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Porous media: the Muskat problem in 3D
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Abstract

The Muskat problem involves filtration of two incompressible fluids throughout a
porous medium. In this paper we shall discuss in 3-D the relevance of the Rayleigh-
Taylor condition, and the topology of the initial interface, in order to prove its local
existence in Sobolev spaces.

1 Introduction

The Muskat problem (see ref. [13] and [2]) involves filtration of two incompressible fluids
throughout a porous medium characterized by a positive constant κ quantifying its porosity
and permeability. The two fluids, having respectively velocity fields vj , j = 1, 2, occupy
disjoint regions Dj (D2 = R3−D1) with a common boundary (interface) given by the surface
S = ∂Dj. Naturally those domains change with time, Dj = Dj(t), as it does its interface
S = S(t). We shall denote by pj (j = 1, 2) the corresponding pressure and we will assume
also that the dynamical viscosities µj and the densities ρj are constants such that µ1 6= µ2,
ρ1 6= ρ2.

The conservation of mass law in this setting is given by the equation ∇ · v = 0 (in the
distribution sense) where v = v1χD1 + v2χD2 .

The momentum equation was obtained experimentally by Darcy [10, 2] and reads as
follows

µj

κ
vj = −∇pj − (0, 0, ρjg), j = 1, 2,

where g is the acceleration due to gravity.
One can find in the literature several attempts to derive Darcy law from Navier-Stokes (see

[18] and [15]) throughout the process of homogenization under the hypothesis of a periodic,
or almost periodic, porosity. In any case the presence of the porous medium justify the
elimination of the inertial terms in the motion, leaving friction (viscosity) and gravity as the
only relevant forces, to which one has to add pressure as it appears in the formulation of
Darcy’s law. There are three scales involved in the analysis, namely: the macroscopic or bulk
mass, the microscopic size of the fluid particle and the mesoscopic scale corresponding to the
pores. In the references above one find descriptions of the velocity v as an average over the
mesoscopic cells of the fluid particle velocities. Taking into account that each cell contains
a solid part where the particle velocity vanishes, it is then natural to get the viscous forces
associated to that average velocity, which is a scaled approximation of the laplacian term
appearing in the Navier-Stokes equation.

In this paper we shall consider the case of an homogeneous and isotropic porous material.
Porosity is the fraction of the volume occupied by pore or void space. But it is important to
distinguish between two kind of pore, one that form a continuous interconnected phase within
the medium and the other consisting on isolated pores, because non interconnected pores can

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51407694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1005.3536v1


not contribute to fluid transport. Permeability is the term used to describe the conductivity
of the porous media with respect to a newtonian fluid and it will depend upon the properties
of the medium and the fluid. Darcy’s law indicates such dependence allowing us to define
the notion of specific permeability κ and its appropriated units. In the case of anisotropic
material κ will be a symmetric and positive definite tensor, and then the methods of our proof
can be modified to get local existence, but for a non homogeneous medium the properties of
the tensor κ(x) will have to be conveniently specified in order to have an interesting theory.

The Muskat and related problems [14] have been recently studied [3, 16, 8, 9, 5]. The
first natural question asks for the evolution (existence) of such system, at least for a short
time t > 0, and the persistence of smoothness of the interface S(t) if we begin with a smooth
enough surface at time t = 0. One can deduce easily from this formulation that in the
occurrence of such smooth evolution both pressures, modulo a constant, must coincide at the
interface:

p1|S(t) = p2|S(t).
Therefore we look at the case without surface tension (see article [11] where the regularizing
effect of surface tension is considered). The normal component of the velocity fields must
also agree at the free boundary:

(v1 − v2) · νj = 0 at S(t)

where νj is the inner unit normal to S at the domain Dj (ν2 = −ν1). Furthermore the
vorticity will be concentrated at the interface, having form

curl (v) = ω(z)dS(z)

where ω is tangent at S at the point z and dS(z) is surface measure.
The main purpose of this paper is to extend to the 3-dimensional case the results obtained

in [5] for the case of 2 dimensions, namely proving local-existence in the scale of Sobolev spaces
of the initial value problem if the Rayleigh-Taylor condition (R-T) is initially satisfied (see
[14]) where this issue is studied from a physical point of view). In our case that condition
amounts to the positivity of the function

σ = (∇p2 −∇p1) · (ν2 − ν1)

at the interface S. Let us indicate that the R-T property also appears in other fluid interface
problems such as water waves [6].

Together with that hypothesis, one also assume that the initial surface S is connected and
simply connected. In the presence of a global parametrization X : R2 → S, the preservation
of that character will be controlled by the gauge

F (X)(α, β) =
|α− β|

|X(α) −X(β)| , ‖F (X)‖L∞ = sup
α6=β

|α− β|
|X(α) −X(β)| <∞.

Section 2 of this paper contains the deduction of the evolution equations for the interface
S. In section 3 we prove the existence of global isothermal parametrization as a consequence of
the Koebe-Poincare uniformization theorem of Riemann surfaces in the geometric scenarios
considered in our work, namely: either double periodicity in the horizontal variables or
asymptotic flatness. Let us add that given the non-local character of the operator involved,
to obtain a global isothermal parametrization is an important step in the proof, whose main
components are sketched in section 4.
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In closing our system (section 2) we need to control the norm of the inverse operator
(I+λD)−1 whereD is the double-layer potential and |λ| ≤ 1. It is well known from Fredholm´s
theory that those operators are bounded on L2(S). However since the surface S = S(t) is
moving, a precise control of its norm is needed in order to proceed with our proof. That is
the purpose of section 5 where the estimates for the double-layer potential are revisited.

In sections 6 and 7 we develop the energy estimates needed to conclude local-existence.
Let us mention that at a crucial point (more precisely just at that step where the positivity
of σ(α, t) (R-T) plays its role), we use the pointwise estimate θ(x)Λθ(x) ≥ 1

2Λθ
2(x) of [4],

with Λ =
√
−∆.

In the strategy of our proof it is crucial to analyze the evolution of both quantities σ and
F (section 8) at the same time than the interface X and vorticity ω. There are several pub-
lications (see [1] for example) where different authors have treated these problems assuming
that the Rayleigh-Taylor condition is preserved during the evolution. Under such hypothesis
the proof can be considerably simplified, specially if one also assume the appropriated bounds
for the resolvent of the double layer potential respect to a moving domain, or the existence
of global isothermal coordinates, etc... It is our purpose of going carefully over such items
what is responsible for the more delicate and intricate parts of this paper.

2 The contour equation

We consider the following evolution problem for the active scalars ρ = ρ(x, t) and µ = µ(x, t),
x ∈ R3, and t ≥ 0:

ρt + v · ∇ρ = 0,

µt + v · ∇µ = 0,

with a velocity v = (v1, v2, v3) satisfying the momentum equation

µv = −∇p− (0, 0, ρ), (2.1)

and the incompressibility condition ∇ · v = 0, where, without loss of generality, we have
prescribed the values κ = g = 1.

The vector (µ, ρ) is defined by

(µ, ρ)(x1, x2, x3, t) =

{
(µ1, ρ1), x ∈ D1(t)
(µ2, ρ2), x ∈ D2(t) = R3 \D1(t),

where µ1 6= µ2, and ρ1 6= ρ2. Darcy’s law (2.1) implies that the fluid is irrotational in the
interior of each domain Dj and because of the jump of densities and viscosities on the free
boundary, we may assume a velocity field such that

curl v = ω(α, t)δ(x −X(α, t)),

where ∂Dj(t) = {X(α, t) ∈ R3 : α = (α1, α2) ∈ R2}, i.e.

< curl v, ϕ >=

∫

R2

ω(α, t) · ϕ(X(α, t))dα, (2.2)

for any ϕ : R3 → R3 vector field in C∞
c (R3).

The incompressibility hypothesis ( < ∇ · v, ϕ >≡ − < v,∇ϕ >= 0 for any ϕ ∈ C∞
c (R3))

yields
v1(X(α, t), t) ·N(α, t) = v2(X(α, t), t) ·N(α, t),

3



with N(α, t) = ∂α1
X(α, t) ∧ ∂α2

X(α, t), and equation (2.2) gives us the identity

ω(α, t) = (v2(X(α, t), t) − v1(X(α, t), t)) ∧N(α, t).

Defining the potential φ by v(x, t) = ∇φ(x, t) for x ∈ R2 \ ∂Dj(t), we get

Ω(α, t) = φ2(X(α, t), t) − φ1(X(α, t), t),

∂α1
Ω(α, t) = (v2(X(α, t), t) − v1(X(α, t), t)) · ∂α1

X,

∂α2
Ω(α, t) = (v2(X(α, t), t) − v1(X(α, t), t)) · ∂α2

X.

Then, one has the equality

ω(α, t) = (v2(X(α, t), t) − v1(X(α, t), t)) ∧ (∂α1
X(α, t) ∧ ∂α2

X(α, t))

and therefore
ω(α, t) = ∂α2

Ω(α, t)∂α1
X(α, t) − ∂α1

Ω(α, t)∂α2
X(α, t), (2.3)

implying that ∇ · curl v = 0 in a weak sense.
Using the law of Biot-Savart we have for x not lying in the free surface (x 6= X(α, t)) the

following expression for the velocity:

v(x, t) = − 1

4π

∫

R2

x−X(β, t)

|x−X(β, t)|3 ∧ ω(β)dβ.

It follows that

Xt(α) = BR(X,ω)(α, t) + C1(α)∂α1
X(α) + C2(α)∂α2

X(α), (2.4)

where BR is the well-known Birkhoff-Rott integral

BR(X,ω)(α, t) = − 1

4π
PV

∫

R2

X(α)−X(β)

|X(α) −X(β)|3 ∧ ω(β)dβ. (2.5)

Next we will close the system using Darcy’s law:
Since

∇φ = v(x, t) − Ω(α, t)N(α, t)δ(x −X(α, t))

we have

< ∆φ,ϕ >= − < ∇φ,∇ϕ >=
∫

R2

Ω(α, t)N(α, t) · ∇ϕ(X(α, t))dα,

taking ϕ(y) = −1/(4π|x − y|) one obtain φ in terms of the double layer potential:

φ(x) = − 1

4π

∫

R2

x−X(α)

|x−X(α)|3 ·N(α)Ω(α)dα.

Darcy’s law yields
∆p(x, t) = −div (µ(x, t)v(x, t)) − ∂x3ρ(x, t),

that is
∆p(x, t) = P (α, t)δ(x −X(α, t)),

where P (α, t) is given by

P (α, t) = (µ2 − µ1)v(X(α, t), t) ·N(α, t) + (ρ2 − ρ1)N3(α, t),
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implying the continuity of the pressure on the free boundary.
Next if x 6= X(α, t), i.e. x is not placed at the interface, we can write Darcy’s law in the

form
µφ(x, t) = −p(x, t)− ρx3

and taking limits in both domains Dj we get at S the equality

(µ2φ2(X(α, t), t) − µ1φ1(X(α, t), t)) = −(ρ2 − ρ1)X3(α, t).

Then the formula for the double layer potential gives

µ2 + µ1

2
Ω(α, t)− (µ2 − µ1)

1

4π
PV

∫

R2

X(α)−X(β)

|X(α) −X(β)|3 ·N(β)Ω(β)dβ = −(ρ2 − ρ1)X3(α, t)

that is
Ω(α, t)−AµD(Ω)(α, t) = −2AρX3(α, t), (2.6)

where

D(Ω)(α) =
1

2π
PV

∫

R2

X(α) −X(β)

|X(α) −X(β)|3 ·N(β)Ω(β)dβ, (2.7)

Aµ =
µ2 − µ1

µ2 + µ1
and Aρ =

ρ2 − ρ1

µ2 + µ1
.

And the evolution equation are then given by (2.3)-(2.7), where the functions C1 and C2 will
be chosen in the next section.

Furthermore, taking limits we get from Darcy’s law the following two formulas:

∂α1
Ω(α, t) + 2AµBR(X,ω)(α, t) · ∂α1

X(α, t) = −2Aρ∂α1
X3(α, t), (2.8)

∂α2
Ω(α, t) + 2AµBR(X,ω)(α, t) · ∂α2

X(α, t) = −2Aρ∂α2
X3(α, t). (2.9)

3 Isothermal parameterization: choosing the tangential terms

Although the normal component of the velocity vector field is the relevant one in the evolution
of the interface, it is however very important to choose an adequate parameterization in
order to uncover and handle properly the cancelations contained in the equations of motion.
Fortunately for our task we can rely upon the ideas of H. Lewy [12], and many other authors,
who discovered the convenience of using isothermal coordinates in different P.D.E. namely for
understanding how a minimal surface leaves an obstacle, but also in several fluid mechanical
problems.

Let us recall that an isothermal parameterization must satisfy:

|Xα1
(α, t)|2 = |Xα2

(α, t)|2, Xα1
(α, t) ·Xα2

(α, t) = 0,

for t ≥ 0.
Next we define

C1(α) =
1

2π

∫

R2

α1 − β1
|α− β|2

BRβ2 ·Xβ2 −BRβ1 ·Xβ1

|Xβ2 |2
dβ

− 1

2π

∫

R2

α2 − β2
|α− β|2

BRβ1 ·Xβ2 +BRβ2 ·Xβ1

|Xβ1 |2
dβ,

(3.1)
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and

C2(α) =
−1

2π

∫

R2

α2 − β2
|α− β|2

BRβ2 ·Xβ2 −BRβ1 ·Xβ1

|Xβ2 |2
dβ

− 1

2π

∫

R2

α1 − β1
|α− β|2

BRβ1 ·Xβ2 +BRβ2 ·Xβ1

|Xβ1 |2
dβ.

(3.2)

That is Xt = BR+ C1Xα1
+ C2Xα2

and

Xα1t = BRα1
+ C1Xα1α1

+ C2Xα1α2
+ C1α1

Xα1
+C2α1

Xα2
,

Xα2t = BRα2
+ C1Xα1α2

+ C2Xα2α2
+ C1α2

Xα1
+C2α2

Xα2
.

Denoting f = (|Xα1
|2 − |Xα2

|2)/2 and g = Xα1
·Xα2

we have

ft = (BRα1
·Xα1

−BRα2
·Xα2

)+C1fα1
+C2fα2

+(C2α1
−C1α2

)g+2C1α1
f+(C1α1

−C2α2
)|Xα2

|2.

The expressions for C1 and C2 yield the vanishing of the sum of the first and the last
terms in the identity above. Therefore we get

ft = C1fα1
+ C2fα2

+ (C2α1
− C1α2

)g + 2C1α1
f. (3.3)

Similarly we have

gt = (BRα2
·Xα1

+BRα1
·Xα2

)+C1gα1
+C2gα2

+(C1α1
+C2α2

)g−2C2α1
f+(C1α2

+C2α1
)|Xα1

|2,

and
gt = C1gα1

+ C2gα2
+ (C1α1

+C2α2
)g − 2C2α1

f. (3.4)

The linear character of equations (3.3) and (3.4) allows us to conclude that if there is a
solution of the system Xt = BR+C1Xα1

+C2Xα2
and we start with isothermal coordinates

at time t = 0, then they will continue to be isothermal so long as the evolution equations
provide us with a smooth enough interface.

The fact that one can always prescribe such coordinates at time t = 0 follows from the
following argument: In the double periodic setting we have a C2 simply connected surface,
homeomorphic to the euclidean plane R2, which, by the Riemann-Koebe-Poincare uniformiza-
tion theorem, is conformally equivalent to either the Riemann sphere, the plane or the unit
disc. The sphere is easily eliminated by compacity, but we can also rule out the unit disc
because the double periodicity assumption in the horizontal variables imply the existence of
an abelian discrete subgroup of rank two in the group of conformal transformations, and that
event can not happen in the case of the unit disc.

Therefore we have an orientation preserving conformal (isothermal) equivalence

φ : R2 −→ S.

Since S is invariant under translations τν(x) = x+ 2πν, ν ∈ Z2 × {0} it follows that fν(z) =
φ−1 ◦ τν ◦ φ(z) must be a diffeoholomorphism of C = R2 and, therefore, it has to be of the
form

fν(z) = aνz + bν , for certain aν , bν ∈ C.

Clearly the family fν is generated by f1 = f(1,0,0), f2 = f(0,1,0). Let

f1(z) = a1z + b1, f2(z) = a2z + b2
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we claim that a1 = a2 = 1. Suppose that |a1| < 1 then we get fn1 (z) = an1z + b1(1 + a1 + ..+
an−1
1 ) a sequence converging to b1

1−a1
contradicting the discrete character of the group action.

