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Abstract

In this paper we consider a nonlinear system of differential equations arising in
tumour invasion which has been proposed in [1]. The system consists of two PDEs
describing the evolution of tumour cells and proteases and an ODE which models the
concentration of the extracellular matrix. We prove local existence and uniqueness
of solutions in the class of Hölder spaces. The proof of local existence is done by
Schauder’s fixed point theorem and for the uniqueness we use an idea from [2].
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1 Introduction

The most dangerous feature of malignant tumour and the main cause of cancer deceases
is the ability to metastasize. Metastasis is the formation of a secondary tumour foci at a
site discontinuous from the primary tumour. Two main processes have to be taken into
account during the metastasis.
The first one is called angiogenesis. Tumour cells response to hypoxia by secreting tumour
angiogenic factors (TAFs) which induce to the endothelial cells in a nearby vessel to pro-
liferate and migrate chemotactically towards the tumour.
The other important process occurring during metastasis is the invasion. Tumour cells
on contact with extracellular matrix (ECM) induce the production of some proteolytic
enzymes, such as metallo-proteases (MMPs) and serine-proteases. MMPs digest the ECM
and this enables the cancer cells to migrate through the tissue.

In order to understand better the mechanisms leading to angiogenesis and invasion,
several models were proposed. For the area related to angiogenesis we just refer to the
recent review paper [3] and the references therein. Concerning tumour invasion modelling
we briefly recapitulate some papers.
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In [4] the authors proposed a model of invasion. In this model the diffusion of the
tumour cells was neglected. They provided a travelling wave analysis for this model, find-
ing a singular barrier which just can be crossed by the slowest member of the family of
travelling waves connecting the steady-states. Later, in [5] the same system is studied but,
by contrast with [4] where just regular travelling waves were founded, the authors showed
travelling shock waves which jump over the singular barrier. In [6] basing on experimental
data, the authors validate a model of invasion for the fibrosarcoma cell line HT1080. They
showed that collagen concentration influences the proliferation of HT1080 in a biphasic
manner. Recently, in [7] the author examined the role of the urokinase plasminogen sys-
tem in cancer invasion, showing how this system influences the migratory properties of
the cancer cells.

In this paper we will consider a model of tissue invasion that has been proposed by
Chaplain and Anderson in the recent review book about cancer modelling [1]. They con-
sidered the following variables and facts.
Cancer Cells, n(x,t): The movement of cancer cells is supposed to be by a random motility
and haptotaxis i.e. up to the spatial gradients in the extracellular matrix.
Extracellular Matrix, f(x,t): The matrix is just degraded by the proteases produced by
the tumour.
Proteases, m(x,t): Factors influencing the protease concentration are assumed to be dif-
fusion, production and natural decay.
As a result, the model reads as

∂n

∂t
=

random motility︷ ︸︸ ︷
dn∆n

haptotaxis︷ ︸︸ ︷
−γ∇ · (n∇f) in Ω× (0, T ),

∂f

∂t
=

degradation︷ ︸︸ ︷
−ηmf in Ω× (0, T ),

∂m

∂t
=

random motility︷ ︸︸ ︷
dm∆m

decay︷ ︸︸ ︷
−αm

production︷︸︸︷
+βn in Ω× (0, T ),

(1.1)

where dn, dm, α, β, γ and η are positive constants. Finally, denoting by ν the unit exterior
vector to ∂Ω, the model is supplemented with no-flux boundary conditions on ∂Ω





∂n

∂ν
− n

∂f

∂ν
= 0 on ∂Ω× (0, T ),

∂m

∂ν
= 0 on ∂Ω× (0, T ),

(1.2)

and the initial conditions 



n(x, 0) = n0(x) in Ω,

f(x, 0) = f0(x) in Ω,

m(x, 0) = m0(x) in Ω.

(1.3)
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In what follows and in order to simplify the formulas we will suppose dn = dm = η = α =
β = γ = 1. Let us point at that our calculations can be repeated without any problem for
general positive constants.
This paper is organized as follows. In section 2 we define the space in which is our solution.
In section 3 we prove the existence and uniqueness of local-in-time solution in such space.

