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DIFFUSION
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Abstract

In this paper our aim is to present a survey of known results of an

optimal control problem with concave non-quadratic cost functional and

a state equation arising from population dynamics. First, we study in

detail the state equation, and then we show existence and uniqueness

of optimal control and also a numerical approximation of the optimal

control.

1 Introduction

Consider a regular domain Ω of IRN , N ≥ 1, and the following payoff functional

J : L∞
+ (Ω) 7→ IR, J(f) := M

∫

Ω

fuf − K

∫

Ω

f2,

where L∞
+ (Ω) := {f ∈ L∞(Ω) : f(x) ≥ 0 a. a. x ∈ Ω}, M and K are positive

constants and uf is the maximal solution (see Section 2) of the state equation,

the degenerate or slow diffusion logistic equation











−∆u = (a − f)uα − buβ in Ω,

u = 0 on ∂Ω.
(1.1)
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Throughout this paper a, f and b are bounded functions with a strictly positive,

b non-negative and nontrivial, a − f can change sign and α and β satisfy

0 < α < 1, α < β. (1.2)

The solutions of (1.1) can be regarded as the steady states solutions of the

corresponding time dependent model. In such case, u(x) stands for the popu-

lation density and Ω for the inhabiting area. Since the population is subject to

homogeneous Dirichlet boundary conditions, we are assuming that the environ-

ment surrounded Ω is lethal. In such model, a(x) represents the growth rate of

the species and the positive function b(x) describes the intro-specific pressure

of the species: in the region where b ≡ 0 the species is free of this pressure

and so u grows according to the Malthus law, while in its complement u grows

according to a logistic or Verhulst law. The function f(x), will be considered

non-negative, denotes the distribution of control harvesting of the species by

reducing the growth rate.

With respect to the functional, J represents the difference between economic

revenue measured by
∫

Ω
fuf and the control cost measured by

∫

Ω
f2. The

constants M and K denote the price of the species and the cost of the control,

respectively.

Our objective is to know if it is possible to maximize the benefit, that is,

mathematically we want to show:

a) The existence of an optimal control, i. e., to find a function f0 ∈ L∞
+ (Ω)

such that

J(f0) = sup
f∈L∞

+
(Ω)

J(f).

b) Under what conditions is this optimal control unique?
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c) Approximate numerically the optimal control.

In population dynamics, it seems that the first work in optimal control

is [16], where the case α = 1, b strictly positive and homogeneous Neumann

boundary conditions is considered. In such work, a bounded set of controls is

considered, the existence of optimal control is shown, as well as the associated

optimality system is obtained. Finally, some computational experiments are

made. After that, and always in the case α = 1 and b strictly positive, in [9],

[2] and [18], and under homogeneous Dirichelt boundary conditions and control

space L∞
+ (Ω), the existence and uniqueness of optimal control are proved. Also,

via optimality system, the optimal control is numerically approximated.

However, the case α < 1 has not been considered previously in our view (see

[20] for a related problem). Being α < 1, some important technical difficulties

appear, and over all, a drastic change in the results on the state equation.

Indeed, for the case α = 1 any non-negative and nontrivial solution is in fact

positive; however in the case α < 1 solutions u ≥ 0, u 6= 0 and no positive in

the whole domain exist.

First, we enunciate the main results concerning to the state equation. Then,

our aim will be to summary the papers [4] and [5] where the optimal control

problem in the case α < 1 was studied. We show the existence of optimal

control, and for λ small the uniqueness of optimal control and a characterization

of the optimal control via the optimality system is also derived, which further

leads to approximating the optimal control.
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2 State equation

Equation (1.1) includes the following one (under the change of variable wm = u)










−∆wm = (a − f)w − bw2 in Ω,

w = 0 on ∂Ω,
(2.1)

which was introduced in population dynamics by Gurtin and MacCamy in [10]

for describing the dynamics of biological populations whose mobility depends

upon their density. In this context, m > 1 (nonlinear slow diffusion) means

that the diffusion is slower than in the linear case m = 1, which gives rise to

more realistic biological results, see [10].

By biological meaning, we are only looking for non-negative and nontriv-

ial solutions. Moreover, by elliptic regularity, any bounded solution of (1.1)

belongs to C1,α(Ω).

