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SEMIMARTINGALE ATTRACTORS FOR ALLEN-CAHN SPDES

DRIVEN BY SPACE-TIME WHITE NOISE I: EXISTENCE AND

FINITE DIMENSIONAL ASYMPTOTIC BEHAVIOUR

H. ALLOUBA AND J.A. LANGA

Abstract. We delve deeper into the study of semimartingale attractors that
we recently introduced in Allouba and Langa [4]. In this article we focus on
second order SPDEs of the Allen-Cahn type. After proving existence, unique-
ness, and detailed regularity results for our SPDEs and a corresponding ran-
dom PDE of Allen-Cahn type, we prove the existence of semimartingale global
attractors for these equations. We also give some results on the finite dimen-
sional asymptotic behavior of the solutions. In particular, we show the finite
fractal dimension of this random attractor and give a result on determining
modes, both in the forward and the pullback sense.

1. Introduction and organization of the article

The analysis of qualitative properties of ordinary and partial differential equa-
tions is the key point in dynamical system theory. When a phenomenon from
Physics, Chemistry, Biology, Economics can be described by a system of differen-
tial equations (in which the existence of global solutions can be assured), one of
the most interesting problems is to describe the asymptotic behavior of the system
when time grows to infinity. The study of the asymptotic dynamics of the system
gives us relevant information about “the future” of the phenomenon described in
the model. In this context, the concept of global attractor has become a very useful
tool to describe the long-time behavior of many important differential equations
(see, among others, Ladyzhenskaya [25], Babin and Vishik [9], Hale [24], Temam
[32], Robinson [30]). A new difficulty appears when a random term is added to
the deterministic equation, a white noise for instance, and the resulting stochastic
partial differential equation must be treated in a different way. Firstly, the equation
becomes non-autonomous, which makes necessary the introduction of a two-sided
time dependent process instead of a semigroup. Moreover, the strong dependence
on the random term adds another difficulty. The rapidly growing theory of ran-
dom dynamical systems (Arnold [8]) has become the appropriate tool for the study
of many important random and stochastic equations. In this framework, Crauel
and Flandoli [13] (see also Schmalfuss [31]) introduced the concept of a random
attractor as a proper generalization of the corresponding deterministic global at-
tractor. The theory of random attractors is turning out to be very helpful in the
understanding of the long-time dynamics of some stochastic ordinary and partial
differential equations. On the other hand, one of the most important results in the
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2 H. ALLOUBA AND J.A. LANGA

theory of global attractors for deterministic PDEs claims that the fractal, and so
the Hausdorff, dimension of this set is finite (Constantin and Foias [11], Contantin
et al. [12], Ladyzhenskaya [26]; see also the books of Temam [32] and Robinson
[30]). That is, although the trajectories depend on an infinite number of degrees of
freedom, the finite dimensionality of the attractors leads to the idea that the asymp-
totic behavior can be described by a finite number of time-dependent coordinates.
This makes, for example, really interesting the study of the dynamics on the global
attractor. There are also some results which generalize the finite-dimensionality of
attractors to the stochastic case (Debussche [18], [19]).

In this paper we show how all the theory of finite dimensional random attractors
can be generalized to the situation in which the partial differential equation is
affected by a space-time white noise, and we characterize this randomness in the
attractor as one coming from semimartingale-type solutions (see Definition 2.1).
Some of these results were recently sketched in Allouba and Langa [4]. Here, we
prove in details the existence of a finite dimensional random attractor associated
to the random dynamical system corresponding to a space-time white noise driven
stochastic PDE of Allen-Cahn type; and we give a determining modes result for
such a SPDE, both in the forward and pullback sense. In the course of our proof,
we also give detailed proofs and discussions of existence, uniqueness, and regularity
(both weak and strong) results for our SPDE as well as for an associated Allen-Cahn
type random PDE. The lack of regularity caused by our driving space-time white
noise causes several difficulties in the SPDEs we study. These difficulties are not
present in the traditional case of noises that are only white in time (see Remark 3.2
and Remark 3.3 below).

Before spelling out the organization of this paper, we wanted to highlight two
key features of this work:

i) Our solutions are weak semimartingales (see Definition 2.1 and Section
3.4 below), and this characterizes the randomness in our attractors as one
coming from some type of semimartingale solutions (not simply random
processes); thus we call our random attractors semimartingale attractors.
This characterization is crucial and will lead to several new stochastic ana-
lytic aspects of these random attractors, like the notion of semimartingale
decomposition of semimartingale attractors (e.g., [5]).

ii) As in Walsh [33], we regard space-time white noise as a continuous orthogo-
nal martingale measure, which we think will lead to a richer structure of the
noise, and so to new aspects of the SPDE under consideration, even com-
pared to cylindrical noise. One such aspect is the notion of semimartingale
measure attractors (to which we devote a separate paper), which is built
upon the notion of semimartingale measure introduced in Allouba [3].

The paper is organized as follows: in the next Section we write the general the-
ory of random attractors and give the definition of weak semimartingales; Section 3
develops the existence, uniqueness, and regularity (both weak and strong) of solu-
tions for a stochastic PDE of Allen-Cahn type with space-time white noise and for
a corresponding random PDE; we follow by proving the existence of a semimartin-
gale attractor associated to these equations. Finally, we show the dependence of
the asymptotic behavior of the model on a finite number of degrees of freedom, by
proving, with probability one, the finite fractal dimensionality of the semimartin-
gale attractor and some results on determining modes, both in the forward and the
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pullback sense. Some conclusions are then given, placing the results here in the
context of our ongoing research program. We also include some technical results
in a final Appendix. Throughout this article we will denote by K a constant that
may change its value from line to line.

2. Semimartigale global attractors

2.1. Definitions. Proceeding toward a precise statement of our results, let us recall
some definitions associated with random attractors. Let (Ω,F ,P) be a probability
space and {θt : Ω → Ω, t ∈ R} a family of measure preserving transformations
such that (t, ω) 7→ θtω is measurable, θ0 = id, θt+s = θtθs, for all s, t ∈ R. The
flow θt together with the probability space (Ω,F ,P, (θt)t∈R) is called a measurable
dynamical system. Furthermore, we suppose that the shift θt is ergodic.