2 Notations

In this paper Ω ⊂ IRN is an open, connected set with regular boundary. QT = Ω× (0, T )
is a cylinder of IRN+1. We consider the Banach space of Hölder continuous functions
Hk+α,(k+α)/2(QT ) where k ≥ 0 is an integer and α ∈ (0, 1). The associate norm to this
space is given by

|u|k+α
QT

:= 〈u〉k+α
x,QT

+ 〈u〉(k+α)/2
t,QT

+
k∑

j=0

〈u〉jQT
,

where
〈u〉jQT

:=
∑

2r+s=k

max
QT

|Dr
t D

s
xu|QT

,

〈u〉k+α
x,QT

:=
∑

2r+s=k

〈Dr
t D

s
xu〉αx,QT

,

〈u〉k+α
t,QT

:=
∑

0<α+k−2r−s<2

〈Dr
t D

s
su〉(α+k−2r−s)/2

t,QT
,

and
〈u〉αx,QT

:= sup
(x,t),(x′,t)∈QT
|x−x′|≤ρ0

|u(x, t)− u(x′, t)|
|x− x′|α , 0 < α < 1,

〈u〉t,QT
:= sup

(x,t),(x,t′)∈QT
|t−t′|≤ρ0

|u(x, t)− u(x, t′)|
|t− t′|α , 0 < α < 1.

The norm in the space Lp(Ω), 1 ≤ p ≤ ∞ is denoted by ‖ · ‖p. The norm associated to
the classical Sobolev spaces W 1,p(Ω) will be denoted by ‖ · ‖1,p. Finally, the norm in the
space L∞(QT ) is denoted by ‖ · ‖∞,QT

.

3 Local existence and uniqueness of regular solutions

First of all we define a new variable q = e−fn, then our system is transformed into




∂q
∂t −∆q −∇q · ∇f = −qft = qmf in Ω× (0, T ),

∂f
∂t = −mf in Ω× (0, T ),

∂m
∂t = ∆m−m + qef in Ω× (0, T ),

(3.1)
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with a new boundary 



∂q
∂ν = 0 on ∂Ω× (0, T ),

∂m
∂ν = 0 on ∂Ω× (0, T ).

(3.2)

Actually, this change of variable has been proposed in another papers before as [8] and [9].
The main advantage of this change is that the first equation of the system is in divergence
form.
In our proof, based on a fixed point argument, the following lemma will be required.

Lemma 3.1. Let N ≤ 3. Given f such that f ∈ Hα,α/2(QT ), fx ∈ Hα,α/2(QT ) then the
problem 




∂q
∂t −∆q −∇q · ∇f = qmf in Ω× (0, T ),

∂m
∂t = ∆m−m + efq in Ω× (0, T ),

(3.3)

with Neumann boundary conditions and regular initial data admits a unique regular solu-
tion (m, q) ∈ (H2+α,1+α/2(QT ))2. Moreover, if q0, m0 ≥ 0 then q(x, t),m(x, t) ≥ 0 for all
(x, t) ∈ QT .

Proof. Consider the space of functions

X = C([0, T ]; L2(Ω)).

We define the operator F : X → X such that F (q) = m where m is the unique solution
to the linear equation





∂m
∂t = ∆m−m + efq in Ω× 0, T ),

∂m
∂ν = 0 on ∂Ω× (0, T ),

m(x, 0) = m0 in Ω.

(3.4)

On multiplying (3.4) by m and integrating in QT we obtain

∂

2∂t

∫ T

0
‖m‖2

2 +
∫ T

0
‖∇m‖2

2 +
∫ T

0
‖m‖2

2 =
∫ T

0

∫

Ω
efqm (3.5)

Applying Hölder’s inequality and Young’s inequality to the right-hand-side of (3.5)

∂

2∂t

∫ T

0
‖m‖2

2+
∫ T

0
‖∇m‖2

2+
(

1− 1
2α
‖ef‖∞,QT

)∫ T

0
‖m‖2

2 ≤
α

2
‖ef‖∞,QT

∫ T

0
‖q‖2

2. (3.6)

Choosing α > 0 large enough in (3.6) and integrating on the time interval [0, T ] we get

‖m(T )‖2
2 ≤ ‖m0‖2

2 + Tα‖ef‖∞,QT

∫ T

0
‖q‖2

2. (3.7)
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Now, we define the linear operator G : X → X such that for each z G(z) is the unique
solution to 




∂q
∂t −∆q −∇q · ∇f = qzf in Ω× 0, T ),

∂q
∂ν = 0 on ∂Ω× (0, T ),

q(x, 0) = q0 in Ω.

