
Generation of Diophantine Sets by Computing

P Systems with External Output

Álvaro ROMERO JIMÉNEZ and Mario J. PÉREZ JIMÉNEZ

Dpto. de Ciencias de la Computación e Inteligencia Arti�cial
Universidad de Sevilla, España

E-mail: {Alvaro.Romero,Mario.Perez}@cs.us.es

Abstract. In this paper a variant of P systems with external output
designed to compute functions on natural numbers is presented. These
P systems are stable under composition and iteration of functions. We
prove that every diophantine set can be generated by such P systems;
then, the universality of this model can be deduced from the theorem by
Matiyasevich, Robinson, Davis and Putnam in which they establish that
every recursively enumerable set is a diophantine set.

1 Introduction

In 1998 G. P un initiated a new branch of the �eld of Natural Computing by
introducing a new model of molecular computation, based on the structure and
functioning of the living cell: transition P systems (see [3]). The framework
within which computation are performed in this model is the membrane struc-
ture, which recreates the cell-like one. Multisets of symbol-objects are processed
along the computations, making them to evolve and distributing them among
the membranes. The result of a halting computation is the number of objects
collected in a speci�ed output membrane.

Since the introduction of this model of computation many variants of it have
been proposed. One of them, presented in [5] by G. P un, G. Rozenberg and
A. Salomaa, is the model of transition P systems with external output. In this
model, the result of a halting computation is not collected in a �xed membrane
of the membrane structure, but in the external environment associated with it.
In this way, the output of a computation can be thought as a set of strings,
instead of as a natural number, as occurred in the basic model.

P systems are usually considered as devices which generate numbers. Ne-
vertheless, besides generating devices, they can also be thought as recognizing
devices and as computing devices. These kind of P systems have been studied
in [6].

In this paper we work with computing P systems, but instead of the basic
transition ones we consider those with external output. Thanks to the special
functioning of these apparatus, we have been able to de�ne, in a comfortable
manner, several operations between computing P systems with external output;
more speci�cally, we have de�ned composition and iteration, what have allowed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51407496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

us to prove the universality of these devices through the generation of all the
diophantine sets.

2 Multisets. Membrane structures. Evolution rules

A multiset over a set, A, is an application m : A → IN. A multiset is said to be
empty (resp. �nite) if its support, supp(m) = {a ∈ A : m(a) > 0}, is empty (resp.
�nite). If m is a �nite multiset over A, we will denote it m = {{a1, . . . , ak}},
where the elements ai are possibly repeated. We write M(A) for the set of all
the multisets over A.

The set of membrane structures, MS, is de�ned by recursion as follows:
1. [] ∈ MS; 2. If µ1, . . . , µn ∈ MS, then [µ1 . . . µn] ∈ MS.

A membrane structure, µ, can also be seen as a rooted tree,
(
V (µ), E(µ)

)
.

Then, the nodes of this tree are called membranes, the root node the skin mem-
brane and the leaves elementary membranes of the membrane structure. The
degree of a membrane structure is the number of membranes in it.

The concepts of depth of a membrane structure and depth of its membranes
are easily de�ned from those of a tree and its nodes. We will also need the
notion of level of a membrane within a membrane structure, which is de�ned as
the di�erence between the depth of the second and the depth of the �rst.

The membrane structure with external environment associated with a mem-
brane structure, µ, is µE = [

E
µ]

E
. If we consider the latter as a rooted tree, the

root node is called the external environment of µ.
Given an alphabet, Γ , we associate with every membrane of a membrane

structure a �nite multiset of elements of Γ , which are called the objects of the
membrane.

We also associate with every one of these membranes a �nite set of evolution
rules. A evolution rule over Γ is a pair (u, v), usually written u → v, where u is
a string over Γ and v = v′ or v = v′δ, where v′ is a string over

Γ ×
(
{here, out} ∪ {inl : l ∈ V (µ)}

)
The idea behind a rule is that the objects in u �evolve� into the objects in v′,
moving or not to another membrane and possibly dissolving the original one.

3 Computing P systems with external output

We are now prepared to introduce our new model of computation.

De�nition 3.1. A computing P system with external output of order (m,n) and
degree p is a tuple

Π =
(
Σ,Λ, Γ,#, µ

Π
, ι,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp)

)
where

� Σ is an ordered alphabet of size m, the input alphabet.
� Λ is an ordered alphabet of size n, the output alphabet.
� Γ is an alphabet such that Σ ∪ Λ ⊂ Γ , the working alphabet.
� # is a distinguished element in Γ \

(
Σ ∪ Λ), the halting element.

