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Abstract. In this paper a variant of P systems with external output
designed to compute functions on natural numbers is presented. These
P systems are stable under composition and iteration of functions. We
prove that every diophantine set can be generated by such P systems;
then, the universality of this model can be deduced from the theorem by
Matiyasevich, Robinson, Davis and Putnam in which they establish that
every recursively enumerable set is a diophantine set.

1 Introduction

In 1998 G. Paun initiated a new branch of the field of Natural Computing by
introducing a new model of molecular computation, based on the structure and
functioning of the living cell: transition P systems (see [3]). The framework
within which computation are performed in this model is the membrane struc-
ture, which recreates the cell-like one. Multisets of symbol-objects are processed
along the computations, making them to evolve and distributing them among
the membranes. The result of a halting computation is the number of objects
collected in a specified output membrane.

Since the introduction of this model of computation many variants of it have
been proposed. One of them, presented in [5] by G. Piun, G. Rozenberg and
A. Salomaa, is the model of transition P systems with external output. In this
model, the result of a halting computation is not collected in a fixed membrane
of the membrane structure, but in the external environment associated with it.
In this way, the output of a computation can be thought as a set of strings,
instead of as a natural number, as occurred in the basic model.

P systems are usually considered as devices which generate numbers. Ne-
vertheless, besides generating devices, they can also be thought as recognizing
devices and as computing devices. These kind of P systems have been studied
in [6].

In this paper we work with computing P systems, but instead of the basic
transition ones we consider those with external output. Thanks to the special
functioning of these apparatus, we have been able to define, in a comfortable
manner, several operations between computing P systems with external output;
more specifically, we have defined composition and iteration, what have allowed
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us to prove the universality of these devices through the generation of all the
diophantine sets.

2 Multisets. Membrane structures. Evolution rules

A multiset over a set, A, is an application m : A — IN. A multiset is said to be
empty (resp. finite) if its support, supp(m) = {a € A : m(a) > 0}, is empty (resp.
finite). If m is a finite multiset over A, we will denote it m = {{a,...,axr}},
where the elements a; are possibly repeated. We write M (A) for the set of all
the multisets over A.

The set of membrane structures, MS, is defined by recursion as follows:
1.[]€eMS; 2. If g,y ..., € MS, then [pg ... u,) € MS.

A membrane structure, y, can also be seen as a rooted tree, (V(u), E(u)).
Then, the nodes of this tree are called membranes, the root node the skin mem-
brane and the leaves elementary membranes of the membrane structure. The
degree of a membrane structure is the number of membranes in it.

The concepts of depth of a membrane structure and depth of its membranes
are easily defined from those of a tree and its nodes. We will also need the
notion of level of a membrane within a membrane structure, which is defined as
the difference between the depth of the second and the depth of the first.

The membrane structure with external environment associated with a mem-
brane structure, p, is u¥ = [, u],. If we consider the latter as a rooted tree, the
root node is called the external environment of u.

Given an alphabet, I', we associate with every membrane of a membrane
structure a finite multiset of elements of I', which are called the objects of the
membrane.

We also associate with every one of these membranes a finite set of evolution
rules. A evolution rule over I' is a pair (u,v), usually written u — v, where u is
a string over I' and v = v’ or v = v'§, where v’ is a string over

I' x ({here,out} U {in; : 1 € V(1)})
The idea behind a rule is that the objects in u “evolve” into the objects in v/,

moving or not to another membrane and possibly dissolving the original one.

3 Computing P systems with external output

We are now prepared to introduce our new model of computation.

Definition 3.1. A computing P system with external output of order (m,n) and
degree p is a tuple

I = (27/1’1—17#7/1’117[’7-/\/117‘"7Mp7(R17p1)7'-'a(Rp7pp))

where



— X is an ordered alphabet of size m, the input alphabet.

— A is an ordered alphabet of size n, the output alphabet.

— I' is an alphabet such that X U A C I, the working alphabet.

— # is a distinguished element in I'\ (X U A), the halting element.

