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Abstract. We consider the single facility ordered median location prob-
lem with uncertainty in the parameters (weights) defining the objective
function. We study two cases. In the first case the uncertain weights be-
long to a region with a finite number of extreme points, and in the second
case they must also satisfy some order constraints and belong to some
box, (convex case). To deal with the uncertainty we apply the minimax
regret approach, providing strongly polynomial time algorithms to solve
these problems.
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1 Introduction

The definition of an instance of an optimization problem requires the specifi-
cation of the problem parameters, like resource limitations and coefficients of
the objective function in a linear program, or edge capacities in network flow
problems, which may be uncertain or imprecise. Uncertainty/imprecision can be
structured through the concept of a scenario which corresponds to an assignment
of plausible values to the model parameters. In general, the set of all admissible
scenarios may depend on the properties of the underlying model, and on some
possible known relationships between the model parameters. Nevertheless, we
note that in most published studies it has been assumed that each parameter
can independently take on values in some prespecified interval. This is the so
called interval data approach.

One of the most common approaches to deal with uncertain data is throughout
the minimax absolute regret criterion. In this approach the goal is to minimize
the worst case opportunity loss, defined as the difference between the achieved
objective-function value and the optimal objective-function value under the re-
alized scenario. We refer the reader to [2,3,5,8,12,17], where recent results on
this subject for general optimization problems are described.
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We were motivated by facility location optimization problems where the exact
nature of the optimality criteria was uncertain. Consider, for example, a location
model in which the central administration subsidizes the transportation cost of
the users only after the establishment of a server. Hence, at the moment when
the facility has to be established, it is not yet clear what is the cost function
that the central administration will apply for determining the magnitude of the
subsidy. The administration may decide that the subsidy will be proportional to
the distances traveled to the facility by all the customers with the exception of
some unknown subset of outliers, e.g., those customers who are too close or too
far to the server. The uncertainty is in the size or the exact definition of the set
of outliers. In such a case, the criterion to be chosen ‘a priori’ for the location
of the server might be taken as minimizing the regret of the decision among a
certain family of criteria.

The approach that we suggest to deal with this uncertainty is to limit ourselves
to certain families of objective functions, and apply the approach of minimizing
the maximum regret with respect to the selection of an objective within the pre-
specified. Our approach is different from the approach in the existing literature
on minimax regret facility location models, where the objective function used is
usually assumed to be known and certain ([4,5]). Specifically, in this paper, we
will restrict ourselves to the family of ordered median functions (OMF) which
has been studied extensively in the last decade in location theory, see [9,15]. This
family unifies large variety of criteria used in location modeling.

The OMF is a real function defined on R
n and characterized by a sequence of

reals, λ = (λ1, ..., λn). For a given point z ∈ R
n, let z̄ ∈ R

n be the vector obtained
from z by sorting its components in nondecreasing order. In the context of a
single facility (server) location model with n demand points, the OMF objective
is applied as follows. Let x denote the location of the server in the respective
metric space, and let z(x) denote the vector of the n weighted distances of the
demand points to the server at x. The value of the ordered median objective
at x is then defined as the scalar product of λ with z̄(x). As noted above, this
function unifies and generalizes the classical and most common criteria, i.e.,
center and median, used in location modeling. (We get the median objective
when λi = 1, i = 1, ..., n, and the center objective when λi = 0, i = 1, ..., n − 1
and λn = 1.) Another important case is the k-centrum objective, where the goal
is to minimize the sum of the k-largest weighted distances to the server. This
case is characterized by λi = 0, i = 1, ..., n − k, and λi = 1, i = n − k + 1, ..., n.
In addition to the above examples, the ordered median objective generalizes
other popular criteria often used in facility location studies, e.g., centdian and
(k1, k2)-trimmed mean.

In this paper, we solve a variety of single facility minimax regret ordered
median problems on general networks finding best solutions on each edge. The
reader can find further details in [16]. A summary of the results is given in
Table 1.

The paper is organized as follows. In Section 2, we present the single facility
ordered median problem in general networks. Section 3 introduces the minimax
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Table 1. Summary of results

Objective function Complexity
OMF with lower and upper bounds O(m2n4 log n)
(k1, k2)-trimmed mean O(mn4)
k-centrum O(mn2 log2 n)
Convex OMF with lower and upper bounds O(m2n6 log4 n)
Convex OMF with lower and upper bounds on trees O(n6 log4 n)

regret ordered median problem and some results concerning the convexity of
the objective function. In Section 4, we develop strongly polynomial algorithms
for this type of problems when the feasible region of the λ-weights has a finite
number of extreme points. Section 5 is devoted to analyze the convex case, which
is defined by the property that the λ-weights are given in nondecreasing order;
for this case a strongly polynomial algorithm is developed.