� µ
Π
is a membrane structure of degree p, whose membranes we suppose labeled

from 1 to p.
� The input membrane of Π is labeled by ι ∈ {1, . . . , p}.
� Mi is a multiset over Γ \Σ associated with the membrane labeled by i, for

every i = 1, . . . , p.
� Ri is a �nite set of evolution rules over Γ associated with the membrane

labeled by i, and ρi is a strict partial order over it, for every i = 1, . . . , p.

To formalize the semantics of this model we de�ne �rst what a con�guration
of a P system is, from what follows the notion of computation.

De�nition 3.2. Let Π be a computing P system with external output.

� A con�guration of Π is a pair (µE ,M), where µ is a membrane structure
such that V (µ) ⊆ V (µ

Π
) and has the same root than µ

Π
, and M is an

application from V (µE) into M(Γ). For every node nd ∈ V (µE) we denote
Mnd = M(nd).

� Suppose that Π is of order (m,n) and Σ = (a1, . . . , am). Then, any m-tuple
of natural numbers can be codi�ed by a multiset over Σ and given as input to
the P system. Thus, the initial con�guration of Π for a tuple (k1, . . . , km) ∈
INm is the pair (µE ,M), where µ = µ

Π
, ME = ∅, Mι = Mι∪{{ak1

1 . . . akm
m }}

and Mi = Mi, for every i 6= ι.

We can pass, in a non-deterministic manner, from one con�guration of Π
to another by applying to its multisets the evolution rules associated with their
corresponding membranes. This is done as follows: given a rule u → v of a
membrane i, the objects in u are removed from Mi; then, for every (ob, out) ∈ v
an object ob is put into the multiset associated with the parent membrane (or
the external environment if i is the skin membrane); for every (ob, here) ∈ v
an object ob is added to Mi; for every (ob, inj) ∈ v an object ob is added to
Mj (if j is not a children membrane of i, the rule cannot be applied). Finally,
if δ ∈ v, then the membrane i is dissolved, that is, it is removed from the
membrane structure (the objects associated with this membranes are collected
by the parent membrane, and the rules are lost. The skin membrane cannot
dissolve). Moreover, the priority relation among the rules forbids the application
of a rule if another one of higher priority is applied.

Given two con�gurations, C and C ′, of Π, we say that C ′ is obtained from
C in one transition step, and we write C ⇒ C ′, if we can pass from the �rst to
the second by using the evolutions rules appearing in the membrane structure of
C in a parallel and maximal way, and for all the membranes at the same time.

De�nition 3.3. Given a computing P system with external output of order
(m,n), Π, a computation of Π with input (k1, . . . , km) ∈ INm is a sequence,
possibly in�nite, of con�gurations of Π, C0 ⇒ C1 ⇒ . . . ⇒ Cq, q ≥ 0, such that

� C0 is the initial con�guration of Π for (k1, . . . , km).
� Each Ci is obtained from the previous con�guration by one transition step.

We say that a computation, C, is a halting computation of Π, if q ∈ IN and there
is no rule applicable to the objects present in its last con�guration.

Then, the output of a halting computation and of a computing P system
with external output can be de�ned in a natural way.

De�nition 3.4. Let Π be a computing P system with external output of order
(m,n) and suppose that Λ = (b1, . . . , bn). Let C be a halting computation of
Π with input (k1, . . . , km) ∈ INm and (µE ,M) its last con�guration. Then, the
output of that computation is given by

Output(C) =
(
ME(b1), . . . ,ME(bn)

)
.

De�nition 3.5. Let Π be a computing P system with external output of order
(m,n). The output of Π with input (k1, . . . , km) ∈ INm is given by

Output(Π; k1, . . . , km) = {Output(C) : C is a halting computation of Π

with input (k1, . . . , km)}.

The idea behind P systems with external output is that we cannot know
what is happening inside the membrane structure, but we can only collect the
information thrown from it to the external environment. In accordance with it,
it seems natural that the halting computations of these P systems report to the
outside when they have reached their �nal con�gurations.

Furthermore, the idea behind computing P systems is to use them as com-
puting models of functions between natural numbers. These considerations lead
us to the following notions:

De�nition 3.6. A computing P system with external output of order (m,n), Π,
is said to be valid when the following is veri�ed:

� If C is a halting computation of Π, then a rule of the form u → v(#, out)
must have been applied in the skin membrane of µ

Π
, and only in the last step

of the computation.
� If C is not a halting computation of Π, then no rule of the previous form is

applied in the skin membrane in any step of the computation.
� For every (k1, . . . , km) ∈ INm and for every two halting computations, C1

and C2, of Π with input (k1, . . . , km), Output(C1) = Output(C2).

