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We consider the evolution of an interface generated between two
immiscible, incompressible, and irrotational fluids. Specifically we
study the Muskat and water wave problems. We show that start-
ing with a family of initial data given by ðα,f0ðαÞÞ, the interface
reaches a regime in finite time in which is no longer a graph. There-
fore there exists a time t� where the solution of the free boundary
problem parameterized as ðα,fðα,tÞÞ blows up: ‖∂αf‖L∞ ðt�Þ ¼ ∞. In
particular, for the Muskat problem, this result allows us to reach an
unstable regime, for which the Rayleigh–Taylor condition changes
sign and the solution breaks down.

1. Introduction
Here we study two problems of fluids mechanics concerning the
evolution of two incompressible fluids of different characteristics
in 2D. We consider that both fluids are immiscible and of differ-
ent constant densities ρ1 and ρ2, modeling the dynamics of an
interface that separates the domains Ω1ðtÞ and Ω2ðtÞ. That is,
the liquid density ρ ¼ ρðx;tÞ;ðx;tÞ ∈ R2 × Rþ, is defined by

ρðx;tÞ ¼
�
ρ1; x ∈ Ω1ðtÞ
ρ2; x ∈ Ω2ðtÞ ¼ R2 −Ω1ðtÞ; [1]

and satisfies the conservation of mass equation

ρt þ v · ∇ρ ¼ 0; ∇ · v ¼ 0; [2]

where v ¼ ðv1ðx;tÞ;v2ðx;tÞÞ is the velocity field. With a free bound-
ary parameterized by

∂ΩjðtÞ ¼ fzðα;tÞ ¼ ðz1ðα;tÞ;z2ðα;tÞÞ: α ∈ Pg;
we consider open curves vanishing at infinity

lim
α→∞

ðzðα;tÞ − ðα;0ÞÞ ¼ 0;

or periodic in the space variable

zðαþ 2kπ;tÞ ¼ zðα;tÞ þ 2kπð1;0Þ:

The scalar vorticity, ∇⊥ · v, has the form

∇⊥ · vðx;tÞ ¼ ωðα;tÞδðx − zðα;tÞÞ; [3]

i.e., the vorticity is a Dirac measure on z defined by

<∇⊥ · v;η >¼
Z
R
ωðα;tÞηðzðα;tÞÞdα;

with ηðxÞ a test function. The system is closed by using one of the
following fundamental fluid motion equations:

Darcy’s law
μ

κ
v ¼ −∇p − gρð0;1Þ; [4]

or

Euler equations

ρðvt þ v · ∇vÞ ¼ −∇p − gρð0;1Þ: [5]

Here p ¼ pðx;tÞ is pressure, g gravity, μ viscosity, and κ permeabil-
ity of the isotropic medium.

The Muskat problem (1) is given by Eqs. 1, 2, and 4, which
considers the dynamics of two incompressible fluids of different
densities throughout porous media and Hele–Shaw cells (2, 3). In
this last setting, the fluid is trapped between two fixed parallel
plates that are close enough together so that the fluid essentially
only moves in two directions (4).

Taking ρ1 ¼ 0, Eqs. 1–3 and 5 are known as the water waves
problem (see ref. 5 and references therein), modeling the
dynamics of the contour between an inviscid fluid with density
ρ2 and vacuum (or air) under the influence of gravity.

Condition 3 (deduced by [4], assumed for [5]) allows us to
write the evolution equation in terms of the free boundary as fol-
lows. One could recover the velocity field from [3] by means of
Biot–Savart law

vðx;tÞ ¼ ∇⊥Δ−1ð∇⊥ · vÞðx;tÞ ¼ 1

2π

Z
R

ðx − zðα;tÞÞ⊥
jx − zðα;tÞj2 ωðα;tÞdα;

applying the Dirac measure with amplitude ω. Taking limits on
the above equation approaching the boundary in the normal
direction inside Ωj, the velocity is shown to be discontinuous
in the tangential direction, but continuous in the normal, and
given by the Birkhoff–Rott integral of the amplitude ω along the
interface curve:

BRðz;ωÞðα;tÞ ¼ 1

2π
PV

Z
R

ðzðα;tÞ − zðβ;tÞÞ⊥
jzðα;tÞ − zðβ;tÞj2 ωðβ;tÞdβ;

where PV denotes principal value. This fact yields the curve
velocity from which one can subtract any term c in the tangential
without modifying the geometry of the interface

ztðα;tÞ ¼ BRðz;ωÞðα;tÞ þ cðα;tÞ∂αzðα;tÞ: [6]

Understanding the problem as weak solutions of [1, 2, and 4] or
[1–3 and 5], the continuity of the pressure on the free boundary
follows. Therefore, taking limits in Darcy’s law from both sides
and subtracting the results in the tangential direction, it is easy
to close the system for Muskat (in this paper we consider two
fluids with the same viscosity):