On the other hand, if |a1| > 1 then since

f−1
1 (z) = f(−1,0,0)(z) =

z

a1
− b1
a1

we get a contradiction with the sequence f−n1 (z). Therefore we must have a1 = e2πiθ for some
0 ≤ θ < 1. Assume that 0 < θ < 1 then

f
(n)
1 (z) = e2πinθz + b1(1 + e2πiθ + ..... + e2πi(n−1)θ) = e2πinθz + b1

1− e2πinθ

1− e2πiθ

That is the sequence fn(z) is bounded, |fn(z)| ≤ |z| + |b1|
sinπθ , and therefore it contains a

converging subsequence contradicting again the discrete character of the action. That is, we
must have f1(z) = z + b1 and, similarly, f2(z) = z + b2, allowing us to conclude easily the
double periodicity of the isothermal parameterization φ.

In the asymptotically flat case we start with an orientable simply connected surface S so
that outside a ball B in R3 it becomes the graph of a C2-function x3 = ϕ(x1, x2) satisfying that

|Dαϕ(x)| = o(|x|−N ), for every N and |α| ≤ 2, in particular, the normal vector (−∇ϕ,1)√
1+|∇ϕ|2

=

ν(x) is pointing out vertically 1√
1+|∇ϕ|2

≫ 1
2 for |x| big enough.

It is then well known that one can find isothermal coordinates whose first fundamental
form λ(α, β)(dα2 + dβ2) converge asymptotically to the identity.

Again by the uniformation theorem S must be conformally equivalent to either C or the
unit disc. But since outside B the surface S is conformally equivalent to C − B

⋂{x3 = 0}
it cannot be also conformally equivalent to D−K, for any regular compact set K contained
in the unit disc D, because the harmonic measure of the ideal boundary is 1 in the case of D
and 0 for R2.

4 Outline of the proof.

The proof of local existence requires the following:
1) A connected and simply connected surface S = S(t) parameterized by isothermal

coordinates
X : R2 −→ R

3, X = X(α, t)

with normal vector N(α, t) = Xα1
∧Xα2

and gauge

F (X)(α, β) = |β|/|X(α) −X(α− β)|,

such ‖F (X)‖L∞ <∞ and ‖|N |−1‖L∞ <∞.
2) The positivity of

σ(α, t) = −(∇p2(X(α, t), t) −∇p1(X(α, t), t)) ·N(α, t)

= (µ2 − µ1)BR(X,ω)(α, t) ·N(α, t) + (ρ2 − ρ1)N3(α, t),
(4.1)

where the last equality is a consequence of Darcy’s law after taking limits in both domains
Dj. This is the Rayleigh-Taylor condition to be imposed at time t = 0, being a part of the
problem to prove that it remains true as time pass.
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3) The estimates on the norm of (I − λD)−1, |λ| < 1, D = double layer potential (section
5) allows us to obtain the inequalities:

‖Ω‖Hk+1 ≤ P (‖X‖2k+1 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞),

‖ω‖Hk ≤ P (‖X‖2k+1 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞),

for k ≥ 3, where P is a polynomial function and the norm ‖ · ‖k is given by

‖X‖k = ‖X1 − α1‖L3 + ‖X2 − α2‖L3 + ‖X3‖L2 + ‖∇(X − (α, 0))‖2Hk−1 ,

as in (7.1) below, and ‖ · ‖Hj denotes the norm in Sobolev’s space Hj.
4) A control of the Birkhoff-Rott integral BR(X,ω):

‖BR(X,ω)‖Hk ≤ CP (‖X‖2k+1 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞).

for k ≥ 3.
5) Energy estimates: The properties of isothermal parameterizations help us to reorganize

the terms in such a way that

d

dt
‖X‖2k(t) ≤ P (‖X‖2k(t) + ‖F (X)‖2L∞(t) + ‖|N |−1‖L∞(t))

−
∑

i=1,2

23/2

(µ1+µ2)

∫

R2

σ(α, t)

|∇X(α, t)|3 ∂
k
αi
X(α, t) · Λ(∂kαi

X)(α, t)dα,

where k ≥ 4, |∇X(α)|3 = (|∂α1
X(α)|2 + |∂α2

X(α)|2)3/2 and Λ = (−∆)1/2 = (R1(∂α1
) +

R2(∂α2
)). Then the pointwise inequality

θΛ(θ)− 1

2
Λ(θ2) ≥ 0,

together with the condition σ > 0 allows us to get rid of the dangerous terms in the inequality
above (i.e. those involving (k+1)-derivatives of X) to obtain the estimate

d

dt
‖X‖2k(t) ≤ P (‖X‖2k(t) + ‖F (X)‖2L∞ (t) + ‖|N |−1‖L∞(t)).

6) Finally we need to control the evolution of ‖F (X)‖L∞(t) and inf(t) = inf
α∈R2

σ(α, t)

which is obtained via the following estimates

d

dt
‖F (X)‖2L∞(t) ≤ P (‖X‖24(t) + ‖F (X)‖2L∞ (t) + ‖|N |−1‖L∞(t))

d

dt
(

1

inf(t)
) ≤ 1

(inf(t))2
P (‖X‖24(t) + ‖F (X)‖2L∞ (t) + ‖|N |−1‖L∞(t)).

7) All those facts together yield the inequality

d

dt
E(t) ≤ CP (E(t)),

for the energy:

E(t) = ‖X‖2k(t) + ‖F (X)‖2L∞ (t) + ‖|N |−1‖L∞(t) + (inf(t))−1

where k ≥ 4, C is an universal constant and P has polynomial growth (depending upon k).
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At this point it is not difficult to prove existence of a solution, locally in time, so long as
the initial data X(0) is in the appropriate Sobolev space of order k, k ≥ 4, and the Rayleigh-
Taylor and not-selfintersecting conditions (σ0 > c > 0, ‖F (X(0))‖L∞ < ∞) are satisfied.
Finally let us point out that since our existence proof is based upon energy inequalities an
extra argument is needed to prove uniqueness. Nevertheless that task is much easier than
proving existence ( the interested reader may consult the forthcoming paper [7] where the
details of the proof have been written for several important cases, namely, Muskat, Water
waves and SQG patches).

Let us remark that, at the end, we have to work with a coupled system involving the
evolution of the surface X, the ”vorticity density” ω, the Rayleigh-Taylor condition σ, the
non-selfintersecting character of S quantified by the gauge F (X) and the tangential parts
C1Xα1

+ C2Xα2
of the velocity field.

This paper is a continuation of [5] where the two-dimensional case was considered. Many
of the needed estimates can be obtained following exactly the same methods that where used
in [5] for the lower dimensional case. Therefore, in order to simplify our presentation, we shall
avoid here many details which were carefully proven in that quoted paper. This is specially
the case of section 6 (control of the Birkhoff-Rott integral), section 8 (energy estimates) and
also for the approximation schemes which are identical to those developed in [5]. Therefore in
the following we shall focus our attention on the more innovative parts of the proof, namely
the evolution of the Rayleigh-Taylor condition, the non-selfintersecting property of the free
boundary and the needed estimates for double layer potentials.

5 Inverting the operator: The single and double layer poten-

tials revisited

Along this proof we need to consider the properties of single and double layer potentials,
which are well-known characters in finding solutions to the Dirichlet and Neumann problems
in domains D of Rn.

For our purposes those domains will be of three different types, namely: bounded, pe-
riodic in the ”horizontal” variables or asymptotically flat. We shall also assume that their
boundaries are smooth enough (says C2) and do not present self-intersections. Therefore one
has tangent balls at every point of the boundary, one completely contained in D and the other
in Dc. We shall denote by ν(x) the unit inner normal at the point x ∈ ∂D, then under our hy-
pothesis we have that, for r > 0 small enough, the parallel surfaces ∂Dr = {x+rν(x)|x ∈ ∂D}
are also C2 surfaces with curvatures controlled by those of ∂D. Furthermore the vector field
ν can be extended smoothly up to a collar neighborhood of ∂D allowing us to write the
following formula:

∆u(x) =
∂2u

∂ν2
(x)− h(x)

∂u

∂ν
(x) + ∆su(x)

where ∆ denotes the ordinary laplacian in Rn, ∆s is the Laplace-Beltrami operator in ∂D,
h(x) is the mean curvature of ∂D at the point x and u is any C2-function defined in a
neighborhood of ∂D.

For convenience we will use the notation D1 = D, D2 = Dc, S = ∂Dj and νj(x)(j = 1, 2)
the inner normal at x ∈ S pointing inside Dj . Let dS be the surface measure in S induced
by Lebesgue measure in ambience space, then given integrable functions ϕ,ψ on S we have
the integrals

V (x) = cn

∫

S
ψ(y)

1

||x − y||n−2
dS(y)

9



W (x) = cn

∫

S
ϕ(y)

∂

∂νx
(

1

||x− y||n−2
)dS(y)

representing the single (respect. double) layer potential of ψ (respect. ϕ), where cn is the
normalizing constant so that cn

||x||n−2 becomes a fundamental solution of ∆ in Rn, n ≥ 3.

For x ∈ S let us denote W1(x), V1(x) (resp. W2(x), V2(x)) the corresponding limits of the
potentials inside D1 (resp. D2), we have:

W1(x) =
1

2
(ϕ(x) −

∫

S
ϕ(y)K(x, y)dσ(y)) =

1

2
(ϕ(x) −Dϕ(x))

W2(x) =
1

2
(ϕ(x) +

∫

S
ϕ(y)K(x, y)dσ(y)) =

1

2
(ϕ(x) +Dϕ(x))

∂V

∂ν1
(x) = −1

2
(ψ(x) +

∫

S
ψ(y)K(y, x)dσ(y)) = −1

2
(ψ(x) +D∗ψ(x))

∂V

∂ν2
(x) = −1

2
(ψ(x)−

∫

S
ψ(y)K(y, x)dσ(y)) = −1

2
(ψ(x) −D∗ψ(x))

where

K(x, y) = 2cn
∂

∂νy
(

1

||x− y||n−2
) = c̃n

〈x− y, ν(y)〉
|x− y|n .

It is well known that in those scenarios considered above the boundary operators D (and
D∗)are smoothing of order −1 and therefore compact. Furthermore all their eigenvalues
are real numbers having absolute value strictly less than 1. Therefore, by the standard
Fredholm theory, the operators I−λD, I−λD∗ are invertible when |λ| ≤ 1. However, in our
case the domains are moving and the evolution of their common boundary S involves such
inverse operators, making it necessary to estimate their norms in terms of the geometry and
smoothness of S.

Although there is a vast literature about single and double layer potentials, we have not
been able to point out a precise statement giving the information needed for our results.
Therefore in this section we provide arguments to prove that the norms of such inverse
operators growth at most polynomially P (|||S|||), where |||S||| is just ||S||C2 plus a term of
chord-arc type controlling the non-self-intersecting character of the boundary, namely we add
the term r(S)−1, where r(S) is the sup over all the positive r so that S admits tangent balls
of radius r in both domains Dj :

|||S||| = ||S||C2 + (r(S))−1.

We shall write P (|||S|||) to denote ≤ C(|||S|||p) for certain positive constants C, p which
are independent of the characters whose evolution is being controlled, but the size of both
constants may change along the proof and we shall make no effort to obtain their best values.

We will consider the case of bounded domains in Rn, n ≥ 3, because the needed modifi-
cations when n = 2, namely taking log |x| as fundamental solution for the laplacian, as well
as the changes for the periodic or asymptotically flat domains, are left to the reader.

Let D and D∗ be the potential defined above with kernel

K(x, y) = cn
∂

∂ν(y)

1

||x− y||n−2
= cn

〈x− y, ν(y)〉
|x− y|n

and K(y, x) respectively. In the study of the inverse operators (I − λD)−1, |λ| ≤ 1 it is
convenient to consider first the particular values λ = ±1.
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Proposition 5.1 The following estimate holds

||(I ±D)−1||L2(S) = P (|||S|||).

Since the boundedness of (I ± D)−1 in L2(S) is well known from the general theory,
we can simplify the proof considering only functions f ∈ L2(S) whose support lies inside a
region of S where the normal ν(x) is close enough to a fixed direction. Then for a general
f an appropriate partition of unity would allow us to add the local estimates, so long as the
number of pieces is controlled by |||S|||. We shall use the following observation of Rellich
(lemma 5.2) whose proof is immediate

Lemma 5.2 . Let u be a harmonic function and h a smooth vector field in the domain D,
then we have:

i) div (|∇u|2h) = 2div ((∇u · h)∇u) +O(|∇u|2|∇h|),

ii)

∫

∂D
〈ν, h〉|∇u|2dσ = 2

∫

∂D

∂u

∂ν
(∇u · h)dσ +O(

∫

D
|∇u|2|∇h|).

Given a function f ∈ C1(S) we may define ∇τf choosing at each point x ∈ S an or-
thonormal basis {e1, ...., en−1} of the tangent space Tx(S) (we can consider also ∇τf to be
the gradient naturally associated to the induced Riemannian metric by the ambience space).
In both ways, although different, we have that |∇τf | ≡ Λτf is an elliptic pseudo-differential
operator of order 1 in S. Solving the Dirichlet problem ∆u = 0 in D, u|S = f we obtain the
operator Dν ≡ ∂u

∂ν |S which is also a pseudo-differential operator of order 1 in S.

Lemma 5.3 Let f ∈ L2(S) having support on the region 1
2 ≤ 〈ν(x), η〉 ≤ 1 (for a fixed unit

vector η), then we have: ∫

S
|Dνf |2dσ ≃

∫

S
|∇τf |2dσ

where the constants involved in the stated equivalence ≃ are P (|||S|||).

Proof: Let u be harmonic in D so that u|S = f . Under our hypothesis about f and since
|∇u|2 = |Dνu|2 + |∇τu|2 and ∇τu is a local operator (supp S(∇τf) ⊂ supp (f)), lemma 5.2
yields:

1

2

∫

S
|∇τf |2dσ ≤

∫

S
〈ν(x), η〉|∇τu|2dσ ≤ 3

∫

S
|Dνu|2dσ + 2

∫

S
|∇τu||Dνu|dσ

from which we easily obtain
∫

S
|∇τf |2dσ ≤ P (|||S|||)

∫

S
|Dνf |2dσ.

To get the opposite inequality we proceed as before, but since Dνf is not local, an
extra argument is needed to control the contribution of the region outside supp (f). Let us
introduce surface discs Br(x) = {y ∈ S|‖x − y‖ ≤ r}, x ∈ S, 0 ≤ r ≤ |||S|||−1 and domains
∆r(x) = {y + ρν(x)|y ∈ Br(x), ρ ≤ r}. Given R = 1

2 |||S|||−1 there exists a fixed unit vector
η so that 1

2 ≤ 〈ν(y), η〉 ≤ 1, for every y ∈ BR(x) and also a smooth vector field h such that
h|∆R(x) ≡ η, supp (h) ⊂ ∆2R(x) and

1
2 |h(x)| ≤ 〈h(x), ν(x)〉, ||∇h||2 ≤ P (|||S|||)||h||.

In order to obtain the estimate
∫

S
|Dνf |2dσ ≤ P (|||S|||)

∫

S
|∇τf |2dσ

11



we may assume, without loss of generality, that supp (f) ⊂ BR(x), for some x ∈ S, and then
prove that ∫

BR(y0)
|Dνf |2dσ ≤ P (|||S|||)

∫

S
|∇τf |2dσ,

uniformly on y0 ∈ S.
With the vector field h defined above in ∆2R(y) let us apply Rellich’s estimate to get

∫

S
|Dνf |2〈h, ν(x)〉dσ(x) =

∫

S
〈ν, h〉|∇τf |2dσ − 2

∫

S
Dνf∇τf · hdσ +O(

∫

D
|∇u|2|∇h|)

where u satisfies ∆u = 0 in D, u|S = f . We get easily

∫

BR(y0)
|Dνf |2〈h, ν(x)〉dσ(x) = O(

∫

S
|∇τf |2dσ +

∫

D
|∇u|2|∇h|dx).

Then the proof will be finished if we can show that

∫

D
|∇u|2|∇h|dx ≤ P (|||S|||)

∫

S
|∇τf |2dσ.

To see it let us consider the parallel surfaces Sr = {x + rν(x)|x ∈ S} (0 ≤ r ≤ |||S|||) and
observe that ∫

Sr

u2dσr ≃
∫

S
u2(x+ rν(x))dσ

and
∫

S
[u2(x+ rν(x))− u2(x)]dσ(x) =

∫

S

∫ r

0
∇u2(x+ tν(x)) · ν(x)dtdσ

= 2

∫

Lr

u(y)∇u(y) · ν(y) ≤ 2(

∫

Lr

u2(y))
1

2 (

∫

Lr

|∇u|2(y)) 1

2

where Lr = {x+ ρν(x)|x ∈ S, 0 ≤ ρ ≤ r}.
Taking F (x+rν(x)) = f(x)X (x) (X= smooth cut-off) as a comparation function, Dirich-

let’s principle and Poincare’s inequality give us the estimate

∫

D
|∇u|2 ≤

∫

D
|∇F |2 ≤ C(

∫

S
|∇τf |2 +

∫

S
|f |2) = O(

∫

S
|∇τf |2dσ).

