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Introduction

One line of research in the mathematical analysis of fluid mechanics is focused on
solving problems which involve the possible formation and propagation of singularities.
In these scenarios it becomes crucial to understand the role played by the singularities
in the formation of patterns. For this purpose we present two physical models that
are of interest from this mathematical point of view as well as for their applications
in physics. It is an enormous challenge to approach these problems which require the
combination of analytic techniques, asymptotics, numerics and modeling. With the
more sophisticated numerical tools now available, the subject has gained considerable
momentum. Recently numerical simulations indicate a possible singularity formation
in the free boundary of a fluid domain which is a weak solution to a family of incom-
pressible equations.

Successful analysis of singularities in incompressible flows would solve a major prob-
lem of mathematics and would establish a new method for addressing blow-up forma-
tion in non-linear PDE. A fluid dynamic understanding of these singularities could lead
to important insights on the structure of turbulence, one of the major open scientific
problems of classical physics.

On the search for singularities we study the simplest possible models that capture
the non-local structure of an incompressible flow: active scalars. These remarkable
examples (see [5]) are solutions ρ = ρ(x, t) to the following non-linear equation:

(∂t + u · ∇)ρ = 0 (1)

with (x, t) ∈ R
2 × R

+ and u = (u1, u2) the fluid velocity. This transport equation
reveals that the quantity ρ moves with the fluid flow and is conserved along trajectories.
The velocity field is divergence free providing the incompressibility condition and is
determined by the active scalar by singular integral operators as follows:

ui(x, t) = P.V.

∫

R2

Ki(x − y)ρ(y, t)dy (2)

where P.V. denotes principal value and Ki is a classical Calderon-Zymund kernel (see
[16]). The above identity indicates the non-local structure of the equation and that the
velocity is at the same level as the scalar ρ: ‖u‖Lp(t) ≤ C‖ρ‖Lp(t) for 1 < p < ∞.

The incompressibility of the flow yields the system to be conservative in such a way
that the Lp norms of ρ are constants for all time: ‖ρ‖Lp(t) = ‖ρ‖Lp(0) for 1 ≤ p ≤ ∞.

A fundamental property of the active scalars is that the level sets move with the
flow, i.e. there is no transfer of flow along a level set. Then a natural solution, with
finite energy, can be given by

ρ(x, t) =

{
ρ1 if x ∈ Ω1(t)

ρ2 if x ∈ Ω2(t) = R
2\Ω1(t)

(3)
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for Ωi(t) connected regions. This represents an evolution problem for a fluid with
different characteristics ρi which remain constant inside each domain Ωi(t). These
solutions start initially with a jump on the boundary of Ωi(t) and the equation of the
contour dynamics are highly singular.

Below we consider solutions of type (3) for the following different physical scenarios:
one given by the quasi-geostrophic equation and other modeled by Darcy’s law. These
systems satisfy equations (1) and (2) in a weak sense with completely different outcomes
regarding well-possed and regularity issues.

The 2D surface quasi-geostrophic equation

The 2D surface quasi-geostrophic equation that we will address below has the prop-
erty that the velocity u in the form (2) is given by

u = (−R2ρ, R1ρ)

where the scalar ρ represents the temperature of the fluid and Rj are the Riesz trans-
forms:

Rjρ(x, t) =
1

2π
P.V.

∫

R2

(xj − yj) · ρ(y, t)

|x − y|3
dy.

The symbols of these operators in the Fourier side are R̂j = i
ξj

|ξ|
, therefore the energy

of the system is conserved due to the fact that

‖u‖L2 = ‖(−R2(ρ − ρ∞), R1(ρ − ρ∞)‖L2 = ‖ρ − ρ∞‖L2 ,

for ρ∞ the constant value of ρ at infinity.
This equation, which we will denote by QG, has applications in meteorology and

oceanography, and is a special case of the more general 3D quasi-geostrophic equation.
There has been high scientific interest in understanding the behavior of the QG equation
because it is a plausible model to explain the formation of fronts of hot and cold air.
In a different direction, Constantin, Majda and Tabak [4] proposed this system as a
2D model for the 3D vorticity intensification and they showed that there is a geometric
and analytic analogy with 3D incompressible Euler equations.