ωðα;tÞ ¼ −ðρ2 − ρ1Þ κg
μ
∂αz2ðα;tÞ: [7]
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In a similar way for water waves, Euler equations yield

ωtðα;tÞ ¼ −2∂tBRðz;ωÞðα;tÞ · ∂αzðα;tÞ − ∂α
� jωj2
4j∂αzj2

�
ðα;tÞ

þ ∂αðcωÞðα;tÞ þ 2cðα;tÞ∂αBRðz;ωÞðα;tÞ · ∂αzðα;tÞ
− 2g∂αz2ðα;tÞ: [8]

Then, the two contour equations are set by [6 and 7] and [6 and 8].
For these models, the well-posedness turns out to be false for

some settings. Rayleigh (6) and Saffman and Taylor (2) gave a
condition that must be satisfied for the linearized model in order
to exist a solution locally in time: The normal component of the
pressure gradient jump at the interface has to have a distinguished
sign. This quantity is known as the Rayleigh–Taylor condition. It
reads as

σðα;tÞ ¼ −ð∇p2ðzðα;tÞ;tÞ − ∇p1ðzðα;tÞ;tÞÞ · ∂⊥α zðα;tÞ > 0;

where ∇pjðzðα;tÞ;tÞ denotes the limit gradient of the pressure
obtained approaching the boundary in the normal direction inside
ΩjðtÞ.

An easy linearization around a flat contour ðα;f ðα;tÞÞ, allows us
to find

f t ¼
1

2
HðωÞ

where H is the Hilbert transform which symbol on the Fourier
side is given by bH ¼ −i sign ðξÞ. The equations

ω ¼ −ðρ2 − ρ1Þ κg
μ
∂αf ; ðlinear MuskatÞ

ωt ¼ 2g∂αf ; ðlinear water wavesÞ

show the parabolicity of the Muskat problem when the denser
fluid is below (ρ2 > ρ1) and the dispersive character of water
waves.

1. There is a wide literature on the Muskat problem and the
dynamics of two fluids in a Hele–Shaw cell. There are works
considering the case of a viscosity jump neglecting the effect
of gravity (7, 8). Local existence in a more general situation
(with discontinuous viscosity and density) is shown in ref. 9
and also treated in ref. 10. A different approach to prove local
existence can be found in ref. 11 for the setting we are con-
sidering in this paper. The Rayleigh–Taylor stability depends
upon the sign of ðρ2 − ρ1Þ∂αz1ðα;tÞ (11) indicating that the
heavier fluid has to be below in the stable case. If the lighter
fluid is below, the problem has been shown to be ill-posed
(11). Global-existence results for small initial data can be
found in refs. 7 and 11–14. For large initial curves and para-
meterized by ðα;f ðα;tÞÞ, there are maximum principles for the
L∞ and L2 norms of f , and decay rates, together with global
existence for Lipschitz curves if ‖∂αf‖L∞ð0Þ < 1 (15, 16, 17).

2. The water waves problem has been extensively considered (see
refs. 5 and 18 and references therein). For sufficiently smooth
free boundary, the Rayleigh–Taylor condition remains positive
with no bottom considerations (19), a fact that was used to
prove local existence (19). The Rayleigh–Taylor stability can
play a different role for the case of non-“almost”-flat bottom
(20). Recently, for small initial data, exponential time of
existence has been proven in two dimensions (21) and global
existence in the three-dimensional case (two-dimensional in-
terface) (22, 23).

2. Rayleigh–Taylor Breakdown for Muskat
This section is devoted to show the main ingredients to prove the
Theorem 2.1. We consider the function

FðzÞðα;βÞ ¼ jβj2
jzðαÞ − zðα − βÞj2 ; α;β ∈ R;

and in the periodic setting

FðzÞðα;βÞ ¼ ‖β‖2

2ðcoshðz2ðαÞ − z2ðα − βÞÞ − cosðz1ðαÞ − z1ðα − βÞÞÞ ;

α;β ∈ T ; [9]

where ‖x‖ ¼ distðx;2πZÞ. If FðzÞ ∈ L∞ðR2Þ, then the curve z sa-
tisfies the arc-chord condition. We say that the Rayleigh–Taylor
(R-T) of the solution of the Muskat problem breaks down in finite
time if for initial data z0 satisfying σðα;0Þ ¼ ðρ2 − ρ1Þ∂αz1ðα;0Þ > 0
there exists a time t� > 0 for which σðα;t�Þ is strictly negative in a
nonempty open interval.