De�nition 3.7. A computing P system with external output of order (m,n), Π,
computes a partial function, f : INm− → INn, if

� Π is a valid P system.
� For every (k1, . . . , km) ∈ INm

• f is de�ned over (k1, . . . , km) if and only if there exists a halting com-
putation of Π with input (k1, . . . , km).

• If C is a halting computation of Π with input (k1, . . . , km), then
Output(C) = f(k1, . . . , km).

We denote CEPm,n
p (α, β, γ), where m,n ∈ IN, p ≥ 1, α ∈ {Pri, nPri},

β ∈ {Coo,Cat, nCoo} and γ ∈ {δ, nδ}, the family of functions computed by
computing P systems with external output of order (m,n), of degree at most p,
and with or without priority, with cooperation, only catalysts or without coop-
eration (see [3]), and with or without dissolution, respectively. The union, for all
p ≥ 1, of the families of one of these types is denoted CEPm,n(α, β, γ).

4 Composition of computing P systems with external

output

We introduce now the operation of composition between computing P systems
with external output.

De�nition 4.1. Let f : INm− → INn and g1 : INr− → INs1 , . . . , gt : INr− →
INst such that s1+· · ·+st = m. Then, the composition of f with g1 to gt, denoted
C(f ; g1, . . . , gt), is a partial function from INr to INn de�ned as follows

C(f ; g1, . . . , gt)(k1, . . . , kr) = f(g1(k1, . . . , kr), . . . , gt(k1, . . . , kr))

Theorem 4.2. Let f ∈ CEPm,n(α, β, γ), g1 ∈ CEP r,s1(α, β, γ), . . . , gt ∈
CEP r,st(α, β, γ), with α ∈ {Pri, nPri}, β ∈ {Coo,Cat, nCoo} and γ ∈ {δ, nδ}.
Then, C(f ; g1, . . . , gt) ∈ CEP r,n(Pri, Coo, γ).

Proof. Let

Πf =
(
Σf , Λf , Γf ,#f , µ

Πf
, ιf ,Mf

1 , . . . ,Mf
pf

, (Rf
1 , ρf

1), . . . , (Rf
pf

, ρf
pf

)
)

Πg1 =
(
Σg1 , Λg1 , Γg1 ,#g1 , µΠg1

, ιg1 ,M
g1
1 , . . . ,Mg1

pg1
, (Rg1

1 , ρg1
1), . . . , (Rg1

pg1
, ρg1

pg1
)
)

...

Πgt
=

(
Σgt

, Λgt
, Γgt

,#gt
, µ

Πgt
, ιgt

,Mgt

1 , . . . ,Mgt
pgt

, (Rgt

1 , ρgt

1), . . . , (Rgt
pgt

, ρgt
pgt

)
)

be computing P systems with external output that compute, respectively, the
function f and the functions g1 to gt.

By means of a renaming of the elements of the alphabets (and, therefore,
also of the rules), we can suppose that

� Σg1 = · · · = Σgt
= (a1, . . . , ar).

� Λg1 = (b1, . . . , bs1), . . . , Λgt
= (bs1+···+st−1+1, . . . , bm).

� Σf = (c1, . . . , cm).
� Λf = (d1, . . . , dn).

�
(
Λg1 ∪ · · · ∪ Λgt

)
∩ Γf = ∅.

� #gi 6= #gj , for every i 6= j.

Let us consider the computing P system with external output

Π =
(
Σ, Λ, Γ,#, µ

Π
, ι,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp)

)
given by

� Σ = (e1, . . . , er). (We suppose that Σ ∩
⋃t

i=1 Γgi
= ∅).

� There exist distinguished elements ⊕,	,� ∈ Γ \ (Γf ∪
⋃t

i=1 Γgi).
� Λ = (d1, . . . , dn).
� # 6= #gi

, for every i = 1, . . . , t, and # 6= #f .
� µ

Π
= [1µΠg1

. . . µ
Πgt

µ
Πf

]1 , where the membranes from µ
Πg1

, . . . , µ
Πgt

, µ
Πf

have been adequately renamed (and therefore, also the rules of the corres-
ponding P systems have been adapted). We denote σg1 , . . . , σgt , σf the skin
membranes of the latter. Also, we consider that ιg1 , . . . , ιgt

, ιf re�ect the new
labeling of the input membranes of Πg1 , . . . ,Πgt

,Πf , respectively.
� ι = 1.
� p = pg1 + · · ·+ pgt

+ pf + 1.
� M1 = {{#,	}}. The remaining multisets are all empty.
� The evolution rules are the following:

• Evolution rules for membrane 1:

ei → (ei, inσg1
) . . . (ei, inσgt

) (i = 1, . . . , r)