(3.8)

It is easy to see that q ∈ X is a fixed point of H = G ◦ F then is a weak solution to (3.3).
Taking z = F (q) = m and multiplying (3.8) by q we obtain, after integrating in space.

d

2dt
‖q‖2

2 + ‖∇q‖2
2 =

∫

Ω
q2mf +

∫

Ω
q∇q · ∇f. (3.9)

From the Sobolev inequality ‖q‖3 ≤ C‖q‖1/2
1,2 ‖q‖1/2

2 , (N ≤ 3), Hölder’s inequality and
Young’s inequality we infer

d

2dt
‖q‖2

2 + ‖∇q‖2
2 ≤ ‖f‖∞,QT

‖q‖3‖q‖6‖m‖2 + ‖∇f‖∞,QT

(
α

2
‖q‖2

2 +
1
2α
‖∇q‖2

2

)
≤

≤ C‖f‖∞,QT
‖q‖3/2

1,2 ‖q‖1/2
2 ‖m‖2 + ‖∇f‖∞,QT

(
α

2
‖q‖2

2 +
1
2α
‖∇q‖2

2

)
≤

≤ ‖f‖∞,QT
(α′‖q‖2

1,2 + Cα′‖q‖2
2‖m‖4

2) + ‖∇f‖∞,QT

(
α

2
‖q‖2

2 +
1
2α
‖∇q‖2

2

)
.

Choosing α > 0 large enough and α′ > 0 small enough then

d

dt
‖q‖2

2 ≤ (2α′‖f‖∞,QT
+ 2Cα′‖m‖4

2 + α‖∇f‖∞,QT
)‖q‖2

2 := β(t)‖q‖2
2.

If we choose q such that ‖q‖C([0,T ];L2(Ω)) < ‖q0‖2 + 1 = R then, thanks to the estimate
(3.7) β(t) ≤ M ∀t ∈ (0, T ), for that

‖q(t)‖2
2 ≤ ‖q0‖2

2exp(tM), ∀t ∈ (0, T ).

Clearly, choosing T small enough follows that ‖H(q) = q‖C([0,T ];L2(Ω)) ∈ BR. For that,
H : BR → BR. Now, we are going to prove that H is a contractive operator. Given
q1, q2 ∈ BR, then F (q1)− F (q2) = m1 −m2 satisfies the equation





zt −∆z + z = ef (q1 − q2) in Ω× (0, T ),

∂z
∂ν = 0 on ∂Ω× (0, T ),

z(x, 0) = 0 in Ω.

(3.10)

On multiplying (3.10) by m1 −m2 and integrating in Ω we obtain,

∂

∂t
‖m1 −m2‖2

2 ≤ C‖q1 − q2‖2
2,
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for that,

‖m1 −m2‖C([0,T ];L2(Ω)) ≤ C
√

T‖q1 − q2‖C([0,T ];L2(Ω)). (3.11)

We have that H(q1)−H(q2) = q1 − q2 solves the equation





zt −∆z −∇z · ∇f = fm1z + fq2(m1 −m2) in Ω× (0, T ),

∂z
∂ν = 0 on ∂Ω× (0, T ),

z(x, 0) = 0 in Ω.

(3.12)

Multiplying (3.12) by q1 − q2 and integrating in Ω gives us

∂

2∂t
‖q1 − q2‖2

2 + ‖∇(q1 − q2)‖2
2 =

=
∫

Ω
(q1 − q2)∇f · ∇(q1 − q2) +

∫

Ω
fm1(q1 − q2)2 +

∫

Ω
fq2(m1 −m2)(q1 − q2) ≤

≤ ‖∇f‖∞,QT
(ε‖∇(q1 − q2)‖2

2 + Cε‖q1 − q2‖2
2)+

+‖f‖∞,QT
(α′‖∇(q1 − q2)‖2

2 + (α′ + Cα′‖m1‖4
2)‖q1 − q2‖2

2)+

‖f‖∞,QT
(ε′(‖q1 − q2‖2

2 + ‖∇(q1 − q2)‖2
2) + Cε′‖q2‖2

3‖m1 −m2‖2
2).