An interesting approach is to study the dynamics of the α−patches (see [7]) which
are weak solutions of a family of equations that interpolate 2D incompressible Euler and
QG. An α − patch (0 < α < 1) consists in a 2D region Ω(t) (bounded and connected)
that moves with the velocity given by

u(z(γ, t), t) =
Cα

2π

∫ π

−π

∂γz(η, t)

|z(γ, t) − z(η, t)|α
dη (4)

where z(γ, t) is the position of the boundary of the domain Ω(t) parameterized for
γ ∈ [−π, π], and Cα depends on α, ρ1 and ρ2. The evolution of its boundary satisfies

zt(γ, t) = u(z(γ, t), t), (5)
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and they are weak solutions of (1) and the following equation

u = −∇⊥(−∆)
α
2
−1ρ, (6)

where the symbol of (−∆)β is |2πξ|2β and x⊥ = (−x2, x1).
In the limiting case α = 0, the identity (6) becomes the Biot-Savart law and there-

fore we can recover the 2D incompressible Euler equation. With this notation the
scalar ρ represents the vorticity of the two dimensional flow. This case has been stud-
ied analytically with success by Chemin and Bertozzi-Constantin in [3] and [2] where
they show global existence and therefore no singularity formation.

In the case α = 1, for a temperature ρ satisfying (4), the velocity blows up log-
arithmically at the free boundary z(γ, t). Thus, there is difficulty even in deriving
the evolution problem. This issue can be solved since the normal component of the
velocity is well-defined for a regular contour. For this type of free boundary problem
the tangential component of the velocity does not modify the shape of the interface (in
this case it blows-up), and the dynamics is given by the normal component.

Rodrigo in [13] gave a closed system for the patch problem for QG where the front
is represented by a function. He proved local-existence for a periodic and infinitely
differentiable contour by using the Nash-Moser iteration. This tool was applied for
infinitely differentiable initial data because the operator involved loses two derivatives.

In the case for which the free boundary is not parameterized as a function, the fact
that the interface collapses leads to a singularity in the fluid. Then it becomes crucial
to get control of the evolution of the following quantity:

F(z)(γ, η, t) =
|η|

|z(γ, t) − z(γ − η, t)|
∀ γ, η ∈ [−π, π],

with

F(z)(γ, 0, t) =
1

|∂γz(γ, t)|
,

which measures the arc-chord condition of the curve. Let us point out that the oper-
ators involved in the equations are ill-defined otherwise. Also, one could modify the
contour equation (4) as follows:

zt(γ, t) =
C1

2π

∫

T

∂γz(γ, t) − ∂γz(η, t)

|z(γ, t) − z(η, t)|
dη + c(γ, t)∂γz(γ, t). (7)

A curve that satisfies this new equation also yields a solution of the patch problem for
QG: the terms introduced in the evolution system are tangential and therefore they
change the parametrization of the interface but not the shape. Choosing c(γ, t) in a
wise fashion, enables the length of the tangent vector to z(γ, t) be a function in the
variable t only:

A(t) = |∂γz(γ, t)|2.

With this property it is easy to obtain the following two identities:

∂2

γz(γ, t) · ∂γz(γ, t) = 0, ∂3

γz(γ, t) · ∂γz(γ, t) = −|∂2

γz(γ, t)|2. (8)
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The first equality gives extra cancellation in the system (7) and the second one is a kind
of ad hoc integration by parts. Both are used in [10] to obtain a proof of local-existence
for a patch convected by the QG equation within the chain of Sobolev spaces. Similar
results follow for the α − patch.

In [7] numerically possible candidates are shown that lead to a singularity for the
family of equations (6). For the particular case α = 1 there is a formation of a corner
that develops a high increase on the curvature at the same point where it reaches the
minimum distance between two patches (see figure 1).