2 Notation

Let G = (V, E) be an undirected graph with node set V = {v1, ..., vn} and edge
set E, |E| = m. Each edge e ∈ E, has a positive length le, and is assumed to
be rectifiable. In particular, an edge e is identified as an interval of length le, so
that we can refer to its interior points. Let A(G) denote the continuum set of
points on the edges of G. Each subgraph of G is also viewed as a subset of A(G),
e.g., each edge e ∈ E is a subset of A(G). We refer to an interior point on an
edge by its distance along the edge to the nodes of the edge.

The edge lengths induce a distance function d on A(G) and thus A(G) is a
metric space , see [18]. We consider a set of nonnegative weights {w1, . . . , wn},
called w-weights, where wi, i = 1, . . . , n, is associated with node vi and represents
the intensity of the demand at this node.

For any x ∈ A(G), let σ = σ(x) be a permutation of the set {1, . . . , n}
satisfying wσ1d(vσ1 , x) ≤ . . . ≤ wσnd(vσn , x). For i = 1, . . . , n, denote d(i)(x) =
wσid(vσi , x). (d(i)(x) is an i-th smallest element in the set {wjd(vj , x)}j).

For a given vector λ = (λ1, . . . , λn) with real components, called λ-weights,
the ordered median function on A(G) is defined as

fλ(x) :=
n∑

i=1

λiwσid(vσi , x).

The single facility ordered median problem is to minimize fλ(x) over A(G), [15].
An ordered median function is called convex if 0 ≤ λ1 ≤ . . . ≤ λn.
A point x ∈ A(G) is an equilibrium point with respect to a pair of nodes vk,

vl, k �= l, if wk d(vk, x) = wl d(vl, x). A point x ∈ A(G) is a bottleneck point if for
some i = 1, . . . , n, with wi > 0, and e ∈ E, x is the unique maximum point of
the (concave) function wid(vi, y) when y is restricted to be in e. Denote by EQ
the set of all equilibrium and bottleneck points. This set can be a continuum set
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even in the case of a tree network when two nodes are equally weighted. Let EQ
be the set consisting of the nodes of G and all the boundary points of EQ. Let B
be the subset consisting of the nodes of G and the bottleneck points in EQ. For
each e ∈ E define EQ(e) = EQ∩e and B(e) = B∩e. Note that |EQ(e)| = O(n2)
and |B(e)| = O(n).

For each e ∈ E the points in EQ(e) (B(e)) induce a partition of the edge e
into |EQ(e)| − 1 (|B(e)| − 1) subedges. These subedges (subinterals) are viewed
as consecutive subintervals of the rectified edge (interval) e.

After computing the distances between all the nodes, the effort to compute
and sort the points in EQ(e) (B(e)) for each e ∈ E is O(n2 + |EQ(e)| log n)
(O(n + |B(e)| log n)). Note that for each subinterval in the partition induced by
B(e), each function wid(vi, x) is linear. Moreover, for each open subinterval in the
partition induced by EQ(e), no pair of functions in the collection {wid(vi, x)}i

intersect.

3 The Minimax Regret Ordered Median Problem

We assume that the vector λ is unknown and can take on any value in some
compact set Λ ⊂ R

n. Any λ ∈ Λ is called a scenario and represents a possible
λ−weight instance. The minimax regret ordered median optimization problem
is formally defined by:

min
x∈A(G)

R(x) := max
λ∈Λ

max
y∈A(G)

(
fλ(x) − fλ(y)

)
.

For any choice of the λ-weights, EQ contains at least one optimal solution for
the respective ordered median problem, [15]. Thus, for a given x ∈ A(G)

max
y∈A(G)

(
fλ(x) − fλ(y)

)
= max

y∈EQ

(
fλ(x) − fλ(y)

)
= fλ(x) − fλ(y∗(λ)),

where y∗(λ) ∈ EQ is a minimizer of fλ(u) with u ∈ A(G). For each fixed
y ∈ A(G) define

Ry(x) = max
λ∈Λ

(
fλ(x) − fλ(y)

)
. (1)

By definition, for a given pair x, y ∈ A(G) the function fλ(x)− fλ(y) is linear in
λ. Therefore, Ry(x) = max

