:

∂th
n+1 = −Λhn+1 + T (g + hn),

hn+1(x, 0) = 0,

h0 = 0,
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or

ĥn+1(k, t) =
∫ t

0

e−|k|(t−s)(T (g + hn))b(k, s)ds,

h0 = 0.

For h1 we obtain the following estimates

‖∂xh1‖a(t) ≤
∫ t

0

‖T (g)‖a+s−t(s)ds =
∫ t−a

0

+
∫ t

t−a

= I1 + I2.

Using (37), (41) and (42) we get

I1 ≤ ea−t

∫ t−a

0

es‖∂xT (g)‖0(s)ds ≤ Cea−t

∫ t−a

0

es‖∂2
xg‖0(s)‖∂xg‖0(s)ds

≤ Cε2ea−t

∫ t−a

0

e−s(1 + sγ−1)ds ≤ Cε2(1 + 2γ)
γ

ea−t.

By (41) and (42) we have

I2 ≤ C

∫ t

t−a

‖∂2
xg‖a+s−t(s)‖∂xg‖a+s−t(s)ds ≤ Cε2e2(a−t)a(1 + (t− a)γ−1) ≤ 2Cε2

δ
ea−t,

due to the inequalities (aδ)γ−1 > (t− a)γ−1 and aea−t ≤ δ−1 for σa < t. Then

‖∂xh1‖a(t) ≤ 5Cε2

δγ
ea−t.

Choosing b = a + s− t + t−a
2 we have

‖∂2
xh1‖a(t) ≤

∫ t

0

‖∂2
xT (g)‖a+s−t(s)ds ≤

∫ t

0

‖∂xT (g)‖b(s)
b− (a + s− t)

ds ≤ 2
∫ t

0

‖∂xT (g)‖b

t− a

≤
( ∫ t−a

2

0

+
∫ t

t−a
2

)
= I3 + I4,

where

I3 ≤ 2Ce
a−t
2

t− a

∫ t−a
2

0

es‖∂2
xg‖0(s)‖∂xg‖0(s)ds ≤ 2Cε2e

a−t
2

t− a

∫ t−a
2

0

e−s(1 + sγ−1)ds

≤ 2Cε2

γ
e

a−t
2 (1 + (t− a)γ−1),

and

I4 ≤ 2C

t− a

∫ t

t−a
2

‖∂2
xg‖b(s)‖∂xg‖b(s)ds ≤ 2Cε2

t− a
ea−t(1 + (

t− a

2
)γ−1)(

t

2
+

a

2
)

≤ 3Cε2

δ
ea−t(1 + (t− a)γ−1).

Therefore
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‖∂xh1‖a(t) ≤ 5Cε2

δγ
ea−t, (43)

‖∂2
xh1‖a(t) ≤ 5Cε2

δγ
e

a−t
2 (1 + (t− a)γ−1). (44)

Define rn+1 = hn+1 − hn,

Rn = sup
0 ≤ a < ∞

σa < t

(
‖∂xrn‖a +

‖∂2
xrn‖a

1 + (t− σa)γ−1

)
e

t−σa
2 ,

and

Mn = sup
0 ≤ a < ∞

σa < t

(
‖∂xhn‖a +

‖∂2
xhn‖a

1 + (t− σa)γ−1

)
e

t−σa
2 .

Take M1 = R1 ≤ 5Cε2

δγ ≤ ε0
2 and suppose that Mj , Rj ≤ ε0

2 for any j = 2, ..., n, then

‖∂xrn+1‖a ≤
∫ t

0

‖∂xT (g + hn)− ∂xT (g + hn−1)‖a+s−t(s)ds =
∫ t−a

0

+
∫ t

t−a

= I7 + I8.

Using (38) we have

I7 ≤ Cea−t

∫ t−a

0

es(‖∂xrn‖0(s)(‖∂2
xg + ∂2

xhn‖0(s) + ‖∂2
xg + ∂2

xhn−1‖0(s))

+ Cea−t

∫ t−a

0

es(‖∂2
xrn‖0(s)(‖∂xg + ∂xhn‖0(s) + ‖∂xg + ∂xhn−1‖0(s))ds

≤ 2Cε0Rnea−t

∫ t−a

0

(1 + sγ−1)ds ≤ 2Cε0

γ
Rne

σa−t
2 ,

and

I8 ≤ C

∫ t

t−a

(‖∂xrn‖a+s−t(s)(‖∂2
xg + ∂2

xhn‖a+s−t(s) + ‖∂2
xg + ∂2

xhn−1‖a+s−t(s))ds

+ C

∫ t

t−a

(‖∂2
xrn‖a+s−t(s)(‖∂xg + ∂xhn‖a+s−t(s) + ‖∂xg + ∂xhn−1‖a+s−t(s))ds

≤ 2Cε0Rn

∫ t

t−a

eδs−σ(t−a)(1 + (σ(t− a)− δs)γ−1)ds

≤ 2Cε0

δ
Rn

∫ t−a

t−σa

e−x(1 + xγ−1)dx ≤ 6Cε0

γδ
Rneσa−t.