Figure 1: The evolution of two patches with α = 1.

Furthermore, by re-scaling the spatial variable in the following form

z = (t0 − t)δy

where δ = 1

α
and introducing a new variable τ = −log(t0 − t), the contour dynamic

equations (4) and (5) become

∂y

∂τ
− δy =

Cα

2π

∫ π

−π

∂γy(γ, t) − ∂γy(η, t)

|y(γ, t) − y(η, t)|α
dη. (9)

Solutions of (9) independent of τ represent solutions of (6) with the property that the
maximum curvature grows as

κ =
1

R
∼

C

(t0 − t)
1

α

when t → t0,

and the minimum distance of the two patches satisfies

d ∼ C(t0 − t)
1

α when t → t0.

These singularities are self similar and stable, occurring in one single point where
the curvature blows-up at the same time the two level sets collapse (see fig. 2).
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Figure 2: Detail of the corner region at t=16.515 for α = 0.5 (a) and t=4.464 for α = 1
(b). Observe that the singularity is point-like in both cases.

Darcy’s law

The evolution of fluids in porous media is an important topic in fluid mechanics
encountered in engineering, physics and mathematics. This phenomena has been de-
scribed using the experimental Darcy’s law that, in two dimensions, is given by the
following momentum equation:

µ

κ
u = −∇p − (0, gρ). (10)

Here u is the incompressible velocity, p is the pressure, µ is the dynamic viscosity,
κ is the permeability of the isotropic medium, ρ is the liquid density, and g is the
acceleration due to gravity.

The Muskat problem [11] models the evolution of an interface between two fluids
with different viscosities and densities in porous media by using Darcy’s law. This
problem has been considered extensively without surface tension, in which case the
pressures of the fluids are equal on the interface. Saffman and Taylor [14] made the
observation that the one phase version (one of the fluids has zero viscosity) was also
known as the Hele-Shaw cell equation, which, in turn, is the zero-specific heat case of
the classical one-phase Stefan problem.

The problem considers fluids with different constant viscosities µ1, µ2, and densities
ρ2, ρ1. Therefore using Darcy’s law, we find that the vorticity is concentrated on the
free boundary z(γ, t), and is given by a Dirac distribution as follows:

w(x, t) = ̟(γ, t)δ(x− z(γ, t)),

with ̟(γ, t) the vorticity strength. Then z(γ, t) evolves with an incompressible velocity
field coming from the Biot-Savart law:

u(x, t) = ∇⊥∆−1ω(x, t). (11)

It can be explicitly computed on the contour z(γ, t) and is given by the Birkhoff-Rott
integral of the amplitude ̟ along the interface curve:

BR(z, ̟)(γ, t) =
1

2π
P.V.

∫
(z(γ, t) − z(η, t))⊥

|z(γ, t) − z(η, t)|2
̟(η, t)dη. (12)
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Using Darcy’s law, we close the system with the following formula:

̟(γ, t) = (I + AµT )−1
(
− 2gκ

ρ2 − ρ1

µ2 + µ1
∂γz2

)
(γ, t), (13)

where

T (̟) = 2BR(z, ̟) · ∂γz, Aµ =
µ2 − µ1

µ2 + µ1
. (14)

Baker, Meiron and Orszag [1] shown that the adjoint operator T ∗, acting on ̟, is
described in terms of the Cauchy integral of ̟ along the curve z(γ, t), and whose real
eigenvalues have absolute values strictly less than one. This yields that the operator
(I + AµT ) is invertible so that equation (13) gives an appropriate contour dynamics
problem.

The first important question to be asked is whether local-existence is guaranteed.
However such a result turns out to be false for general initial data. Rayleigh [12] and
Saffman-Taylor [14] gave a condition that must be satisfied in order to have a solution
locally in time, namely that the normal component of the pressure gradient jump at
the interface has to have a distinguished sign. This is known as the Rayleigh-Taylor
condition. Siegel, Caflish and Howison [15] proved ill-posedness in a 2-D case when
this condition is not satisfied (unstable case and same densities). On the other hand,
they showed global-in-time solutions when the initial data are nearly planar and the
Rayleigh-Taylor condition holds initially.