Therefore
∫

Sr

u2dσr ≃
∫

S
u2(x+ rν(x))dσ ≤

∫

S
f2(x)dσ + (

∫

Lr

u2(y))
1

2 (

∫

S
|∇τf |2)

1

2 .

An integration in r, 0 ≤ r ≤ R = |||S|||−1 yields

∫

Lr

u2dx ≤ R[

∫

S
f2(x)dσ + (

∫

Lr

u2(y))
1

2 (

∫

S
|∇τf |2)

1

2 .

That is ∫

Lr

u2dx ≤ CR

∫

S
|∇τf |2dσ.

12



To conclude let us observe that
∫

D
|∇u|2|∇h| = 1

2

∫

D
∆u2|∇h| = 1

2

∫

D
(∆u2|∇h| − u2∆(|∇h|)) + 1

2

∫

D
u2(|∇h|)

=
1

2

∫

S
u
∂u

∂ν
· |∇h|dσ − 1

2

∫

S
f2

(|∇h|)
∂ν

dσ +
1

2

∫

D
u2∇|h|

≤ (

∫

S
f2dσ)

1

2 (

∫
|∂u
∂ν

|2|∇h|2dσ) 1

2 + C

∫

S
f2dσ + C

∫

LR

u2.

Proof of Proposition 5.1: As before let f ∈ C1(S), supp (f) ⊂ U0 and let u be its single
layer potential:

u(x) = cn

∫

S

f(y)

||x− y||n−2
dS(y)

Then taking derivatives on each domain Dj with respect to the normal direction and evalu-
ating at S we get:

∂u

∂ν1
= −1

2
(f(x) +D∗f(x)),

∂v

∂ν2
= −1

2
(f(x)−D∗f(x)).

By lemma 5.3 we know that
∫

S
| ∂v
∂ν1

|2dσ ≃
∫

S
|∇τv|2dσ ≃

∫

S
| ∂v
∂ν2

|2dσ

where the constants involved in the equivalences ≃ are all controlled by above (respect.
below) by P (|||S|||) (respect. 1/P (|||S|||)).

Since ∂v
∂ν1

+ ∂v
∂ν2

= −f those estimates imply that

min(||f −D∗f ||2, ||f +D∗f ||2) ≥
1

P (|||S|||)

i.e. ||(I ± D)−1|| = P (|||S|||). Then using an appropriate partition of unity, that estimate
extends to a general f ∈ L2(S). q.e.d.

Next we shall consider Sobolev spaces Hs(S), 0 ≤ s ≤ 1, defined in the usual manner
(i.e. throughout local coordinates charts). We have also elliptic pseudo-differential operator
Λs = (−∆)

s
2 in such a way that

||f ||Hs(S) ≃ ||f ||L2 + ||Λsf ||L2 .

Then H−s(S) ≡ (Hs(S))∗ allows us to consider the negative case by duality under the
pairing ∫

S
φψdσ, φ ∈ H−s, ψ ∈ Hs

and

||φ||H−s = sup
||ψ||Hs=1

∫

S
φψdσ

Since bothD and D∗ are compact and smoothing operators of degree −1, the commutators
[Λs,D], [Λs,D∗] are then bounded in L2(S) (0 ≤ s ≤ 1) with norms controlled by |||S|||,
allowing us to extend proposition 5.1 to the chain of Sobolev’s spaces:

Corollary 5.4 The norm of the operators (I ±D)−1, (I ±D∗)−1 in the space Hs(S), −1 ≤
s ≤ 1, is bounded by P (|||S|||).
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5.1 Estimates for (I + λD)−1, |λ| ≤ 1.

With the same notation used before we have:

1− λ

2

∂V

∂ν1
+

1 + λ

2

∂V

∂ν2
= −1

2
(φ(x) − λD∗φ(x)),

1 + λ

2

∂V

∂ν1
+

1− λ

2

∂V

∂ν2
= −1

2
(φ(x) + λD∗φ(x)),

where

V (x) = cn

∫

S

φ(y)

||x− y||n−2
dS(y).

Then the identity φ− λD∗φ = 0 yields

0 = (1− λ)

∫

∂D1

V
∂V

∂ν1
dS + (1 + λ)

∫

∂D2

V
∂V

∂ν2
dS = (1− λ)

∫

D1

|∇V |2 + (1 + λ)

∫

D2

|∇V |2

which implies φ ≡ 0. Similarly for φ+ λD∗φ = 0, −1 ≤ λ ≤ 1.
Remark: This observation can be improved applying the following fact (whose proof we

skip because it will not be used in our theorem):

∫

D1

|∇u|2 ≃
∫

D2

|∇u|2

where, again, the ≃ is controlled by P (|||S|||). In particular it implies that the spectral radius
of the operators D, D∗ is less than 1− (P (|||S|||))−1.

Theorem 5.5 The operator norms ||(I+λD)−1||Hs(S), ||(I+λD∗)−1||Hs(S), |s| ≤ 1, |λ| ≤ 1,
are P (|||S|||) (growth at most polynomially with |||S|||).

Proof: The identity (I − D)−1(I − λD) = I + (1 − λ)(I −D)−1D shows that the conclusion
of the theorem follows easily when |1− λ| ≤ 1

P (|||S|||) and similarly when |1 + λ| ≤ 1
P (|||S|||) .

Therefore, without loss of generality, we may assume that

1− |λ| ≥ 1

P (|||S|||) .

Assume now that φ ∈ H− 1

2 (S) satisfies that ||φ||
H−

1
2
= 1 and

||φ− λD∗φ||
H−

1
2
≤ 1

P (|||S|||) .

Then the single layer potential

V (x) = cn

∫

S

φ(y)

||x− y||n−2
dS(y)

satisfies the inequality

|
∫

S
V (φ− λD∗φ)dS| ≤ 1

P (|||S|||)
On the other hand one have

∫

S
V (φ− λD∗φ)dS = (1− λ)

∫

D1

|∇V |2 + (1 + λ)

∫

D2

|∇V |2
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implying the estimate
∫

S
V (φ+ λD∗φ)dS = (1 + λ)

∫

D1

|∇V |2 + (1− λ)

∫

D2

|∇V |2 ≤ 1

P (|||S|||) .

Then adding both inequalities together we would obtain
∫

S
V φdσ ≤ 1

P (|||S|||)

which is impossible because of the following:

Lemma 5.6 If V is the single layer potential of φ then

∫

S
V (x)φ(x)dS(x) =

∫

S

∫

S

φ(x)φ(y)

||x− y||n−2
dS(x)dS(y) ≥ 1

P (|||S|||) ||φ||
2

H−
1
2 (S)

.

Proof: Let us observe first that
∫

S

∫

S

φ(x)φ(y)

||x− y||n−2
dσ(x)dσ(y) =

∫

Rn

1

|ξ|2 |φ̂dσ(ξ)|
2dξ ≥ 0,

where φ̂dS denotes the Fourier transform of the measure φdS supported on S. This implies
that

〈φ,ψ〉 =
∫

S

∫

S

φ(x)φ(y)

||x− y||n−2
dS(x)dS(y)

is an inner product satisfying:

|〈φ,ψ〉| ≤ 〈φ, φ〉 1

2 〈ψ,ψ〉 1

2

and we wish to show that
〈φ, φ〉 ⋍ ||φ||2

H−
1
2 (S)

.

To see it let us observe first that given φ ∈ H− 1

2 (S) then its single layer potential u|S belong

to the space H
1

2 (S) satisfying:

||u||
H

1
2 (S)

≤ P (|||S|||)||φ||
H−

1
2 (S)

,

which can be proved easily using local coordinates. As a consequence we have

∫

S

∫

S

φ(x)φ(y)

||x− y||n−2
dS(x)dS(y) ≤ P (|||S|||)||φ||2

H−
1
2 (S)

.

In the opposite direction, since H−s = (Hs)∗ we have

||φ||H−s = sup
f∈Hs

∫

S
φ(x)f(x)dσ(x).

Let us assume, for the moment, that given f ∈ Hs there exists g ∈ Hs−1 so that

f(x) = cn

∫

S

g(y)

||x− y||n−2
dS(y)

and ||f ||Hs ⋍ ||g||Hs−1 (where we have used again the symbol ⋍ to denote equivalence modulo
a factor P (|||S|||)).
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Then
||φ||H−s ⋍ sup

||g||
Hs−1=1

〈φ, g〉,

and taking s = 1
2 , s− 1 = −1

2 we get

||φ||
H−

1
2
≤ P (|||S|||)〈φ, φ〉 1

2 〈g, g〉 1

2 ≤ P (|||S|||)〈φ, φ〉 1

2 ||g||
H−

1
2
≤ P (|||S|||)〈φ, φ〉 1

2 .

To close our argument it remains to solve the equation

f(x) = cn

∫

S

g(y)

||x− y||n−2
dS(y)

i.e. to prove that given given f ∈ Hs there exits g ∈ Hs−1 satisfying the relation above.
To see that let us consider the solution of the Dirichlet problem:

{
∆u = 0 in D1

u|S = f

and the equation

−2
∂u

∂ν1
= g −D∗g

i.e. g = (I −D∗)−1(−2 ∂u
∂ν1

). Then we claim that such g verifies the identity

f(x) = cn

∫

S

g(y)

||x− y||n−2
dS(y).

This is because the function

V (x) = cn

∫

S

g(y)

||x− y||n−2
dS(y)

is harmonic in D1 and satisfies

−2
∂V

∂ν1
= g −D∗g = −2

∂u

∂ν1
,

which implies that V = u in D1 and, therefore, taking limits up to the boundary we obtain

f(x) = cn

∫

S

g(y)

||x− y||n−2
dS(y).

To finish the proof of theorem 5.5 let us consider for every τ , 0 ≤ τ ≤ 1, the identity

(I − λD)−1Λτ = Λτ (I − λD)−1 + (I − λD)−1Cτ (I − λD)−1

where the commutator Cτ = [DΛτ − ΛτD] is a pseudodifferential operator of order τ − 2
whose bounds are controlled by |||S|||. Then

||(I − λD)−1f ||Hs ≤ ||(I − λD)−1f ||
H−

1
2
+ ||Λs+ 1

2 (I − λD)−1f ||
H−

1
2

. ||f ||
H−

1
2
+ ||(I − λD)−1Λs+

1

2 f ||
H−

1
2

. ||f ||L2 + ||Λs+ 1

2 f ||
H−

1
2
≤ P (|||S|||)||f ||Hs

q.e.d.

16



Remark 5.7 In the particular case of the sphere S = Sn−1 (n ≥ 2) the estimate of lemma
5.6 becomes an identity:

∫

Sn−1

∫

Sn−1

φ(x)φ(y)

||x− y||n−2
dS(x)dS(y) = cn||φ||2

H−
1
2 (Sn−1)

for n ≥ 3, and

−
∫

S1

∫

S1

log ||x− y||φ(x)φ(y)dS(x)dS(y) = c2||φ||2
H−

1
2 (S1)

for n = 2.
Proof: We present the details when n ≥ 3. The case n = 2 follows similarly. Let φ(x) =∑
akYk(x) where Yk is a spherical harmonic of degree k normalized so that ||Yk||L2(Sn−1) = 1

then we have

|a0|2 +
∑

k≥1

|ak|2
2k + n− 2

= ||φ||2
H−

1
2 (S)

<∞.

Claim: If k 6= j then ∫

Sn−1

∫

Sn−1

Yk(x)Yj(y)

||x− y||n−2
dS(x)dS(y) = 0

Taking the Fourier transform and using Plancherel we get

∫

Sn−1

∫

Sn−1

Yk(x)Yj(y)

||x− y||n−2
dS(x)dS(y) =

∫

Rn

1

|ξ|2
̂YkdS(ξ) ̂YjdS(ξ)dξ

But it turns out that
̂YkdS(ξ) = 2πi−k|ξ|n−2

2 Jn+2k−2

2

(|ξ|)Yk(
ξ

|ξ| )

where Jν designs Bessel’s function of order ν, implying the claim.
Therefore our estimate diagonalizes:

∫

Rn

1

|ξ|2 |
̂YkdS(ξ)|2dξ = c

∫ ∞

0

1

r
|Jk+n−2

2

(r)|2dr

and the following well known identity for Bessel’s functions

∫ ∞

0

J2
µ(r)

r
dr =

1

2

1

µ

allows us to finish the proof.

5.2 Estimates for Ω and ω.

In the following we shall consider asymptotically flat domains leaving to the reader the details
of the periodic case. Since we have controlled the norms of the operator relating Ω and X,
we are in position to obtain the following inequality:

‖Ω‖Hk ≤ P (‖X‖2k + ‖F (X)‖2L∞ + ‖|N |−1‖L∞), (5.1)

for k ≥ 4, with P a polynomial function. Then Sobolev’s embedding implies

‖ω‖Hk ≤ P (‖X‖2k+1 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞), (5.2)
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for k ≥ 3. We will present the proof (5.1) when k = 4, because the cases k > 4 can be
obtained with the same method.

Theorem 5.5 in (2.6) yields

‖Ω‖H1 = ‖(I −AµD)−1(−2AρX3)‖H1 ≤ C‖(I −AµD)−1‖H1‖X3‖H1 ≤ P (|||S|||)‖X3‖H1

implying that
‖Ω‖H1 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞).

Next we will show that

‖∂2α1
Ω‖L2 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞)‖Ω‖H1 (5.3)

which together with the estimate for ‖Ω‖H1 above will allows us to control ∂2α1
Ω in terms of

the free boundary.
In order to do that we start with formula (2.8) to get ∂2α1

Ω = I1+ I2+ I3+ I4−2Aρ∂
2
α1
X3

where

I1 =
Aµ
2π
PV

∫

R2

X(α)−X(α − β)

|X(α) −X(α− β)|3 ∧ ω(α− β)dβ · ∂2α1
X(α).

I2 =
Aµ
2π
PV

∫

R2

∂α1
X(α)− ∂α1

X(α− β)

|X(α) −X(α− β)|3 ∧ ω(α− β)dβ · ∂α1
X(α),

I3 = −3Aµ
4π

PV

∫

R2

A(α, β)
X(α) −X(α − β)

|X(α) −X(α− β)|5 ∧ ω(α− β)dβ · ∂α1
X(α),

with A(α, β) = (X(α) −X(α− β)) · (∂α1
X(α) − ∂α1

X(α − β)), and

I4 =
Aµ
2π
PV

∫

R2

X(α) −X(α − β)

|X(α) −X(α − β)|3 ∧ ∂α1
ω(α− β)dβ · ∂α1

X(α).

Our next objective is to introduce the operators Tk (9.5) defined at the appendix, in the
analysis of those integrals Ij. Formula (2.3) gives us ω = ∂α2

(Ω∂α1
X) − ∂α1

(Ω∂α2
X) and

from standard Sobolev’s estimates we get

‖Ij‖L2 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞)‖Ω‖H1 , j = 1, 2,

and similarly with I3.
Regarding

I4 =

∫

|β|>1
dβ +

∫

|β|<1
dβ = J1 + J2

we integrate by parts in J1 to obtain

J1 =
Aµ
2π

∫

|β|>1
∂β1

( X(α)−X(α − β)

|X(α) −X(α− β)|3
)
∧ ω(α− β)dβ · ∂α1

X(α)

− Aµ
2π

∫

|β|=1

X(α) −X(α − β)

|X(α) −X(α − β)|3 ∧ ω(α− β)dl(β) · ∂α1
X(α).

From this last expression it is easy to deduce the inequality

J1 ≤ C‖F (X)‖3L∞‖X − (α, 0)‖2C1

( ∫

|β|>1

|ω(α− β)|
|β|3 dβ +

∫

|β|=1
|ω(α − β)|dl(β)

)

providing us with an appropriated control (see appendix for more details).
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Next let us consider J2 = K1 +K2 +K3 +K4 where

K1 =
Aµ
2π
PV

∫

|β|<1

X(α) −X(α − β)

|X(α) −X(α − β)|3 ∧ ∂α2
Ω(α− β)∂2α1

X(α− β)dβ · ∂α1
X(α),

K2 =
Aµ
2π
PV

∫

|β|<1

X(α) −X(α− β)

|X(α) −X(α − β)|3 ∧ ∂α1
∂α2

Ω(α− β)∂α1
X(α − β)dβ · ∂α1

X(α),

K3 = −Aµ
2π
PV

∫

|β|<1

X(α)−X(α − β)

|X(α) −X(α− β)|3 ∧ ∂α1
Ω(α− β)∂α1

∂α2
X(α − β)dβ · ∂α1

X(α),

K4 = −Aµ
2π
PV

∫

|β|<1

X(α) −X(α− β)

|X(α) −X(α− β)|3 ∧ ∂2α1
Ω(α− β)∂α2

X(α − β)dβ · ∂α1
X(α).