Choosing α′, ε, ε′ positive and small enough we infer

∂

∂t
‖q1 − q2‖2

2 ≤ α(t)‖m1 −m2‖2
2 + β‖q1 − q2‖2

2,

where β is a positive constant and α(t) = Cε′‖f‖∞,QT
‖q2‖2

3. Then,

∂

∂t

(
e−βt‖q1 − q2‖2

2

)
≤ α(t)e−βt‖m1 −m2‖2

2. (3.13)

From the Sobolev’s inequality ‖q2‖2
3 ≤ C‖q2‖1/2

1,2 ‖q2‖1/2
2 and taking in account that q2 ∈

C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)) we get

∫ T

0
α(s)ds ≤ M. (3.14)

Finally thanks to (3.14) and (3.11) we obtain

‖H(q1)−H(q2)‖C([0,T ];L2(Ω)) ≤ C
√

MeβT
√

T‖q1 − q2‖C([0,T ];L2(Ω)).

Choosing T ≤ T small enough, H : BR → BR is contractive and from Banach’s fixed point
theorem we infer that problem (3.3) have a unique solution in the space

C([0, T ]; L2(Ω)) ∩ L2(0, T ; H1(Ω)).
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Since N ≤ 3 then the function q ∈ L2(0, T ; L6(Ω)). We begin an iterative argument that
will provided us regularization of our solution. Let p = 6, multiplying by pmp−1 the second
equation of (3.3) and integrating by parts, gives us

∂

∂t
‖m‖p

p +
4(p− 1)

p
‖∇(mp/2)‖2

2 + p‖m‖p
p = p

∫

Ω
efqmp−1 ≤

≤ p‖ef‖∞,QT
‖q‖p‖mp/2‖2‖m‖

p−2
2

p ≤ p‖ef‖∞,QT
(Cα‖q‖2

p‖m‖p−2
p + α‖mp/2‖2

2).

Choosing α > 0 small enough the following estimate follows

∂

∂t
‖m‖p

p ≤ pM‖q‖2
p‖m‖p−2

p .

From this differential inequality we infer

‖m(t)‖2
p ≤ ‖m0‖2

p +
∫ t

0

p2

2
M‖q(s)‖2

pds, (3.15)

for all t ∈ [0, T ]. Since q ∈ L2(0, T ; Lp(Ω)) then the integral term on the right-hand-side
of (3.15) is finite. Therefore m ∈ L∞(0, T ;L6(Ω)).
On multiplying the first equation (3.3) by pqp−1, then after integrating by parts, we obtain

∂

∂t
‖q‖p

p +
4(p− 1)

p
‖∇(qp/2)‖2

2 = p

∫

Ω
qp−1∇u · ∇f + p

∫

Ω
qpmf. (3.16)

Now, we are going to find the proper bounds of the two integrals on the right-hand-side.

p

∫

Ω
qp−1∇q · ∇f ≤ ‖∇f‖∞,QT

(Cε‖qp/2‖2
2 + εp2‖q p

2
−1∇q‖2

2)

= ‖∇f‖∞,QT
(Cε‖q‖p

p + 4ε‖∇(qp/2)‖2
2).

(3.17)

Taking in account that m ∈ L∞(0, T ; L6(Ω)) we get for p = 6 that

p

∫

Ω
qpmf ≤ p‖f‖∞,QT

‖qp/2‖2‖qp/2‖3‖m‖6

≤ p‖f‖∞,QT
‖qp/2‖3/2

2 ‖qp/2‖1/2
1,2 ‖m‖6

≤ p‖f‖∞,QT
‖qp/2‖2‖qp/2‖1,2‖m‖6

≤ ‖f‖∞,QT
(ε′‖qp/2‖2

1,2 + p2Cε′‖qp/2‖2
2‖m‖2

6)

≤ ‖f‖∞,QT
(ε′‖qp/2‖2

1,2 + p2MCε′‖qp/2‖2
2).