	 → (, inσg1
) . . . (, inσgt

)

#g1 . . .#gt
→ (, inσf

) > # → # > bi → (bi, inσf
) (i = 1, . . . ,m)

di → (di, out) (i = 1, . . . , n)
#f → (#, out)

• For every function fun = g1, . . . , gt, f and for every membrane j of
µ

Πfun
, the following rules are included:

	 → ⊕(, inj1) . . . (, injk
)

�u ⊕ →Mfun
j > ⊕ → ⊕�

evolution rules associated with the membrane in Πfun

where j1 to jk are the children membranes of membrane j and u is its
level within µ

Πfun
. Moreover, if j is ιfun, then the rule ⊕ → ⊕� has

higher priority than the original rules of Πfun for this membrane.
• Let fun be as above and let j1, . . . , jq be the membrane path from σfun

to ιfun. Then, for k = 1, . . . , q − 1 the following rules are included in
membrane jk:

ei → (ei, injk+1) (i = 1, . . . , r) for fun = g1, . . . , gt

bi → (bi, injk+1) (i = 1, . . . ,m) for fun = f

Also, the following rules are included in membrane jq = ιfun.

ei → ai (i = 1, . . . , r) for fun = g1, . . . , gt

bi → ci (i = 1, . . . ,m) for fun = f

The P system constructed in this way, denoted C(Πf ;Πg1 , . . . ,Πgt
), is a valid

computing P system with external output which computes the composition of f
with g1 to gt. Furthermore, it preserves the use or not of dissolution from the P
systems which compute the functions.

Indeed, the system works as follows:

� Phase 1: Computation of the functions g1 to gt over the input data
To perform this stage, we need to carry out two operations: the �rst one
consists of taking the input arguments from membrane 1, which recall is the
input membrane of Π, to all the input membranes of the P systems Πg1 to
Πgt . This is easily done by displacing the objects representing the arguments
through all the necessary membranes.
The second operation is a little bit more complicated: in order for a speci�c
P system Πgj

to compute correctly the value of the function gj over the
input data, we need that all the membranes of this P system start to apply
their original rules at the same time (that is, we have to synchronize locally
the membranes of each Πgj

). We achieve this by using counters for every
one of these membranes. First, we use the object 	 to activate the counters,
represented by objects ⊕, in all the membranes. These latter objects use
objects� to count and, when a certain quantity is reached, the corresponding
membrane is allowed to use the rules of Πgj

. Because of the way we have
implemented this, these quantities turn out to be the levels of the membranes
in the structure µ

Πgj
.

It is also important that when the P system Πgj
starts to compute the value,

the objects representing the input data have reached its input membrane.
However, as we perform the two operations above simultaneously, we get it
for free.
Finally, we have to wait until all the values from Πg1 to Πgt have been
computed, before allowing the P system Πf to be used (that is, there must
be a global synchronization in the skin of Π).
Let us see with greater detail the rules involved in this phase:
1. At the �rst step of a computation of Π with input (k1, . . . , kr), we have

in membrane 1 the multiset {{ek1
1 , . . . , ekr

r ,#,	}} and the other mem-
branes are empty. Therefore, only the rules which send the objects ei

and the object 	 into the skins of µ
Πg1

to µ
Πgt

and the rule # → # in
membrane 1 can be applied.

2. Now, membrane 1 waits for the values of g1 to gt over (k1, . . . , kr) by
means of the rule # → #. With regard to membrane structures µ

Πg1
to

µ
Πgt

, the rule 	 → ⊕(, inj1) . . . (, injk
) makes the object 	 to spread

to all their membranes, because when it reaches a particular membrane,
it is immediately transformed into a counter object ⊕ and also sent to
the children membranes. Thus, from a step of the computation to the
next one, 	 reaches the membranes one depth greater. Meanwhile, the
rule ⊕ → ⊕� makes the object ⊕ to generate objects �. A close look
to the situation created shows that the activating object 	 have reached
all the membranes exactly when the counter objects ⊕ have generated

in each membrane a number of objects � equal to their levels in µ
Πfun

(fun = g1, . . . , gt). At that moment, the rule �u⊕ →Mfun
j introduces

in membrane j the objects associated with it in Πfun, and this is done
for all the membranes of each Πfun at the same time. From now on, the
values of g1 to gt over (k1, . . . , kr) are computed exactly in the same way
than the P systems Πg1 to Πgt

would do it.
3. Simultaneously, the objects ei cover the path from the skin membrane

of each µ
Πgj

to the input membrane of Πgj
, by means of the rules ei →

(ei, injk+1), and are changed there into the corresponding objects ai, by
means of the rules ei → ai. Note that the objects ei and the object 	
reach the input membrane at the same time. So, when Πgj

starts its
original functioning, as stated above, the input data is in its place.