Then the terms K1 and K3 are handled with the same approach used for I2 ( i.e. (9.13) in
the appendix) and we rewrite K2 in the form

K2 =
Aµ
2π

∫

|β|<1

X(α)−X(α−β)
|X(α)−X(α−β)|3 ∧ ∂α1

∂α2
Ω(α−β)(∂α1

X(α−β)−∂α1
X(α))dβ · ∂α1

X(α),

to show that it can be estimated via an integration by parts in the variable β1 using the
identity

∂α1
∂α2

Ω(α−β) = −∂β1(∂α2
Ω(α−β))

and the fact that the kernel in the integral K2 has degree −1.
It remains to deal with K4: to do that let us consider K4 = L1 + L2 where

L1 =
Aµ
2π
PV

∫

|β|<1

X(α)−X(α−β)
|X(α)−X(α−β)|3 ∧ ∂2α1

Ω(α−β)(∂α2
X(α)−∂α2

X(α−β))dβ · ∂α1
X(α),

and

L2 =
Aµ
2π
PV

∫

|β|<1

X(α) −X(α− β)

|X(α) −X(α− β)|3 ∂
2
α1
Ω(α− β)dβ ·N(α).

The term L1 can be controlled like K2, and L2 can be rewritten in the form:

L2 =
Aµ
2π
PV

∫

|β|<1

( X(α) −X(α − β)

|X(α) −X(α− β)|3 − ∇X(α) · β
|∇X(α) · β|3

)
∂2α1

Ω(α− β)dβ ·N(α),

showing that it can be estimated as we did with T4 (9.8), that is we obtain (5.3). Similarly,
equation (2.9) yields

‖∂2α2
Ω‖L2 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞)‖Ω‖H1 ,

and then the inequality 2‖∂α1
∂α2

Ω‖L2 ≤ ‖∂2α1
Ω‖L2 + ‖∂2α2

Ω‖L2 gives us the desired control
upon ‖Ω‖H2 .

Next we will show that

‖∂3α1
Ω‖L2 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞)‖Ω‖H2 (5.4)

allowing us to use the estimates for ‖Ω‖H2 above. In order to do that we start with formula
(2.8) to get ∂3α1

Ω = ∂α1
I1+∂α1

I2+∂α1
I3+∂α1

I4− 2Aρ∂
3
α1
X3 where the most singular terms

are given by

J3 =
Aµ
2π
PV

∫

R2

X(α) −X(α− β)

|X(α) −X(α− β)|3 ∧ ω(α− β)dβ · ∂3α1
X(α),
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J4 =
Aµ
2π
PV

∫

R2

∂2α1
X(α) − ∂2α1

X(α− β)

|X(α) −X(α− β)|3 ∧ ω(α− β)dβ · ∂α1
X(α),

J5 = −3Aµ
4π

PV

∫

R2

B(α, β)
X(α)−X(α − β)

|X(α) −X(α− β)|5 ∧ ω(α− β)dβ · ∂α1
X(α),

with B(α, β) = (X(α) −X(α− β)) · (∂2α1
X(α)− ∂2α1

X(α− β)), and

J6 =
Aµ
2π
PV

∫

R2

X(α)−X(α − β)

|X(α) −X(α− β)|3 ∧ ∂2α1
ω(α− β)dβ · ∂α1

X(α),

and where the remainder terms can be estimated with the same method used before.
Now we write

J3 =
Aµ
2π

T1(∂α2
(Ω∂α1

X)− ∂α1
(Ω∂α2

X)) · ∂3α1
X

to obtain:
‖J3‖L2 ≤ C‖T1(∂α2

(Ω∂α1
X)− ∂α1

(Ω∂α2
X))‖L4‖∂3α1

X‖L4 .

Next let us observe that in the proof of estimate (9.9) one can replace L2 by Lp for 1 < p <∞
(see [17]). In particular we have

‖J3‖L2 ≤ P (‖X−(α, 0)‖C1,δ+‖F (X)‖L∞+‖|N |−1‖L∞)(‖Ω∂α1
X‖L4+‖Ω∂α2

X‖L4+‖ω‖L4)‖∂3α1
X‖L4 ,

and then Sobolev’s embedding in dimension two: (‖g‖L4 ≤ C‖g‖H1) yields the desired control.
Regarding J4 we follow the approach taken before for T3 but using now the L4 norm. That
is we split

J4 =

∫

|β|>1
dβ +

∫

|β|<1
dβ = K5 +K6

and since

K5 ≤ ‖X − (α, 0)‖2C2‖F (X)‖3L∞

∫

|β|>1

|ω(α− β)|
|β|3 dβ

that term can be estimated as above.
Next we introduce the splitting K6 = L3 + L4 where

L3=
Aµ
2π

∫

|β|<1
(∂2α1

X(α)−∂2α1
X(α−β))[ 1

|X(α)−X(α−β)|3 − 1

|∇X(α)·β|3 ]∧ω(α−β)dβ·∂α1
X(α),

L4 =
Aµ
2π
PV

∫

|β|<1

∂2α1
X(α) − ∂2α1

X(α− β)

|∇X(α) · β|3 ∧ ω(α− β)dβ · ∂α1
X(α).

We have

L3 ≤ C‖X − (α, 0)‖3C2,δ (‖F (X)‖4L∞ + ‖X − (α, 0)‖4C1‖|N |−1‖4L∞)

∫

|β|<1

|ω(α− β)|
|β|2−δ dβ

(see appendix for more details), giving us the appropriated estimate. Regarding L4 we use
identity (9.16) which after a careful integration by parts yields

L4 =
Aµ
2π
PV

∫

|β|<1

β · ∇β

(
(∂2α1

X(α) − ∂2α1
X(α− β)) ∧ ω(α− β) · ∂α1

X(α)
)

|∇X(α) · β|3 dβ

− Aµ
2π

∫

|β|=1

|β|(∂2α1
X(α) − ∂2α1

X(α − β)) ∧ ω(α− β) · ∂α1
X(α)

|∇X(α) · β|3 dl(β).
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helping us to prove the inequality

‖L4‖L2 ≤ P (‖X − (α, 0)‖C2 + ‖F (X)‖L∞ + ‖|N |−1‖L∞)(‖∂3α1
X‖L4‖ω‖L4 + ‖ω‖L2).

Clearly J5 can be approached with the same method used for J4. Regarding the term J6 we
have to decompose further: first its most singular terms which are given by

L5 =
Aµ
2π
PV

∫

|β|<1

X(α) −X(α − β)

|X(α) −X(α− β)|3 ∧ ∂α2
Ω(α− β)∂3α1

X(α − β)dβ · ∂α1
X(α),

L6 =
Aµ
2π
PV

∫

|β|<1

X(α)−X(α − β)

|X(α) −X(α− β)|3 ∧ ∂2α1
∂α2

Ω(α− β)∂α1
X(α − β)dβ · ∂α1

X(α),

L7 = −Aµ
2π
PV

∫

|β|<1

X(α) −X(α− β)

|X(α) −X(α− β)|3 ∧ ∂α1
Ω(α− β)∂2α1

∂α2
X(α− β)dβ · ∂α1

X(α),

L8 = −Aµ
2π
PV

∫

|β|<1

X(α) −X(α− β)

|X(α) −X(α − β)|3 ∧ ∂3α1
Ω(α− β)∂α2

X(α− β)dβ · ∂α1
X(α).

Second let us observe that the remainder is easy to handle; the terms L5 and L7 can be
estimated as we did with K1 and K3 using the L4 norm and, finally, L6 and L8 are like K2

and K4 respectively. Putting together all these facts we obtain (5.4).
Similarly to the case of lower derivatives, equation (2.9) yields

‖Ω‖H3 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞)‖Ω‖H2 .

To finish it remains to show the corresponding inequality for derivatives of fourth order:

‖Ω‖H4 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞)‖Ω‖H3 . (5.5)

Identity (2.8) allows us to point out the most singular terms in ∂4α1
Ω:

M1 =
Aµ
2π
PV

∫

R2

X(α) −X(α − β)

|X(α) −X(α− β)|3 ∧ ω(α− β)dβ · ∂4α1
X(α),

M2 =
Aµ
2π
PV

∫

R2

∂3α1
X(α) − ∂3α1

X(α− β)

|X(α) −X(α− β)|3 ∧ ω(α− β)dβ · ∂α1
X(α),

M3 = −3Aµ
4π

PV

∫

R2

C(α, β)
X(α) −X(α − β)

|X(α) −X(α − β)|5 ∧ ω(α− β)dβ · ∂α1
X(α),

with C(α, β) = (X(α) −X(α− β)) · (∂3α1
X(α) − ∂3α1

X(α− β)), and

M4 =
Aµ
2π
PV

∫

R2

X(α)−X(α − β)

|X(α) −X(α− β)|3 ∧ ∂3α1
ω(α− β)dβ · ∂α1

X(α).

Then in order to estimate M1 we start with ‖M1‖L2 ≤ CK‖∂4α1
X‖L2 where

K = sup
α

∣∣∣PV
∫

R2

X(α) −X(α− β)

|X(α) −X(α − β)|3 ∧ ω(α− β)dβ
∣∣∣.

Following ref. [8] we have:
K ≤ O1 +O2 +O3 +O4 +O5

where

O1 = sup
α

∣∣∣PV
∫

|β|>1

X(α) −X(α − β)

|X(α) −X(α− β)|3 ∧ ω(α− β)dβ
∣∣∣,
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O2 = sup
α

∣∣∣
∫

|β|<1

X(α) −X(α − β)−∇X(α) · β
|X(α) −X(α− β)|3 ∧ ω(α− β)dβ

∣∣∣,

O3 = sup
α

∣∣∣
∫

|β|<1
∇X(α) · β[ 1

|X(α) −X(α − β)|3 − 1

|∇X(α) · β|3 ] ∧ ω(α− β)dβ
∣∣∣,

O4 = sup
α

∣∣∣
∫

|β|<1

∇X(α) · β
|∇X(α) · β|3 ∧ (ω(α− β)− ω(α))dβ

∣∣∣,

O5 = sup
α

∣∣∣PV
∫

|β|<1

∇X(α) · β
|∇X(α) · β|3 ∧ ω(α)dβ

∣∣∣.

An integration by parts in O1 yields

O1 ≤C‖∇X‖2L∞‖F (X)‖3L∞ sup
α

(

∫

|β|>1

|Ω(α− β)|
|β|3 dβ +

∫

|β|=1
|Ω(α− β)|dl(β))

≤C‖∇X‖2L∞‖F (X)‖3L∞‖Ω‖L∞ ,

and Sobolev’s embedding allows us to conclude.
Regarding O2 we have

O2 ≤ ‖X − (α, 0)‖C2,δ‖F (X)‖3L∞‖ω‖L∞

∣∣
∫

|β|<1
|β|2−δdβ

∣∣

and then the estimate, ‖ω‖Cδ ≤ C‖ω‖H2 for 0 < δ < 1, gives the desired control. Using
(9.15) and after some straightforward algebraic manipulations we get a similar inequality for
O3. Next we have

O4 ≤ C‖X − (α, 0)‖4C1‖|N |−1‖3L∞‖ω‖Cδ

∣∣
∫

|β|<1
|β|2−δdβ

∣∣,

giving us also the same estimate. Furthermore it is easy to prove that O5 = 0.
Next we consider the term M2 with the splitting: M2 = Q1 +Q2 +Q3 where

Q1 =
Aµ
2π

∫

|β|>1

∂3α1
X(α) − ∂3α1

X(α − β)

|X(α) −X(α − β)|3 ∧ ω(α− β)dβ · ∂α1
X(α),

Q2 =
Aµ
2π

∫

|β|<1

∂3α1
X(α) − ∂3α1

X(α− β)

|X(α) −X(α− β)|3 ∧ (ω(α− β)− ω(α))dβ · ∂α1
X(α),

Q3 =
Aµ
2π
PV

∫

|β|<1

∂3α1
X(α) − ∂3α1

X(α − β)

|X(α) −X(α − β)|3 dβ ∧ ω(α) · ∂α1
X(α).

The term Q1 can be estimated as before, regarding Q2 we can use the identity

∂3α1
X(α) − ∂3α1

X(α − β) =

∫ 1

0
∇∂3α1

X(α + (s − 1)β)ds · β

and the control of Q3 can be approached as we did with the operator in (9.7). Similarly with
M3, whether M4 is analogous to J6, and all these observations together allow us to obtain
(5.5).
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6 Controlling the Birkhoff-Rott integral

Here we consider estimates for the Birkhoff-Rott integral along a non-selfintersecting surface.
Let us assume that ∇(X(α) − (α, 0)) ∈ Hk(R2) for k ≥ 3, and that both F (X) and |N |−1

are in L∞ where

F (X)(α, β) = |β|/|X(α) −X(α− β)| and N(α) = ∂α1
X(α) ∧ ∂α2

X(α).

The main purpose of this section is to prove the following estimate:

‖BR(X,ω)‖Hk−1 ≤ P (‖X‖2k + ‖F (X)‖2L∞ + ‖|N |−1‖L∞), (6.1)

for k ≥ 4. Here we shall show it when k = 4, because the other cases, k > 4, follow by similar
arguments. We rewrite BR in the following manner:

BR(X,ω)(α, t) = − 1

4π
PV

∫

R2

X(α)−X(β)

|X(α) −X(β)|3 ∧ (∂β2(Ω∂β1X)− ∂β1(Ω∂β2X))(β)dβ,

which together with the estimates about Ω in section 5 and also about the operator T1 in the
appendix, yields

‖BR(X,ω)‖L2 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞).

To estimate derivatives of order 3 we consider ∂3αi
(BR(X,ω)), and observe that the most

dangerous terms are given by

I1 = − 1

4π
PV

∫

R2

(∂3αi
X(α)− ∂3αi

X(α − β)) ∧ ω(α− β)

|X(α) −X(α − β)|3 dβ,

I2 =
3

4π
PV

∫

R2

(X(α)−X(α−β))∧ω(α−β)(X(α)−X(α−β))·(∂3αi
X(α)−∂3αi

X(α−β))
|X(α)−X(α−β)|5 dβ

I3 = − 1

4π
PV

∫

R2

(X(α) −X(α− β)) ∧ (∂3αi
ω)(α− β)

|X(α) −X(α − β)|3 dβ.

In the appendix we find all the ingredients needed to estimate these terms Ij while the
remainder in ∂3αi

(BR(X,ω)) is easily bounded, namely: in I3 we can recognize an operator
with the form of T1 in (9.5), so the estimate for ω in section 5 gives the desired control for
I3. Regarding I1 we may use the splitting I1 = J1 + J2 where

J1 =
1

4π

∫

R2

(∂3αi
X(α) − ∂3αi

X(α− β)) ∧ (ω(α) − ω(α− β))

|X(α) −X(α − β)|3 dβ,

J2 =
ω(α)

4π
∧ PV

∫

R2

(∂3αi
X(α) − ∂3αi

X(α− β))

|X(α) −X(α− β)|3 dβ.

Then the identity ∂3αi
X(α)−∂3αi

X(α−β) = β ·
∫ 1
0 ∇∂3αi

X(α+(s−1)β)ds allows us to find in
J1 a kernel of degree −1 which we know how to handle (see appendix). One use the estimate
for T3 (9.7) to deal with J2 and we proceed similarly to control I2.
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7 In search of the Rayleigh-Taylor condition

As it was pointed out in section 4 (outline of the proof) our approach is based on energy
estimates and a crucial step is to characterize those terms involving higher derivatives which
are controlled because they have the appropriated sign. In our terminology they constitute
the Rayleigh-Taylor condition, which is supposed to holds at time T = 0, being an important
part of the proof to show that it prevails under the evolution.

Let us introduce the notation

|||X|||2k = ‖X‖2k + ‖F (X)‖2L∞ + ‖|N |−1‖L∞

where
‖X‖k = ‖X1 − α1‖L3 + ‖X2 − α2‖L3 + ‖X3‖L2 + ‖∇(X − (α, 0))‖2Hk−1 , (7.1)

and

‖∇(X − (α, 0))‖2Hk−1 = ‖∇(X − (α, 0))‖2L2 + ‖∂kα1
(X − (α, 0))‖2L2 + ‖∂kα2

(X − (α, 0))‖2L2 .