(3.18)

Choosing ε, ε′ small enough and putting the estimates (3.17), (3.18) in (3.16) we obtain

∂

∂t
‖q‖p

p + ‖∇(qp/2)‖2
2 ≤ Cp2‖q‖p

p.

Easily after integrating on [s, t] ⊂ [0, T ], implies

‖q(t)‖p
p +

∫ t

s
‖∇(qp/2)‖2

2 ≤ exp(Cp2(t− s))‖q(s)‖p
p. (3.19)
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From (3.19) and following the same argument as in [10, p. 1197] we can prove that
q ∈ L∞(QT ). However, for completeness we present it here.
Consider any t ∈ (0, T ]. For simplicity t = T , although this argument remains true for
every t ∈ (0, T ]. Take t0 ∈ (T − 1, T ), σ = 3. Define pm = 6σm and δm = (T − t0)σ−2m−1.
Observe that p2

mδm = c. Now, consider the intervals Im = [T − σδm, T − δm]. We define
the sequence Nm = supτ∈[tm,T ] ‖q(τ)‖pm where tm ∈ Im will be determined later. If we
apply (3.19) with s = tm+1 and τ ∈ [tm+1, T ] then

Nm+1 = sup
τ∈[tm+1,T ]

‖q(τ)‖pm+1 ≤ (exp(Cp2
m+1σδm+1))1/pm+1‖q(tm+1)‖pm+1 (3.20)

We have to determine ‖q(tm+1)‖pm+1 . Thanks to the Sobolev’s embedding,

‖q(tm+1)‖pm
pm+1

= ‖qpm/2(tm+1)‖2
6 ≤ M(‖q(tm+1)‖pm

pm
+ ‖∇(qpm/2(tm+1))‖2

2) (3.21)

We are going to determine ‖∇(qpm/2(tm+1))‖2
2. Applying (3.19) for s = tm and t =

T − δm+1 (so Im+1 ⊂ [s, t]) we get

inf
τ∈Im+1

‖∇(qpm/2(τ))‖2
2 ≤ |Im+1|−1exp(Cp2

m(T − δm+1 − tm))‖q(tm)‖pm
pm

.

Choosing tm+1 = τ we obtain the estimate we were looking for. Since |Im+1| < 1 then
with a similar argument we can estimate ‖q(tm+1)‖pm

pm . Putting this estimate in (3.21) we
get

‖q(tm+1)‖pm
pm+1

≤ 2σ2(σ3 − 1)−1δ−1
m exp(Cp2

m(1− σ−2)δm)‖q(tm)‖pm
pm

≤ Cδ−1
m Npm

m

(3.22)

Thanks to (3.22) and taking in account that p2
mδm = C1, we obtain from (3.20)

Nm+1 ≤ (exp(M)1/σCδ−1
m )1/pmNm

≤
(

m∏

i=0

(C2σ
2i)1/pi

)
N0 = zmN0

Clearly zm is finite for all m because ln zm =
∑m

i=0
1

6σi (lnC2+2i lnσ) where σ > 1. Finally,

‖q(T )‖∞ ≤ sup
m≥1

Nm ≤ C3N0 ≤ C3 sup
τ∈[0,T ]

‖q(τ)‖6 < ∞.

Repeating the same argument for m we get the same regularity. Now, the regularity can
be improved thanks to [11, Chapter 3, Theorem 10.1] and [11, Chapter 3, Theorem 12.1] ,
the first one gives us q, m ∈ Hα,α/2(QT ) and then we can apply the second one obtaining
q, m ∈ H2+α,1+α/2(QT ). Since fm is bounded in L∞(QT ) then, from maximum principle
for parabolic equations we get the positivity of q. Now, from the positivity of q we can
infer, thanks to the maximum principle, the positivity of m.

Theorem 3.2. If the initial condition (1.3) are regular then the problem given by (1.1)
with the boundary condition (1.2) and initial condition (1.3) respectively, has a unique
local solution in the space (H2+α,1+α/2(QT ))3.
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Proof. We define the following ball in H = {f : f ∈ Hα,α/2(QT ) ∧ fx ∈ Hα,α/2(QT )}

Bδ(f0) = {u : |u− f0|αQT
< δ ∧ |(u− f0)x|αQT

< δ}.