� Phase 2: Computation of the function f

Phase 1 ends when membrane 1 has collected at least one object of each #g1

to #gt
. It is then when the values computed have to be sent as input data

to the P system Πf . To synchronize the end of phase 1 with the beginning
of phase 2, membrane 1 apply once and again the rule # → # until the rule
#g1 . . .#gt

→ (, inσf
) can be used.

This latter rule sends an object 	 into the skin of µ
Πf

, in order to initiate
its membranes' counters so that they start to apply their original rules at
the same time (local synchronization within Πf). This is done just as before.
Also, in the next step of the computation the objects bi, which represent the
values obtained in phase 1, are put into the skin of µ

Πf
and, subsequently,

moved, by means of the rules bi → (bi, injk+1), through all the membranes
from this one to the input membrane of Πf . Next, the rules bi → ci change
them into the corresponding input objects of Πf .
It is easy to see that, although there is a gap of one step of computation
between when 	 gets into a membrane and when the bis do so, this is not
at all a problem.
Now, the value of the function f over the arguments represented by the
objects ci is computed, and along this computation objects di representing
the result are thrown out of µ

Πf
. These objects are collected in membrane

1, and immediately expelled from µ
Π
. The calculation �nishes when some

objects #f are collected in membrane 1 and they are expelled from µ
Π

as
objects #.

ut

5 Iteration of computing P systems with External

Output

We introduce now the operation of iterating a computing P system with external
output.

De�nition 5.1. Let f : INm− → INm. Then, the iteration function of f , denoted
It(f), is a partial function from INm+1 to INm de�ned as follows:

It(f)(x, 0) = x

It(f)(x, n + 1) = It(f)(f(x), n)

Theorem 5.2. Let f ∈ CEPm,m(α, β, nδ), with α ∈ {Pri, nPri} and β ∈
{Coo,Cat, nCoo}. Then It(f) ∈ CEPm+1,m(Pri, Coo, nδ).

Proof. Let

Πf =
(
Σf , Λf , Γf ,#f , µ

Πf
, ιf ,Mf

1 , . . . ,Mf
pf

, (Rf
1 , ρf

1), . . . , (Rf
pf

, ρf
pf

)
)

be a computing P system with external output such that computes f .
By means of a renaming of the elements of the alphabets (and, therefore,

also of the rules), we can suppose that

� Σf = (a1, . . . , am).
� Λf = (b1, . . . , bm).

Let us consider the computing P system with external output

Π =
(
Σ, Λ, Γ,#, µ

Π
, ι,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp))

verifying the following

� Σ = (c1, . . . , cm+1), and is such that Σ ∩ Γf = ∅.
� There exist distinguished elements ⊕,	,�,⊗,� ∈ Γ \ Γf .
� Λ = (c1, . . . , cm).
� # 6= #f .
� µ

Π
= [1µΠf

]1 , where the membranes from µ
Πf

have been adequately re-
named (and therefore, also the rules of Πf have been adapted). We denote
σf the skin membrane of the latter. Also, we consider that ιf re�ects the
new labeling of the input membrane of Πf .

� ι = 1.
� p = pf + 1.
� M1 = {{#}}. The remaining membranes are all empty.
� The evolution rules are the following:

• Evolution rules for membrane 1:

#cm+1 → (, inσf
) > #ci → #(ci, out) (i = 1, . . . ,m) >

> # → (#, out) > #f#f → #f > #f → (�, inσf
) >

> ⊗ubi → ⊗uci (i = 1, . . . ,m) > ⊗u → # >

> ci → (ci, inσf
) (i = 1, . . . ,m)

where u is the degree of µ
Πf

.

• For every membrane j distinct from membrane 1 the following rules are
included:

	 → ⊕(, inj1) . . . (, injk
)

�u ⊕ →Mf
j > ⊕ → ⊕�

evolution rules associated with the membrane in Πf

� → ⊗(�, inj1) . . . (�, injk
)

ob⊗ → ⊗ (ob ∈ Γf) > ⊗ → (⊗, out)

where j1 to jk are the children membranes of membrane j and u is its
level within µ

Πf
. Moreover, if j is ιf , then the rule ⊕ → ⊕� has higher

priority than the original rules of this membrane in Πf .
• Let j1, . . . , jq be the membrane path from σf to ιf . Then, for k =

1, . . . , q − 1, the following rules are included in membrane jk:

ci → (ci, injk+1) (i = 1, . . . ,m)

Also, the following rules are included in membrane jq:

ci → ai (i = 1, . . . ,m)

The P system constructed in this way, denoted by It(Πf), is a valid comput-
ing P system with external output which computes the iteration of f .