In order to justify the formula

d

dt
‖X‖2k(t) ≤ −

∑

i=1,2

23/2

(µ1+µ2)

∫

R2

σ(α, t)

|∇X(α, t)|3 ∂
k
αi
X(α, t) · Λ(∂kαi

X)(α, t)dα

+ P (|||X|||k(t)),

(here k ≥ 4, although for the sake of simplicity we will present the explicit computations when
k = 4, leaving the other cases as an exercise for the interested reader), it will be convenient to
make use of the following tools, giving us different kind of cancelations, and which constitute
our particular bestiary of formulas for this paper:

From the definition of the isothermal parameterization we have the identities:

|∂α1
X|2 = |∂α2

X|2, (7.2)

∂α1
X · ∂α2

X = 0, (7.3)

which yield
1

2
∆(|∂α1

X|2) = |∂α1
∂α2

X|2 − ∂2α1
X · ∂2α2

X, (7.4)

∂4α1
X · ∂α1

X = −3∂3α1
X · ∂2α1

X + (∂2α1
∆−1∂α1

)(|∂α1
∂α2

X|2 − ∂2α1
X · ∂2α2

X), (7.5)

∂4α2
X · ∂α2

X = −3∂3α2
X · ∂2α2

X + (∂2α2
∆−1∂α2

)(|∂α1
∂α2

X|2 − ∂2α1
X · ∂2α2

X). (7.6)

Using (7.3) and (7.4) we obtain:

∂4α1
X · ∂α2

X = −2∂3α1
X · ∂α1

∂α2
X − ∂2α1

∂α2
X · ∂2α1

X

− (∂α1
∂α2

∆−1∂α1
)(|∂α1

∂α2
X|2 − ∂2α1

X · ∂2α2
X),

(7.7)

∂4α2
X · ∂α1

X = −2∂3α2
X · ∂α1

∂α2
X − ∂2α2

∂α1
X · ∂2α2

X

− (∂α1
∂α2

∆−1∂α2
)(|∂α1

∂α2
X|2 − ∂2α1

X · ∂2α2
X).

(7.8)
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And Sobolev inequalities imply that if ∇(X − (α, 0)) ∈ H3 then ∂4αi
X · ∂αj

X ∈ H3 for
i, j = 1, 2.

With the help of the estimates above we may now afford the task of determining σ. There
is a part that may be considered as a mere “algebraic” manipulation to detect the relevant
characters and, in so doing, we disregard many terms because they are of lower order in the
sense of Sobolev spaces. At the end, we shall present how to deal with those lower order
terms, if not for the whole collection of them, at least for the ones that we may consider
to be the most “dangerous” characters. Here it is convenient to recommend the reader our
previous works [8, 5] where similar estimates were carried out.

7.1 Low order norms

Since Xi(α) → αi for i = 1, 2 at infinity, let us consider the evolution of the L3 norm. That
is

1

3

d

dt
‖X1 − α1‖3L3(t) =

∫

R2

|X1 − α1|(X1 − α1)X1tdα = I1 + I2 + I3,

where

I1 =

∫

R2

|X1 − α1|(X1 − α1)BR1dα,

I2 =

∫

R2

|X1 − α1|(X1 − α1)C1∂α1
X1dα, I3 =

∫

R2

|X1 − α1|(X1 − α1)C2∂α2
X1dα.

Then we have

I1 ≤ ‖X1 − α1‖2L3‖BR‖L3 ≤ C(‖X1 − α1‖3L3 + ‖BR‖L∞‖BR‖2L2),

and Sobolev estimates, together with (6.1), yield the appropriate control in terms of P (|||X|||k).
Next since ∂α1

X1 → 1 as α→ ∞, we have

I2 ≤ ‖∂α1
X1‖L∞‖X1 − α1‖2L3‖C1‖L3 ,

and it remains to get control of C1. Using (3.1) we introduce the splitting C1 =
∑4

j=1C
j
1 ,

where

C1
1 (α) =

1

2π

∫

R2

α1 − β1
|α− β|2BRβ2 ·

Xβ2

|Xβ2 |2
dβ, C2

1 (α) = − 1

2π

∫

R2

α1 − β1
|α− β|2BRβ1 ·

Xβ1

|Xβ2 |2
dβ,

C3
1 (α) = − 1

2π

∫

R2

α2 − β2
|α− β|2BRβ1 ·

Xβ2

|Xβ1 |2
dβ, C4

1 (α) = − 1

2π

∫

R2

α1 − β1
|α− β|2BRβ2 ·

Xβ1

|Xβ1 |2
dβ.

We shall show how control C1
1 , because the estimates for the other terms follow by similar

arguments. Integrating by parts one obtain C1
1 = D1 +D2 where

D1=
−1

2π

∫

R2

α1−β1
|α−β|2BR·∂β2

( Xβ2

|Xβ2 |2
)
dβ, D2=− 1

π
PV

∫

R2

(α1−β1)(α2−β2)
|α−β|4 BR· Xβ2

|Xβ2 |2
dβ.

Regarding D1 we write D1 = E1 + E2 where

E1=
−1

2π

∫

|β|<1

β1
|β|2BR(α−β)·∂β2

( Xβ2

|Xβ2 |2
)
(α−β)dβ,
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E2=
−1

2π

∫

|β|>1

β1
|β|2BR(α−β)·∂β2

( Xβ2

|Xβ2 |2
)
(α−β)dβ.

Then Minkowski and Young inequalities yield respectively

‖E1‖L3 ≤ C‖BR·∂β2
( Xβ2

|Xβ2 |2
)
‖L3 ≤ P (|||X|||4),

‖E2‖L3 ≤ C‖BR·∂β2
( Xβ2

|Xβ2 |2
)
‖L1 ≤ C‖BR‖L2‖∂β2

( Xβ2

|Xβ2 |2
)
‖L2 ≤ P (|||X|||4),

and the desired control is achieved. In the term D2 we have a double Riesz transform and
the standard Calderon-Zygmund theory yields

‖D2‖L3 ≤ C‖BR · Xβ2

|Xβ2 |2
‖L3 ≤ C‖|Xβ2 |−1‖L∞‖BR‖L3 ≤ P (|||X|||4).

The estimate for I3 follows on similar path, and the case of the second coordinate is also
identical:

1

3

d

dt
‖X2 − α2‖3L3(t) ≤ P (|||X|||4).

Regarding the third coordinate we have a stronger decay because of the asymptotic flatness
hypothesis:

1

2

d

dt
‖X3‖2L2(t) =

∫

R2

X3BR3dα+

∫

R2

X3C1∂α1
X3dα+

∫

R2

X3C2∂α2
X3dα

=

∫

R2

X3BR3dα− 1

2

∫

R2

(∂α1
C1 + ∂α2

C2)|X3|2dα,

therefore the use of Sobolev’s embedding in the formulas for C1 (3.1) and C2 (3.2), together
with the estimates for BR (6.1), allows us to obtain:

1

2

d

dt
‖X3‖2L2(t) ≤ P (|||X|||4).

Once we have control of higher order derivatives, we can use the estimates of the appendix
to get

1

2

d

dt
‖∇(X − (α, 0))‖2L2(t) ≤ P (|||X|||4).

7.2 Higher order norms

Let us consider now

1

2

d

dt
‖∂4α1

X‖2L2(t) =

∫

R2

∂4α1
X · ∂4α1

BR(X,ω)dα

+

∫

R2

∂4α1
X · ∂4α1

(C1∂α1
X)dα +

∫

R2

∂4α1
X · ∂4α1

(C2∂α2
X)dα

= I1 + I2 + I3,

(7.9)

The higher order terms in I2 and I3 are given by

J1 =

∫

R2

C1∂
4
α1
X · ∂5α1

Xdα, J2 =

∫

R2

∂4α1
X · ∂α1

X∂4α1
C1dα
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J3 =

∫

R2

C2∂
4
α1
X · ∂4α1

∂α2
Xdα, J4 =

∫

R2

∂4α1
X · ∂α2

X∂4α1
C2dα

Integration by parts yields

J1 + J3 = −1

2

∫

R2

(∂α1
C1 + ∂α2

C2)|∂4α1
X|2dα

and therefore

J1 + J3 ≤
1

2
(‖∂α1

C1‖L∞ + ‖∂α2
C2‖L∞)‖∂4α1

X‖2L2 ≤ P (|||X|||4).

Then in J2 we use (7.5) to get

J2 = −
∫

R2

∂α1
(∂4α1

X · ∂α1
X)∂3α1

C1dα ≤ ‖∂α1
(∂4α1

X · ∂α1
X)‖L2‖∂3α1

C1‖L2 .

Whether in J4 we use (7.7) to obtain

J4 = −
∫

R2

∂α1
(∂4α1

X · ∂α2
X)∂3α1

C2dα ≤ ‖∂α1
(∂4α1

X · ∂α2
X)‖L2‖∂3α1

C2‖L2 .

From formulas (3.1),(3.2) one realizes that C1 and C2 are at the same level than Birkhoff-Rott
(2.5), and, therefore, we can use the estimates for BR (6.1) to control ‖∂3α1

Ci‖L2 , i = 1, 2.
Then formulas (7.5) and (7.7) indicate how to estimate ‖∂α1

(∂4α1
X · ∂αi

X)‖L2 , i = 1, 2. That
is we have:

J2 + J4 ≤ P (|||X|||4).
In I1 the most singular terms are given by

J5 = − 1

4π
PV

∫

R2

∫

R2

∂4α1
X(α) · (∂

4
α1
X(α)− ∂4α1

X(β)) ∧ ω(β)
|X(α) −X(β)|3 dαdβ,

J6 =
3

4π
PV

∫

R2

∫

R2

∂4α1
X(α)·(X(α)−X(β))∧ω(β)(X(α)−X(β))·(∂4α1

X(α)−∂4α1
X(β))

|X(α) −X(β)|5 dαdβ

(7.10)

J7 = − 1

4π
PV

∫

R2

∫

R2

∂4α1
X(α) · (X(α) −X(β)) ∧ (∂4α1

ω)(β)

|X(α) −X(β)|3 dαdβ.

Let us consider now the splitting J5 = K1 +K2

K1 = − 1

8π
PV

∫

R2

∫

R2

∂4α1
X(α) ∧ (∂4α1

X(α) − ∂4α1
X(β)) · ω(β) + ω(α)

|X(α) −X(β)|3 dαdβ,

K2 =
1

8π
PV

∫

R2

∫

R2

∂4α1
X(α) ∧ (∂4α1

X(α) − ∂4α1
X(β)) · ω(α) − ω(β)

|X(α) −X(β)|3 dαdβ,

Next we exchange α and β in K1 to get

K1 =
1

8π
PV

∫

R2

∫

R2

∂4α1
X(β) ∧ (∂4α1

X(α) − ∂4α1
X(β)) · ω(β) + ω(α)

|X(α) −X(β)|3 dαdβ

=
−1

16π
PV

∫

R2

∫

R2

(∂4α1
X(α) − ∂4α1

X(β)) ∧ (∂4α1
X(α) − ∂4α1

X(β)) · ω(β) + ω(α)

|X(α) −X(β)|3 dαdβ
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and therefore we can conclude that K1 = 0. In K2 we find a singular integral with a kernel
of degree −2

K2 = − 1

8π
PV

∫

R2

∂4α1
X(α) ·

∫

R2

∂4α1
X(β) ∧ ω(α)− ω(β)

|X(α) −X(β)|3 dβdα,

and as it is proved in the appendix we have

K2 ≤ P (|||X|||4).

Let us now decompose J6 = K3 +K1
4 +K2

4 +K1
5 +K2

5 where

K3 =
3

4π
PV

∫

R2

∫

R2

∂4α1
X(α) · (X(α) −X(β)) ∧ ω(β)A(α, β) · (∂

4
α1
X(α)−∂4α1

X(β))

|X(α) −X(β)|5 dαdβ

with A(α, β) = X(α) −X(β) −∇X(α)(α − β),

Ki
4 =

−3

4π
PV

∫

R2

∫

R2

∂4α1
X(α)·(X(α)−X(β))∧ω(β)(αi − βi)(∂αi

X(α)−∂αi
X(β)) · ∂4α1

X(β)

|X(α) −X(β)|5 dαdβ

Ki
5 =

3

4π
PV

∫

R2

∫

R2

∂4α1
X(α)·(X(α)−X(β))∧ω(β)(αi−βi)(∂αi

X(α) · ∂4α1
X(α)−∂αi

X(β) · ∂4α1
X(β))

|X(α) −X(β)|5 dαdβ

In K3 and K
i
4 we find kernels of degree −2 and, as it is shown in the appendix, they behave as

a Riesz transform acting on ∂4α1
X. In Ki

5 the kernels have degree −3 and act as a Λ operator
on ∂αi

X · ∂4α1
X. Then using the formulas (7.5) and (7.7) we get finally the desired estimate.

We will find the R-T condition in J7. Let us take J7 = K6 +K7 where

K6 = − 1

4π
PV

∫

R2

∂4α1
X(α) ·

∫

R2

( (X(α) −X(β))

|X(α) −X(β)|3 − ∇X(α)(α − β)

|∇X(α)(α − β)|3
)
∧ (∂4α1

ω)(β)dβdα,

K7 = − 1

4π
PV

∫

R2

∂4α1
X(α) ·

∫

R2

∇X(α)(α − β)

|∇X(α)(α − β)|3 ∧ (∂4α1
ω)(β)dβdα.

The term K6 is controlled by (9.8) in the appendix. Using (7.2) and (7.3) we get

K7 = −1

2
PV

∫

R2

∂4α1
X(α)

|∂α1
X(α)|3 · (∂α1

X(α) ∧R1(∂
4
α1
ω)(α) + ∂α2

X(α) ∧R2(∂
4
α1
ω)(α))dα.

Formula (2.3) help us to detect the most singular terms inside K7, which will be denoted by
Li, i = 1, ..., 8 and are the following:

L1 = −1

2
PV

∫

R2

∂4α1
X(α) · ∂α1

X(α)

|∂α1
X(α)|3 ∧R1(∂

4
α1
∂α2

Ω∂α1
X)(α)dα,

L2 = −1

2
PV

∫

R2

∂4α1
X(α) · ∂α1

X(α)

|∂α1
X(α)|3 ∧R1(∂α2

Ω∂5α1
X)(α)dα,

L3 =
1

2
PV

∫

R2

∂4α1
X(α) · ∂α1

X(α)

|∂α1
X(α)|3 ∧R1(∂

5
α1
Ω∂α2

X)(α)dα,

L4 =
1

2
PV

∫

R2

∂4α1
X(α) · ∂α1

X(α)

|∂α1
X(α)|3 ∧R1(∂α1

Ω∂4α1
∂α2

X)(α)dα,

L5 = −1

2
PV

∫

R2

∂4α1
X(α) · ∂α2

X(α)

|∂α2
X(α)|3 ∧R2(∂

4
α1
∂α2

Ω∂α1
X)(α)dα,
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L6 = −1

2
PV

∫

R2

∂4α1
X(α) · ∂α2

X(α)

|∂α2
X(α)|3 ∧R2(∂α2

Ω∂5α1
X)(α)dα,

L7 =
1

2
PV

∫

R2

∂4α1
X(α) · ∂α2

X(α)

|∂α2
X(α)|3 ∧R2(∂

5
α1
Ω∂α2

X)(α)dα,

L8 =
1

2
PV

∫

R2

∂4α1
X(α) · ∂α2

X(α)

|∂α2
X(α)|3 ∧R2(∂α1

Ω∂4α1
∂α2

X)(α)dα.

In L1 we get a kernel of degree −1 of the form

L1 =
1

2
PV

∫

R2

∂4α1
X(α) ·

∫

R2

α1 − β1
|α− β|3

∂α1
X(α)

|∂α1
X(α)|3 ∧ (∂α1

X(α) − ∂α1
X(β))∂4α1

∂α2
Ω(β)dβdα,

which can be estimated integrating by parts throughout ∂4α1
∂α2

Ω; also the term L7 follows in
a similar manner. In order to estimate L2, L4, L6 and L8 we realize that they can be written
like (9.3) in the appendix plus commutators of the form (9.1). Next we have to deal with L3

and L5: With L3 we proceed as follows

L3 ≤ L̃3 + ‖|∂α1
X|−2‖L∞‖∂4α1

X‖L2‖R1(∂
5
α1
Ω∂α2

X)−R1(∂
5
α1
Ω)∂α2

X‖L2

where L̃3 is given by

L̃3 =
1

2
PV

∫

R2

∂4α1
X(α) · N(α)

|∂α1
X(α)|3 (R1∂α1

)(∂4α1
Ω)(α)dα, (7.11)

and the commutator estimates (9.1) show that it only remains to control L̃3. We use now
formula (2.8) to get L̃3 =M1 +M2 where

M1 = −AρPV
∫

R2

∂4α1
X(α) · N(α)

|∂α1
X(α)|3 (R1∂α1

)(∂4α1
X3)(α)dα,

and

M2 = −AµPV
∫

R2

∂4α1
X(α) · N(α)

|∂α1
X(α)|3 (R1∂α1

)(∂3α1
(BR(X,ω) · ∂α1

X))(α)dα.