Theorem 2.1. There exists a nonempty open set of initial data in H4,
satisfying Rayleigh–Taylor and arc-chord conditions, for which the
Rayleigh–Taylor condition of the solution of the Muskat problem
[1, 2, and 4] breaks down in finite time.

After choosing the appropriate tangential term and a integra-
tion by parts, the contour equation reads

ztðα;tÞ ¼
ρ2 − ρ1

2π
PV

Z
R

ðz1ðα;tÞ − z1ðβ;tÞÞ
jzðα;tÞ − zðβ;tÞj2 ð∂αzðα;tÞ − ∂αzðβ;tÞÞdβ:

For a 2π periodic interface, removing the principal value at
infinity, the equation becomes

ztðαÞ ¼
ðρ2 − ρ1Þ

4π

×
Z
T

sinðz1ðαÞ − z1ðα − βÞÞð∂αzðαÞ − ∂αzðα − βÞÞ
coshðz2ðαÞ − z2ðα − βÞÞ − cosðz1ðαÞ − z1ðα − βÞÞ dβ:

[10]

From now on, we shall use the periodic configuration.
The steps of the proof are as follows:

1. First, for any initial curve z0ðαÞ ¼ zðα;0Þ in H4 that satisfy R-T

ðρ2 − ρ1Þ∂αz1ðα;0Þ > 0

and the arc-chord condition then the solution to the Muskat
problem zðα;tÞ becomes analytic for 0 < t < T. Moreover,
zðα;tÞ is real analytic in a strip

SðtÞ ¼ fαþ iζ: jζj < ctg

for t ∈ ð0;TÞ where c depends only on

infð0Þ ¼ inf
α

∂αz1ðα;0Þ
j∂αzðα;0Þj2

:

The proof follows by controlling the quantities extended on
SðtÞ:

FðzÞðαþ iζ;β;tÞ

and gðαþ iζ;tÞ by using [9] and formula

gðα;tÞ ¼
Z
T
½sinðz1ðα;tÞ − z1ðα − β;tÞÞ�∕½coshðz2ðα;tÞ

− z2ðα − β;tÞÞ − cosðz1ðα;tÞ − z1ðα − β;tÞÞ�dβ;

respectively. The norms
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‖FðzÞ‖L∞ðSÞðtÞ ¼ sup
αþiζ∈SðtÞ;β∈T

jFðzÞðαþ iζ;βÞj;

‖z‖2L2ðSÞðtÞ ¼ ∑
�

Z
T
jzðα� ict;tÞj2dα;

‖z‖2
HjðSÞðtÞ ¼ ‖z‖2L2ðSÞðtÞ þ∑

�

Z
T
j∂jαzðα� ict;tÞj2dα;

for j ∈ N;

infðtÞ ¼ inf
αþiζ∈SðtÞ

ℜ

�
∂αz1ðαþ iζ;tÞ
j∂αzðαþ iζ;tÞj2

�
:

Then the quantity

‖z‖2RTðtÞ ¼ ‖z‖2H4ðSÞðtÞ þ ‖FðzÞ‖L∞ðSÞðtÞ
þ 1∕ðinfðtÞ − c − K∥ℑðgÞ‖H2ðSÞðtÞÞ

satisfies
d
dt
‖z‖RTðtÞ ≤ C‖z‖kRTðtÞ;

for C, K , and k universal constants. It yields

‖z‖RTðtÞ ≤
‖z‖RTð0Þ

ð1 − C‖z‖kRTð0ÞtÞ1∕k
;

providing control of the analyticity and T ¼ 1∕ðC‖z‖kRTð0ÞÞ.
2. Second, there is a lower bound on the strip of analyticity,

which does not collapse to the real axis as long as the
Rayleigh–Taylor is greater than or equal to 0. Then there is
a time T and a solution of the Muskat problem zðα;tÞ defined
for 0 < t ≤ T that continues analytically into a complex strip
if ðρ2 − ρ1Þ∂αz1 ≥ 0, where T is either a small constant or it is
the first time a vertical tangent appears, whichever occurs first.
We redefine the strip

SðtÞ ¼ fαþ iζ: jζj < hðtÞ; 0 < hð0Þg;

and the quantity ‖z‖2S ¼ ‖z‖2H4ðSÞ þ ‖FðzÞ‖L∞ðSÞ with this new
SðtÞ. For an hðtÞ decreasing [the expression of hðtÞ is chosen
later], we consider the evolution of the most singular quantity

∑
�

Z
j∂4αzðα� ihðtÞ; tÞj2dα:

Taking a derivative in t, one finds

d
dt∑�

Z
j∂4αzðα� ihðtÞÞj2dα ≤ h0ðtÞ

10

∑
�

Z
Λð∂4αzÞðα� ihðtÞÞ · ∂4αzðα� ihðtÞÞdα

− 10h0ðtÞ
Z

Λð∂4αzÞðαÞ · ∂4αzðαÞdα

þ 2∑
�
ℜ

Z
∂4αztðα� ihðtÞÞ · ∂4αzðα� ihðtÞÞdα:

Estimating in a wise way, one obtains

d
dt∑�

Z
j∂4αzðα� ihðtÞÞj2dα ≤ C‖z‖kSðtÞ

− 10h0ðtÞ
Z

Λð∂4αzÞðαÞ · ∂4αzðαÞdαþ ðC‖z‖kSðtÞhðtÞ

þ 1

10
h0ðtÞÞ

Z
Λð∂4αzÞðα� ihðtÞÞ · ∂4αzðα� ihðtÞÞdα:

Therefore, choosing

hðtÞ ¼ hð0Þ expð−10C
Z

t

0

‖z‖kSðrÞdrÞ

eliminates the most dangerous term. The other terms are ea-
sily controlled, giving finally

d
dt∑�

Z
j∂4αzðα� ihðtÞÞj2dα ≤ C‖z‖kþ2

S ðtÞ;

which allows us to reach a regime for which the boundary z
develops a vertical tangent at time T.

3. Third, it is shown the existence of a large class of analytic
curves for which there exist a point where the tangent vector
is vertical and the velocity indicates that the curve is going to
turn up and reach the unstable regime.
For the equation

ztðα;tÞ ¼ uðα;tÞ ¼ ðu1ðα;tÞ;u2ðα;tÞÞ;
that is,

a: ∂αz1ðαÞ > 0 if α ≠ 0; b:∂αz1ð0Þ ¼ 0;

c:∂αz2ð0Þ > 0; d:∂αu1ð0Þ < 0;

for analytic functions z1ðαÞ and z2ðαÞ such that zðαÞ satisfies
the arc-chord condition. Here we consider the periodic case
(being analogous for an open curve vanishing at infinity).
We assume that zðαÞ is a smooth odd curve satisfying the
properties a, b, and c. Differentiating the expression 10 for
the horizontal component of the velocity, at α ¼ 0, it yields

ð∂αu1Þð0Þ ¼
Z

π

−π
½cosðz1ðβÞÞð∂αz1ðβÞÞ2

þ sinðz1ðβÞÞ∂2αz1ðβÞ�∕½coshðz2ðβÞÞ − cosðz1ðβÞÞdβ

−
Z

π

−π
sinðz1ðβÞÞ∂αz1ðβÞ½sinðz1ðβÞÞ∂αz1ðβÞ

− sinhðz2ðβÞÞð∂αz2ð0Þ − ∂αz2ðβÞÞ�∕½ðcoshðz2ðβÞÞ
− cosðz1ðβÞÞÞ2�dβ:

Integration by parts providesZ
π

−π
½sinðz1ðβÞÞ∂2αz1ðβÞ�∕½coshðz2ðβÞÞ − cosðz1ðβÞÞ�dβ

¼ −
Z

π

−π
cosðz1ðβÞÞ½ð∂αz1ðβÞÞ2�∕½coshðz2ðβÞÞ − cosðz1ðβÞÞ�dβ

þ
Z

π

−π
sinðz1ðβÞÞ∂αz1ðβÞ½sinðz1ðβÞÞ∂αz1ðβÞ

þ sinhðz2ðβÞÞ∂αz2ðβÞ�∕½ðcoshðz2ðβÞÞ − cosðz1ðβÞÞÞ2�dβ:
Therefore, it is easy to obtain that

ð∂αu1Þð0Þ ¼ ∂αz2ð0Þ
Z

π

−π
½sinðz1ðβÞÞ sinhðz2ðβÞÞ�∕½ðcoshðz2ðβÞÞ

− cosðz1ðβÞÞÞ2�∂αz1ðβÞdβ

¼ 2∂αz2ð0Þ
Z

π

0

½sinðz1ðβÞÞ sinhðz2ðβÞÞ�∕½ðcoshðz2ðβÞÞ

− cosðz1ðβÞÞÞ2�∂αz1ðβÞdβ
[11]

Expression 11 allows us to determine the sign of ð∂αu1Þð0Þ.
One could take

z1ðβÞ ¼ − sinðβÞ þ β
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and construct the function z2ðβÞ in the following way: Let β1,
β2, β3, and β4 be real increasing numbers less than π. We pick
z2ðβÞ ≤ 0 for β2 < β < π, z2ðβÞ < c < 0 for β2 < β < β4, and
z�2ðβÞ a smooth function with the following properties

a: z�2ðβÞ is odd; b: ð∂βz�2Þð0Þ > 0;

c: z�2ðβÞ > 0 if β ∈ ð0;β1Þ; d: z�2ðβÞ < 0 if β ∈ ðβ1;β2�:

Also, z�2ðβÞ is 2π-periodic. For z2ðβÞ ¼ bz�2ðβÞ, 0 ≤ β ≤ β2, and
b > 0, the velocity satisfies

ð∂αu1Þð0Þ < 2ð∂αz2Þð0Þ

×
�Z

β1

0

½sinðz1ðβÞÞ sinhðz2ðβÞÞ�∕½ðcoshðz2ðβÞÞ

− cosðz1ðβÞÞÞ2�∂αz1ðβÞdβ

þ
Z

π

β3

½sinðz1ðβÞÞ sinhðz2ðβÞÞ�∕½ðcoshðz2ðβÞÞ

− cosðz1ðβÞÞÞ2�∂αz1ðβÞdβ
�

¼ 2ð∂αz2Þð0Þ
�Z

β1

0

½sinðz1ðβÞÞ sinhðbz�2ðβÞÞ�∕½ðcoshðbz�2ðβÞÞ

− cosðz1ðβÞÞÞ2�∂αz1ðβÞdβ þ A
�
;

where A < 0. The constant b large enough yields ð∂αu1Þ
ð0Þ < 0.
Rectifying the curve on the interval ½β2;β3�, it is easy to obtain
a smooth curve. Finally, convolving with the heat kernel the
vertical component, the curve zðαÞ is approximated by an
analytic one.

4. Fourth, with the initial data found in 3 and no assumption
on the R-T condition, we use a modification of Cauchy–
Kowalewski theorems (24, 25) to show that there exists an ana-
lytic solution for the Muskat problem in some interval ½−T;T�
for a small enough T > 0. Here we are forced to change sub-
stantially the method in ref. 26 because, in this case, the curve
cannot be parameterized as a graph, so we have to deal with
the arc-chord condition. Then, with fXrgr>0, a scale of Banach
spaces given by real functions that can be extended analytically
on the complex strip Sr ¼ fαþ iζ ∈ C: jζj < rg with norm

‖f‖r ¼ ∑
�

Z
jf ðα� irÞj2dαþ

Z
j∂4αf ðα� irÞj2dα;

and z0ðαÞ a curve satisfying the arc-chord condition and
z0ðαÞ ∈ Xr0 for some r0 > 0, we prove the existence of a time
T > 0 and 0 < r < r0 so that there is a unique solution to the
Muskat problem in Cð½−T;T�;XrÞ. This result allows us to
find solutions that do not satisfy the R-T but shrink the strip
of analyticity. We extend Eq. 10 as follows:

ztðαþ iζ;tÞ ¼ Gðzðαþ iζ;tÞÞ;
with

GðzÞðα;tÞ ¼ ðρ2 − ρ1Þ
4π

×
Z
T

sinðz1ðα;tÞ − z1ðα − β;tÞÞð∂αzðα;tÞ − ∂αzðα − β;tÞÞ
coshðz2ðα;tÞ − z2ðα − β;tÞÞ − cosðz1ðα;tÞ − z1ðα − β;tÞÞ dβ:

For 0 < r0 < r and the open set O in Sr given by

O ¼ fz ∈ Xr: ‖z‖r < R; ‖FðzÞ‖L∞ðSrÞ < R2g; [12]

the function G for G: O → Xr0 is a continuous mapping and
there is a constant CR (depending on R only) such that

‖GðzÞ‖r ≤
CR

r − r0
‖z‖r ; [13]

‖Gðz2Þ −Gðz1Þ‖r0 ≤
CR

r − r0
‖z2 − z1‖r ; [14]

and

sup
αþiζ∈Sr;β∈T

jGðzÞðαþ iζÞ −GðzÞðαþ iζ − βÞj ≤ CRjβj; [15]

for z;zj ∈ O. For initial data z0 ∈ Xr0 satisfying arc-chord, we can
find a 0 < r00 < r0 and a constant R0 such that ‖z0‖r0

0
< R0 and

½coshðz02ðαþ iζÞ − z02ðαþ iζ − βÞÞ

− cosðz01ðαþ iζÞ − z01ðαþ iζ − βÞÞ�∕ð‖β‖2Þ > 1

R2
0

; [16]

for αþ iζ ∈ Sr0
0
. We take 0 < r < r00 and R0 < R to define the

open setO as in [12]. Therefore we can use the classical method
of successive approximations:

znþ1ðtÞ ¼ z0 þ
Z

t

0

GðznðsÞÞds;

for G: O → Xr0 and 0 < r0 < r. We assume by induction that

‖zk‖rðtÞ < R; and ‖FðzkÞ‖L∞ðSrÞðtÞ < R

for k ≤ n and 0 < t < T with T ¼ minðTA;TCKÞ and TCK the
time obtaining in the proofs in refs 24 and 25. We get
‖znþ1‖rðtÞ < R that follows using [13 and 14]. The time TA is
to yield ‖Fðznþ1Þ‖L∞ðSrÞðtÞ < R. Then, using the induction
hypothesis and [15],we can control thequantity taking0 < TA <
ðR−2

0 − R−2ÞðC2
R þ 2R0CRÞ−1.