λ∈ext(CH(Λ))

(
fλ(x)− fλ(y)

)
, where CH(Λ) is the convex

hull of Λ and ext(CH(Λ)) is the set of extreme points of CH(Λ).
With this notation

R(x) = max
y∈EQ

Ry(x). (2)

Consider an edge e ∈ E and let xe
1 < . . . < xe

q(e), be the sequence of equi-
librium points in EQ(e). (q(e) = |EQ(e)|.) Similarly, let x̄e

1 < . . . < x̄e
b(e), be

the sequence of bottleneck points in B(e). (b(e) = |B(e)|.) (See Figure 1). From
the definition of equilibrium and bottleneck points and the above notation, we
clearly have the following results.



234 J. Puerto, A.M. Rodŕıguez-Ch́ıa, and A. Tamir

Lemma 1. Consider a subedge [xe
k, xe

k+1], 1 ≤ k < q(e). For any λ ∈ Λ, the
function fλ(x) is linear on the subedge. For any y ∈ EQ the function Ry(x) is
continuous and convex on the subedge. Moreover, if the number of extreme points
of CH(Λ) is finite Ry(x) is also piecewise linear on the subedge.

Lemma 2. For any y ∈ EQ, the function fλ(y) is linear in λ. Let P ⊆ A(G)
be a path such that fλ(x) is convex on P for any λ ∈ Λ. Then for any y ∈ EQ
the function Ry(x) is convex on P . Moreover, the function R(x) is convex on P .

To solve the minimax regret ordered median problem on a general network we
will find the best local solution on each edge, i.e., we will solve m subproblems.
We refer to each local subproblem as a restricted subproblem.
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Fig. 1. Equilibrium and bottleneck points

4 Specific Models

In this section, we focus on solving restricted subproblems for a variety of sets
Λ, where the number of extreme points of the convex hull of Λ is finite. As noted
above, we concentrate on finding the best solution on each edge. Hence, we focus
on optimizing R(x) on a given edge e.

We start with the case where Λ = {(λ1, . . . , λn) : ai ≤ λi ≤ bi, i = 1, . . . , n}.
The reader may notice that this type of sets is the most common one used in
the literature on regret analysis, see [12]. Here, we can strengthen the result in
Lemma 1. Consider an edge e ∈ E.

Lemma 3. For each 1 ≤ k < q(e), and any y ∈ EQ the function Ry(x) is the
maximum of n linear functions in [xe

k, xe
k+1].
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Lemma 4. For each 1 ≤ k < q(e), the function R(x) is the upper envelope of
O(n|EQ|) linear functions for all x ∈ [xe

k, xe
k+1].

To solve the restricted problem on an edge e, we first do some preprocessing on
this edge. Assume that we have already computed and sorted the equilibrium
points in EQ(e). For each triplet y ∈ EQ, vi, vj ∈ V , we compute the at most
two roots of the equation wid(x, vi) = wjd(y, vj) on e. Define BP (e) to be the
set consisting of EQ(e) and all these roots. |BP (e)| = O(n2|EQ|). Moreover, for
each i let zk

i (y) be the solution, if it exists, to the equation d(i)(x) = d(i)(y) (in
the variable x), in the interval [xe

k, xe
k+1]. Each point zk

i (y), is in BP (e).) Finally,
we sort the elements in BP (e). The total preprocessing effort is O(n2|EQ| log n).

Corollary 1. After spending O(n2|EQ| logn) time on preprocessing, for each
1 ≤ k < q(e) the local minimizer of R(x) over the interval [xe

k, xe
k+1] can be

computed in O(n|EQ|) time. The optimal solution to the minimax regret ordered
median problem on the edge e can be computed in O(n|EQ||EQ(e)|) time.

The above result implies that for a general network the total time to solve the
minimax regret ordered median problem over a box is O(m2n5). The latter bound
can be further improved. Focusing on a given edge, we dynamically maintain
[11] the upper envelope of O(|EQ|) linear functions which define the function
R(x) over a refined subinterval defined by two consecutive elements in the set
BP (e). Specifically, following the ordering of the elements in BP (e) we update
this envelope. For a given element u ∈ BP (e), if u ∈ EQ(e) we may need to
update O(|EQ|) linear functions since the ordering or some of the slopes of
the functions {d(i)(x)} change. (For each y ∈ EQ we need to update at most
two elements, per pair of indices j, k such that wjd(vj , u) = wkd(vk, u), in the
sequence {d(i)(x) − d(i)(y)}i, or change the slope of a d(i)(x) function, per each
j such that u is the maximum of the function wjd(vj , x) on e.) If u coincides
with some element zk