Indeed, the system works as follows:
The number of iterations of f to make is given by the (m + 1)th argument

provided to It(f). What we do then is to reduce this argument by one and,
next, carry out a two phases process: �rst, computing one iteration of f ; second
�reseting� the P system Πf to its initial state. We repeat this process until the
(m + 1)th argument gets to zero.

The test to decide if one iteration has to be done is performed in membrane
1 looking how many objects cm+1, which represents the (m + 1)th argument,
there are. If such an object is present, the rule #cm+1 → (, inσf

) (followed by
the rules ci → (ci, inσf

)) is applied, starting the calculation of a new iteration
of f , which is done in two phases.

� Phase 1: Computing one iteration of f
This phase starts when an object 	 gets into the skin of µ

Πf
. This object

initiate counters in the membranes of µ
Πf

, in the same way than we did for
the composition, in order to assure that they start to apply their original
rules at the same time (local synchronization within Πf). Also, with a gap
of one step of computation that does not matter, the input data, represented
by objects ci, is taken from the skin of µ

Πf
to the input membrane of Πf .

Although through the execution of this phase the result of the iteration is
being sent out into membrane 1, they do not activate any rule in it.

� Phase 2: Reseting the P system Πf

Phase 1 ends when some objects #f get into membrane 1. Before we could
compute another iteration of f , we need to erase all the objects left in the
membranes of µ

Πf
. This is what we do in this stage, which start by reducing

the objects #f in membrane 1 to only one. Then the rule #f → (�, inσf
)

in membrane 1 introduce an object � into the skin of µ
Πf

.
This object spreads to all the membranes just as 	 do in the previous phase,
and leave one object ⊗ in each of them. This latter objects act as erasers,
removing all the objects from the membranes by means of the rules ob⊗ → ⊗.
When a membrane has been emptied, the object ⊗ is expelled from it.
Therefore, this phase �nishes when membrane 1 collects as many objects ⊗
as the degree of µ

Πf
. Only then the rules ⊗ubi → ⊗uci can be applied, which

transform the result of the iteration of f into input data for Π. Finally, the
rule ⊗u → # is applied to start the process again.

When no object cm+1 is present in membrane 1, no more iteration has to be done.
What is left is to send the objects c1 to cm of this membrane to the external
environment, followed by the object #.

Note that during the evaluation of the test, no rule can be applied in another
membrane other than membrane 1, because they are empty. ut

6 Diophantine sets

We introduce in this section the notion of diophantine set, which will help us to
prove the universality of the model of computing P system with external output.

De�nition 6.1. A set of natural tuples, A ⊆ INm, is a diophantine set if there
exists a polynomial P (a,x) ∈ ZZ[a,x] such that

A = {a ∈ INm : ∃x ∈ INn
(
P (a,x) = 0

)
}

The following property is relatively easy to prove.

Proposition 6.2. Every diophantine set is a recursively enumerable set.

The main result about diophantine sets was obtained by Y. Matiyasevich
from works by J. Robinson, M. Davis and H. Putnam, providing a negative
solution for Hilbert's Tenth Problem.

Theorem 6.3 (MRDP [1]). Every recursively enumerable set is a diophantine
set.

7 Generation of diophantine sets

First we need to introduce the concept of generation of a set by a P system.

De�nition 7.1. Let Π be a computing P system with external output of order
(m,n).

� A set A ⊆ INm is said to be partially generated by Π if this P system computes
its partial characteristic function; that is, the function

C∗A(k1, . . . , km) =

{
1, if (k1, . . . , km) ∈ A

unde�ned, otherwise

� A set A ⊆ INm is said to be totally generated by Π if this P system computes
its characteristic function.

The main result of this paper is the following.

Theorem 7.2. Every diophantine set is partially generated by a computing P
system with external output.

Before beginning with the proof, let us consider the following computing P
systems with external output:

� P systems ΠId
n , with n ≥ 1:

Σ = Λ = (a1, . . . , an), µ
ΠId

n
= [1]1 , ι = 1, M1 = {{#}}

R1 = {# → (#, out)} ∪ {ai → (ai, out) : i = 1, . . . , n}, ρ1 = ∅

These P systems compute the identity functions, Idn : INn → INn, de�ned
as Idn(k1, . . . , kn) = (k1, . . . , kn).