A random dynamical system (RDS) (Arnold [8]) on a complete metric (or Ba-
nach) space (B, d) with Borel σ-algebra B, over θ on (Ω,F ,P) is a measurable map
R+ × Ω× B ∋ (t, ω, ξ) 7→ Φ(t, ω)ξ ∈ B such that P–a.s.

i) Φ(0, ω) = id (on B)
ii) Φ(t+ s, ω) = Φ(t, θsω) ◦ Φ(s, ω), ∀ t, s ∈ R+ (cocycle property).

A RDS is continuous (differentiable) if Φ(t, ω) : B → B is continuous (differentiable).
A random set K(ω) ⊂ B is said to absorb the set D ⊂ B if there exists a random
time tD(ω) such that

t ≥ tD(ω) → Φ(t, θ−tω)D ⊂ K(ω),P–a.s.

K(ω) is forward invariant if Φ(t, ω)K(ω) ⊆ K(θtω), for all t ∈ R+,P–a.s. Now, let
dist(·, ·) denote the Hausdorff semidistance

dist(B1, B2) = sup
ξ1∈B1

inf
ξ2∈B2

d(ξ1, ξ2), B1, B2 ⊂ B.

A random set A(ω) ⊂ B is said to be a random attractor associated with the RDS
Φ if P–a.s.

i) A(ω) is compact and, for all ξ ∈ B, the map ξ 7→ dist(ξ,A(ω)) is measurable,
ii) Φ(t, ω)A(ω) = A(θtω), ∀t ≥ 0 (invariance), and
iii) for allD ⊂ B bounded (and nonrandom) limt→∞ dist(Φ(t, θ−tω)D,A(ω)) =

0.

Remark 2.1. Note that Φ(t, θ−tω)ξ can be interpreted as the position at t = 0 of
the trajectory which was in ξ at time −t. Thus, the attraction property holds from
t = −∞.

We have the following theorem about existence of random attractors due to Crauel
([15], Theorem 3.3):

Theorem 2.1. There exists a global random attractor A(ω) iff there exists a ran-
dom compact set K(ω) attracting every bounded nonrandom set D ⊂ B.

Moreover, Crauel [15] proved that random attractors are unique and, under the
ergodicity assumption on θt, there exists a deterministic compact set K ⊂ B such
that P− a.s. the random attractor is the omega-limit set of K, that is,

A(ω) =
⋂

n≥0

⋃

t≥n

Φ(t, θ−tω)K.

Our SPDEs solutions are weak semimartingale, which we now define.
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Definition 2.1. We call a random field U(t, x, ω), x ∈ G ⊂ Rd, a weak semimartin-
gale sheet (or simply a weak semimartingale) if there exists a p ≥ 0 such that the
L2 scalar product (U(t), ϕ) is a semimartingale in time for each fixed ϕ ∈ Cp

c (G).
If A is a random attractor corresponding to a SPDE whose solutions are weak
semimartingales, then A is called a semimartingale attractor.

2.2. Finite dimensional asymptotic behavior. Here we obtain some results on
the finite dimensional asymptotic behavior of trajectories associated to a random
dynamical system, which we will apply below to the solutions for Allen-Cahn type
SPDEs in (3).

2.2.1. The random squeezing property. Suppose the existence of a random compact
absorbing set K(ω) such that, for some random variable r(ω), we have that P-a.s.
K(ω) ⊂ B(0, r(ω)). Moreover, suppose that the r(ω) is a tempered random variable,
that is, P-a.s.

lim
t→+∞

r(θtω)

eǫt
= 0,

for all ǫ > 0.
Let P : B → PB be a finite-dimensional orthogonal projector and let Q = I−P

be its counterpart. In what follows, the main hypothesis (H) is the following:
Suppose there exist 0 < δ < 1 and a random variable c(ω) with finite expectation,

(1) EP(c(ω)) < ln(1/δ),

such that, for τ ∈ R

(2) |Q(Φ(1, θτω)u− Φ(1, θτω)v)| ≤ δ exp

(
∫ τ+1

τ

c(θsω)ds

)

|u− v|,

for all u, v ∈ K(θτω), where | · | denotes the norm in B.
This property is called the random squeezing property (RSP) in Flandoli and

Langa [21], and it was first used in Debussche [18] to prove that the random at-
tractor associated to a RDS has finite Hausdorff dimension P-a.s.

Proposition 2.1. ([18], [21])
Suppose that (1), (2) hold. Then, P-a.s.

df (A(ω)) < +∞,

where

df (K)
.
= lim sup

ǫ→0

logNǫ(K)

log(1/ǫ)

denotes the fractal dimension of a compact set K ⊂ B, where Nǫ(K) is the minimum
number of balls of radius ǫ necessary to cover K.

2.2.2. Forward and Pullback determining modes. The following theorem shows the
dependence of the asymptotic behavior, starting with two initial data, on a finite
number of degrees of freedom (Langa [28], Theorem 2, and Flandoli and Langa,
Theorem 2):

Theorem 2.2. Suppose (1) and (2) hold. Then,
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a) (Forward determining modes)
given u0, v0 ∈ B, suppose that for some α ≥ 0, we have, P-a.s., that

lim
t→+∞

|P(Φ(t, ω)u0 − Φ(t, ω)v0)| ≤ α.

Then,

lim
t→+∞

|Φ(t, ω)u0 − Φ(t, ω)v0| ≤ α.

b) (Pullback determining modes)
On the other hand, if t ∈ R and for all r ≤ t, P-a.s., and u0, v0 ∈ B

lim
s→+∞

|P(Φ(r + s, θ−sω)u0 − Φ(r + s, θ−sω)v0)| ≤ α,

then, for all r ≤ t,

lim
s→+∞

|Φ(r + s, θ−sω)u0 − Φ(r + s, θ−sω)v0| ≤ α.

Note that in b) we need a convergence in all final times r ≤ t to get the result.
In the next result we will write a weaker hypothesis for this result.

Remark 2.2. a) If α = 0 we would have a classical determining modes result
(cf. Foias and Prodi [22]).

b) Due to the fact that the pullback convergence to the random attractor im-
plies the forward convergence to this set in probability (Crauel and Flandoli
[13]), i.e., for all ǫ > 0

lim
t→+∞

P(ω ∈ Ω : dist(Φ(t, ω)D,A(θtω)) > ǫ) = 0,

we get that our hypotheses in the previous theorem implies those in Chueshov
et al. [10], Theorem 2.3, so that the assertion there also holds in our case.

Using Proposition 2 in Langa [28], we also get the pullback convergence in the
previous theorem under a weaker condition.

Theorem 2.3. ([28]) Suppose that u(ω), v(ω) are two random variables on the
attractor A(ω) such that P–a.s.