Now, we define the operator K : Bδ(f0) → H. K(f) is the unique solution to the ordinary
differential equation

∂f

∂t
= −mf, f(x, 0) = f0(x),

where m is given as the solution to the second equation in (3.3) with f = f . For simplify
the calculus, we consider f0 = 1, the same calculus can be done with a general f0. We
have,

f(x, t) = 1 +
∫ t

0
−m(x, s)f(x, s)ds = 1 +

∫ t

0
−m(x, s)e−

∫ s
0 m(x,θ)dθ

By definition |f − 1|αQT
= 〈f − 1〉αx,QT

+ 〈f − 1〉α/2
t,QT

+ maxQT
|f − 1|.

〈f − 1〉αx,QT
:= sup

(x,t),(x′,t)∈QT
|x−x′|≤ρ0

| ∫ t
0 −m(x, s)e−

∫ s
0 m(x,θ)dθ +

∫ t
0 −m(x′, s)e−

∫ s
0 m(x′,θ)dθ|

|x− x′|α ≤

≤ sup
(x,t),(x′,t)∈QT
|x−x′|≤ρ0

‖m‖∞,QT

(∫ t
0 ds

∫ s
0 |m(x′, θ)−m(x, θ)|dθ

)
+

∫ t
0 |m(x, s)−m(x′, s)|ds

|x− x′|α ≤

≤ T 2‖m‖∞,QT
〈m〉αx,QT

+ T 〈m〉αx,QT

〈f − 1〉α/2
t,QT

:= sup
(x,t),(x,t′)∈QT
|t−t′|≤ρ0

| ∫ t
0 −m(x, s)e−

∫ s
0 m(x,θ)dθ +

∫ t′
0 −m(x, s)e−

∫ s
0 m(x,θ)dθ|

|t− t′|α/2
≤

≤ sup
(x,t),(x′,t)∈QT
|t−t′|≤ρ0

| ∫ t′
t m(x, s)e−

∫ s
0 m(x,θ)dθ|

|t− t′|α/2
≤ |t− t′|1−α/2‖m‖∞,QT

max
QT

|f − 1| ≤ T‖m‖∞,QT

Also by definition |(f − 1)x|αQT
= 〈fx〉αx,QT

+ 〈fx〉α/2
t,QT

+ maxQT
|fx|

(f − 1)x =
∫ t

0
e−

∫ s
0 m(x,θ)dθ

(
−mx(x, s) + m(x, s)

∫ s

0
mx(x, θ)dθ

)

Let denote ax = e−
∫ s
0 m(x,θ)dθ, bx = m(x, s), cx =

∫ s
0 mx(x, θ)dθ and dx = mx(x, s) then

〈(f − 1)x〉αx,QT
:= sup

(x,t),(x′,t)∈QT
|x−x′|≤ρ0

| ∫ t
0 ax(−dx + bxcx)− ax′(−dx′ + bx′cx′)ds|

|x− x′|α ≤
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≤ sup
(x,t),(x′,t)∈QT
|x−x′|≤ρ0

| ∫ t
0 ax(dx′ − dx) + dx′(ax′ − ax) + axbxcx − ax′bx′cx′ |

|x− x′|α ≤

≤ T max
QT

〈mx〉αx,QT
+ ‖mx‖∞,QT

T 2〈m〉αx,QT
+

+ sup
(x,t),(x′,t)∈QT
|x−x′|≤ρ0

| ∫ t
0 (ax − ax′)bxcx + ax′(bx − bx′)cx + ax′bx′(cx − cx′)|

|x− x′|α ≤

≤ T 〈mx〉αx,QT
+ ‖mx‖∞,QT

T 2〈m〉αx,QT
+ T 3〈m〉αx,QT

‖m‖∞,QT
‖mx‖∞,QT

+

+T 2‖mx‖∞,QT
〈m〉αx,QT

+ T 2‖m‖∞,QT
〈mx〉αx,QT

After some calculations, we obtain

〈(f − 1)x〉α/2
t,QT

≤ |t− t′|1−α/2(‖mx‖∞,QT
+ T‖m‖∞,QT

‖mx‖∞,QT
).

max
QT

|f − 1| ≤ T (‖mx‖∞,QT
+ ‖m‖∞,QT

‖mx‖∞,QT
).