— W, 18 a membrane structure of degree p, whose membranes we suppose labeled
from 1 to p.

— The input membrane of IT is labeled by ¢ € {1,...,p}.

— M; is a multiset over I' \ X associated with the membrane labeled by i, for
everyi=1,...,p.

— R; is a finite set of evolution rules over I' associated with the membrane
labeled by i, and p; is a strict partial order over it, for everyi=1,...,p.

To formalize the semantics of this model we define first what a configuration
of a P system is, from what follows the notion of computation.

Definition 3.2. Let IT be a computing P system with external output.

— A configuration of II is a pair (u¥, M), where p is a membrane structure
such that V(u) C V(u,) and has the same root than p,, and M is an
application from V(u®) into M(I'). For every node nd € V(u¥) we denote

— Suppose that II is of order (m,n) and X = (ay,...,an). Then, any m-tuple
of natural numbers can be codified by a multiset over X and given as input to
the P system. Thus, the initial configuration of II for a tuple (k1,...,kn) €
IN™ is the pair (u®, M), where = p,,, Mg =0, M, = M, U{{a%* ... akm}}
and M; = M;, for every i # ¢.

We can pass, in a non-deterministic manner, from one configuration of IT
to another by applying to its multisets the evolution rules associated with their
corresponding membranes. This is done as follows: given a rule u — v of a
membrane ¢, the objects in u are removed from M;; then, for every (ob, out) € v
an object ob is put into the multiset associated with the parent membrane (or
the external environment if ¢ is the skin membrane); for every (ob, here) € v
an object ob is added to M;; for every (ob,in;) € v an object ob is added to
M; (if j is not a children membrane of 4, the rule cannot be applied). Finally,
if 4 € v, then the membrane 7 is dissolved, that is, it is removed from the
membrane structure (the objects associated with this membranes are collected
by the parent membrane, and the rules are lost. The skin membrane cannot
dissolve). Moreover, the priority relation among the rules forbids the application
of a rule if another one of higher priority is applied.

Given two configurations, C' and C’, of II, we say that C’ is obtained from
C in one transition step, and we write C' = C’, if we can pass from the first to
the second by using the evolutions rules appearing in the membrane structure of
C in a parallel and maximal way, and for all the membranes at the same time.

Definition 3.3. Given a computing P system with external output of order
(my,n), II, a computation of IT with input (k1,...,kn) € IN™ is a sequence,
possibly infinite, of configurations of II, Cy = C1 = ... = Cy, ¢ > 0, such that



— Cy is the initial configuration of II for (ki,...,km).
— Fach C; is obtained from the previous configuration by one transition step.

We say that a computation, C, is a halting computation of 11, if ¢ € IN and there
s mo rule applicable to the objects present in its last configuration.

Then, the output of a halting computation and of a computing P system
with external output can be defined in a natural way.

Definition 3.4. Let IT be a computing P system with external output of order
(m,n) and suppose that A = (by,...,b,). Let C be a halting computation of
IT with input (k1,. .., kyn) € N™ and (u¥, M) its last configuration. Then, the
output of that computation is given by

Output(C) = (Mg(b1), ..., Mg(by,)).

Definition 3.5. Let IT be a computing P system with external output of order
(m,n). The output of IT with input (k1,...,kn) € IN™ is given by

Output(IT; ky, . .., k) = {Output(C) : C is a halting computation of IT
with input (k1, ..., km)}.

The idea behind P systems with external output is that we cannot know
what is happening inside the membrane structure, but we can only collect the
information thrown from it to the external environment. In accordance with it,
it seems natural that the halting computations of these P systems report to the
outside when they have reached their final configurations.

Furthermore, the idea behind computing P systems is to use them as com-
puting models of functions between natural numbers. These considerations lead
us to the following notions:

Definition 3.6. A computing P system with external output of order (m,n), II,
18 said to be valid when the following is verified:

— If C is a halting computation of II, then a rule of the form u — v(#, out)
maust have been applied in the skin membrane of i, , and only in the last step
of the computation.