We obtain for b = a + s− t + σ(t−a)−δs
2σ

‖∂2
xrn+1‖a(t) ≤

∫ t

0

‖∂2
x(T (g + hn)− T (g + hn−1))‖a+s−t(s)ds

≤
∫ t

0

‖∂x(T (g + hn)− T (g + hn−1)‖b(s)
b− (a + s− t)

ds

≤ 2σ

∫ t

0

‖∂x(T (g + hn)− T (g + hn−1)‖b

σ(t− a)− δs
≤

( ∫ σ
σ+1 (t−a)

0

+
∫ t

σ
σ+1 (t−a)

)
= I9 + I10.
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We have σ(t− a)− δs > 2σ
σ+1 (t− a) for 0 ≤ s ≤ σ

σ+1 (t− a) and therefore we obtain

I9 ≤ (σ + 1)C
t− a

∫ σ
σ+1 (t−a)

0

eb(‖∂xrn‖0(s)(‖∂2
xg + ∂2

xhn‖0(s) + ‖∂2
xg + ∂2

xhn−1‖0(s))

+
(σ + 1)C

t− a

∫ σ
σ+1 (t−a)

0

eb(‖∂2
xrn‖0(s)(‖∂xg + ∂xhn‖0(s) + ‖∂xg + ∂xhn−1‖0(s))ds

≤ 2(σ + 1)Cε0

t− a
Rn

∫ σ
σ+1 (t−a)

0

eb−s(1 + sγ−1)ds ≤ 4σCε0

γ
Rne

a−t
2 (1 + (t− a)γ−1).

Using (38) and the induction hypothesis we get

I10 ≤ 4σCε0Rn

∫ t

σ
σ+1 (t−a)

eσb−s (1 + (s− σb)γ−1)
σ(t− a)− δs

ds

≤ 4σCε0Rn

∫ t

σ
σ+1 (t−a)

e
δs−σ(t−a)

2
1 + (σ(t−a)−δs

2 )γ−1

σ(t− a)− δs
ds

≤ 4σCε0

δ
Rn

∫ σ
σ+1 (t−a)

t−σa
2

e−x(x−1 + xγ−2)dx ≤ 8σCε0

δ(1− γ)
Rne

σa−t
2 (1 + (σa− t)γ−1).

Due to the estimates for I7, I8, I9 and I10 we obtain

Rn+1 ≤ Cσε0

δγ(γ − 1)
Rn. (45)

Choosing ε0 small enough we get

Rn+1 ≤ 1
2
Rn ≤ ... ≤ 1

2n
R1 ≤ ε0

2n+1
,

and

Mn+1 ≤
n+1∑

j=1

Rn+1 ≤ ε0.

Therefore, we obtain the function h = lim
n→∞

hn satisfying

‖∂xh‖a(t) ≤
∑

n

Rne
σa−t

2 ≤ ε0e
σa−t

2 .

Taking f(x, t) = g(x, t) + h(x, t), we get (32) for ρ2 − ρ1 = 2.
In order to show the uniqueness, we write the equation (13) for ρ2 − ρ1 = 2 in the following form

ft = −Λf + T (f),
f(x, 0) = f0(x).

Suppose that there exist two solutions f1 and f2 with f1(x, 0) = f2(x, 0). Define R by

R = sup
0 ≤ a < ∞

σa < t

(
‖∂xf1 − ∂xf2‖a +

‖∂2
xf1 − ∂2

xf2‖a

1 + (t− σa)γ−1

)
e

t−σa
2 .

It follows that R ≤ C(ε)σ
δγ(γ−1)R and for ε small enough it yields C(ε)σ

δγ(γ−1) < 1 and therefore f1 = f2.
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6 Ill-posedness for the unstable case

Here we show ill-posedness for the unstable case ρ1 > ρ2. We use the global solution for the 2-D stable
case f(x1, t) satisfying (32) with ‖Λ1+γf0‖0 < C and ‖Λ1+γ+ζf0‖0 = ∞ for γ, ζ > 0. Making a change
of variables, we define fλ(x1, t) = λ−1f(λx1,−λt + λ1/2) obtaining {fλ}λ>0 a family of solutions to
the unstable case. Using (32) follows

‖fλ‖Hs(0) = |λ|s− 3
2 ‖f‖Hs(λ1/2) ≤ C|λ|s− 3

2 ‖f‖1(λ1/2) ≤ C|λ|s− 3
2 e−

|ρ2−ρ1|
4 λ1/2

,

and
‖fλ‖Hs(λ−1/2) = |λ|s− 3

2 ‖f‖Hs(0) ≥ |λ|s− 3
2 C

∑

k

|k|1+γ+ζ |f̂0(k)| = ∞,

for s > 3/2 and γ, ζ small enough. We obtain an ill posed problem for s > 3/2.

Theorem 6.1 Let s > 3/2, then for any ε > 0 there exists a solution f of (16) with ρ1 > ρ2 and
0 < δ < ε such that ‖f‖Hs(0) ≤ ε and ‖f‖Hs(δ) = ∞.

Remark 6.2 If one considers a solution of the 3-D problem satisfying f(x1, x2, t) = f(x1, t), from the
equation (13) one obtains a solution of (16). This shows that solutions of the 2-D case are solutions
of the 3-D problem and therefore, using the above theorem, one obtains ill-posedness for the 3-D case
with ρ1 > ρ2.
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