Then we write M1 = O1 +O2 +O3 where

O1 = −AρPV
∫

R2

∂4α1
X1

|∂α1
X|3 (∂α1

X2∂α2
X3 − ∂α1

X3∂α2
X2)(R1∂α1

)(∂4α1
X3)dα,

O2 = −AρPV
∫

R2

∂4α1
X2

|∂α1
X|3 (∂α1

X3∂α2
X1 − ∂α1

X1∂α2
X3)(R1∂α1

)(∂4α1
X3)dα,

O3 = −AρPV
∫

R2

N3

|∂α1
X|3 ∂

4
α1
X3(R1∂α1

)(∂4α1
X3)dα. (7.12)

Next we consider O1 = P1 + P2 + P3 with

P1 = −AρPV
∫

R2

∂4α1
X1

|∂α1
X|3 ∂α1

X2(R1∂α1
)(∂α2

X3∂
4
α1
X3)dα,

P2 = AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α2

X2(R1∂α1
)(∂α1

X3∂
4
α1
X3)dα,
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P3 =AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α1

X2[(R1∂α1
)(∂α2

X3∂
4
α1
X3)− ∂α2

X3(R1∂α1
)(∂4α1

X3)]dα

+AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α2

X2[∂α1
X3(R1∂α1

)(∂4α1
X3)− (R1∂α1

)(∂α1
X3∂

4
α1
X3)]dα

and the commutator estimate allows us to control the term P3.
Now we use (7.7) to write P1 = Q1 +Q2 +Q3

Q1 = AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α1

X2(R1∂α1
)(∂α2

X1∂
4
α1
X1)dα,

Q2 = AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α1

X2(R1∂α1
)(∂α2

X2∂
4
α1
X2)dα,

Q3 = AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α1

X2(R1∂α1
)(l.o.t.)dα.

The term Q3 is easily estimated. Regarding P2 equality (7.5) allows us to write P2 = Q4 +
Q5 +Q6 where

Q4 = −AρPV
∫

R2

∂4α1
X1

|∂α1
X|3 ∂α2

X2(R1∂α1
)(∂α1

X1∂
4
α1
X1)dα,

Q5 = −AρPV
∫

R2

∂4α1
X1

|∂α1
X|3 ∂α2

X2(R1∂α1
)(∂α1

X2∂
4
α1
X2)dα,

Q6 = −AρPV
∫

R2

∂4α1
X1

|∂α1
X|3 ∂α2

X2(R1∂α1
)(l.o.t.)dα.

Let us recall the identity P1 + P2 = (Q4 + Q1) + (Q2 + Q5) + (Q3 + Q6) where Q3 and Q6

are easily estimated. With respect to Q2 +Q5 we have

Q2 +Q5 = AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α1

X2[(R1∂α1
)(∂α2

X2∂
4
α1
X2)− ∂α2

X2(R1∂α1
)(∂4α1

X2)]dα

+AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α2

X2[∂α1
X2(R1∂α1

)(∂4α1
X2)− (R1∂α1

)(∂α1
X2∂

4
α1
X2)]dα

and again the commutator estimates yields the desired control.
Next we have

Q4 +Q1 = AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α2

X2[∂α1
X1(R1∂α1

)(∂4α1
X1)− (R1∂α1

)(∂α1
X1∂

4
α1
X1)]dα

+AρPV

∫

R2

∂4α1
X1

|∂α1
X|3 ∂α1

X2[(R1∂α1
)(∂α2

X1∂
4
α1
X1)− ∂α2

X1(R1∂α1
)(∂4α1

X1)]dα

−AρPV

∫

R2

N3

|∂α1
X|3 ∂

4
α1
X1(R1∂α1

)(∂4α1
X1)dα.

The first two integrals above are easily handled allowing us to get

O1 = P1 + P2 + P3 ≤ P (|||X|||4)−AρPV

∫

R2

N3

|∂α1
X|3 ∂

4
α1
X1(R1∂α1

)(∂4α1
X1)dα. (7.13)
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For the term O2 we proceed in a similar manner, first we check that O2 = P4 + P5 + P6

P4 = AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α1

X1(R1∂α1
)(∂α2

X3∂
4
α1
X3)dα,

P5 = −AρPV
∫

R2

∂4α1
X2

|∂α1
X|3 ∂α2

X1(R1∂α1
)(∂α1

X3∂
4
α1
X3)dα,

P6 =AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α1

X1[∂α2
X3(R1∂α1

)(∂4α1
X3)− (R1∂α1

)(∂α2
X3∂

4
α1
X3)]dα

+AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α2

X1[(R1∂α1
)(∂α1

X3∂
4
α1
X3)− ∂α1

X3(R1∂α1
)(∂4α1

X3)]dα.

We control P6 as before. Regarding P4 we use (7.7) to write it in the form P4 = S1 +S2+S3
where:

S1 = −AρPV
∫

R2

∂4α1
X2

|∂α1
X|3 ∂α1

X1(R1∂α1
)(∂α2

X1∂
4
α1
X1)dα,

S2 = −AρPV
∫

R2

∂4α1
X2

|∂α1
X|3 ∂α1

X1(R1∂α1
)(∂α2

X2∂
4
α1
X2)dα,

S3 = −AρPV
∫

R2

∂4α1
X2

|∂α1
X|3 ∂α1

X1(R1∂α1
)(l.o.t.)dα.

The identity (7.5) allows us to write P5 = S4 + S5 + S6 where:

S4 = AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α2

X1(R1∂α1
)(∂α1

X1∂
4
α1
X1)dα,

S5 = AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α2

X1(R1∂α1
)(∂α1

X2∂
4
α1
X2)dα,

S6 = AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α2

X1(R1∂α1
)(l.o.t.)dα.

Next, we reorganize the sum in the form P4 + P6 = (S1 + S4) + (S2 + S5) + (S3 + S6) where
the term S3 + S6 can be easily estimated. Regarding S1 + S4 we have

S1 + S4 = AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α1

X1[∂α2
X1(R1∂α1

)(∂4α1
X1)− (R1∂α1

)(∂α2
X1∂

4
α1
X1)]dα

+AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α2

X1[(R1∂α1
)(∂α1

X1∂
4
α1
X1)− ∂α1

X1(R1∂α1
)(∂4α1

X1)]dα

and the commutator estimates gives us precise control.
Let us consider now

S2 + S5 = AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α1

X1[∂α2
X2(R1∂α1

)(∂4α1
X2)− (R1∂α1

)(∂α2
X2∂

4
α1
X2)]dα

+AρPV

∫

R2

∂4α1
X2

|∂α1
X|3 ∂α2

X1[(R1∂α1
)(∂α1

X2∂
4
α1
X2)− ∂α1

X2(R1∂α1
)(∂4α1

X2)]dα

−AρPV

∫

R2

N3

|∂α1
X|3 ∂

4
α1
X2(R1∂α1

)(∂4α1
X2)dα.
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Here again the commutator estimate control the first two integrals above, allowing us to
conclude that

O2 = P4 + P5 + P6 ≤ P (|||X|||4)−AρPV

∫

R2

N3

|∂α1
X|3 ∂

4
α1
X2(R1∂α1

)(∂4α1
X2)dα. (7.14)

Furthermore, inequalities (7.13), (7.14) and (7.12) yield

M1 = O1 +O2 +O3 ≤ P (|||X|||4)−AρPV

∫

R2

N3

|∂α1
X|3 ∂

4
α1
X · (R1∂α1

)(∂4α1
X)dα, (7.15)

and at this point we begin to recognize the Rayleigh-Taylor condition in the non-integrable
terms. Let us return now to the term M2 which can be written in the form

M2 = AµPV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
∂4α1

(BR(X,ω) · ∂α1
X))dα, (7.16)

and whose most dangerous components are given by

O4 = −Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

∂4α1
X(α) − ∂4α1

X(β)

|X(α) −X(β)|3 ∧ ω(β) · ∂α1
X(α)dα,

O5 =
3Aµ
4π

PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

B(α, β)(X(α) −X(β)) ∧ ω(β) · ∂α1
X(α)dα,

with

B(α, β) =
(X(α) −X(β)) · (∂4α1

X(α)− ∂4α2
X(β))

|X(α) −X(β)|5 ,

O6 = −Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

X(α) −X(β)

|X(α) −X(β)|3 ∧ ∂4α1
ω(β) · ∂α1

X(α)dα,

and

O7 = AµPV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)∂α1

(BR(X,ω) · ∂4α1
X)(α)dα.

The remainder terms are less singular and can be estimated with the same methods used
before. To deal with O4 we decompose it further O4 = P7 + P8:

P7 =
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

∂4α1
X(α) − ∂4α1

X(β)

|X(α) −X(β)|3 ·ω(β)∧(∂α1
X(β)−∂α1

X(α))dβdα,

P8 =
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

∂4α1
X(α) − ∂4α1

X(β)

|X(α) −X(β)|3 ·N(β)∂α1
Ω(β)dβdα,

where in P8 we have used formula (2.3) to get ω ∧ ∂α1
X = N∂α1

Ω. In the integral (with
respect to β) of P7 we have a kernel of degree −2 applied to 4 derivatives, which can be
estimated easily. Next let us consider P8 = Q7 +Q8 +Q9 where

Q7 = −Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)∂4α1

X(α) ·
∫

R2

N(α)∂α1
Ω(α)−N(β)∂α1

Ω(β)

|X(α) −X(β)|3 dβdα,

Q8 =
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

((∂α1
ΩN ·∂4α1

X)(α)−(∂α1
ΩN ·∂4α1

X)(β))C(α, β)dβdα,
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and

C(α, β) =
1

|X(α) −X(β)|3 − 1

|∇X(α)(α − β)|3 ,

Q9 =
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

1

|∂α1
X(α)|3Λ(∂α1

ΩN · ∂4α1
X)(α)dα.

In Q7 we have

Q7 ≤ ‖R1

(∂4α1
X ·N

|∂α1
X|3

)
‖L2‖∂4α1

X‖L2 sup
α

∣∣∣
∫

R2

N(α)∂α1
Ω(α)−N(β)∂α1

Ω(β)

|X(α) −X(β)|3 dβ
∣∣∣

giving us the appropriated control, which can be also obtained in Q8 because the correspond-
ing kernel has degree −2. Regarding Q9 we have the expression

Q9 =
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
[

1

|∂α1
X|3Λ(∂α1

ΩN · ∂4α1
X)− Λ(

∂α1
ΩN · ∂4α1

X

|∂α1
X|3 )]dα

+
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
Λ(∂α1

Ω
∂4α1

X ·N
|∂α1

X|3 )dα.

Then we use (9.2) to control the first integral above, and since Λ = R1∂α1
+R2∂α2

(9.4) we
can also take care of the second term.

With O5 one proceed as we did with J6 (7.10) to get the desired estimate.
Next we use (2.3) to catch the most singular terms in O6 which are given by

S7 = −Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

(X(α) −X(β)) ∧ ∂α1
X(β) · ∂α1

X(α)

|X(α) −X(β)|3 ∂4α1
∂α2

Ω(β)dα,

S8 = − Aµ
8π2

PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

(X(α) −X(β)) ∧ ∂α1
X(α)

|X(α) −X(β)|3 · ∂α2
Ω(β)∂5α1

X(β)dα,

S9 =
Aµ
8π2

PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

(X(α) −X(β)) ∧ ∂α2
X(β) · ∂α1

X(α)

|X(α) −X(β)|3 ∂5α1
Ω(β)dα,

S10 =
Aµ
8π2

PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

(X(α) −X(β)) ∧ ∂α1
X(α)

|X(α) −X(β)|3 · ∂α1
Ω(β)∂4α1

∂α2
X(β)dα.

One may write

S7 =
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

(X(α) −X(β)) ∧ (∂α1
X(α) − ∂α1

X(β)) · ∂α1
X(β)

|X(α) −X(β)|3 ∂4α1
∂α2

Ω(β)dα,

expressing the fact that we have a kernel of degree −1 applied to ∂4α1
∂α2

Ω and, therefore, an
integration by parts gives us the desired control as we did before. To treat S8 we decompose
further S8 = T1 + T2:

T1 = −Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

D(α, β) · ∂α2
Ω(β)∂5α1

X(β)dα,

where

D(α, β) =
( (X(α) −X(β))

|X(α) −X(β)|3 − ∇X(α)(α − β)

|∇X(α)(α − β)|3
)
∧ ∂α1

X(α),

and

T2 =
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

N(α)

|∂α1
X(α)|3 · R2(∂α2

Ω∂5α1
X)(α)dα.
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In T1 we use the estimate for the operator (9.8). The term T2 reads as follows:

T2 = −Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

) N

|∂α1
X|3 ·R2(∂α2

∂α1
Ω∂4α1

X)dα

+
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
[

N

|∂α1
X|3 · (R2∂α1

)(∂α2
Ω∂4α1

X)− (R2∂α1
)(∂α2

Ω
N · ∂4α1

X

|∂α1
X|3 )]dα

− Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(R2∂α1

)(∂α2
Ω
N · ∂4α1

X

|∂α1
X|3 )dα.

The first integral above is easy to estimate, whether for the second one we use (9.1) and (9.4)
for the third.

For the next term S9 one has S9 = T3 + T4 where

T3 =
Aµ
4π
PV

∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
(α)

∫

R2

(X(α) −X(β)) · ∂α2
X(β) ∧ (∂α1

X(α) − ∂α1
X(β))

|X(α) −X(β)|3 ∂5α1
Ω(β)dα,

T4 = −Aµ
∫

R2

R1

(∂4α1
X ·N

|∂α1
X|3

)
D(∂5α1

Ω)dα,

Proceeding as before we get bounds for T3 and the double layer potential estimates help us
to control T4.

For S10 one can adapt exactly the same approach used for S8. Finally we have to deal
with O7 which is given by

O7 = −AµPV
∫

R2

BR(X,ω) · ∂4α1
X(R1∂α1

)
(∂4α1

X ·N
|∂α1

X|3
)
dα,

after an integration by parts. Let us introduce the splitting O7 =
∑3

j,k=1U
k
j where

Ukj = −AµPV
∫

R2

BRj(X,ω)∂
4
α1
Xj(R1∂α1

)
(∂4α1

XkNk

|∂α1
X|3

)
dα.

Then the commutator estimates allows us to write Ukj = V k
j + lower order terms, where

V k
j = −AµPV

∫

R2

BRj(X,ω)∂
4
α1
Xj

Nk

|∂α1
X|3 (R1∂α1

)(∂4α1
Xk)dα.

Using (7.5) and (7.7) one has

N1∂
4
α1
X2 = N2∂

4
α1
X1 + l.o.t.

so that V 1
2 becames

V 1
2 = −AµPV

∫

R2

BR2(X,ω)N2

|∂α1
X|3 ∂4α1

X1(R1∂α1
)(∂4α1

X1)dα −AµPV

∫

R2

f(R1∂α1
)(∂4α1

X1)dα

where f is at the level of ∂3αi
X. Integration by parts in the last integral above allows us to

conclude that

V 1
2 ≤ −AµPV

∫

R2

BR2(X,ω)N2

|∂α1
X|3 ∂4α1

X1(R1∂α1
)(∂4α1

X1)dα+ P (|||X|||4).

With the help of (7.5) and (7.7) we also get

N1∂
4
α1
X3 = N3∂

4
α1
X1 + l.o.t.
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and therefore

V 1
3 ≤ −AµPV

∫

R2

BR3(X,ω)N3

|∂α1
X|3 ∂4α1

X1(R1∂α1
)(∂4α1

X1)dα+ P (|||X|||4).

Using the two inequalities above we obtain

V 1
1 + V 1

2 + V 1
3 ≤ −AµPV

∫

R2

BR(X,ω) ·N
|∂α1

X|3 ∂4α1
X1(R1∂α1

)(∂4α1
X1)dα + P (|||X|||4). (7.17)

Next let us observe that

N2∂
4
α1
X1 = N1∂

4
α1
X2 + l.o.t., N2∂

4
α1
X3 = N3∂

4
α1
X2 + l.o.t.,

which implies the estimate

V 2
1 + V 2

2 + V 2
3 ≤ −AµPV

∫

R2

BR(X,ω) ·N
|∂α1

X|3 ∂4α1
X2(R1∂α1

)(∂4α1
X2)dα + P (|||X|||4). (7.18)

Regarding V 3
1 and V 3

2 the identities

N3∂
4
α1
X1 = N1∂

4
α1
X3 + l.o.t., N3∂

4
α1
X3 = N2∂

4
α1
X3 + l.o.t.,

yield

V 3
1 + V 3

2 + V 3
3 ≤ −AµPV

∫

R2

BR(X,ω) ·N
|∂α1

X|3 ∂4α1
X3(R1∂α1

)(∂4α1
X3)dα + P (|||X|||4). (7.19)

Finally (7.17), (7.18) and (7.19) imply

3∑

j,k=1

V k
j ≤ −AµPV

∫

R2

BR(X,ω) ·N
|∂α1

X|3 ∂4α1
X · (R1∂α1

)(∂4α1
X)dα + P (|||X|||4).