Φ(t, ω)u(ω) 6= Φ(t, ω)v(ω), for all t ∈ R+and

lim
s→+∞

|P0(Φ(t+ s, θ−sω)u(θ−sω)− Φ(t+ s, θ−sω)v(θ−sω))| = 0

whenever u(ω) 6= v(ω), P–a.s. (where P0 is a projection which is injective between
⋃

t∈R
A(θtω) and its image, see Langa and Robinson [27] for the existence of such

(dense) set of projections). Then, for all r ≤ t we have that

lim
s→+∞

|P0(Φ(r + s, θ−sω)u(θ−sω)− Φ(r + s, θ−sω)v(θ−sω))| = 0, P–a.s.

3. Generalized Allen-Cahn SPDEs and Random PDEs

3.1. Definitions. In this part we consider the SPDE

(3)











∂U

∂t
= ∆xU + f(U) +

∂2W

∂t∂x
, (t, x) ∈ OL

.
= (0,+∞)× (0, L);

U(t, 0) = U(t, L) = 0, 0 < t < ∞;
U(0, x) = u0(x), 0 < x < L;
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where W (t, x) is the Brownian sheet corresponding to the driving space-time
white noise, written formally as ∂2W/∂t∂x. As noted earlier, we treat white noise
as a continuous orthogonal martingale measure, which we denote by W . The drift
f : R → R is of the form:

(4) f(u) =

2p−1
∑

k=0

aku
k, with p ∈ N, and a2p−1 < 0,

It is not difficult to prove the following elementary inequalities for f (see Temam
[32]), which we use in the proof of Theorem 3.2:

i) There exists K > 0 such that f ′(v) ≤ K, ∀ v ∈ R.
ii) There exist c1, c0 > 0 such that f(v)v ≤ −c1v

2p + c0, ∀ v ∈ R.
iii) There exist k1, k0 > 0 such that |f(v)| ≤ k1|v|2p−1 + k0, ∀ v ∈ R.

We denote the SPDE (3) by eAC(f, u0). We collect here definitions and con-
ventions that are used throughout this article (see Walsh [33] for a whole setting
of this type of SPDEs; see also Allouba [2, 3]). Filtrations are assumed to satisfy
the usual conditions (completeness and right continuity), and any probability space
(Ω,F , {Ft},P) with such a filtration is termed a usual probability space.

Definition 3.1 (Strong and Weak Solutions to eAC(f, u0)). We say that the pair
(U,W) defined on the usual probability space (Ω,F , {Ft},P) is a continuous or L2-
valued solution to the stochastic PDE eAC(f, u0) if W is a space-time white noise
on CL .

= R+ × [0, L]; the random field U(t, x) is Ft-adapted (U(t, ·) ∈ Ft ∀t), with
either U ∈ C(CL;R) (a continuous solution) or U ∈ C(R+;L

2(0, L)) (an L2-valued
solution); and the pair (U,W) satisfies either one of the following two formulations:

(TFF) the test function formulation

(U(t)− u0, ϕ)−
∫ t

0

(U(s), ϕ′′)ds =

∫ t

0

(f(U(s), ϕ)ds

+

∫ L

0

∫ t

0

ϕ(x)W(ds, dx); 0 ≤ t < ∞, a.s. P,

for every ϕ ∈ ΘL
0

.
= {ϕ ∈ C∞(R;R) : ϕ(0) = ϕ(L) = 0} , where (·, ·) is the

L2 inner product on [0, L], or
(GFF) the Green function formulation

U(t, x) =

∫ L

0

∫ t

0

f(U(s, y))Gt−s(x, y)dsdy +

∫ L

0

∫ t

0

Gt−s(x, y)W(ds, dy)

+

∫ L

0

Gt(x, y)u0(y)dy; 0 ≤ t < ∞ a.s. P,

where Gt(x, y) is the fundamental solution to the deterministic heat equa-
tion (ut = uxx) with vanishing boundary conditions.

A solution is said to be strong if the white noise W and the usual probability space
(Ω,F , {Ft},P) are fixed a priori and Ft is the augmentation of the natural filtration
for W under P. It is termed a weak solution if we are allowed to choose the usual
probability space and the white noise W on it, without requiring that the filtration
be the augmented natural filtration of W . We say pathwise uniqueness holds for
eAC(f, u0) if whenever (U

(1),W) and (U (2),W) are two solutions to eAC(f, u0) on
the same probability space (Ω,F , {Ft},P), and with respect to the same white noise
W , then P

[

U (1)(t, x) = U (2)(t, x); 0 ≤ t < ∞, x ∈ [0, L]
]

= 1.
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We often simply say that U solves eAC(f, u0) (weakly or strongly) to mean the
same thing as above.

Remark 3.1. As it is well known (Walsh [33]), if the drift and diffusion coefficients
are locally bounded random fields (in our case they trivially are for continuous
solutions since the diffusion coefficient a ≡ 1 and the drift f is clearly locally
Lipschitz under our conditions in (4), then the two formulations (GFF) and (TFF)
are equivalent.

3.2. Existence and uniqueness of solutions. Let β ≥ 0; let Zβ(t, x) be the
pathwise-unique strong solution to (3) with f(Zβ) = −βZβ and Zβ(0, x) ≡ 0,
which is Hölder continuous with αtime = 1/4− ǫ in time and αspace = 1/2− ǫ in
space, ∀ǫ > 0 (a standard result as in [33] pp. 321-322). Let Vβ = U − Zβ , for any
solution U to (3). We see then that Vβ satisfies

Vβ(t, x) = U(t, x)−
∫ L

0

∫ t

0

Gt−s(x, y) [W(ds, dy)− βZβ(s, y)dsdy]

=

∫ L

0

Gt(x, y)u0(y)dy +

∫ L

0

∫ t

0

[f (Vβ + Zβ(s, y)) + βZβ(s, y)]Gt−s(x, y)dsdy

.
=

∫ L

0

Gt(x, y)u0(y)dy + Iβ(t, x) = M(t, x) + Iβ(t, x).

That is, Vβ solves the random PDE:

(5)











∂Vβ

∂t
= ∆xVβ + f (Vβ + Zβ) + βZβ , (t, x) ∈ OL;

Vβ(t, 0) = Vβ(t, L) = 0, 0 < t < ∞;
Vβ(0, x) = u0(x), x ∈ [0, L].