� P systems Πproj
n,j , with n ≥ 1 and 1 ≤ j ≤ n:

Σ = (a1, . . . , an), Λ = (aj), µ
Π

proj
n,j

= [1]1 , ι = 1, M1 = {{#}}

R1 = {# → (#, out), aj → (aj , out)}, ρ1 = ∅

These P systems compute the projection functions, Πn
j : INn → IN, de�ned

as Πn
j (k1, . . . , kn) = kj .

� P systems Πconst
n,c , with n ≥ 1 and c ∈ IN:

Σ = (a1, . . . , an), Λ = (b), µ
Πconst

n,c
= [1]1 , ι = 1, M1 = {{bc,#}}

R1 = {# → (#, out), b → (b, out)}, ρ1 = ∅

These P systems compute the constant functions, Cn
c : INn → IN, de�ned as

Cn
c (k1, . . . , kn) = c.

� P systems Πsum′

2 , Πprod′

2 and Πexpt′

2 :
The �rst of these P systems is given by

Σ = Λ = (a1, a2), µ
Πsum′

2
= [1]1 , ι = 1, M1 = {{#}}

R1 = {# → (#, out), a1 → (a1, out), a2 → (a1, out)(a2, out)}, ρ1 = ∅

This P system computes the function +′ : IN2 → IN2, de�ned as +′(k1, k2) =
(k1 + k2, k2).

The iteration of the P system Πsum′

2 is a P system which computes the
function It(+′) : IN3 → IN2 given by It(+′)(k1, k2, k3) = (k1 + k2k3, k2).
Then, the P system Πprod′

2 = C(It(Πsum′

2);Πconst
2,0 ,Πproj

2,2 ,Πproj
2,1) computes

the function ∗′ : IN2 → IN2, de�ned as ∗′(k1, k2) = (k1k2, k2).
The iteration of the P system Πprod′

2 is a P system which computes the
function It(∗′) : IN3 → IN2 given by It(∗′)(k1, k2, k3) = (k1k

k3
2 , k2). Then,

the P system Πexpt′

2 = C(It(Πprod′

2);Πconst
2,1 ,ΠId

2) computes the function

expt′ : IN2 → IN2, de�ned as expt′(k1, k2) = (kk2
1 , k1).

� P systems Πsum
n , Πprod

n and Πexpt
2 :

We de�ned these P systems by recursion over n ≥ 2.
(n = 2)

Πsum
2 = C(Πproj

2,1 ;Πsum′

2)

Πprod
2 = C(Πproj

2,1 ;Πprod′

2)

Πexpt
2 = C(Πproj

2,1 ;Πexpt′

2)

(n > 2)

Πsum
n = C(Πsum

n−1 ;C(Πsum
2 ;Πproj

n,1 ,Πproj
n,2),Πproj

n,3 , . . . ,Πproj
n,n)

Πprod
n = C(Πprod

n−1 ;C(Πprod
2 ;Πproj

n,1 ,Πproj
n,2),Πproj

n,3 , . . . ,Πproj
n,n)

They compute, respectively, the n-ary sum function, the n-ary product func-
tion and the exponential function.

� P system Πdif
2 :

Σ = (a1, a2), Λ = (b+, b−), µ
Π

dif
2

= [1]1 , ι = 1, M1 = {{#}}

(R1, ρ1) ≡ {a1a2 → λ >
(
→ (#, out), a1 → (b+, out), a2 → (b−, out)

)
}

This P system computes the function dif : IN2 → IN2 de�ned as dif(k1, k2) =
(max(k1 − k2, 0), |min(k1 − k2, 0)|).

Proof (of theorem 7.2). Given a polynomial P (a,x) ∈ ZZ[a,x], we construct
a computing P system with external output which partially generates the dio-
phantine set determined by this polynomial, in several steps:

1. Computing a monomial:
Let us denote Πexpti

j,k = C(Πexpt
2 ;Πproj

j,k ,Πconst
j,i), which computes the func-

tion exptj,ki : INj → IN given by exptj,ki (a1, . . . , aj) = ai
k.

Let m(a,x) = c ai1
1 . . . aim

m xj1
1 . . . xjn

n , with c > 0, be a monomial of P (a,x).
Then, the following computing P system with external output

Πmon
c,i1,...,im,j1,...,jn

= C(Πprod
m+n+1;Π

const
m+n,c,Π

expti1
m+n,1, . . . ,Π

exptim
m+n,m,

Π
exptj1
m+n,m+1, . . . ,Π

exptjn
m+n,m+n)

computes m(a,x), considered as a function from INm+n to IN.