Now we put together all those estimates ((7.16) - (7.19)) to conclude that

M2 ≤ −AµPV
∫

R2

BR(X,ω) ·N
|∂α1

X|3 ∂4α1
X · (R1∂α1

)(∂4α1
X)dα + P (|||X|||4),

and taking into account (7.15) we obtain

L̃3 =M1 +M2 ≤ − 1

µ2+µ1
PV

∫

R2

σ

|∂α1
X|3 ∂

4
α1
X · (R1∂α1

)(∂4α1
X)dα + P (|||X|||4). (7.20)

Finally we have to work with L5 which can be written in the following manner

L5 = L̃5 −
1

2
PV

∫

R2

∂4α1
X · ∂α2

X

|∂α2
X|3 ∧ [R2(∂

4
α1
∂α2

Ω∂α1
X)−R2(∂

4
α1
∂α2

Ω)∂α1
X]dα,

where

L̃5 =
1

2
PV

∫

R2

∂4α1
X · N

|∂α2
X|3 (R2∂α2

)(∂4α1
Ω)dα.

Using the commutator estimate, once more, it remains only to consider L̃5, but let us point
out that replacing the operator R1∂α1

by R2∂α2
the term L̃3 (7.11) becomes L̃5. Therefore,

proceeding exactly as we did before, one obtains inequality

L̃5 ≤ − 1

µ2+µ1
PV

∫

R2

σ

|∂α1
X|3 ∂

4
α1
X · (R2∂α2

)(∂4α1
X)dα + P (|||X|||4). (7.21)
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Introducing now the identity Λ = (R1∂α1
) + (R2∂α2

) in (7.20) and (7.21) we get

L̃3 + L̃5 ≤ − 1

µ2+µ1
PV

∫

R2

σ

|∂α1
X|3 ∂

4
α1
X · Λ(∂4α1

X)dα+ P (|||X|||4).

Finally all the estimates so far obtained, beginning with (7.9), allow us to write

1

2

d

dt
‖∂4α1

X‖2L2(t) ≤ − 1

µ2+µ1
PV

∫

R2

σ

|∂α1
X|3 ∂

4
α1
X · Λ(∂4α1

X)dα + P (|||X|||4). (7.22)

In a similar manner, using now equations (2.9),(7.6) and (7.8) instead of (2.8), (7.5) and (7.7)
respectively, we obtain

1

2

d

dt
‖∂4α2

X‖2L2(t) ≤ − 1

µ2+µ1
PV

∫

R2

σ

|∂α1
X|3 ∂

4
α2
X · Λ(∂4α2

X)dα + P (|||X|||4). (7.23)

Being these two inequalities (7.22) and (7.23) the main purpose of this section.

8 Estimates for the evolution of ‖F (X)‖L∞ and R-T.

In this section we analyze the evolution of the non-selfintersecting condition of the free surface
as well as the Rayleigh-Taylor property, but in order to do that we shall need precise bounds
for both ∇Xt and Ωt.

We shall estimate ‖∇Xt‖Hk by means of equality (2.4) to get

‖∇Xt‖Hk ≤ P (‖X‖2k+2 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞), (8.1)

for k ≥ 2. In fact

‖∇Xt‖Hk ≤ ‖∇BR(X,ω)‖Hk + ‖∇(C1∂α1
X + C2∂α2

X)‖Hk

and with the help of (6.1) we can handle both terms on the right.
Next we shall consider the norms ‖Ωt‖Hk to obtain the inequality

‖Ωt‖Hk ≤ P (‖X‖2k+1 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞), (8.2)

for k ≥ 3. To do that let us take a time derivative in the identity (2.6) to get

Ωt(α, t) −AµD(Ωt)(α, t) = AµI1(α, t) − 2Aρ∂tX3(α, t),

which yields
‖Ωt‖H1 ≤ C‖(I −AµD)−1‖H1(‖I1‖H1 + ‖∂tX3‖H1),

and since we have control of ‖(I − AµD)−1‖H1 and ‖∂tX3‖H1 it only remains to estimate
‖I1‖H1 . For that purpose let us consider the splitting I1 = J1 + J2 + J3 where

J1 =
1

2π
PV

∫

R2

Xt(α)−Xt(α− β)

|X(α) −X(α− β)|3 ·N(α− β)Ω(α− β)dβ,

J2 =
−3

4π

∫

R2

(X(α)−X(α−β))·(Xt(α)−Xt(α−β))
X(α) −X(α − β)

|X(α) −X(α − β)|5 ·N(α−β)Ω(α−β)dβ,

J3 =
1

2π
PV

∫

R2

X(α) −X(α − β)

|X(α) −X(α− β)|3 ·Nt(α− β)Ω(α− β)dβ.
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Proceeding as we did with the operator T2 (9.6) ( with Xt instead of ∂αj
Xk) one get

‖J1‖L2 + ‖J2‖L2 ≤ P (‖X‖4 + ‖F (X)‖L∞ + ‖|N |−1‖L∞).

Regarding J3 we split further

J3 =
1

2π

∫

|β|>1
dβ +

1

2π

∫

|β|<1
dβ = K1 +K2.

Since

|K1(α)| ≤ ‖F (X)‖2L∞

∫

|β|>1

|Nt(α− β)||Ω(α − β)|
2π|β|2 dβ,

Young’s inequality yields

‖K1‖L2 ≤ ‖F (X)‖2L∞‖NtΩ‖L1 ≤ C‖F (X)‖2L∞‖Nt‖L2‖Ω‖L2 ,

and since we know that ‖Nt‖L2 ≤ ‖∇X‖L∞‖∇Xt‖L2 , estimate (8.1) allows us to handle the
terms K1. The estimate for K2 is similar to the one obtained for I2 (9.13) in the appendix.

Next we consider the most singular terms in ∂α1
I1 which are given by

J4 =
1

2π
PV

∫

R2

∂α1
Xt(α)− ∂α1

Xt(α− β)

|X(α) −X(α− β)|3 ·N(α− β)Ω(α− β)dβ,

J5 =
−3

4π

∫

R2

(X(α)−X(α−β))·(∂α1
Xt(α)−∂α1

Xt(α−β))
X(α) −X(α− β)

|X(α) −X(α− β)|5 ·N(α−β)Ω(α−β)dβ,

J6 =
1

2π
PV

∫

R2

X(α)−X(α − β)

|X(α) −X(α− β)|3 · ∂α1
Nt(α− β)Ω(α− β)dβ.

because the remainder terms are easier to handle. Let us write J4 = K3 +K4 where

K3 =
1

2π
PV

∫

R2

∂α1
Xt(α)− ∂α1

Xt(α− β)

|X(α) −X(α− β)|3 · (N(α− β)Ω(α− β)−N(α)Ω(α))dβ,

K4 =
1

2π
PV

∫

R2

∂α1
Xt(α)− ∂α1

Xt(α− β)

|X(α) −X(α − β)|3 ·N(α)Ω(α)dβ.

In K3, the identity ∂α1
Xt(α)− ∂α1

Xt(α− β) =
∫ 1
0 ∇∂α1

Xt(α+ (s− 1)β)ds · β together with
(8.1) gives us the desired control. Regarding K4 we may observe its similarity with T3 (9.7),
so that an application to (8.1) yields the appropriated bound; J5 can be treated in a similar
manner and J6 is analogous to J3. By symmetry, one could get the same estimate for ∂α2

I1,
so that finally:

‖Ωt‖H1 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞). (8.3)

Next, we will show how to deal with ‖Ωt‖H2 . Using equation (2.8) one gets

∂2α1
Ωt = −2Aµ∂α1

∂t(BR(X,ω) · ∂α1
X)− 2Aρ∂

2
α1
∂tX3,

and with the help of (8.1), the last term above is properly controlled. To continue we shall
consider the most singular remainder terms. Namely, in −∂α1

∂t(BR(X,ω) · ∂α1
X), we have:

L1 = −BR(X,ω) · ∂2α1
Xt

L2 =
1

4π
PV

∫

R2

∂α1
Xt(α) − ∂α1

Xt(α− β)

|X(α) −X(α − β)|3 ∧ ω(α− β)dβ · ∂α1
X(α)
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L3 =
−3

8π
PV

∫

R2

A(α, β)
X(α) −X(α− β)

|X(α) −X(α− β)|5 ∧ ω(α− β)dβ · ∂α1
X(α)

where A(α, β) = (X(α) −X(α − β)) · (∂α1
Xt(α)− ∂α1

Xt(α− β)),

L4 =
1

2π
PV

∫

R2

X(α) −X(α− β)

|X(α) −X(α − β)|3 ∧ ∂α1
ωt(α− β)dβ · ∂α1

X(α).

Let us observe that ‖L1‖L2 ≤ ‖BR(X,ω)‖L∞‖∂2α1
Xt‖L2 , where both quantities have been

appropriately controlled before. In L2 and L3 we have kernels of degree −2, and therefore
operators analogous to T3 (9.7) acting on ∂α1

Xt. Therefore using (8.1) its control follows
easily. In L4 we use the decomposition

L4 =
1

2π
PV

∫

|β|>1
dβ +

1

2π
PV

∫

|β|<1
dβ =M1 +M2.

Thus an integration by parts yields

‖M1‖L2 ≤ C‖F (X)‖3L∞‖∇X‖2L∞‖wt‖L2 .

Formula (2.3) together with estimates (8.1) and (8.3), provides the appropriated bound.
Next let us expand (2.3) to obtain the most singular terms in M2 which are given by the

integrals:

O1 = −Aµ
2π
PV

∫

|β|<1

X(α)−X(α − β)

|X(α) −X(α− β)|3 ∧ ∂α2
Ω(α− β)∂2α1

Xt(α− β)dβ · ∂α1
X(α),

O2 = −Aµ
2π
PV

∫

|β|<1

X(α) −X(α− β)

|X(α) −X(α− β)|3 ∧ ∂α1
∂α2

Ωt(α − β)∂α1
X(α − β)dβ · ∂α1

X(α),

O3 =
Aµ
2π
PV

∫

|β|<1

X(α) −X(α− β)

|X(α) −X(α − β)|3 ∧ ∂α1
Ω(α− β)∂α1

∂α2
Xt(α− β)dβ · ∂α1

X(α),

O4 =
Aµ
2π
PV

∫

|β|<1

X(α)−X(α − β)

|X(α) −X(α− β)|3 ∧ ∂2α1
Ωt(α− β)∂α2

X(α− β)dβ · ∂α1
X(α).

Estimate (8.1) help us with the terms O1 and O3, which can be treated with the same
approach used for I2 (9.13) in the appendix. Let us write O2 as follows

O2 =
Aµ
2π

∫

|β|<1

X(α)−X(α−β)
|X(α)−X(α−β)|3 ∧ ∂α1

∂α2
Ωt(α−β)(∂α1

X(α)−∂α1
X(α−β))dβ · ∂α1

X(α),

which can be estimated integrating by parts in the variable β1 using the following identity

∂α1
∂α2

Ωt(α−β) = −∂β1(∂α2
Ωt(α−β)).

Let us point out that the kernel in the integral O2 has degree −1 and, therefore, one can use
(8.3) to control it. It remains to deal with O4 which is decomposed in the form O4 = P1+P2,
where

P1 =
Aµ
2π
PV

∫

|β|<1

X(α)−X(α−β)
|X(α)−X(α−β)|3 ∧ ∂2α1

Ωt(α−β)(∂α2
X(α−β)−∂α2

X(α))dβ · ∂α1
X(α),

P2 = −Aµ
2π
PV

∫

|β|<1

X(α)−X(α − β)

|X(α) −X(α− β)|3 ∂
2
α1
Ωt(α− β)dβ ·N(α).
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P1 is estimated like O2. We rewrite P2 as follows

P2 = −Aµ
2π
PV

∫

|β|<1

( X(α) −X(α − β)

|X(α) −X(α − β)|3 − ∇X(α) · β
|∇X(α) · β|3

)
∂2α1

Ω(α− β)dβ ·N(α),

and this expression shows that the above integral can be estimated like T4 (9.8).
Using (8.3) we obtain

‖∂2α1
Ωt‖L2 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞),

and the identity

∂2α2
Ωt = −2Aµ∂α2

∂t(BR(X,ω) · ∂α2
X)− 2Aρ∂

2
α2
∂tX3,

yields
‖∂2α2

Ωt‖L2 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞),

that is:
‖Ωt‖H2 ≤ P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞). (8.4)

Next we consider third order derivatives

∂3α1
Ωt = −2Aµ∂

2
α1
∂t(BR(X,ω) · ∂α1

X)− 2Aρ∂
3
α1
∂tX3.

Since (8.1) gives us control of the last term, we will concentrate in the other one which is a
much more diffecult character. In particular, for −∂2α1

∂t(BR(X,ω) ·∂α1
X), the most singular

component are given by
L5 = −BR(X,ω) · ∂3α1

Xt

L6 =
1

4π
PV

∫

R2

∂2α1
Xt(α) − ∂2α1

Xt(α− β)

|X(α) −X(α − β)|3 ∧ ω(α− β)dβ · ∂α1
X(α)

L7 =
−3

8π
PV

∫

R2

B(α, β)
X(α)−X(α − β)

|X(α) −X(α− β)|5 ∧ ω(α− β)dβ · ∂α1
X(α)

where B(α, β) = (X(α) −X(α− β)) · (∂2α1
Xt(α) − ∂2α1

Xt(α− β)),

L8 =
1

2π
PV

∫

R2

X(α) −X(α− β)

|X(α) −X(α − β)|3 ∧ ∂2α1
ωt(α− β)dβ · ∂α1

X(α).

Inequalities (8.1) and (8.4) show how to handle Li, i = 5, ..., 8 as Lj, j = 1, ..., 4 respectively,
then a similar approach for ∂3α2

Ωt allows us to get finally (8.2) for k=3. The cases k > 3 are
similar to deal with.

Our next goal is to obtain estimates for the evolution of ‖F (X)‖L∞ and R-T. Regarding
the quantity F (X) we have

d

dt
F (X)(α, β, t) = −|β|(X(α, t) −X(α− β, t)) · (Xt(α, t) −Xt(α− β, t))

|X(α, t) −X(α− β, t)|3
≤ (F (X)(α, β, t))2‖∇Xt‖L∞(t).

(8.5)

Then Sobolev inequalities in ‖∇Xt‖L∞(t) together with (8.1) yield

d

dt
F (X)(α, β, t) ≤ F (X)(α, β, t)P (‖X‖24(t) + ‖F (X)‖2L∞(t) + ‖|N |−1‖L∞(t)),
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and an integration in time gives us

F (X)(α, β, t + h) ≤ F (X)(α, β, t) exp
(∫ t+h

t
P (s)ds

)
,

for h > 0, where

P (s) = P (‖X‖24(s) + ‖F (X)‖2L∞(s) + ‖|N |−1‖L∞(s)).

Hence

‖F (X)‖L∞(t+ h) ≤ ‖F (X)‖L∞ (t) exp
( ∫ t+h

t
P (s)ds

)
.

The inequality above applied to the limit:

d

dt
‖F (X)‖L∞(t) = lim

h→0+

‖F (X)‖L∞ (t+ h)− ‖F (X)‖L∞(t)

h

allows us to get

d

dt
‖F (X)‖L∞ (t) ≤ ‖F (X)‖L∞ (t)P (‖X‖24 + ‖F (X)‖2L∞ + ‖|N |−1‖L∞).

Next we search for an a priori estimate for the evolution of the infimum of the difference
of the gradients of the pressure in the normal direction to the interface. Let us recall the
formula

σ(α, t) = (µ2 − µ1)BR(X,ω)(α, t) ·N(α, t) + (ρ2 − ρ1)N3(α, t),

to obtain
d

dt
(

1

σ(α, t)
) = − σt(α, t)

σ2(α, t)

with σt(α, t) = I1 + I2 where

I1 = ((µ2 − µ1)BR(X,ω)(α, t) + (ρ2 − ρ1)(0, 0, 1)) ·Nt(α, t),

I2 = (µ2 − µ1)BRt(X,ω)(α, t) ·N(α, t).

First we deal with ‖I1‖L∞ using the estimates (8.1) for ∇Xt, and then we focus our attention
on I2 using the splitting I2 = J1 + J2 + J3 where

J1 = − 1

4π
PV

∫

R2

Xt(α) −Xt(α− β)

|X(α) −X(α− β)|3 ∧ ω(α− β)dβ,

J2 =
3

4π
PV

∫

R2

(X(α)−X(α−β))∧ω(α−β)(X(α)−X(α−β))·(Xt(α)−Xt(α−β))
|X(α)−X(α−β)|5 dβ

J3 = − 1

4π
PV

∫

R2

X(α) −X(α − β)

|X(α) −X(α− β)|3 ∧ ωt(α− β)dβ.