Our first result gives detailed existence, uniqueness, and comparative regularity
results of our SPDE eAC(f, u0) in (3) and the associated random PDE (5).

Theorem 3.1. Suppose f satisfies (4).

(i) (Strong Regularity) If u0 : [0, L] → R is Lipschitz continuous and determin-
istic. Then, the SPDE eAC(f, u0) has a strong, pathwise-unique, a.s. α-
Hölder continuous solution with αt = 1/4− ǫ in time and αx = 1/2− ǫ in
space, for all ǫ > 0. On the other hand, under the same conditions on u0,
the random PDE (5) has an a.s. C1,2((0,∞)× (0, L);R) unique solution.

(ii) (Weak Regularity) For all 0 ≤ s < T , we have:
a) if u0 ∈ L2(0, L), there exist a.s.ũnique solutions U and V to eAC(f, u0)

and (5), respectively, such that

V ∈ C([s,∞);L2(0, L)) ∩ L2(s, T ;H1
0 (0, L)) ∩ L2p(s, T ;L2p(0, L)),

and
U ∈ C([s,∞);L2(0, L));

b) if u0 ∈ H1
0 (0, L), then the a.s. unique solutions U and V are such that

V ∈ C([s,∞);H1
0 (0, L)) ∩ L2(s, T ;H2(0, L)) ∩ L2p(s, T ;L2p(0, L)),

and
U ∈ C([s,∞);L2(0, L)).

and hence, V ∈ C([s + ε,∞);H1
0 (0, L)) ∩ L2(s+ ε,∞;H2(0, L)), for every

u0 ∈ L2(0, L) and ε > 0.
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Remark 3.2. In addition to the existence, uniqueness, and regularity for the SPDE
eAC(f, u0), our proof of Theorem 3.1 gives detailed strong, as well as weak, regu-
larity results for the random PDE (5) associated with our SPDE (3). The strong
regularity results are for completeness, and they are not needed for the rest of the
paper. Two points are worth emphasizing: 1. solutions to the random PDE (5) are
typically much smoother than solutions to the Allen-Cahn SPDE eAC(f, u0) and 2.
while increasing the regularity of the initial function u0 has a considerable effect on
smoothing out the random PDE solution (if u0 is Lipschitz then the solution V is
in C1,2((0,∞) × (0, L)); the most regularity we can guarantee for the Allen-Cahn
SPDE solution is Hölder continuity (with Hölder exponents 1/4 in time and 1/2 in
space) regardless of how smooth the initial data is. This of course is a direct result
of the fact that the driving noise is white in both space and time. In the case of
a time only white noise, the solution U to the Allen-Cahn SPDE driven by such
noises is spacially much smoother than our solutions (typically at least in H1(0, L),
e.g., see [13]). For more on the effects of our rougher noise on the proof of the
existence of the attractor see Remark 3.3 below.

Proof. (of Theorem 3.1) We note that when p = 1 in (4) f is Lipschitz and the
strong existence, pathwise uniqueness, and Hölder regularity for eAC(f, u0) follow
from standard results (see [33]).

We now turn to the case p > 1. For simplicity and without loss of generality,
we assume β = 0. Let Z

.
= Z0 and V

.
= V0. Clearly, the existence and uniqueness

for eAC(f, u0) is equivalent to the existence and uniqueness for the corresponding
random PDE (5). This is because Z is the pathwise-unique strong solution (see [33])
to the standard heat SPDE and V + Z is a solution to eAC(f, u0) if and only if V
solves (5). Furthermore Z(t, x) is a.s. α-Hölder-continuous with αt = 1/4−ǫ in time
and αx = 1/2−ǫ in space, for all ǫ > 0 (see [33]), and it vanishes at 0 and L. For the
rest of the proof, we fix ω ∈ Ω, and treat the path-by-path deterministic version of
our random PDE (5). Following the proof of Theorem 1.1 in Temam [32], Chapter
III—and for the usual Sobolev spaces H1

0 (0, L) := {v ∈ H1(0, L), v(0) = v(L) = 0}
and H2(0, L)—we have P-a.s. that there is a unique continuous (in (t, x)) solution
V to (5) satisfying (5) if u0 : [0, L] → R is deterministic and continuous. This
implies that |f(V + Z)| ≤ C1 < ∞ on [0, t] × [0, L]; thus I0(t, ·) ∈ C1(0, L) with

|DI0(t, x)| ≤ CC1t
1
2 (the smoothness for I0 is obtained throughout as in Theorems

2 to 5 in Chapter 1 of [23]) and hence V (t, ·) ∈ C1(0, L) for every t (the first term
in (5), M , is in C2(0, L) whenever u0 is continuous on [0, L]). If additionally u0 is
Lipschitz on [0, L]; then f(V + Z) is Hölder continuous on [0, L], uniformly locally
in t. To see this, remember that when u0 is Lipschitz on [0, L] then, with M as
defined as in (5), we have M ∈ C2(0, L) and

(6) DM(t, x) =

∫ L

0

u0(y)
∂

∂x
Gt(x, y)dy ≤ K.

The bound in (6) again follows from standard analysis methods as in Chapter 1 in
[23] (see also Lemma A.3 below for a probabilistic proof of this fact on Rd, d ≥ 1).

The bound in (6) and the bound that we have for DI0(t, x) imply that V , and
hence f(V + Z), is Hölder continuous on [0, L], uniformly locally in t. This, in
turns implies that I0(t, ·) ∈ C2(0, L) and hence V (t, ·) ∈ C2(0, L) for every t. The
temporal regularity for V is proved similarly and we omit it, and we obtain that
V ∈ C1,2((0,∞)× (0, L);R). It is then clear that U(t, x) = V (t, x) + Z(t, x) is the
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pathwise-unique (because uniqueness holds a.s. for both V and Z) strong solution
(because the white noise W is fixed throughout) of (3), and that U is P a.s. Hölder
continuous under our conditions on u0 with αt = 1/4− ǫ in time and αx = 1/2− ǫ
in space, for all ǫ > 0 (since both V and Z are)