5. Fifth, all the results above allow us to prove that there is a
nonempty set of initial data in H4 satisfying the arc-chord
and R-Tconditions, such that the solution of the Muskat pro-
blem reaches the unstable regime: The R-T becomes strictly
negative on a nonempty interval. We pick initial data as in
3. We apply the local-existence result in 4 to get an analytic
solution zðα;tÞ on ½−T;T�. Then we consider a time 0 < δ < T
and a curve ωε

δðα;tÞ, solving the Muskat problem with initial
datum zðα; − δÞ þ ηϵδðαÞ. The function ηϵδ has a small H4

norm, i.e.,

‖ωε
δð· ; − δÞ − zð· ; − δÞ‖H4 ¼ ‖ηϵδ‖H4 ≤ ε:

The time δ is small enough so that ωε
δðα; − δÞ satisfies R-T:

ðρ2 − ρ1Þ∂αðωε
δÞ1ðα; − δÞ > 0. Thenwe apply the local-existence

result in 1 that ωε
δðα;tÞ becomes analytic for some time −δ < t.

With 2, we assure the existence and analyticity of the solution
even if ∂αðωε

δÞ1ðα;tÞ ≤ 0 for some time t. Then, we show that
both solutions are close in the H4 topology as time evolves.
We can apply toωε

δ the local-existence result in 4 if it is needed.
Then, with δ and ε small enough, we find the desired result.

3. Turning Water Waves
In this section, we prove for the water wave problem (ρ1 ¼ 0 and
[1–3 and 5]) that with initial data given by a graph ðα;f 0ðαÞÞ,
the interface reaches a regime in finite time where it only
can be parameterized as zðα;tÞ ¼ ðz1ðα;tÞ;z2ðα;tÞÞ; for α ∈ R, with
∂αz1ðα;tÞ < 0 for α ∈ I, a nonempty interval. Therefore there
exists a time t� where the solution of the free boundary problem
reparameterized by ðα;f ðα;tÞÞ satisfies ‖f α‖L∞ðt�Þ ¼ ∞.

Theorem 3.1. There exists a nonempty open set of initial data
ðα;f 0ðαÞÞ, with f 0 ∈ H5, such that in finite time t� the solution of
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the water waves problem (ρ1 ¼ 0 and [1–3 and 5]) given by
ðα;f ðα;tÞÞ satisfies ‖f α‖L∞ðt�Þ ¼ ∞. The solution can be continued
for t > t� as zðα;tÞ with ∂αz1ðα;tÞ < 0 for α ∈ I, a nonempty interval.

In order to prove this theorem, we consider a curve z�ðαÞ ∈ H5

with the same properties as in point 3 of the previous section.
Then, we pick zðα;t�Þ ¼ z�ðαÞ and ωðα;t�Þ ¼ −∂αz�2ðαÞ as a datum
for the initial value problem. It is easy to find the same properties
for the velocity, because the tangential direction does not affect
the evolution. Picking the appropriate cðα;tÞ and applying the
local-existence result in ref. 18 (note that in this case it is not
necessary analyticity, just H5 regularity), there exists a solution
of the water waves problem with zðα;tÞ ∈ Cð½t� − δ;t� þ δ�;H5Þ,
ωðα;tÞ ∈ Cð½t� − δ;t� þ δ�;H4Þ, and δ > 0 small enough. Then,
the initial datum ðz0ðαÞ;ω0ðαÞÞ ¼ ðα;f 0ðαÞ;ω0ðαÞÞ is given by
ðzðα;t� − δÞ;ωðα;t� − δÞÞ.

4. Muskat Breakdown
In this section, we show that there exists a smooth initial data in
the stable regime for the Muskat problem such that the solution
turns to the unstable regime and later it breaks down. The outline
of the proof is to construct a curve in the unstable regime which is
analytic except in a single point. We show that, as we evolve back-
ward in time, the curve becomes analytic and is as close as we
desired (in the Hk topology with k large enough) to the curve
from part 3 of Section 2.