i (y) defined above, we need to update one function, per
each y ∈ EQ and j, k such that wjd(vj , u) = d(i)(u) = d(i)(y) = wkd(vk, y), in
the collection. Thus, the total number of insertions and deletions of functions to
the collection of O(|EQ|) functions in the upper envelope is O(|EQ|n2). Using
the data structure in Hershberger and Suri [11], each insertion and deletion can
be performed in O(log n) time. Also, the minimum of R(x) over each subinterval
connecting two consecutive elements of BP (e) can be computed in O(log n) time.

Since there are O(n2) points in EQ(e) and O(n2|EQ|) points in BP (e) the
overall effort to find the best solution on e is O(n2|EQ| log n).

Theorem 1. The total time to solve the single facility minimax regret ordered
median problem over a box on a general graph is O(m2n4 log n).

We note that in some important cases the number of extreme points of the convex
hull of Λ is relatively small. Hence, it may be advantageous to consider these
extreme points explicitly. This is the case of the family of (k1, k2)-trimmed mean
functions [15], mentioned in the introduction. (Other cases are analyzed in the
next section.) For this family Λ = {(λ1, . . . , λn) : ∃k1, k2; k1 +k2 < n, λ1 = . . . =
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λk1 = λn−k2+1 = . . . = λn = 0, λk1+1 = . . . = λn−k2 = 1}. The extreme points
of the convex hull of Λ are the vectors of the form (0, . . . , 0, 1, . . . , 1, 0, . . . , 0).
Therefore, in total there are O(n2) extreme points.

Consider an edge e ∈ E. We claim that for this family, on each interval defined
by two consecutive points of EQ(e), the function R(x) can be described as an
upper envelope of O(n2) linear functions. To facilitate the discussion, for each
k = 1, . . . , n, let Sk(x) =

∑n
i=n−k+1 d(i)(x).

For each 1 ≤ s < q(e), and for each x ∈ [xe
s, x

e
s+1], we have R(x) =

max
k1,k2;k1+k2<n

((
n−k2∑

i=k1+1

d(i)(x)

)
− �k1,k2

)
, where �k1,k2 = min

y∈EQ

n−k2∑

l=k1+1

d(l)(y).

Hence, R(x) = max
k1,k2;k1+k2<n

(
Sn−k1(x) − Sk2(x) − min

y∈EQ

(
Sn−k1(y) − Sk2(y)

))
.

Since R(x) is the upper envelope of O(n2) linear functions, its minimum on
the interval [xe

s, x
e
s+1] can be computed in O(n2) time using the algorithm in

[14]. Hence, the solution to the minimax regret ordered median problem on a
given edge e for this family of functions, can be obtained in O(n2|EQ(e)|) time.

Theorem 2. The total time to solve the single facility minimax regret (k1, k2)-
trimmed mean problem on a general graph is O(mn4).

5 Minimax Regret Convex Ordered Median Problem

In this section we analyze the minimax regret convex ordered median problem
which includes several interesting and most common families of functions used
in Location Theory.

The first is the family of k-centrum functions where k can vary between 1 and
n (see [19]). We have Λ = {(λ1, . . . , λn) : λ1 ≤ . . . ≤ λn and λi ∈ {0, 1}, i =
1, ..., n}. The n extreme points of the convex hull of Λ are the vectors of the form
(0, . . . , 0, 1, . . . , 1).

Consider an edge e ∈ E. We claim that for this family, on each interval
defined by two consecutive points of B(e), the function R(x) can be described
as an upper envelope of n convex functions. Indeed, for each 1 ≤ s < b(e),

and for each x ∈ [x̄e
s, x̄

e
s+1], R(x) = max

k=1,...,n

(( n∑

i=n−k+1

d(i)(x)
)

− ζk

)
, where

ζk = min
y∈EQ

n∑

l=n−k+1

d(l)(y). Hence,

R(x) = max
k=1,...,n

(
Sk(x) − min

y∈EQ
Sk(y)

)
.