In addition, we also get P-a.s. that for all 0 ≤ s < T :

a) if u0 ∈ L2(0, L), there exists a unique solution

V ∈ C([s,∞);L2(0, L)) ∩ L2(s, T ;H1
0 (0, L)) ∩ L2p(s, T ;L2p(0, L)),

b) if u0 ∈ H1
0 (0, L), then there exists a unique solution

V ∈ C([s,∞);H1
0 (0, L)) ∩ L2(s, T ;H2(0, L)) ∩ L2p(s, T ;L2p(0, L)),

and hence, V ∈ C([s + ε,∞);H1
0 (0, L)) ∩ L2(s + ε,∞;H2(0, L)), for every u0 ∈

L2(0, L) and ε > 0. Again, the assertions about the existence, uniqueness and
weak regularity of U (part ii) a) and b) in Theorem 3.1) easily follow from the
corresponding results for V (parts a) and b) above), the regularity of Z, and the
fact that U(t, x) = V (t, x) + Z(t, x). �

3.3. Growth rates for Zβ. In this subsection, we obtain asymptotic growth rates
of interest related to Zβ.

Lemma 3.1. Let Zβ be as in the proof of Theorem 3.1. Then Zβ may be rewritten
as

Zβ(t, x) =

∫ L

0

∫ t

0

Gβ,t−s(x, y)W(ds, dy),

where Gβ is the fundamental solution to the noiseless version of (3) with f(Zβ) =

−βZβ, with Dirichlet boundary conditions ([33]). Let Ẑβ(t)
.
= sup0≤x≤L Zβ(t, x).

Then,

i) For each 0 < p < 3 and 0 ≤ γ < 1 ∧ (3− p), there exists a constant K > 0
such that

(7)

∫ L

0

∫ t

0

Gp
β,t−s(x, y)dsdy ≤ K(x∧(L−x))γ t(3−p−γ)/2; x ∈ (0, L), t > 0, β ≥ 0.

ii) P[Ẑβ(t) > t
1
4+ǫ] ≤ Kt−ǫ → 0 as t → ∞, for every ǫ > 0 and every β ≥ 0

for some universal constant K > 0.
iii) If

Zϕ
β (t)

.
= (Zβ(t), ϕ)−

∫ t

0

(Zβ(s), ϕ
′′)ds+

∫ t

0

(βZβ(s), ϕ)ds; 0 ≤ t < ∞,

then, for every β ≥ 0 and ϕ ∈ ΘL
0 , Z

ϕ
β (t)/t → 0 as t → ∞ P-a.s.

Proof. i) The Green function, Gβ is easily found to be

Gβ,t(x, y) =
e−βt

√
4πt

∞
∑

n=−∞

{

exp

(

− (2nL+ y − x)2

4t

)

− exp

(

− (2nL+ y + x)2

4t

)}

.

It is clearly enough to prove the estimate on Gβ for β = 0, and we will
denote G0 by simply G. Now, let Bx be the scaled Brownian motion
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Bx =
√
2B̃x/

√
2, starting at some x ∈ L

.
= (0, L), where B̃x is a stan-

dard Brownian motion starting at x. Let τx
L

.
= inf {t > 0;Bx

t /∈ L}; then
Gt(x, y) is the density of Bx killed at τx

L
. We easily have

a) Gr(x, y) = E

[

Gr/4(B
x
r/4, y)1[τx

L
≥r/4]

]

b)

∫ L

0

Gp
r/4(ξ, y)dy ≤ K

∫ L

0

[

1√
πr

e−(ξ−y)2/r

]p

dy ≤ K

|r|(p−1)/2

where we simply used the Markov property to obtain (3.3) a). Now, apply-
ing Hölder inequality to (3.3) a) and then using (3.3) b) we get
∫ L

0

Gp
t−s(x, y)dy ≤ E

[

∫ L

0

∣

∣

∣
G(t−s)/4(B

x
(t−s)/4, y)

∣

∣

∣

p

dy 1[τx
L
≥(t−s)/4]

]

≤ KP [τx
L
≥ (t− s)/4]

|t− s|(p−1)/2

But we also have

P[τx
L
≥ r] ≤ (P[τx

L
≥ r])γ ≤ K

[

x ∧ (L− x)√
r

]γ

where the inequalities in (3.3) follow from the standard facts: P[τx
L
≥ r] ≤ 1

and P[τx
L
≥ r] ≤ Kx ∧ (L − x)/

√
r. Finally, (8) and (3.3) give us

∫ t

0

∫ L

0 Gp
t−s(x, y)dyds ≤

∫ t

0
KP[τx

L
≥(t−s)/4]

(t−s)(p−1)/2 ds

≤ K[x ∧ (L− x)]γ
∫ t

0
ds

(t−s)(p+γ−1)/2 = K[x ∧ (L − x)]γt(3−p−γ)/2

ii) Using (7) with p = 2 and γ = 0 along with Chebyshev and Burkholder
inequalities; we have, for any β ≥ 0, that

P[
∣

∣

∣
Ẑβ(t)

∣

∣

∣
> t

1
4+ǫ] ≤ EP|Ẑβ(t)|

t
1
4+ǫ

≤ K

EP

(

∫ L

0

∫ t

0

sup
0≤x≤L

G2
β,t−s(x, y)dsdy

)1/2

t
1
4+ǫ

≤ Kt−ǫ,

iii) First, note that for every test function ϕ ∈ ΘL
0 ,

Zϕ
β (t) =

∫ L

0

∫ t

0

ϕ(y)W(ds, dy); 0 ≤ t < ∞, ϕ ∈ ΘL
0 .

Using Doob’s maximal inequality, we now have

P



 sup
2n≤t≤2n+1

∣

∣

∣
Zϕ
β (t)

∣

∣

∣

t
> ǫ



 ≤ 1

ǫ2
EP



 sup
2n≤t≤2n+1

(

Zϕ
β (t)

t

)2




≤ 1

22n
EP

[

sup
2n≤t≤2n+1

(Zϕ
β )

2

]

≤ 4

22n
EP(Z

ϕ
β )

2(2n+1) ≤ 8KϕL

2n
; ∀ǫ > 0, n ≥ 1,

where Kϕ is the bound on ϕ2. An easy application of Borel-Cantelli lemma
gives us that, for every ϕ ∈ ΘL

0 ,

Zϕ
β (t)/t → 0 as t → ∞, P− a.s.

The proof is complete. �
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3.4. Existence of the semimartingale attractor. Let U be the solution to
eAC(f, u0) on (Ω,F , {Ft},P). For any functions J(t, x) and j(x) let

Jϕ(t)
.
= (J(t), ϕ) and jϕ = (j, ϕ); ∀ϕ ∈ ΘL

0 .(8)

Then, by the assumptions on f we easily have that {Uϕ(t); t ∈ R+} is a semi-
martingale on (Ω,F , {Ft},P) for each ϕ since (5) gives P–a.s.