We first recall the case m = 1 in (2.1) (or equivalently α = 1 in (1.1)). We

need previously some notation: given a regular domain D ⊂ IRN and a function

g ∈ L∞(D), we denote by λD
1 (−∆ + g) the first eigenvalue of the problem

−∆u + g(x)u = λu in D, u = 0 on D.

It holds (see Theorem 3.5 in [8]):

Proposition 2.1. Assume α = 1 and that B0 := int{x ∈ Ω : b(x) = 0} is

regular.

a) Any solution u ≥ 0, u 6= 0 of (1.1) is in fact u > 0 in the whole domain

Ω.

b) There exists a positive solution of (1.1) if, and only if,

λΩ
1 (−∆ + f − a) < 0 < λB0

1 (−∆ + f − a).
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When there exists, the solution is unique and globally stable.

Observe that either the solution is trivial u ≡ 0 or it is positive in all the domain.

On the other hand, the existence of solution depends on a global condition,

specifically of the behavior of a − f in a determined domain. Moreover, in

case of existence, there is uniqueness. Finally, we would like to recall that if

λB0

1 (−∆ + f − a) ≤ 0 the solutions corresponding to the associated parabolic

problem are not bounded, see [8].

A drastic change occurs when m > 1, due to that strong maximum principle

does not hold in general, appearing solutions u ≥ 0, u 6= 0 and not strictly

positive, that is the set

Ω0 := {x ∈ Ω : u(x) = 0} 6= ∅,

this set is called dead core. Moreover, as we can see in the following result, all

the solutions are bounded and the multiplicity of solutions appears; as well as

the condition assuring the existence of solution is local. Given g ∈ L∞(Ω) we

denote by

gM := ess sup
Ω

g gL := ess inf
Ω

g.

We can summarize the main result as follows:

Theorem 2.2. a) There exists a maximal solution of (1.1), denoted by

uf ≥ 0. Moreover, the map f 7→ uf is continuous and decreasing, and so

‖uf‖∞ ≤ ‖u0‖∞ ≤ K, for some K independent of f . (2.2)

b) The maximal solution uf ≥ 0, it is not trivial if, and only if, (a−f)M > 0.

c) If (a−f)L > 0 then uf > 0 and it is the unique positive solution of (1.1).

Moreover, if there exists a positive solution, this is the unique positive

solution.
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d) We can choose functions f such that uf has dead core.

e) If the dead core of uf has k connected components (k ≥ 1), then there

exist exactly 2k − 1 solutions of (1.1).

Equation (1.1) was previously studied in [11] and [19], where basically para-

graph e) and fist part of a) were proved. The rest of results have been proved

in [6] and [7].

3 Optimal control

Rescaling the functional J , we can consider

J : L∞
+ (Ω) 7→ IR, J(f) :=

∫

Ω

λfuf − f2,

with λ > 0. First we can prove the following result, which provides us a

bound for any optimal controls and it shows that at the optimal control the

corresponding solution uf has not dead core:

Lemma 3.1. Let f be an optimal control. Then,

f ≤ λK. (3.1)

Moreover, uf > 0 in Ω.

With respect to the existence of optimal control, thank to (3.1) we can take

a maximizing sequence and pass to the limit, obtaining

Theorem 3.2. There exists an optimal control, i. e., f ∈ L∞
+ (Ω) such that

J(f) = sup
g∈L∞

+
(Ω)

J(g).

Moreover, the benefit is positive, i.e., sup
g∈L∞

+
(Ω)

J(g) > 0.
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In order to obtain the uniqueness result, we will use two different ways.

First, again thank to the bound (3.1), we have that the set of optimal controls

belongs to a convex, specifically to the set

I := [0, λK].

Hence, if we show that the functional J is concave, we will deduce the unique-

ness of optimal control. For that, we calculate the derivative of J in the fol-

lowing set:

C := {f ∈ L∞(Ω) : (a − f)L > 0}.

Proposition 3.3. J is Fréchet differentiable and

J ′(f)(g) =

∫

Ω

(λuf − λuα
f Pf − 2f)g, ∀f ∈ C, ∀g ∈ L∞(Ω), (3.2)

where for any f ∈ C, Pf ∈ C1
0 (Ω) is the unique solution of











−∆Pf + Mf (x)Pf = f in Ω,

Pf = 0 on ∂Ω,
(3.3)

being

Mf = −α(a − f)uα−1
f + βbuβ−1

f .