2. Computing the polynomial:
Suppose that

P (a,x) =
r1∑

k=1

cka
ik
1

1 · · · aik
m

m x
jk
1

1 · · ·xjk
n

n −
r1+r2∑

k=r1+1

cka
ik
1

1 · · · aik
m

m x
jk
1

1 · · ·xjk
n

n

with ck > 0 for every k = 1, . . . , r1 + r2. Then, the following computing P
system with external output

Πpol
P (a,x) = C

(
Πdif

2 ;Πpol+
P (a,x),Π

pol−
P (a,x)

)
where

Πpol+
P (a,x) = C

(
Πsum

r1
;Πmon

c1,i1,j1 , . . . ,Πmon
cr1 ,ir1 ,jr1

)
Πpol−

P (a,x) = C
(
Πsum

r2
;Πmon

cr1+1,ir1+1,jr1+1 , . . . ,Πmon
cr1+r2 ,ir1+r2 ,jr1+r2

)
computes P (a,x), considered as a function from INm+n to IN.

3. Computing the diophantine set:
Considering that Σpol

P (a,x) = (d1, . . . , dm, e1, . . . , en) and Λpol
P (a,x) = (b+, b−),

let us de�ne the computing P system with external output

Π = (Σ,Λ, Γ,#, µ
Π

, ι,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp))

as follows:
� Σ = (d1, . . . , dm).
� Λ = (b).
� There exist distinct objects #′,#1, . . . ,#n ∈ Γ \ {#,#pol

P (a,x)}.
� µ

Π
= [1 [2]2 . . . [n+1]n+1µΠpol

P (a,x)
]1 , where the membranes from µΠpol

P (a,x)

have been adequately renamed (and therefore, also the rules of Πpol
P (a,x)

have been adapted). We denote σpol the skin membrane of the latter.
� ι = 1.
� p = ppol

P (a,x) + n + 1.
� M1 = {{#}},M2 = {{#1}}, . . . ,Mn+1 = {{#n}}. All the remaining

multisets are the empty one.
� Evolution rules:

• Rules for membrane 1:

#1 . . .#n# → #′ > # → # >

>


di → (di, inσpol

) (i = 1, . . . ,m)
ej → (ej , inσpol

) (j = 1, . . . , n)

#′ → (#pol
P (a,x), inσpol

)(, inσpol
)

b+ → b+

b− → b−

}
> #pol

P (a,x)#
pol
P (a,x) → #pol

P (a,x) > #pol
P (a,x) → (b, out)(#, out)

• Rules for membrane i, 2 ≤ i ≤ n + 1:

#i−1 → (#i−1, out)
#i−1 → #i−1(ei−1, out)

• The rules for the remaining membranes are the same than in Πpol
P (a,x).

Then Π is a valid computing P system with external output which com-
putes the partial characteristic function of the diophantine set represented
by P (a,x).
Indeed, the P system works as follows:
(a) First, a tuple x is nondeterministically generated from membranes 2 to

n + 1 into membrane 1.
(b) Second, the input objects di and the objects ei which represent the pre-

vious tuple in membrane 1 are sent into the skin membrane of µΠpol
P (a,x)

and the computation of P over the input a and the tuple x starts.
(c) Finally, if a non-zero result is obtained, then the computation enters an

in�nite loop: the rule b+ → b+ or the rule b− → b− is applied once and
again. If a zero result is obtained, then these rules cannot be applied,
and an object b and an object # are sent out of the membrane structure.

ut

8 Conclusions

We have studied in this paper the computing P systems with external output.
This is a variant of the model of computation introduced in [5], which in turn
is a variant of the basic model of transition P system introduced by G. P un in
[3]. The idea behind this new model is to be able to compute functions without
worrying about the content of the membrane structure used to do it, but only
considering the objects collected in its external environment.

We have de�ned two operations between computing P systems with external
output: composition and iteration. These operations have allowed us to prove the
universality of this model, by means of the MRDP theorem about diophantine
sets.

References

[1] Y. Matiyasevich. Hilbert's Tenth Problem. The MIT Press, 1993.
[2] G. P un. Computing with membranes. An introduction. Bull. European Assoc.

Theoret. Comput. Sci., 67:139�152, 1999.
[3] G. P un. Computing with membranes. J. Comput. System Sci., 61(1):108�143,

2000.
[4] G. P un and G. Rozenberg. A guide to membrane computing. Theoret. Comput.

Sci., to appear.
[5] G. P un, G. Rozenberg, and A. Salomaa. Membrane computing with external

output. Fund. Inform., 41(3):313�340, 2000.
[6] F. Sancho Caparrini. Veri�cación de programas en modelos de computación no

convencionales. PhD thesis, Universidad de Sevilla, Departamento de Ciencias de
la Computación e Inteligencia Arti�cial, 2002.

[7] The P Systems Web Page
(http://bioinformatics.bio.disco.unimib.it/psystems/).