— If C is not a halting computation of II, then no rule of the previous form is
applied in the skin membrane in any step of the computation.

— For every (k1,...,kn) € IN™ and for every two halting computations, Cy
and Ca, of IT with input (k1,. .., kny), Output(C1) = Output(Cs).

Definition 3.7. A computing P system with external output of order (m,n), II,
computes a partial function, f : IN™"— — IN", if

— II is a valid P system.
— For every (k1,...,kp) € N™
o f is defined over (ki,...,km) if and only if there exists a halting com-
putation of IT with input (ki,...,kn)-



e If C is a halting computation of II with input (ki,...,kn), then
Output(C) = f(k1,... km).

We denote CEP)""(a,3,7), where m,n € IN,p > 1, a € {Pri,nPri},
B € {Coo,Cat,nCoo} and v € {6,nd}, the family of functions computed by
computing P systems with external output of order (m,n), of degree at most p,
and with or without priority, with cooperation, only catalysts or without coop-
eration (see [3]), and with or without dissolution, respectively. The union, for all
p > 1, of the families of one of these types is denoted CEP™"(«, (3,7).

4 Composition of computing P systems with external
output

We introduce now the operation of composition between computing P systems
with external output.

Definition 4.1. Let f : N"— — IN" and g1 : N"— — IN**, ... g, : N"— —
IN®t such that s1+---+s; = m. Then, the composition of f with g1 to g;, denoted
C(f;91,---,9t), is a partial function from IN" to IN" defined as follows

C(f;gla"'7gt)(k17"'ak7“) :f(gl(klv"‘vkr)a"'agt(kla"'ak?”))

Theorem 4.2. Let f € CEP™"(«,(,7),91 € CEP™(a,3,7),...,9:+ €
CEP"™(«, B,7), with a € {Pri,nPri}, 8 € {Coo, Cat,nCoo} and v € {6,nd}.
Then, C(f;g1,...,9:) € CEP™"(Pri,Coo, ).

Proof. Let

I = (S5 Ap Tyt gt oo Moo MY (R D), (RE )
H ( 917/191’ g17#g1wung LguMl ""7M221’(R{1’p?1))' (RZle,Pg;l))

H (EgmAguFu#gm,LLngt»LgﬂM?ta” Mg;t (Rﬁhﬂpgt)a?(Rg;t7p]g);t))

be computing P systems with external output that compute, respectively, the
function f and the functions ¢; to g¢;.

By means of a renaming of the elements of the alphabets (and, therefore,
also of the rules), we can suppose that

- Egl ==X, =(a1,...,a.).

- (b17"' ) '7Agt = (b51+'”+5t71+17"'7bm)'
- Zf = (C

A= (dy.....dy).

- (Aglu---uAgt)me:(Z).

— Fg, F #g,, for every i # j.



Let us consider the computing P system with external output

I = (27A3F7#7,LLH’L7M17-'~7Mp7(R17p1)7"'3(Rp,pp))

given by
— XY =(e1,...,e.). (We suppose that X' N UE:l Iy, =0).

There exist distinguished elements ¢,5,© € I'\ (I'y U U§:1 Iy.).
A= (dy,...,dy).
# # H#g,, forevery i =1,...,¢t, and # # #y.

= [1/1%1 e, an]u where the membranes from p, ... p0, o

have been adequately renamed (and therefore, also the rules of the corres-
ponding P systems have been adapted). We denote oy, ,...,0,,,0 the skin

membranes of the latter. Also, we consider that ¢y, ,...,¢g,,¢f reflect the new
labeling of the input membranes of I1,,,...,I1,,, IIf, respectively.
L= 1.

pP=pg ++pg +por+1
M; = {{#,©}}. The remaining multisets are all empty.
The evolution rules are the following:

e Evolution rules for membrane 1:

ei—>(ei,inggl)...(ei,inggt) (t=1,...,7)

O — (0,ing,, ) ... (©,ing,,)

Ho oo FgH — (Oing,) > H# — #>b; — (by,ing,) (i=1,...,m)
di — (d;,out) (1=1,...,n)

#p — (#,out)

e For every function fun = g¢i1,...,4:, f and for every membrane j of

Porpo the following rules are included:

& = &(5,in;,) ... (6,iny,)
e - MM > @ — e
evolution rules associated with the membrane in Ily,,
where j; to ji are the children membranes of membrane j and u is its

level within P, Moreover, if j is tfyun, then the rule @ — ©® has

higher priority than the original rules of II,,, for this membrane.