Note that for each i = 1, . . . , n, the function d(vi, x) is linear over the subin-
terval [x̄e

s, x̄
e
s+1]. Therefore, for each k = 1, . . . , n, the function

∑n
l=n−k+1 d(l)(x)

is convex over the subinterval [x̄e
s, x̄

e
s+1]. (See [15,19]).
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To evaluate R(x) for a given x, it is sufficient to sort the elements {wid(x, vi)}
in order to compute the terms {Sk(x)}k, and finally find maxk=1,...,n

(
Sk(x) −

miny∈EQ Sk(y)
)
. The minimum of R(x) on the interval [x̄e

s, x̄
e
s+1] can then be

computed in O(n log2 n) time by using the parametric approach of Megiddo [13]
with the modification in Cole [7]. Hence, the solution to the minimax regret
ordered median problem on a given edge e for this family of functions can be
obtained in O(n log2 n|B(e)|) time. (We assume that in the preprocessing phase
of the algorithm we have already calculated the terms {ζk}k. The total effort for
this phase is O(mn2 log n), see [15]).

Theorem 3. The total time to solve the minimax regret k-centrum problem on
a general graph is O(mn2 log2 n).

The above analysis and algorithm are also applicable to the more general convex
case defined by Λ = {(λ1, . . . , λn) : λ1 ≤ . . . ≤ λn and λi ∈ [a, b], i = 1, . . . , n},
where a and b satisfy 0 ≤ a ≤ b, see [15]. In this case we have

Λ = CH({(λ1, . . . , λn) : λ1 ≤ . . . ≤ λn and λi ∈ {a, b}, i = 1, . . . , n}).

As another example of a convex family of ordered median functions with a
small number of extreme points, consider the model corresponding to the α-
centdian problem, see [15]. In this case, Λ = {(λ1, . . . , λn) : ∃ 0 ≤ α ≤ 1, λ1 =
. . . = λn−1 = α, and λn = 1}. We have ext(Λ) = {(0, . . . , 0, 1), (1, . . . , 1)}.

5.1 The Case of Interval Weights and Order Constraints

In this section, we consider the minimax regret convex ordered median problem
where the λ−weights are in the set,

Λ≤ = {(λ1, . . . , λn) : λi ∈ [ai, bi] for i = 1, . . . , n, and 0 ≤ λ1 ≤ . . . ≤ λn}.

Without loss of generality, we may assume that both sequences {ai} and {bi}
are nonnegative and nondecreasing. We note that the components of each ex-
treme point of Λ≤ are elements of the set AB = {a1, . . . , an, b1, . . . , bn}. Indeed,
let λ be an extreme point and suppose without loss of generality that some
λi �∈ AB. Let 1 ≤ s ≤ i ≤ t ≤ n be such that λs−1 < λs = λi = λt < λt+1.
For ε > 0 sufficiently small, consider the vector λ(ε+) defined by setting
λj(ε+) = λj + ε for s ≤ j ≤ t and λj(ε+) = λj otherwise. Similarly, con-
sider the vector λ(ε−) defined by setting λj(ε−) = λj − ε for s ≤ j ≤ t and
λj(ε−) = λj otherwise. The vector λ is the midpoint of the interval connecting
λ(ε+) and λ(ε−), contradicting the fact that λ is an extreme point of Λ≤.

Recall that for a given y ∈ EQ, Ry(x) = maxλ∈Λ≤

(
fλ(x) − fλ(y)

)
, see (1).

Evaluating R(x) for a given x amounts to computing the |EQ| values Ry(x) for
all y ∈ EQ, see (2).

We propose an algorithm to compute Ry(x) for any fixed y ∈ EQ. Consider
an edge e ∈ E. Let x̄e

k and x̄e
k+1 be two consecutive elements of B(e). fλ(x) is a



238 J. Puerto, A.M. Rodŕıguez-Ch́ıa, and A. Tamir

convex function on [x̄e
k, x̄e

k+1], see [15]. By Lemma 2, the functions {Ry(x)}y∈EQ,
as well as R(x), are all piecewise linear and convex on [x̄e

k, x̄e
k+1].

For a fixed y ∈ EQ and x ∈ [x̄e
k, x̄e

k+1] the evaluation of Ry(x) can be done
by solving the following linear program:

Ry(x) = max cT (x)λ − hT (y)λ
s.t. λi − λi+1 ≤ 0, ∀i = 1, . . . , n − 1,

ai ≤ λi ≤ bi, ∀i = 1, . . . , n,

where cT (x) = (d(1)(x), . . . , d(n)(x)) and hT (y) = (d(1)(y), . . . , d(n)(y)). (Recall
that the optimal solution λ∗ satisfies λ∗

i ∈ AB for i = 1, . . . , n).
Defining μi = λi −ai, βi = bi −ai, for i = 1, . . . , n, αn = 0, and αi = ai+1 −ai

for i = 1, . . . , n − 1, the formulation above reduces to:

n∑

i=1

ai(d(i)(x) − d(i)(y))+ max cT (x)μ − hT (y)μ

s.t. μi − μi+1 ≤ αi, ∀i = 1, . . . , n − 1,

μi ≤ βi, ∀i = 1, . . . , n,

μi ≥ 0, ∀i = 1, . . . , n.