Uϕ(t) = uϕ
0 +

∫ t

0

Uϕ′′

(s)ds+

∫ t

0

(f(U(s)), ϕ)ds +

∫ L

0

∫ t

0

ϕ(x)W(ds, dx); 0 ≤ t < ∞.

So, by Definition 2.1 the random field U(t, x, ω)
.
= U(t, x, ω;u0) is a weak semi-

martigale sheet, starting at u0(x). Now, set

(9) ΦU (t− s, ω)U(s, ·, ω) = U(t, ·, ω).
In particular, we can define in B = L2(0, L) the random dynamical system

(10) ΦU (t, ω)u0 = U(t, ·, ω;u0).

As in Definition 2.1, we call a random attractorA associated with ΦU a semimartin-
gale attractor (as we mentioned on p. 2, our noise setting allows us to to treat a
related type of attractors we call semimartingale measure attractor. More on this
in an upcoming article). When we want to emphasize the type of semimartingales
captured by the attractor, we say weak-semimartingale functional attractor. Our
result for A can now be stated as

Theorem 3.2. Suppose f satisfies (4), u0 ∈ L2(0, L), and u0 is deterministic.
Then, the SPDE eAC(f, u0) possesses a finite dimensional semimartingale attractor
A ⊂ L2(0, L).

Remark 3.3. As we mentioned in Remark 3.2, the fact that our driving noise
is white in both space and time leads to a much less spatial regularity for our
solutions of eAC(f, u0) as compared to SPDEs driven by noises that are white only
in time: in the case of Allen-Cahn SPDEs with noises that are white in time only,
the solution U is typically at least in H1 (see e.g., [13]); while in our case the
solution U of eAC(f, u0) is not even in H1 (even if we start with a C∞ initial
function u0). So, the proofs in [13], for example, use the fact that for their time
only white noise one may apply the Laplacian to the noise (not to mention the
solution of the SPDE); and one may use directly the H1

0 norm on the solution U
of the SPDE. All of these facts do not apply in our case since neither U nor Zβ

are even in H1
0 let alone H2, and we must proceed differently. Thus, our proof

relies heavily on the regularity of the solution Vβ to the associated random PDE
(5); and the apriori estimates needed to establish the existence of the attractor are
substantially harder in our case, requiring more elaborate fundamental inequalities
(see the proof below, along with the modified inequalities in the Appendix, and
compare it to the proof in [13]). Also, adding to the difficulty in our case is the
combination of this lack of spatial regularity and the order of the nonlinearity in
eAC(f, u0), 2p− 1; which makes proving the existence of the attractor in L2 more
difficult than in the case of Burgers type SPDEs (even those driven by space-time
white noise), whose nonlinearity is effectively second order.
Finally, if u0 is assumed to be Lipschitz; then, by Theorem 3.1, the derivatives in
∆V below exist in the strong classical sense; and solutions to (5) are classical.
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Proof. (of Theorem 3.2) In light of Remark 2.1, we look at our white noise W as a
two-sided (in time) space-time white noise on (Ω,F ,P). I.e., if

Ω = {ω ∈ C(R× [0, L];R) : ω(0, x) = ω(t, 0) = 0}
with P being the product measure of two Brownian-sheet measures on the negative
and positive time parts of Ω; then W (t, x) = ω(t, x) and W is the white noise
corresponding to W . We accordingly extend the time domain of the Zβ and Vβ

to negative time as well, in the obvious standard way, and we also refer to the
extended Zβ and Vβ as Zβ and Vβ , respectively.

It can easily be checked that ΦU satisfies properties (i) and (ii). Let β > 0;
then, as in the proof of Theorem 3.1, (5) has a unique solution Vβ with the same

regularity as V for all −∞ < s < T . Multiplying (5) by V 2p−1
β and integrating over

space [0, L] in (5) (with the standard convention (∆Vβ , V
2p−1
β ) = −(DVβ , DV 2p−1

β )

for Vβ ∈ H1
0 (0, L); e.g., [30]); using Young’s and Hölder’s inequalities repeatedly

and the generalized Poincaré inequality |v|Lp(0,L) ≤ L|Dv|Lp(0,L), p ≥ 1 along with

its consequence −(DV,DV 2p−1) ≤ −((2p− 1)/p2L)|v|2pL2p(0,L) (see Lemma A.1 and

Lemma A.2); and using elementary inequalities on f and elementary manipulations,
we get after collecting terms (with L2p = L2p(0, L)) that

1

2p

d

dt
|Vβ(t)|2pL2p ≤ −2p− 1

p2L
|Vβ |2pL2p

+|Vβ + Zβ|4p−2
L4p−2























∑

1≤i≤2p−1

i odd

(

2p− 1

i

)

K1,i
4p− i− 2

4p− 2
ǫi









− c1,0















+
∑

1≤i≤2p−1

i odd

(

2p− 1

i

)

[

K0,iL
4p−i−2
4p−2 |Zβ(t)|iL4p−2 +

iK1,i

(4p− 2)ǫ
4p−i−2

i

i

|Zβ(t)|4p−2
L4p−2

]

+
∑

0≤i≤2p−2

i even

(

2p− 1

i

)

c0,i|Zβ(t)|iLi + β

[

ǫ(2p− 1)

2p
|Vβ |2pL2p +

1

2pǫ2p−1
|Zβ|2pL2p

]

Choosing the Young’s ǫi’s so that

c1,0 ≥
∑

1≤i≤2p−1

i odd

(

2p− 1

i

)

K1,i
4p− i− 2

4p− 2
ǫi

we get

d
dt |Vβ(t)|2pL2p ≤ |Vβ |2pL2p

[

βǫ(2p− 1)− 4p−2
pL

]

+ 2p
∑

0≤i≤2p−2

i even

(

2p−1
i

)

c0,i|Zβ(t)|iLi

+2p

{

∑

1≤i≤2p−1

i odd

(

2p−1
i

)

[

K0,iL
4p−i−2
4p−2 |Zβ(t)|iL4p−2 +

iK1,i

(4p−2)ǫ
4p−i−2

i
i

|Zβ(t)|4p−2
L4p−2

]}

+ β
ǫ2p−1 |Zβ(t)|2pL2p

Choosing ǫ such that

−λ =

[

βǫ(2p− 1)− 4p− 2

pL

]