Let fun be as above and let ji,..., j; be the membrane path from oy,
t0 tfun. Then, for k£ = 1,...,¢ — 1 the following rules are included in
membrane ji:

e — (es,ing,,.,) (i=1,...,7) for fun=g1,...,9:

by — (bi,ing,,,) (i=1,...,m) for fun=f
Also, the following rules are included in membrane j; = tfyn.

e;—a; (i=1,...,7) for fun=g1,...,9:

bi—c¢ (i=1,...,m) for fun=f



The P system constructed in this way, denoted C(IIs; II,,, ..., II,,), is a valid
computing P system with external output which computes the composition of f
with g1 to ¢g;. Furthermore, it preserves the use or not of dissolution from the P
systems which compute the functions.

Indeed, the system works as follows:

— Phase 1: Computation of the functions g1 to gy over the input data

To perform this stage, we need to carry out two operations: the first one
consists of taking the input arguments from membrane 1, which recall is the
input membrane of II, to all the input membranes of the P systems II,, to
I1,,. This is easily done by displacing the objects representing the arguments
through all the necessary membranes.

The second operation is a little bit more complicated: in order for a specific
P system II,, to compute correctly the value of the function g; over the
input data, we need that all the membranes of this P system start to apply
their original rules at the same time (that is, we have to synchronize locally
the membranes of each II,,). We achieve this by using counters for every
one of these membranes. First, we use the object © to activate the counters,
represented by objects @, in all the membranes. These latter objects use
objects ® to count and, when a certain quantity is reached, the corresponding
membrane is allowed to use the rules of I1,,. Because of the way we have
implemented this, these quantities turn out to be the levels of the membranes
in the structure Hor, -

It is also important that when the P system I1,, starts to compute the value,
the objects representing the input data have reached its input membrane.
However, as we perform the two operations above simultaneously, we get it
for free.

Finally, we have to wait until all the values from II,, to II;, have been
computed, before allowing the P system Iy to be used (that is, there must
be a global synchronization in the skin of IT).

Let us see with greater detail the rules involved in this phase:

1. At the first step of a computation of IT with input (k1,..., k), we have
in membrane 1 the multiset {{ef*,... efr # ©1} and the other mem-
branes are empty. Therefore, only the rules which send the objects e;
and the object © into the skins of M, YO fip, and the rule # — # in
membrane 1 can be applied.

2. Now, membrane 1 waits for the values of ¢ to g; over (k1,...,k,) by
means of the rule # — #. With regard to membrane structures [, tO

fin,, » the rule & — ®(0,inj,) ... (6,inj,) makes the object © to spread
to all their membranes, because when it reaches a particular membrane,
it is immediately transformed into a counter object & and also sent to
the children membranes. Thus, from a step of the computation to the
next one, © reaches the membranes one depth greater. Meanwhile, the
rule @ — @©© makes the object @ to generate objects ®. A close look
to the situation created shows that the activating object & have reached

all the membranes exactly when the counter objects @& have generated



in each membrane a number of objects ® equal to their levels in p T rum

(fun = g1,...,9:)- At that moment, the rule ®*® — ./\/lf“" introduces
in membrane j the objects associated with it in I7¢,,, and this is done
for all the membranes of each II,, at the same time. From now on, the
values of g1 to g; over (k1,...,k,) are computed exactly in the same way
than the P systems II,, to II,, would do it.