Setting u0 = un = 0, the formulation of its corresponding dual problem is:

n∑

i=1

ai(d(i)(x) − d(i)(y))+ min
n∑

i=1

αiui +
n∑

i=1

βiti

s.t. ui − ui−1 + ti ≥ d(i)(x) − d(i)(y), ∀i = 1, . . . , n,

ui, ti ≥ 0, i = 1, . . . , n.

Notice that the matrix defining the above linear program is totally unimodular
since it is a flow matrix augmented by the identity matrix.

The above model corresponds to the following single commodity min-cost
flow problem. (See Figure 2.) For each i = 1, . . . , n − 1, ui is the flow on the
arc (i + 1, i), and for each i = 1, . . . , n, ti is the flow on left-arc (0, i). For
i = 1, . . . , n, the demand at node i is d(i)(x) − d(i)(y). Note that the demand
can be of any sign. To account for the sign of the demand for i = 1, . . . , n, define
δ+
i (x) = max{0, d(i)(x)−d(i)(y)} and δ−i (x) = max{0, −(d(i)(x)−d(i)(y))}. The

label attached to each edge in the graph has two coordinates. The left coordinate
is the capacity upper bound on the flow, and the right one is the per unit cost
of flow on the edge. The min-cost flow problem is to find the minimum cost of
transporting

∑n
i=1 δ+

i (x) units from the source node 0 to the destination n + 1.
The fastest known strongly polynomial algorithm to solve a single com-

modity min-cost flow problem on a network with n nodes and m edges is
O(mS(n, m) log n), where S(n, m) is the time to solve the single source short-
est path problem on a network with n nodes and m edges, having nonnegative
lengths. (See Ahuja et al. [1].) This algorithm has O(m log n) scaling phases,
where in each phase a shortest path problem is solved in S(n, m) time. For a
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general graph S(n, m) = O(m + n log n) time. In our case m, the number of
edges, satisfies m ≤ 4n, and S(n, m) = O(n log n). Moreover, the above flow
problem is defined on a special planar network. It is a 3-tree, i.e., its tree-width
is bounded by 3. The latter bound follows from the fact that this network has a
separator consisting of the three nodes, {0, �n/2�, n + 1}. (Each of the two con-
nected components obtained by removing these three nodes is a path consisting
of at most n/2 nodes. In particular, each component has a separator consisting
of its median node).

Using the linear time algorithm in Henzinger et al., [10], designed for general
planar graphs, or the more special algorithm for graphs with bounded tree-
width in Chaudhuri and Zaroliagis, [6], in our case we have S(n, m) = O(n).
We conclude that computing Ry(x) for a given x and y ∈ EQ can be done
in O(n2 log n) time. Moreover, applying the results in [6], Ry(x) can also be
computed in O(n log2 n) parallel time with O(n/ log n) processors. With the
above tools we can then directly use the parametric approach in Megiddo [13]
with the modification in Cole [7], to obtain the next result.

n
. . .

(+∞, αi)

i

(+∞, αi−1)
. . .

1

(+∞, βn) (+∞, βi) (δ−i (x), 0) (δ−1 (x), 0)
(+∞, β1)

(δ+
i (x), 0)(δ+

n (x), 0) (δ+
1 (x), 0)

(δ−n (x), 0)

n + 1

0

δ+
i (x) = max{0, d(i)(x) − d(i)(y)}

δ−i (x) = max{0, d(i)(y) − d(i)(x)}

� � �

�

�

Fig. 2. Illustration of a n-diamond type network

Theorem 4. The total time to solve the single facility minimax regret convex
ordered median problem on a general graph is O(m2n6 log4 n).

Finally, we use global convexity properties of the function R(x) on tree graphs to
solve the minimax regret convex ordered median problem on such graphs more
efficiently.
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Theorem 5. The total time to solve the single facility minimax regret convex
ordered median problem on a tree graph is O(n6 log4 n). If the node weights are
identical the total time reduces to O(n5 log4 n).
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