,
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where λ = λ1/2 (λ1 is the first positive eigenvalue for the Laplace operator), we
get

d

dt
|Vβ(t)|2pL2p + λ|Vβ(t)|2pL2p ≤ β

ǫ2p−1
|Zβ(t)|2pL2p + 2p

∑

0≤i≤2p−2

i even

(

2p− 1

i

)

c0,i|Zβ(t)|iLi

+2p















∑

1≤i≤2p−1

i odd

(

2p− 1

i

)

[

K0,iL
4p−i−2
4p−2 |Zβ(t)|iL4p−2 +

iK1,i

(4p− 2)ǫ
4p−i−2

i
i

|Zβ(t)|4p−2
L4p−2

]















,

where |Zβ(t)|0L0

.
= 1. Now, picking β large enough (similarly to [14]), using Gron-

wall’s Lemma, and letting P (t) denote the term on the right hand side of the above
inequality; we can deduce that there exists an s1(ω) such that if s < s1(ω) and
−1 ≤ t ≤ 0,

|Vβ(t)|2pL2p ≤ κ
[

|Vβ(s)|2pL2pe
λs +

∫ 0

−∞ P (r)eλrdr
]

≤ r0(ω) = 1 + κ
∫ 0

−∞ P (r)eλrdr.

The at most polynomial growth of the norms of Zβ(t) in P (t) in (11) as t → −∞
(and hence the finiteness of r0 = r0(ω)) follows straightforwardly from standard
results concerning the elementary SPDE corresponding to Zβ (e.g., see [16] Lemma
4.1 and the ensuing discussion as well as [14, 33]; see also Lemma 3.1 here). On
the other hand, if A = −∆x (the negative Dirichlet Laplacian), then e−tAv(x) =
∫ L

0
v(y)Gt(x, y)dy, and so using (5) on the interval [−1, 0] and applying the operator

A1/8 gives us

(11)

∣

∣

∣
A

1
8Vβ(0)

∣

∣

∣

L2
≤
∣

∣

∣
A

1
8 e−AVβ(−1)

∣

∣

∣

L2

+
∫ 0

−1

{∣

∣

∣
A

1
8 eAsf(Vβ(s) + Zβ(s))

∣

∣

∣

L2
+ β

∣

∣

∣
A

1
8 eAsZβ(s)

∣

∣

∣

L2

}

ds

To go further, we use the following Sobolev embedding and smoothing properties
of the semigroup (e−tA)t≥0 and e−A:

|z|L2 ≤ C2|z|
W

1
2
,1 ∀z ∈ W

1
2 ,1(0, L).

(12)

|e−Atz|W s2,r ≤ C1

(

t
s1−s2

2 + 1
)

|z|W s1,r ∀z ∈ W s1,r(0, L), −∞ < s1 ≤ s2 < ∞, r ≥ 1

∣

∣

∣
A

1
8 e−A

∣

∣

∣

L(L2(0,L))
≤ C0.

Now, using (12) with r = 1, s1 = −1/4, s2 = 1/2 we see that
∣

∣

∣
A

1
8 eAsf(Vβ(s) + Zβ(s))

∣

∣

∣

L2

≤ C1C2

(

t−
3
8 + 1

) ∣

∣

∣
A

1
8 f(Vβ(s) + Zβ(s))

∣

∣

∣

W− 1
4
,1

≤ C1C2

(

t−
3
8 + 1

)

|f(Vβ(s) + Zβ(s))|L1

≤ C1C2

(

t−
3
8 + 1

) [

k1|Vβ + Zβ|2p−1
L2p−1 + k0L

]

≤ C
(

t−
3
8 + 1

) [

|Vβ |2p−1
L2p−1 + |Zβ |2p−1

L2p−1 + 1
]

≤ κ
(

t−
3
8 + 1

) [

|Vβ |2p−1
L2p + |Zβ |2p−1

L2p−1 + 1
]
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≤ κ
(

t−
3
8 + 1

)

[

r
2p−1
2p

0 + |Zβ |2p−1
L2p−1 + 1

]

,(13)

where κ depends on L and p. Using (12), (13), and the fact that |Vβ |L2 ≤
L(p−1)/2p|Vβ |L2p we arrive at

∣

∣

∣
A

1
8 Vβ(0)

∣

∣

∣

L2
≤ R0(ω) = κ0r

1
2p

0 + κ1

∫ 0

−1

(

|s|− 3
8 + 1

)

[

r
2p−1
2p

0 + |Zβ(s)|2p−1
L2p−1 + 1

]

+β
∣

∣

∣
A

1
8 eAsZβ(s)

∣

∣

∣

L2
ds,

where the constants κ0, κ1 depend on L and p.
Lastly, if we let K(ω) be the ball in D(A

1
8 ) of radius R0(ω) + |A 1

8Zβ(0, ω)|L2;
then K(ω) is compact because A has a compact inverse, and it is obviously an
attracting set at time 0. The existence of the attractor follows.

To prove the finite dimensionality of the semimartingale attractor, suppose f
satisfies (4) and u0 is Lipschitz continuous and deterministic. First, observe that
(2) is a consequence of the driving space-time white noise being additive. Indeed,
for any two solutions U (1), U (2) of

∂U

∂t
= ∆xU + f(U) +

∂2W

∂t∂x

with respect to the same white noise W (this can always be assured since our
solutions are strong) and with corresponding initial data u0(x), v0(x), we have that
the difference Y (t) = U (1) − U (2) satisfies

(14)
∂Y

∂t
= ∆xY + f(U (1))− f(U (2)).

I.e., the space-time white noise no more explicitly drives (14).
We then can follow exactly the computations in Debussche [18], Section 3.1 (see

also Flandoli and Langa [21]) to verify (2). Indeed, if we call zi = QΦ(t, ω)u0, i =
1, 2, then we have, for z = z1 − z2,

dz

dt
+Az = Q(f(U (1))− f(U (2))),

and then, as in Debussche [18], we can write

d

dt
|z|2 + λm+1|z|2 ≤ |f(U (1))− f(U (2))|2L6/5 ,

and, for mp = 4(p− 1),

|f(U (1))− f(U (2))|2L6/5 ≤ c(|U1|2L6(p−1) + |U2|2L6(p−1))
mp |U1 − U2|2.

But note that we have obtained an absorbing radius r(ω) for |U i|2
L6(p−1) , i = 1, 2,

so that
d|z|2
dt

+ λm+1|z|2 ≤ C r(ω)mp |U1 − U2|2,
which leads straightforwardly to the squeezing property by Gronwall Lemma for
m big enough. That r(ω) is tempered is a consequence of the at most polynomial
growth of this random variable.