3. Simultaneously, the objects e; cover the path from the skin membrane
of each frr,, to the input membrane of I1,,, by means of the rules e; —
(ei,inj, ), and are changed there into the corresponding objects a;, by
means of the rules e; — a;. Note that the objects e; and the object &
reach the input membrane at the same time. So, when Il starts its
original functioning, as stated above, the input data is in its place.

— Phase 2: Computation of the function f

Phase 1 ends when membrane 1 has collected at least one object of each #,,
to #g4,. It is then when the values computed have to be sent as input data
to the P system II¢. To synchronize the end of phase 1 with the beginning
of phase 2, membrane 1 apply once and again the rule # — # until the rule
H#gy - Hg.H — (O,in,,) can be used.
This latter rule sends an object & into the skin of fo, s in order to initiate
its membranes’ counters so that they start to apply their original rules at
the same time (local synchronization within I7y). This is done just as before.
Also, in the next step of the computation the objects b;, which represent the
values obtained in phase 1, are put into the skin of P, and, subsequently,
moved, by means of the rules b; — (b;,inj,_ ), through all the membranes
from this one to the input membrane of I7¢. Next, the rules b; — ¢; change
them into the corresponding input objects of IIy.
It is easy to see that, although there is a gap of one step of computation
between when © gets into a membrane and when the b;s do so, this is not
at all a problem.
Now, the value of the function f over the arguments represented by the
objects ¢; is computed, and along this computation objects d; representing
the result are thrown out of u,, . These objects are collected in membrane
1, and immediately expelled from p,. The calculation finishes when some
objects # are collected in membrane 1 and they are expelled from p, as
objects #.

O

5 Iteration of computing P systems with External
Output

We introduce now the operation of iterating a computing P system with external
output.



Definition 5.1. Let f : N — — IN™. Then, the iteration function of f, denoted
It(f), is a partial function from IN™ " to IN™ defined as follows:

It(f)(x,0) =«
It(f)(®,n+1) = It(f)(f(x),n)

Theorem 5.2. Let f € CEP™™(«,3,nd), with a € {Pri,nPri} and § €
{Coo,Cat,nCoo}. Then It(f) € CEP™ 1™ (Pri,Coo,nd).

Proof. Let

Hf = (Zf’Af7Ff’#f7/’[’Hf’Lf’M{7"'7M£f7(R{7p{)""7(R£f7p£f))

be a computing P system with external output such that computes f.
By means of a renaming of the elements of the alphabets (and, therefore,
also of the rules), we can suppose that

— Xy =(a1,...,am).
— Ap=(b1,...,bp).

Let us consider the computing P system with external output
II = (27A7Fa#aun7LaM17 cee 7Mp7 (R17p1>7' ) (Rpapp))
verifying the following

— Y =(c1,---,Cm+1), and is such that X' N Iy = 0.

— There exist distinguished elements ®,5,©,®,@ € I'\ I}.

- A=(c1,...,¢m).

— # F #r.

- Uy = [1unf]1, where the membranes from fo, have been adequately re-
named (and therefore, also the rules of II; have been adapted). We denote
oy the skin membrane of the latter. Also, we consider that ¢y reflects the
new labeling of the input membrane of II;.

—v=1

—p=py+1L

— M = {{#}}. The remaining membranes are all empty.

— The evolution rules are the following:

e Evolution rules for membrane 1:

#emi1 — (8,ing,) > #ci — #(ci,out) (i=1,...,m) >
> # — (#,0ut) > #5#5 — #5 > #5 — (0,in,,) >
> %, — Q% (1=1,...,m) > Q" — # >

> — (ciying,) (i=1,...,m)

where w is the degree of 11, .



e For every membrane j distinct from membrane 1 the following rules are
included:

6 — @(e,in,)...(8,in,,)

e — M >e— e

evolution rules associated with the membrane in I7f
© = ®(0,in;,) ... (©,ing,)

0b® — @ (ob€ ) >® — (®,out)

where j; to ji are the children membranes of membrane j and u is its
level within fr, - Moreover, if j is ¢¢, then the rule & — @©® has higher
priority than the original rules of this membrane in I7;.

o Let ji,...,jq be the membrane path from of to ty. Then, for k =
1,...,q — 1, the following rules are included in membrane j:

ci—>(ci,injk+1) (i:l,...,m)
Also, the following rules are included in membrane j,:
ci—a; (i=1,...,m)

The P gystem constructed in this way, denoted by It(I1f), is a valid comput-
ing P system with external output which computes the iteration of f.