Here we will work in the periodic setting and will consider the
equation

∂tzðζ;tÞ ¼
Z
w∈ΓþðtÞ

sinðz1ðζ;tÞ − z1ðw;tÞÞ
coshðz2ðζ;tÞ − z2ðw;tÞÞ − cosðz1ðζ;tÞ − z1ðw;tÞÞ

× ð∂ζzðζ;tÞ − ∂ζzðw;tÞÞdw; [17]

where ζ ∈ ΩðtÞ,

ΩðtÞ ¼ fζ ∈ C∕2kπ: jℑζj < hðℜz;tÞg;

hðx;tÞ is a positive periodic function with period 2π and smooth
for fixed time t, and

Γ�ðtÞ ¼ fζ ∈ C∕2kπ: ζ ¼ xþ ihðx;tÞg:

This equation is equivalent to [1, 2, and 4] for holomorphic
functions.

In order to prove the result, we will need the following theo-
rem:

Theorem 4.1. Let hðx;tÞ be a positive, smooth, and periodic function
with period 2π for fixed time t ∈ ½t0 − δ;t0�. Let zðx;t0Þ be a curve
satisfying the following properties:

• z1ðx;t0Þ − x and z2ðx;t0Þ are periodic with period 2π;
• zðζ;t0Þ is real for ζ real;
• zðζ;t0Þ is analytic in ζ ∈ Ωðt0Þ;
• zðζ;tÞ ∈ HkðΓ�ðt0ÞÞ with k a large enough integer.
• Complex arc-chord condition:

j coshðz2ðζ;t0Þ − z2ðw;t0ÞÞ − cosðz1ðζ;t0Þ − z1ðw;t0ÞÞj
≥ ½jjℜðζ − wÞjj þ jℑðζ − wÞj�2;

for ζ, w ∈ Ωðt0Þ, where ‖x‖ ¼ distanceðx;2kπÞ:
• Generalized Rayleigh–Taylor condition: RTðζ;t0Þ > 0, where

RTðζ;tÞ ¼ ℜ

�
−2π∂ζz1ðζ;tÞ

ð∂ζz1ðζ;tÞÞ2 þ ð∂ζz2ðζ;tÞÞ2
ð1þ i∂xhðℜζ;tÞÞ−1

�

þℑ

��
PV

Z
wΓþðtÞ

½sinðz1ðζ;tÞ

− z1ðw;tÞÞ�∕½coshðz2ðζ;tÞ − z2ðw;tÞÞ

− cosðz1ðζ;tÞ − z1ðw;tÞÞ�dwþ i∂thðζ;tÞ
�

× ð1þ i∂xhðℜζ;tÞÞ−1
�
:

Then, for small enough δ, there exists a solution for Eq. 17 in the
time interval t ∈ ½t0 − δ;t0�, satisfying
• z1ðx;tÞ − x and z2ðx;tÞ are periodic with period 2π;
• zðζ;tÞ is real for ζ real;
• zðζ;tÞ is analytic in ζ ∈ Ωðt0Þ;
• zðζ;tÞ ∈ HkðΓ�ðtÞÞ with k a large enough integer.

Now, let zðx;tÞ be the solution of the Muskat problem with
zðx;0Þ ¼ z0ðxÞ, where z0ðxÞ is the particular initial data from part 3
of the Section 2. We shall define this solution as the unperturbed
solution. Let us denote the Rayleigh–Taylor function

σ01ðx;tÞ≡
−2π∂xz1ðx;tÞ

ð∂xz1ðx;tÞÞ2 þ ð∂xz2ðx;tÞÞ2
:

Notice the minus sign in the right-hand side of the previous
expression. One can check the following properties of this
Rayleigh–Taylor function:

1. σ01ð· ;tÞ is analytic on fxþ iy: x ∈ T ;jyj ≤ cbg with jσ01ðxþ iy;tÞj
≤ C, for all xþ iy as above and for all t ≤ ½0;τ�;

2. σ01ð0;0Þ is real for x ∈ T , t ∈ ½0;τ�;
3. σ01 has a priori bounded Ck0 norm as a function of

ðx;tÞ ∈ T × ½0;τ� (k0 large enough);
4. σ01ð0;0Þ ¼ 0;
5. ∂xσ01ð0;0Þ ¼ 0;
6. ∂2xσ01ð0;0Þ ¼ −c2 < 0;
7. ∂tσ01ð0;0Þ ¼ c1 > 0.

In this setting, we define the following weight functions

hðx;tÞ ¼ A−1ðτ2 − t2Þ þ ðA−1 − ðτ − tÞÞ sin2
�
x
2

�
for t ∈ ½τ2;τ�:

[18]

ℏðx;tÞ ¼ 1

4
ðA−1τ2 þ A−1 sin

�
x
2

�
Þ þ A−2τtþ At sin

�
x
2

�
t ∈ ½0;τ2�; [19]

with x ∈ T . First we choose the parameters A large enough and
then τ small enough, then one can show that

σ01ðx;tÞ þ ∂thðx;tÞ − A
1
2hðx;tÞ ≥ cτ2 for x ∈ T ;t ∈ ½τ2;τ� [20]

and

σ01ðx;tÞ þ ∂tℏðx;tÞ − A
1
2ℏðx;tÞ ≥ 1

2
A−2τ for x ∈ T ;t ∈ ½0;τ2�: [21]

The inequalities 20 and 21 are one of the main ingredients of the
proof of the following results.