On the other hand, (2) is also true by Da Prato and Zabczyk ([17], p. 336; see
also Crauel et al. [14], Section 3.2).

Thus, we can conclude that the semimartingale attractor of the SPDE (3) has
P-a.s. finite fractal dimension. This follows as in Langa [28], Proposition 3; which
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generalizes to the stochastic case Lemma 2.2 in Eden et al. [20] (see also Robinson
[30]). �

Also, note that we immediately have, because of the RSP, the determining modes
result

Theorem 3.3. The SPDE (3) satisfies a (forward and pullback) determining modes
result as in Theorems 2.2, 2.3.

4. Comments and Conclusions

This article is another step in our work–started in [4] and which is being con-
tinued in different directions in [5, 6, 7]—of studying the asymptotic behavior of
different types of SPDEs driven by space-time white noise. Here, we build on the
theory of random attractors; and we generalize it to our space-time continuous or-
thogonal local martingale measure noise setting. In so doing, we characterize the
randomness of our attractor as one coming from semimartingale-type solutions. We
believe this characterization is a key step that allows us to use stochastic analytical
tools to gain a deeper understanding of the stochastic aspects of these random at-
tractors; and we are hopeful it will point out more clearly the differences between
the attractors associated with SPDEs and those associated with their non-random
counterparts. One consequence of this characterization would lead to the notions of
semimartingale decomposition of the random attractor, and that of semimartingale
measure attractor, based on the notion of semimartingale measures, which gener-
alizes the concept of continuous orthogonal semimartingale measures introduced in
Allouba [3] and it is different from the measure which is the law of solutions.

We focus in this article on the stochastic Allen-Cahn equations, driven by space-
time white noise; and we give a thorough treatment of the semimartingale functional
attractor in this case. In particular, the existence of a finite fractal dimension
semimartingale attractor and some results on determining modes have been proved.
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Appendix A: Some inequalities

The first lemma generalizes Poincaré’s inequality to all Lp(0, L), p ≥ 1.

Lemma A.1 (Lp Poincaré’s Inequality). Suppose v ∈ C1((0, L);R), for some L >
0, with v(0) = 0; then

|v|Lp ≤ L|Dv|Lp , for all p ≥ 1.

Proof. We have v(x) =
∫ x

0 Dv(y)dy, 0 < x ≤ L; and so using Hölder’s inequality
we get

|v(x)| ≤
{

L
1
p′ |Dv|Lp ; p > 1 and p′ = p

p−1 ,

|Dv|L1 .
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Consequently,

|v|Lp ≤







(

∫ L

0 L
p

p′ |Dv|pLpdy
)

1
p ≤ L|Dv|Lp ; p > 1,

L|Dv|L1 .

The proof is complete. �

The second inequality gives us a bound on the Laplacian of a function integrated
against an odd power of the same function:

Lemma A.2 (Laplacian and Odd Power Integral Inequality). Suppose v ∈ C2((0, L);R),
for some L > 0, with v(0) = v(L) = 0; then

∫ L

0

∂2v

∂x2
· v2p−1dx ≤ − (2p− 1)

p2L
|v|2pL2p for all p ≥ 1.

If v ∈ C1((0, L);R), for some L > 0, with v(0) = 0; then

−
∫ L

0

∂v

∂x
· ∂v

2p−1

∂x
dx ≤ − (2p− 1)

p2L
|v|2pL2p for all p ≥ 1.

Proof. Let u be the function given by

u(x)
.
=

∫ x

0

(

∂vp

∂y

)2

dy; 0 ≤ x ≤ L.

Then u′(x) =
(

∂vp

∂x

)2
and we have, using Lemma A.1, that

∫ L

0

(

∂vp

∂y

)2

dy = |u′|L1 ≥ 1
L |u|L1 = 1

L

∫ L

0

∫ x

0

(

∂vp

∂y

)2

dydx(15)

≥ 1
L

∫ L

0

(

∫ x

0
∂vp

∂y dy
)2

dx(16)

= 1
L |v|

2p
L2p .(17)

Therefore,
∫ L

0

∂2v

∂x2
· v2p−1dx = −

∫ L

0
∂v
∂x · ∂v2p−1

∂x dx = −(2p− 1)
∫ L

0

(

vp−1 · ∂v
∂x

)2
dx

= − 2p−1
p2

∫ L

0

(

∂vp

∂y

)2

dy ≤ − 2p−1
p2L |v|2pL2p .

where the last inequality follows from (17). �

We now give a probabilistic proof of (6) in the case of the heat equation on R
d;

i.e., when [0, L] is replaced with Rd and Gt(x, y) is replaced with the fundamental
solution to the heat equation on Rd, pt(x, y).

Lemma A.3. With the notations above, we have

(18)

∫

Rd

u0(y)
∂

∂x
pt(x, y)dy ≤ K.

for some universal constant K > 0 whenever u0 is Lipschitz.
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Proof. Let Bx =
{

Bx
t

.
=

√
2B̃

x/
√
2

t ; 0 ≤ t < ∞
}

, where B̃x =
{

B̃x
t ; 0 ≤ t < ∞

}

is

a standard d-dimensional Brownian motion starting at x ∈ Rd. Then, pt(x, y) is
the density of the scaled Brownian motion Bx on Rd, pt(x, y), we have

|DjM(t, x)| =
∣

∣

∣

∣

∫

Rd

u0(y)
∂

∂xj
pt(x, y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

u0(y)
− (xj − yj)

2t
(4πt)−d/2e−|x−y|2/4tdy

∣

∣

∣

∣

=

∣

∣

∣

∣

− 1

2t
E

[

(xj −Bj,x
t )u0(B

x
t )
]

∣

∣

∣

∣

≤ 1

t
E

∣

∣

∣
(xj −Bj,x

t ) (u0(B
x
t )− u0(x))

∣

∣

∣

≤ 1

t

[

E(xj −Bj,x
t )2E(u0(B

x
t )− u0(x))

2
]1/2

≤ K1

t

[

E(xj −Bj,x
t )2E |Bx

t − x|2
]1/2

≤ K2,

where Dj = ∂/∂xj and Bj,x is the j-th component of the d-dimensional Bx, 1 ≤
j ≤ d; and where we have used elementary facts about the Brownian motion Bx,
Hölder inequality, and the Lipschitz condition on u0 to get (19). �
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