Indeed, the system works as follows:

The number of iterations of f to make is given by the (m + 1)th argument
provided to It(f). What we do then is to reduce this argument by one and,
next, carry out a two phases process: first, computing one iteration of f; second
“reseting” the P system II; to its initial state. We repeat this process until the
(m 4+ 1)th argument gets to zero.

The test to decide if one iteration has to be done is performed in membrane
1 looking how many objects ¢;,+1, which represents the (m + 1)th argument,
there are. If such an object is present, the rule #c,,1 — (©,ins,) (followed by
the rules ¢; — (c;,in,,)) is applied, starting the calculation of a new iteration
of f, which is done in two phases.

— Phase 1: Computing one iteration of f
This phase starts when an object © gets into the skin of [ This object
initiate counters in the membranes of u P in the same way than we did for
the composition, in order to assure that they start to apply their original
rules at the same time (local synchronization within 7). Also, with a gap
of one step of computation that does not matter, the input data, represented
by objects ¢;, is taken from the skin of [, to the input membrane of IIy.
Although through the execution of this phase the result of the iteration is
being sent out into membrane 1, they do not activate any rule in it.

— Phase 2: Reseting the P system II¢



Phase 1 ends when some objects #7 get into membrane 1. Before we could
compute another iteration of f, we need to erase all the objects left in the
membranes of ;- This is what we do in this stage, which start by reducing
the objects #; in membrane 1 to only one. Then the rule #; — (©,iny,)
in membrane 1 introduce an object @ into the skin of fom, -

This object spreads to all the membranes just as © do in the previous phase,
and leave one object ® in each of them. This latter objects act as erasers,
removing all the objects from the membranes by means of the rules 0b® — ®.
When a membrane has been emptied, the object ® is expelled from it.
Therefore, this phase finishes when membrane 1 collects as many objects ®
as the degree of [ Only then the rules ®“b; — ®“¢; can be applied, which
transform the result of the iteration of f into input data for II. Finally, the
rule ®" — # is applied to start the process again.

When no object ¢, 41 is present in membrane 1, no more iteration has to be done.
What is left is to send the objects c¢; to ¢, of this membrane to the external
environment, followed by the object #.

Note that during the evaluation of the test, no rule can be applied in another
membrane other than membrane 1, because they are empty. a

6 Diophantine sets

We introduce in this section the notion of diophantine set, which will help us to
prove the universality of the model of computing P system with external output.

Definition 6.1. A set of natural tuples, A C IN™, is a diophantine set if there
exists a polynomial P(a,x) € Za, x| such that

A={aecN":3xc N"(P(a,z) =0)}
The following property is relatively easy to prove.
Proposition 6.2. Every diophantine set is a recursively enumerable set.

The main result about diophantine sets was obtained by Y. Matiyasevich
from works by J. Robinson, M. Davis and H. Putnam, providing a negative
solution for Hilbert’s Tenth Problem.

Theorem 6.3 (MRDP [1]). Every recursively enumerable set is a diophantine
set.

7 Generation of diophantine sets

First we need to introduce the concept of generation of a set by a P system.

Definition 7.1. Let IT be a computing P system with external output of order
(m,n).



— A set A CIN™ is said to be partially generated by II if this P system computes
its partial characteristic function; that is, the function

1, Zf(k1,7km)€A

undefined, otherwise

C;‘l(kl,...,km):{

— A set A CIN™ is said to be totally generated by II if this P system computes
its characteristic function.