Some remarks are in order: observe that (3.3) is a linear elliptic equation

but with a potential Mf blowing up at the boundary of Ω. In spite of that,

we have solved this difficulty because Mf blows up in a controlled way, due to

that f ∈ C. Indeed, since f ∈ C it follows by Theorem 2.2 that uf > 0 and in

fact uf belongs to the interior of the positive cone of C1
0 (Ω). This allows us to

solve (3.3), see for instance Theorem 2.5 in [5].

On the other hand, having the derivative of J only in C is not a restriction,

because thank to (3.1) there exists λ0 > 0 such that for λ < λ0 it holds that

f ∈ C. (3.4)
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The next result is essential in our work, it is a complex technical result

(Theorem 4.6 in [5]):

Theorem 3.4. There exists Λ > 0 such that for 0 < λ < Λ the maps

f ∈ [0, λK] 7→ uf , Pf , uα
f Pf

are Lipschitz continuous, with the Lipschitz constants independent of λ, in the

following sense

max{‖uf − ug‖∞, ‖Pf − Pg‖∞, ‖uα
f Pf − uα

g Pg‖∞} ≤ L‖f − g‖2.

We are ready to show:

Theorem 3.5. There exists Λ0 > 0 such that if λ < Λ0, there exists an unique

optimal control.

Idea of the proof: Take λ < λ0 of (3.4), and so f ∈ C. Take also λ < Λ of

Theorem 3.4, then using Proposition 3.3 we get

(J ′(f)− J ′(g))(f−g)=

∫

Ω

[λ(uf −ug)+λ(uα
g Pg−u

α
f Pf )−2(f−g)](f−g).

Observe that, by the Hölder inequality

∫

Ω

(uf − ug)(f − g)≤

(
∫

Ω

(uf − ug)2
)1/2(∫

Ω

(f − g)2
)1/2

≤ CL

∫

Ω

(f − g)2.

where L is the Lipschitz constant of Theorem 3.4 and C a positive constant.

Thus, we deduce

(J ′(f) − J ′(g))(f − g) ≤

∫

Ω

(λLC − 2)(f − g)2 < 0.

This conclude that J is concave, and the uniqueness follows.

�

As a consequence of (3.2), we get easily
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Corollary 3.6. Let f ∈ L∞
+ (Ω) an optimal control. Then for λ < λ0,

f =
1

2
λ(uf − uα

f Pf )+.

We can derive now the optimality system, for that we use the above expres-

sion and substitute it in (2.1), and the equation (3.3).

Proposition 3.7. There exists Λ1 > 0 such that if λ ≤ Λ1, then

Pf ≤ u1−α
f .

So, if f is an optimal control, we have

f =
λ

2
uf (1 − uα−1

f Pf ). (3.5)

As consequence, any optimal control f can be expressed as in (3.5), where the

pair (uf , Pf ) := (u, P ) satisfies


























−∆u = uα(a −
λ
2
u + λ

2
uαP − buβ−α) in Ω,

−∆P +(−αauα−1+βbuβ−1)P = λ
2
(u − uαP (1+α)+αu2α−1P 2) in Ω,

u=P =0 on ∂Ω,

(3.6)

and u > 0.

The former result says that, when λ is small enough, if f is an optimal

control, then (uf , Pf ) is a solution of (3.6). We are going to prove now that, for

a range of λ, there exists a unique positive solution of (3.6) verifying u1−α ≥ P

and so the unique optimal control will be

f =
λ

2
(u − uαP ).

Observe that the system (3.6) is nonlinear in the variables u and P with some

nonlinearities singular. So, the study of this system is difficult, an even more

the uniqueness, that as it is well know is one of the hardest problem in elliptic

problems. We can show the following result:
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Theorem 3.8 (Uniqueness of optimal control). There exists Λ2 > 0 such

that for λ ≤ Λ2, (3.6) possesses a unique positive solution (u, P ) satisfying

u1−α ≥ P .

Proof: Define the map:

T : I := [0, λK] ⊂ L∞
+ (Ω) 7→ L∞

+ (Ω), f 7→ T (f) =
λ

2
(uf − uα

f Pf ).