The terms J1 and J2 are similar and can be treated with the same method. Let us consider
J1 = K1 +K2 +K3 +K4 where

K1 = − 1

4π

∫

|β|>1

Xt(α)−Xt(α− β)

|X(α) −X(α − β)|3 ∧ ω(α− β)dβ,
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K2 =
1

4π

∫

|β|<1

Xt(α)−Xt(α− β)

|X(α) −X(α − β)|3 ∧ (ω(α) − ω(α− β))dβ,

K3 = − 1

4π

∫

|β|<1
[

1

|X(α)−X(α−β)|3 −
1

|∇X(α)·β|3 ](Xt(α)−Xt(α−β)) ∧ ω(α)dβ,

K4 = − 1

4π
PV

∫

|β|<1

Xt(α) −Xt(α− β)

|∇X(α) · β|3 ∧ ω(α)dβ,

First we have

‖K1‖L∞ ≤ C‖F (X)‖3L∞‖∇Xt‖L∞‖ω‖L2

( ∫

|β|>1
|β|−4dβ

)1/2

giving us an appropriated control. Next, we get

‖K2‖L∞ ≤ C‖F (X)‖3L∞‖∇Xt‖L∞‖∇ω‖L∞

∫

|β|<1
|β|−1dβ,

and an analogous estimate for K3. Therefore, Sobolev’s embedding help us to obtain the
desired control. Regarding K4 we have

K4 = − 1

4π

∫

|β|<1

Xt(α)−Xt(α− β)−∇Xt(α) · β
|∇X(α) · β|3 ∧ ω(α)dβ.

Inequality (9.15) yields

‖K4‖L∞ ≤ C‖∇X‖3L∞‖|N |−1‖3L∞‖ω‖L∞‖∇Xt‖Cδ

∫

|β|<1
|β|−2+δdβ,

and the control ‖∇Xt‖Cδ follows again by (8.1) and Sobolev’s embedding. Next let us continue
with J3 = K5 +K6 where

K5 =
−1

4π
PV

∫

|β|>1

X(α)−X(α−β)
|X(α)−X(α−β)|3 ∧ (∂β1((Ω∂α2

X)t(α−β))−∂β2((Ω∂α1
X)t(α−β)))dβ,

K6 = − 1

4π
PV

∫

|β|<1

X(α) −X(α− β)

|X(α) −X(α − β)|3 ∧ ωt(α− β)dβ,

Integration by parts yields

‖K5‖L∞ ≤ C‖F (X)‖3L∞‖∇X‖L∞(‖Ω‖L∞‖∇Xt‖L∞ + ‖Ωt‖L∞‖∇X‖L∞),

where 4πC =
∫
|β|>1 |β|−3dβ +

∫
|β|=1 dl(β), and we may use (8.2) to estimate ‖Ωt‖L∞ . With

K6 we introduce a similar splitting to obtain

‖K6‖L∞ ≤ P (‖X − (α, 0)‖C2 + ‖F (X)‖L∞ + ‖|N |−1‖L∞)‖ωt‖Cδ .

Then it remains to estimate ‖ωt‖Cδ , for which purpose we use formula (2.3) and inequalities
(8.1)(8.2). Therefore we have the estimate:

d

dt
(

1

σ(α, t)
) ≤ 1

σ2(α, t)
P (‖X‖4(t) + ‖F (X)‖L∞ (t) + ‖|N |−1‖L∞(t)),

and proceeding similarly as we did for F (X) we get finally:

d

dt
‖σ−1‖L∞(t) ≤ ‖σ−1‖2L∞(t)P (‖X‖4(t) + ‖F (X)‖L∞(t) + ‖|N |−1‖L∞(t)).
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9 Appendix

Here we prove first some helpful inequalities regarding commutators of Riesz transform (Rj ,
j = 1, 2) with several differential operators. Next we analyze the singular integral operators
associated to the non-selfintersecting surface which appears throughout the paper. But the
main goal of this section, however, is to simplify the presentation of the main result.

Lemma 9.1 Consider f ∈ L2(R2), and g ∈ C1,δ(R2) with 0 < δ < 1. Then for any k, l = 1, 2
we have the following estimate

‖(Rk∂αl
)(gf)− g(Rk∂αl

)(f)‖L2 ≤ C‖g‖C1,δ‖f‖L2 . (9.1)

An application of the above inequalities to the operator Λ = (R1∂α1
) + (R2∂α2

) yields

‖Λ(gf)− gΛ(f)‖L2 ≤ C‖g‖C1,δ‖f‖L2 . (9.2)

For vector fields we have

Lemma 9.2 Consider f, g : R2 → R3 vector fields where f ∈ L2(R2) and g ∈ C1,δ(R2) with
0 < δ < 1. Then for any k, l = 1, 2 the following inequality holds

∣∣
∫

R2

(g ∧ f) · (Rk∂αl
)(f)dα

∣∣ ≤ C‖g‖C1,δ‖f‖2L2 . (9.3)

Proof: Denoting with I the integral above and since the operator Rk∂αl
is self-adjoint we

may write

I =

∫

R2

f1[(Rk∂αl
)(g2f3)− g2(Rk∂αl

)(f3)]dα +

∫

R2

f2[(Rk∂αl
)(g3f1)− g3(Rk∂αl

)(f1)]dα

+

∫

R2

f3[(Rk∂αl
)(g1f2)− g1(Rk∂αl

)(f2)]dα.

Then estimate (9.1) yields (9.3).

Lemma 9.3 Consider f ∈ L2(R2) and g ∈ C1,δ(R2) with 0 < δ < 1. Then for any j, k, l =
1, 2 the following inequality holds

∣∣
∫

R2

Rj(f)(Rk∂αl
)(gf)dα

∣∣ ≤ C‖g‖C1,δ‖f‖2L2 . (9.4)

Proof: Let J be the integral to be bounded, then we have

J =

∫

R2

Rj(f)[(Rk∂αl
)(gf) − g(Rk∂αl

)(f)]dα −
∫

R2

[Rj(fg)− gRj(f)](Rk∂αl
)(f)dα

+

∫

R2

Rj(fg)(Rk∂αl
)(f)dα

Since R∗
j = −Rj and Rk∂αl

is self-adjoint we get

J =
1

2

∫

R2

Rj(f)[(Rk∂αl
)(gf)− g(Rk∂αl

)(f)]dα − 1

2

∫

R2

[Rj(fg)− gRj(f)](Rk∂αl
)(f)dα.

An integration by parts in the second integral above yields

J =
1

2

∫

R2

Rj(f)[(Rk∂αl
)(gf)− g(Rk∂αl

)(f)]dα+
1

2

∫

R2

[(Rj∂αl
)(fg)− g(Rj∂αl

)(f)](Rk)(f)dα

− 1

2

∫

R2

(∂αl
g)Rj(f)Rk(f)dα,

allowing us to conclude the proof.
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Lemma 9.4 Let us define for any j = 1, 2 and k = 1, 2, 3 the following operators:

T1(∂αj
f)(α) = PV

∫

R2

Xk(α)−Xk(α− β)

|X(α) −X(α − β)|3 ∂αj
f(α− β)dβ, (9.5)

T2(f)(α) = PV

∫

R2

∂αj
Xk(α)− ∂αj

Xk(α− β)

|X(α) −X(α − β)|3 f(α− β)dβ, (9.6)

T3(f)(α) = PV

∫

R2

f(α)− f(α− β)

|X(α) −X(α− β)|3 dβ, (9.7)

T4(∂αj
f)(α) = PV

∫

R2

( (X(α) −X(β))

|X(α) −X(β)|3 − ∇X(α) · (α− β)

|∇X(α) · (α− β)|3
)
∂αj

f(β)dβdα, (9.8)

where ∇X(α) · β = ∂α1
X(α)β1 + ∂α2

X(α)β2. Assume that X(α) − (α, 0) ∈ C2,δ(R2), and
that both F (X) and |N |−1 are in L∞ where

F (X)(α, β) = |β|/|X(α) −X(α− β)| and N(α) = ∂α1
X(α) ∧ ∂α2

X(α).

Then the following estimates hold:

‖T1(∂αj
f)‖L2 ≤ P (‖X − (α, 0)‖C1,δ + ‖F (X)‖L∞ + ‖|N |−1‖L∞)(‖f‖L2 + ‖∂αj

f‖L2), (9.9)

‖T2(f)‖L2 ≤ P (‖X − (α, 0)‖C2,δ + ‖F (X)‖L∞ + ‖|N |−1‖L∞)‖f‖L2 , (9.10)

‖T3(f)‖L2 ≤ P (‖X − (α, 0)‖C2,δ + ‖F (X)‖L∞ + ‖|N |−1‖L∞)‖f‖H1 , (9.11)

‖T4(f)‖L2 ≤ P (‖X − (α, 0)‖C2,δ + ‖F (X)‖L∞ + ‖|N |−1‖L∞)‖f‖L2 , (9.12)

with P a polynomial function.

Proof: To estimate the first set of operators we consider first the splitting

T1(∂αj
f) = PV

∫

|β|>1
dβ + PV

∫

|β|<1
dβ = I1 + I2 (9.13)

and an integration by parts allows us to write I1 = J1 + J2 + J3 where

J1 =

∫

|β|>1

−∂αj
Xk(α− β)

|X(α) −X(α− β)|3 f(α− β)dβ,

J2 = 3

∫

|β|>1

(Xk(α)−Xk(α− β))(X(α) −X(α − β)) · ∂αj
X(α − β)

|X(α) −X(α − β)|5 f(α− β)dβ,

and

J3 =

∫

|β|=1

Xk(α) −Xk(α− β)

|X(α) −X(α− β)|3 f(α− β)dl(β).

The above decomposition shows that

|I1| ≤ C‖X − (α, 0)‖C1‖F (X)‖3L∞(

∫

|β|>1

|f(α− β)|
|β|3 dβ +

∫

|β|=1
|f(α− β)|dl(β))

and then Minkowski’s inequality gives the desired control.
Regarding I2 we write I2 = J4 + J5 + J6 with

J4 =

∫

|β|<1

Xk(α) −Xk(α− β)−∇Xk(α) · β
|X(α) −X(α− β)|3 ∂αj

f(α− β)dβ,
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J5 = ∇Xk(α) ·
∫

|β|<1
β[

1

|X(α) −X(α− β)|3 − 1

|∇X(α) · β|3 ]∂αj
f(α− β)dβ,

J6 = ∇Xk(α) · PV
∫

|β|<1

β

|∇X(α) · β|3 ∂αj
f(α− β)dβ.

It is easy to see that

J4 ≤ ‖X − (α, 0)‖C1,δ‖F (X)‖3L∞

∫

|β|<1

|∂αj
f(α− β)|
|β|2−δ dβ, (9.14)

and therefore that term can be estimated also with the use of Minkowski’s inequality.
Some elementary algebraic manipulations allows us to get

J5 ≤ C‖X − (α, 0)‖2C1,δ

∫

|β|<1
[(F (X)(α, β))4 +

|β|4
|∇X(α) · β|4 ]

|∂αj
f(α− β)|
|β|2−δ dβ,

and then the inequality

|β|
|∇X(α) · β| ≤ 2‖∇X‖L∞‖|N |−1‖L∞ (9.15)

yields for J5 the same estimate (9.14).
The term J6 can be written as

J6 = ∇Xk(α) · PV
∫

|β|<1

Σ(α, β)

|β|2 ∂αj
f(α− β)dβ,

where
(i)Σ(α, λβ) = Σ(α, β), ∀λ > 0, (ii)Σ(α,−β) = −Σ(α, β),

and
(iii) sup

α
|Σ(α, β)| ≤ 8‖∇X‖3L∞‖|N |−1‖3L∞ ,

as a consequence of (9.15).
Here we have a singular integral operator with odd kernel (see [8] and [17]) and therefore

a bounded linear map on L2(R2) giving us

‖J6‖L2 ≤ C‖∇X‖4L∞‖|N |−1‖3L∞‖∂αj
f‖L2 .

For the family of operators T2(f)(α) we use the splitting T2(f) = I3 + I4 where

I3 =

∫

|β|>1

∂αj
Xk(α)− ∂αj

Xk(α− β)

|X(α) −X(α− β)|3 f(α− β)dβ.

Easily we get

I3 ≤ 2‖X − (α, 0)‖C1‖F (X)‖3L∞

∫

|β|>1

|f(α− β)|
|β|3 dβ,

while for I4 we proceed with the same method used with I2, replacing nowXk(α) by ∂αj
Xk(α)

and ∂αj
f(α− β) by f(α− β).

Next we shall show that the operator T3 behaves like Λ = (−∆)
1

2 . To do that we split it
as I5 + I6 where

I5 =

∫

|β|>1

f(α)− f(α− β)

|X(α) −X(α− β)|3 dβ,

44



can be easily estimated by

I5 ≤ ‖F (X)‖3L∞(2π|f(α)| +
∫

|β|>1

|f(α− β)|
|β|3 dβ).

The other term is written in the form I6 = J7 + J8 where

J7 =

∫

|β|<1
[

1

|X(α) −X(α − β)|3 − 1

|∇X(α) · β|3 ](f(α) − f(α− β))dβ.

The identity

f(α)− f(α− β) = β ·
∫ 1

0
∇f(α+ (s− 1)β)ds

allows us to treat J7 as we did with J5. To estimate J8 the equality

1

|∇X(α) · β|3 = −∂β1
( β1
|∇X(α) · β|3

)
− ∂β2

( β2
|∇X(α) · β|3

)
(9.16)

will be very useful. After a careful integration by parts it yields

J8 = PV

∫

|β|<1

∇f(α− β) · β
|∇X(α) · β|3 dβ −

∫

|β|=1

(f(α)− f(α− β))|β|
|∇X(α) · β|3 dl(β).

The principal value in J8 is treated with the same method used for J6 and since the integral
on the circle is inoffensive, so long as |N |−1 is in L∞, the estimate for T3 follows.

For the remaining operator one integrates by parts to get T4 = I7 + I8 where

I7 = PV

∫

R2

P1(α, β)f(α − β)dβ, I8 = PV

∫

R2

P2(α, β)f(α − β)dβ

with

P1(α, β) =
∂αj

X(α)

|∇X(α) · β|3 −
∂αj

X(α − β)

|X(α) −X(α− β)|3

and

P2(α, β) = 3
(X(α) −X(α − β))(X(α) −X(α− β)) · ∂αj

X(α− β)

|X(α) −X(α − β)|5

− 3
∇X(α) · β((∇X(α) · β) · ∂αj

X(α))

|∇X(α) · β|5 .

Next we will show how to treat I7, because the estimate for I8 follows similarly. In P1 we
introduce the further decomposition: P1 = Q1 +Q2 where

Q1 = ∂αj
X(α)[

1

|∇X(α) · β|3 − 1

|X(α) −X(α− β)|3 ], Q2 =
∂αj

X(α)− ∂αj
X(α− β)

|X(α) −X(α− β)|3 .

And since the kernel Q2 has already appeared in the operator T1, it only remains to control
J9 which is given by

J9 = ∂αj
X(α)PV

∫

R2

Q1(α, β)f(α − β)dβ.

The following decomposition

J9 = ∂αj
X(α)

∫

|β|>1
dβ + ∂αj

X(α)PV

∫

|β|<1
dβ = K1 +K2
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shows that the term K1 trivializes. Regarding K2 let us write

Q1 =
(|A|4 + |B|2|A|2 + |B|4)(A +B) · (A−B)

|A|3|B|3(|A|3 + |B|3)

where
A(α, β) = X(α) −X(α− β), B(α, β) = ∇X(α) · β.

This formula shows that inside Q1 lies a kernel of degree −2. Then let us take Q1 = S1 + S2
where

S2 =
3|B|4B · (A−B)

|B|9 =
3B · (A−B)

|B|5 .

Next we check that the kernel S1 has degree −1, and therefore is easy to handle. Finally we
have to consider the kernel S2 appearing in the integral L

L = 3∂αj
X(α)PV

∫

|β|<1

(∇X(α) · β) · (X(α) −X(α− β)−∇X(α) · β)
|∇X(α) · β|5 f(α− β)dβ.

To do that we introduce a further decomposition L =M1 +M2, with

M1=3∂αj
X(α)

∫

|β|<1

(∇X(α)·β)·(X(α)−X(α−β)−∇X(α)·β− 1
2β ·∇2X(α)·β)

|∇X(α) · β|5 f(α−β)dβ

and

M2 =
3

2
∂αj

X(α)PV

∫

|β|<1

(∇X(α) · β) · (β · ∇2X(α) · β)
|∇X(α) · β|5 f(α− β)dβ,

where 1
2β · ∇2X(α) · β is the second order term in the Taylor expansion of X. It is now easy

to check that

M1 ≤ C‖∇X‖5L∞‖X − (α, 0)‖C2,δ‖|N |−1‖4L∞

∫

|β|<1

|f(α−β)|
|β|2−δ dβ.

Then we also check that M2 is controlled like J6 throughout the estimate

‖M2‖L2 ≤ C‖∇X‖5L∞‖∇2X‖L∞‖|N |−1‖4L∞‖f‖L2

which allows us to finish the proof.

Remark 9.5 Having obtained the a priori bounds of the precedent sections, we are in position
to implement successfully the same approximation scheme developed in [5] to conclude local
existence.
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