The main result of this paper is the following.

Theorem 7.2. Every diophantine set is partially generated by a computing P
system with external output.

Before beginning with the proof, let us consider the following computing P
systems with external output:

— P systems IT1¢, with n > 1:

Y=A=(ay,...,an), .um[ld =Ll =1, Mi={{#}}
Ry = {# — (#,o0ut)} U{a; — (aj,out) :i=1,...,n}, p1 =10

These P systems compute the identity functions, Id™ : IN" — IN", defined
as Id"(ky,... kp) = (k1,... , kn).
— P systems II?"? withn>1and 1 <j<n:

n,g

Y= (alv""an)’ A= (aj)v ILLHpT.oj = [1]17 t=1, My :{{#}}

mn,J

Ry = {# - (#7OUt)’aj - (aj’OUt>}’, P1 = 0

These P systems compute the projection functions, I} : IN" — IN, defined
as 7 (ky, ... k) = kj.
— P systems I1;°7°", with n. > 1 and ¢ € IN:

Y= (alv' . '7an)7 A= (b)7 Nnﬁ?gst = [1]1? v=1, M;= {{bcv#}}
Rl = {# - (#7OUt)7b - (b7 Out)}a pP1 = (Z)

These P systems compute the constant functions, C : IN" — IN, defined as
C;L(kl, e ,k‘n) = C.

— P systems IT3%™ | I127°% and 115"
The first of these P systems is given by

Y =A=(a1,a2), u =[], ¢=1, Mi={{#}}

!
sum
3

Ry = {# — (#,0ut),a1 — (a1,0ut),as — (a1, out)(az,out)}, p1 =0

This P system computes the function +' : IN*> — IN?, defined as +'(ky, ko) =
(k1 + ko, k2).



The iteration of the P system II3“™ is a P system which computes the
function It(+') : IN* — IN? given by It(+')(k1, ko, k3) = (k1 + koks, k2).
Then, the P system Hgmd/ = C(It(IIge™"y; 155, Hgf;ﬂ Hgfloj) computes
the function # : IN> — IN?, defined as *(k1, k2) = (kiko, ko).

The iteration of the P system IT2"°% is a P system which computes the
function It(+') : IN* — IN? given by It(s')(k1, ko, ks) = (k1k5 ko). Then,
the P system IIS*PY = C’(It(Hgmd/);Hgf’{”t,HQId) computes the function
expt’ : IN? — IN?, defined as expt’(ky, ko) = (k’fQ, k).

— P systems IT3*™, IT77°? and IT5"":
We defined these P systems by recursion over n > 2.

(n=2)
sum __ PTOj . sum’
;" = C(Hz,l s 1134™)
prod __ proj . rrprod’
g = C(H2,1 i 115 )
expt proj . yrexpt’
I, = C(HZ,l 11577 )
(n>2)
sum __ sum. sum, yypProj yyproj proj proj
Hn - C(Hn717 (H2 7Hn,1 7Hn,2 )’Hn,S 7"‘7Hn,n )
prod __ prod , prod, yrproj proj proj proj
Hn - O(Hn—l ’O(HQ 7Un,1 7Hn,2 )’Hn,ii 7"'7Hn,n )

They compute, respectively, the n-ary sum function, the n-ary product func-
tion and the exponential function.
— P system 115"

Y= (alaa2)7 A= (b+’b_)7 lundz‘f = [1]17 t=1, M;= {{#}}
(R1,p1) ={ara2 — XA > (# — (#,0ut),ay — (b*,0ut), a2 — (b, out))}

This P system computes the function dif : IN* — IN? defined as di f (k1, ko) =
(max(ky — k2,0),| min(k; — k2,0)]).

Proof (of theorem 7.2). Given a polynomial P(a,x) € Zla,x], we construct
a computing P system with external output which partially generates the dio-
phantine set determined by this polynomial, in several steps:

1. Computing a monomial:

Let us denote Hjipti = C(IT5™ Hfzoj,ﬂj‘?f;”“), which computes the func-

tion exptg’k :INY — IN given by emptf’k(al, ca5) =ak.
Let m(a,z) = cal' ...almx] ... 2d», with ¢ > 0, be a monomial of P(a,x).