Theorem 4.2. Let zðx;tÞ be a solution of the Muskat equation in the
interval t ∈ ½0;τ�. Let hðx;tÞ and ℏðx;tÞ as in the expressions 18 and
19, and k a large enough integer. Assume that zðx;tÞ satisfies
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• z1ðx;tÞ − x and z2ðx;tÞ are periodic with period 2π;
• zðζ;tÞ is real for ζ real;
• zðζ;tÞ is analytic in ζ ∈ ΩðtÞ;
• zðζ;tÞ ∈ HkðΓ�ðtÞÞ with k a large enough integer.
• Complex arc-chord condition:

j coshðz2ðζ;tÞ − z2ðw;tÞÞ − cosðz1ðζ;tÞ − z1ðw;tÞÞj
≥ ½‖ℜðζ − wÞ‖þ jℑðζ − wÞj�2;

for ζ, w ∈ ΩðtÞ.
Here, in the definition of ΩðtÞ and Γ�ðtÞ, we use hðx;tÞ if t ∈ ½τ2;τ�
and ℏðx;tÞ if t ∈ ½0;τ2�. Then

1

2

d
dt

�Z
w∈ΓþðtÞ

j∂kζzðζ;tÞ − ∂kζzðζ;tÞj2dℜζ

�
≥ −CðAÞλ2;

if t ∈ ½τ2;τ� Z
w∈ΓþðtÞ

j∂kζzðζ;tÞ − ∂kζzðζ;tÞj2dℜζ ≤ λ2

and λ ≤ τ50.

In addition,

1

2

d
dt

�Z
w∈ΓþðtÞ

j∂kζzðζ;tÞ − ∂kζzðζ;tÞj2dℜζ

�
≥ −CðAÞτ−1λ2;

if t ∈ ½0;τ2� Z
w∈ΓþðtÞ

j∂kζzðζ;tÞ − ∂kζzðζ;tÞj2dℜζ ≤ λ2

and λ ≤ τ50.
This theorem implies that for all γ > 0 there is ε > 0 such thatZ

w∈ΓþðtÞ
j∂kζzðζ;tÞ − ∂kζzðζ;tÞj2dℜζ ≤ γ

for t ∈ ½0;τ� if

Z
w∈ΓþðtÞ

j∂kζzðζ;τÞ − ∂kζzðζ;τÞj2dℜζ ≤ ε

and zðx;tÞ satisfies the requirements of the theorem.

Lemma 4.3. Let zðx;tÞ be a solution of the Muskat problem satisfying
the requirements of Theorem 4.2 and close enough to the unper-
turbed solution in t ∈ ½0;τ�. Let hðx;tÞ and ℏðx;tÞ be as in [18]
and [19] with a suitable choice of A and τ. Then zðx;tÞ satisfies
the generalized Rayleigh–Taylor condition in t ∈ ½0;τ�. In particular,
the unperturbed solution satisfies the generalized Rayleigh–Taylor
condition in t ∈ ½0;τ�

Theorems 4.1 and 4.2 and Lemma 4.3 allow us to achieve the
desired result. Indeed we can choose a curve zðx;τÞ such thatZ

ζ∈Γ�
j∂kζzðζ;τÞ − ∂kζzðζ;τÞj2dℜζ ≤ ε;

with 0 < ε < ε0 (ε0 small enough), satisfying the generalized
Rayleigh–Taylor condition by Lemma 4.3 and satisfying the rest
of the hypothesis of Theorem 4.1. Because hð0;τÞ ¼ 0, zðx;tÞ is
allowed to be nonanalytic at x ¼ 0 [maybe zðx;τÞ ∈ HkðTÞ but
zðx;τÞ∉Hkþ1ðTÞ]. By Theorem 4.1, there is a solution zðx;tÞ, ana-
lytic in ΩðtÞ, for some interval t ∈ ½τ − δ;τ� with small enough δ
and for all ε. By Theorem 4.2, we can choose ε small enough
in such a way that, by Lemma 4.3, zðx;τ − δÞ satisfies the general-
ized Rayleigh–Taylor condition. Then we can go further the time
τ − δ. Iterating this argument, we find we can extend zðx;tÞ to be a
solution of the Muskat problem, analytic in ΩðtÞ for all t ∈ ½0;τ�
and as close as we want to the unperturbed solution.
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