Recently in [6] we have obtained local existence in the 2D case when the fluid
has different densities and viscosities. In our proof it is crucial to get control of the
norm of the inverse operators (I +AµT )−1. The arguments rely upon the boundedness
properties of the Hilbert transforms associated to C1,δ curves, for which we need precise
estimates obtained with arguments involving conformal mappings, the Hopf maximum
principle and Harnack inequalities. We then provide bounds in the Sobolev spaces Hk

for ̟ obtaining

d

dt
(‖z‖2

Hk +‖F(z)‖2

L∞)(t) ≤ −K

∫

T

σ(γ)

|∂γz(γ)|2
∂k

γz(γ)·Λ(∂k
γz)(γ)dγ

+ exp C(‖z‖2

Hk +‖F(z)‖2

L∞)(t),

(15)

where K = −κ/(2π(µ1 + µ2)), σ(γ, t) is the difference of the gradients of the pressure
in the normal direction (Rayleigh-Taylor condition), and the operator Λ is the square
root of the Laplacian. When σ(γ, t) is positive, there is a kind of heat equation in the
above inequality but with the operator Λ in place of the Laplacian. Then, the most
singular terms in the evolution equation depend on the Rayleigh-Taylor condition. In
order to integrate the system we study the evolution of

m(t) = min
γ∈T

σ(γ, t), (16)

which satisfies the following bound

|m′(t)| ≤ exp C(‖F(z)‖2

L∞+‖z‖2

Hk)(t).
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Using the pointwise estimate fΛ(f) ≥ 1

2
Λ(f 2) in estimate (15), we obtain

d

dt
ERT (t) ≤ C exp CERT (t),

where ERT is the energy of the system given by

ERT (t) = ‖z‖2

Hk(t) + ‖F(z)‖2

L∞(t) + (m(t))−1.

Here we point out that it is completely necessary to consider the evolution of the
Rayleigh-Taylor condition to obtain bona fide energy estimates.

In the case where the viscosities are the same, the free boundary is given by a fluid
with different densities. In order to simplify the notation, one could take µ/κ = g = 1
in Darcy’s law and then apply the rotational operator to obtain the vorticity given by
ω = −∂x1

ρ. The Biot-Savart law (11) yields the velocity field in terms of the density
as follows:

u(x, t) = P.V.

∫

R2

H(x − y)ρ(y, t)dy −
1

2
(0, ρ(x, t)) ,

where the Calderon-Zygmund kernel H(·) is defined by

H(x) =
1

2π

(
−2

x1x2

|x|4
,
x2

1 − x2
2

|x|4

)
.

By means of Darcy’s law, we can find the following formula for the difference of the
gradients of the pressure in the normal direction: σ(γ, t) = g(ρ2 − ρ1)∂γz1(γ, t). A wise
choice of parameterizing the curve is that for which we have ∂γz1(γ, t) = 1 (for more
details see [8]). This yields the denser fluid below the less dense fluid if ρ2 > ρ1 and
therefore the Rayleigh-Taylor condition holds for all time. An additional advantage is
that we avoid a kind of singularity in the fluid when the interface collapses due to the
fact that we can take z(γ, t) = (γ, f(γ, t)) which implies F(z)(γ, η) ≤ 1 obtaining the
arc-chord condition for all time. Then the character of the interface as the graph of a
function is preserved, and in [8] this fact has been used to show local-existence in the
stable case (ρ2 > ρ1), together with ill-posedness in the unstable situation (ρ2 < ρ1).

Currently we are studying the long-time behavior of the stable case for which we
can show that the L∞ norm of any interface decays, and numerical simulations of the
dynamics of the contour develop a regularity effect (see [9]).
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[7] D. Córdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo. Evidence of sin-
gularities for a family of contour dynamics equations. Proc. Natl. Acad. Sci. USA

102, 5949-5952, 2005.
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