Then, the following computing P system with external output

mon — prod . 77const exptiy expty,,
Hc7i1,---7im,j17~--,jn - C(Hm+n+1’ Hm-i-n,c’ Hm+n,1’ AR Hm-i—n,m?
exptj, exptj,,
Hm+n,m+17 ce Hm+n,7n+n)

computes m(a, ), considered as a function from IN"" to IN.



2. Computing the polynomial:
Suppose that

r1+r2

E ckal- amxl . — E cka1~ ama:J11~ x%"

k=ri+1

with ¢ > 0 for every kK = 1,...,71 + ro. Then, the following computing P
system with external output

pol _ dif . yrpol+ pol—
HP(a x) O(H ZYP(a, x)’ HP(a a:))
where
pol+ sum mon mon
HP(“ x) O(H cy,it, gty HCT17'LT17]71)
pol— sum, Fymon mon
HP(a x) O(H Hcr 41,871 gridly - Hcrl+,~2,zrl+r2 JT1+T2)

computes P(a,x), considered as a function from IN"" to IN.
3. Computing the diophantine set:

Considering that Zg‘zla o) = = (d1,...,dm,e1,...,€,) and A’;f(la z) = = (b*,b7),
let us define the computing P system with external output
I = (EaA7F7#7MH7LaM1a <o 7Mp; (Rlapl)7' (RN (Rp7pp))
as follows:
Y =(d1,...,dp).
— A= (b).
— There exist distinct objects #', #1,...,#n € I' \ {#, #pOla 2) }
— by = L ...[n+1]n+lﬂnpol )]1, where the membranes from i ot )
P(a P(a,x
have been adequately renamed (and therefore, also the rules of H;;(Ela <)
have been adapted). We denote o, the skin membrane of the latter.
—1=1.
pol

- p= pP(a x) +n+1
- My = {#}}, M2 = {{#1}}, ... . Mug1 = {{#n}}. All the remaining

multisets are the empty one.
— Evolution rules:
e Rules for membrane 1:

#1-~-#n#_’#/>#—>#>
di — (di,ing,,) (i=1,...,m)
> ej = (ej,ing,,) (F=1,...,n)
# — (Flaw) o) (©:in,,,)
bt — b

+
_— b_} > A ) B o) = Wiy > i o) — (b 0ut) (#, out)



e Rules for membrane 7, 2 < i <n+1:

#i—1 — (#i-1,0ut)
H#i_1 — F#i—1(ei—1,0ut)

e The rules for the remaining membranes are the same than in I7 lpjo(la )"
Then II is a valid computing P system with external output which com-
putes the partial characteristic function of the diophantine set represented
by P(a,x).

Indeed, the P system works as follows:

(a) First, a tuple @ is nondeterministically generated from membranes 2 to
n + 1 into membrane 1.

(b) Second, the input objects d; and the objects e; which represent the pre-

vious tuple in membrane 1 are sent into the skin membrane of pi por
P(a,z)
and the computation of P over the input a and the tuple x starts.

(c¢) Finally, if a non-zero result is obtained, then the computation enters an
infinite loop: the rule b+ — b™ or the rule b~ — b~ is applied once and
again. If a zero result is obtained, then these rules cannot be applied,
and an object b and an object # are sent out of the membrane structure.

O

8 Conclusions

We have studied in this paper the computing P systems with external output.
This is a variant of the model of computation introduced in [5], which in turn
is a variant of the basic model of transition P system introduced by G. Paun in
[3]. The idea behind this new model is to be able to compute functions without
worrying about the content of the membrane structure used to do it, but only
considering the objects collected in its external environment.

We have defined two operations between computing P systems with external
output: composition and iteration. These operations have allowed us to prove the
universality of this model, by means of the MRDP theorem about diophantine
sets.
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