By Theorem 3.4, for λ < Λ, T is a Lipschitz continuous function with a Lip-

schitz constant of the form λL/2, where L is the corresponding one for the

function f 7→ uf − uα
f Pf . So, we can choose Λ2 := min{Λ, 2

L
} such that for

λ ≤ Λ2, T is a contractive function.

Assume that there exist two positive solutions (ui, Pi), i = 1, 2 of (3.6) with

u1−α
i ≥ Pi. We define

fi =
λ

2
(ui − uα

i Pi) ∈ I, i = 1, 2.

Hence, by (3.6) and the uniqueness of uf (see Theorem 2.2 e)), we have that

ui = ufi
, Pi = Pfi

, ⇒ T (fi) = fi i = 1, 2.

Since T is contractive, it follows that f1 = f2, and again by the uniqueness of

uf we have that uf1
= uf2

, hence u1 = u2, and so P1 = P2. This completes

the proof.

�

Now, we want to approximate the optimal control, for which we approximate

the solutions of (3.6). We are going to use the sub-supersolution method,

which provides not only the existence of solution, but sequences approaching

the solutions.
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We can define (see [5]) a function B(x, u, p) increasing in p, and, depending

on the values of α and β, functions C(x, u, p) decreasing in u and D(x, u, p)

increasing in u such that the optimality system (3.6) can be written as























−∆u = B(x, u, p) in Ω,

−∆p = C(x, u, p) + D(x, u, p) in Ω,

u = p = 0 on ∂Ω.

Now, we are going to apply the sub-supersolution method to this system and

obtain

Proposition 3.9. There exists a pair (u, u) − (p, p) of sub-

supersolution of the above system, and so there exist sequences

u = u1 ≤ u2 ≤ ... ≤ un ≤ un ≤ un−1 ≤ ... ≤ u1 = u,

p = p1 ≤ p2 ≤ ... ≤ pn ≤ pn ≤ pn−1 ≤ ... ≤ p1 = p,

and

un ր u∗, un ց u∗, pn ր p∗, pn ց p∗,

and for any solution (u, p) of (3.6), we get

un ≤ u∗ ≤ u ≤ u∗ ≤ un, pn ≤ p∗ ≤ p ≤ p∗ ≤ pn

and (u∗, u
∗, p∗, p

∗) verifies the following system















































−∆u∗ = B(x, u∗, p∗) in Ω,

−∆u∗ = B(x, u∗, p∗) in Ω,

−∆p∗ = C(x, u∗, p∗) + D(x, u∗, p∗) in Ω,

−∆p∗ = C(x, u∗, p
∗) + D(x, u∗, p∗) in Ω,

u∗ = u∗ = p∗ = p∗ = 0, on ∂Ω.

(3.7)
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Clearly, if (u, p) is the solution of the optimality system (3.6), then (u, u, p, p)

is a solution of (3.7). So, to complete the iterative approximation and the con-

vergence of the sequences {un}, {u
n}, {pn}, {p

n} to the unique solution, (u, p),

of the optimality system, it is sufficient to prove the uniqueness of the solution

for the system (3.7).

With a similar argument to the used in Theorem 3.8, we have

Theorem 3.10. There exists a positive constant Λ4 such that, if λ ≤ Λ4, then

the system (3.7) possesses a unique solution.

Remark 3.11. a) The existence and uniqueness results are still true for

more general functionals as

J(g) :=

∫

Ω

(λh(g)ug − k(g)),

where h ∈ C1(IR+; IR+), k ∈ C2(IR+; IR+); h(s) = 0 if, and only if, s = 0,

and k(s) = 0 if, and only if, s = 0; h is concave and k strictly convex

satisfying k′′(s) ≥ k0 > 0 for some k0. Moreover:

(H) lim
t→0

k(t)

h(t)
= 0, lim

t→+∞

k(t)

h(t)
= +∞.

b) Different optimal control problems have been analyzed when the state

equation is a system, see for instance the works [17], [13], [15], [14],

[1], [3] and [12]. In all of them, the control appears in both equations,

being an interesting open problem the case with the control acting in only

one equation.

References

[1] Arino, O.; Montero, J. A., Optimal control of a nonlinear elliptic popula-

tion system, Proc. Edinburgh Math. Soc., 43 (2000), 225-241.



STUDY OF THE OPTIMAL HARVESTING CONTROL 231
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