Given f ∈ Bδ(f0) from Lemma 3.1 we infer the existence of a unique
m ∈ H2+α,1+α/2(QT ). Moreover, thanks to the estimates we have of K(f) in H, we
can clearly choose T small enough such that K(f) ∈ Bδ(f0). The operator K is compact,
indeed K(f) ∈ H2+α,1+α/2(QT ) which is compactly embedded in H. Therefore Schauder’s
fixed point theorem gives us the existence of f , solution of our system. Then from f we
can obtain recursively m and q. For the uniqueness we will use an idea from [2]. Let
(n1, f1,m1), (n2, f2,m2) two solutions of the system and consider the function

g(n1, n2) = n1 ln n1 + n2 ln n2 − (n1 + n2) ln
(

n1 + n2

2

)

Since g(n1(0), n2(0)) = g(n0, n0) = 0 then, after integrating in Ω× (0, t), and following [2,
p. 89] we have ∫

Ω
g(n1(t), n2(t)) =

= −
∫ t

0

∫

Ω

n1n2

n1 + n2

∣∣∣∣∇ ln
(

n1

n2

)∣∣∣∣
2

+
∫ t

0

∫

Ω

n1n2

n1 + n2
∇ ln

(
n1

n2

)
· (∇f1 −∇f2)

≤ −1
2

∫ t

0

∫

Ω

n1n2

n1 + n2

∣∣∣∣∇ ln
(

n1

n2

)∣∣∣∣
2

+
1
8
‖n1 + n2‖∞,QT

∫ t

0

∫

Ω
|∇(f1 − f2)|2

Now, we are going to find a bound for the second integral on the right-hand-side. We will
suppose, only for simplify the notation, that f0 ≡ 1. We know that f1 = e−

∫ t
0 m1 and

f2 = e−
∫ t
0 m2 . We have that ∫ t

0
‖∇f1 −∇f2‖2

2 =

=
∫ t

0

∫

Ω

{
e−

∫ s
0 m2

(∫ s

0
∇(m2 −m1)

)
−

(∫ s

0
∇m1

) (
e−

∫ s
0 m1 − e−

∫ s
0 m2

)}2

≤
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As (a + b)2 ≤ 2(a2 + b2) and ∇m1 ∈ L∞(QT ) then

≤ C

{∫ t

0

∫

Ω

(∫ s

0
∇(m2 −m1)

)2

−
(∫ s

0
(m2 −m1)

)2
}

Applying Jensen’s Inequality and Fubini’s Theorem we obtain

≤ C

{∫ t

0
s

(∫ s

0
‖∇(m2 −m1)‖2

2 +
∫ s

0
‖m1 −m2‖2

2

)}
.

Consider the functions ϕ(s) =
∫ s
0 ‖∇(m2 −m1)‖2

2 and ψ(s) =
∫ s
0 ‖m2 −m1‖2

2. Since, are
nondecreasing functions, then

∫ t

0
(ϕ(s) + ψ(s))ds ≤

∫ t

0
(ϕ(t) + ψ(t))ds = t(ϕ(t) + ψ(t))

For that,
∫ t

0
‖∇f1 −∇f2‖2

2 ≤ C

(∫ t

0
‖∇(m2 −m1)‖2

2 +
∫ t

0
‖m2 −m1‖2

2

)

Multiplying the equation that satisfies m1 −m2 by (m1 −m2)t easily can be proved

‖∇(m2 −m1)(t)‖2
2 + ‖(m2 −m1)(t)‖2

2 ≤ C‖n1 + n2‖∞,QT

∫ t

0
‖√n1 −

√
n2‖2

2

Putting all the estimates together we have
∫

Ω
g(n1(t), n2(t)) + ‖∇(m2 −m1)(t)‖2

2 + ‖(m2 −m1)(t)‖2
2 ≤

≤ C‖n1 + n2‖∞,QT

{∫ t

0
‖√n1 −

√
n2‖2

2 +
∫ t

0
‖∇(m2 −m1)‖2

2 +
∫ t

0
‖m2 −m1‖2

2

}
.

Finally the uniqueness follows combining [2, Lemma 4.6]

g(n1, n2) ≥ (
√

n1 −
√

n2)
2

and Gronwall’s Lemma.
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