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Abstract. In this work we study semi-Kolmogorov models for predation with

both the carrying capacities and the indirect effects varying with respect to
randomly fluctuating environments. In particular, we consider one random

semi-Kolmogorov system involving random and essentially bounded param-

eters, and one stochastic semi-Kolmogorov system involving white noise and
stochastic parameters defined upon a continuous-time Markov chain. For both

systems we investigate the existence and uniqueness of solutions, as well as

positiveness and boundedness of solutions. For the random semi-Kolmogorov
system we also obtain sufficient conditions for the existence of a global random

attractor.

1. Introduction. Kolmogorov’s predator-prey model refers to the general model
describing dynamics of interacting populations:

dx
dt

= xf(x, y),

dy
dt

= yg(x, y),

where f and g denote the respective per capita growth rates of the two species
satisfying ∂yf(x, y) < 0 and ∂xg(x, y) > 0, respectively. One simple example of
Kolmogorov-type system is the following plakton food web model

dZ
dt

= Z(−νz + c3P ),

dP
dt

= P (c1I0 − c2Z − νpP ),
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where I0 is the amount of nutrient, Z is the nutrient content of zooplankton, P
is the nutrient content of phytoplankton, νz and νp are the morality rates of the
zooplankton and phytoplankton, respectively, c1 is the phytoplankton’s nutrient
yield from consuming resources, c2 accounts for losses in phytoplankton population
due to zooplankton consumption, and c3 is the zooplankton’s nutrient yield from
consuming phytoplankton. The study of phytoplankton predator-prey systems is
fundamental to mathematical biology and ecology, due to their simple experimental
structure and their wide applications to aquatic food chains, water quality control,
regulating carbon dioxide uptake, etc.

Usually when there are two groups of preys with different sizes, the predator
prefers to predate the preys in the group with smaller size and the other group
with larger size takes advantages of it. This results in predator-prey systems with
indirect effects. More precisely, indirect effect refers to species interactions which
can occur through chains of direct species interaction, such as predation or in-
terference competition. The studies of indirect effects are of great importance to
the biology and ecology communities, as they can link the population dynamics
of species that do not interact directly (see [4, 5, 6, 17, 27, 31, 32] and references
therein).

Denote by P1(t) and P2(t) the nutrient contents of two groups of phytoplankon
with different sizes, and index all the parameters according to their group. Taking
into account the indirect effects, we obtain the following plankton food web model
(see e.g. [12],[13]):

dZ
dt

= Z(−νz + c3,1P1 + c3,2P2), (1)

dP1

dt
= P1[c1,1I0 − (c2,1 + c3,1)Z − νp,1P1 − νp,1P2]−m1P1Z, (2)

dP2

dt
= P2[c1,2I0 − (c2,2 + c3,2)Z − νp,2P1 − νp,2P2] +m2P1Z, (3)

where the terms m1P1Z and m2P1Z describe the indirect effect caused by the
zooplankton preferring to prey the smaller group of phytoplankton (P1) over the
larger group of phytoplankton (P2).

Notice that system (1) - (3) is not exactly of Kolmogorov type because of the
structure of equation (3). We thus classify it as a semi-Kolmogorov system. It has
been pointed out in various occasions that the presence of indirect effects serves as
a regulator of predator-prey systems (see, e.g., [12]) and helps coexistence. This
motivates the study of the following general semi-Kolmogorov system for predation
with indirect effects:

dx(t)
dt

= x(t)[−b1 + a12y(t) + a13z(t)], (4)

dy(t)
dt

= y(t)[b2 − a21x(t)− a22y(t)− a23z(t)]−m1x(t)y(t), (5)

dz(t)
dt

= z(t)[b3 − a31x(t)− a32y(t)− a33z(t)] +m2x(t)y(t), (6)

where all the parameters ai,j(i, j = 1, 2, 3), bj(j = 1, 2, 3), mj(j = 1, 2) are nonneg-
ative.
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It has been well understood that the carrying capacities bj (j = 1, 2, 3) are of-
ten subject to environmental noise. In [8], the authors studied a stochastic semi-
Kolmogorov system obtained from perturbing each bj by a white noise, and a ran-
dom semi-Kolmogorov system obtained from making the parameters bj (j = 1, 2, 3)
random and essentially bounded. Conditions for the existence of a random attrac-
tor for each system have been investigated. On the other hand, indirect effects are
also subject to environmental fluctuations, since the changes in nutrition resources
resulted from changes in the environment can affect the behavior of the popula-
tions. A nonautonomous semi-Kolmogorov model was introduced and analyzed in
[7], where periodic forcing was considered to describe seasonal changes of the en-
vironment. The nonautonomous model is capable to describe complex and even
chaotic oscillations as described in the biological literature (see for example [19]).
In particular the authors proved the existence of a pullback attractor and provided
an estimate of its dimension by numerical experiments.

In this work we will study the semi-Kolmogorov system in randomly fluctuat-
ing environments, with both the carrying capacities (represented by bj , i = 1, 2, 3)
and the indirect effects (represented by mj , i = 1, 2) varying with respect to the
environments. In particular, we will consider two systems: (1) A random semi-
Kolmogorov system which consists of random differential equations resulting from
making the parameters bj ’s and mj ’s random and essentially bounded, i.e., per-
turbed by real noise. (2) A stochastic semi-Kolmogorov system which consists of
stochastic differential equations with regime switching resulting from modeling the
random environments by a continuous-time Markov chain. For both systems we
will investigate the existence and uniqueness of solutions, as well as positiveness
and boundedness of solutions. For the random semi-Kolmogorov system we also
obtain sufficient conditions for the existence of a global random attractor. Note
that studying these two systems requires two different set of techniques, one based
on the theory of random dynamical systems, and the other based on the theory of
stochastic analysis. The rest of this paper is organized as follows. In Section 2 we
will set up and analyze the random semi-Kolmogorov system, in Section 3 we will
set up and analyze the stochastic semi-Kolmogorov system and in Section 4 we will
provide some closing remarks.

2. A random semi-Kolmogorov model. In this section we will consider a ran-
dom semi-Kolmogorov model with random carrying capacities and random indirect
effects, in the sense that the parameters bj ’s and mj ’s are both perturbed by ran-
dom environmental influences modeled by the paths of a probability space (Ω,F ,P).
More precisely we will study the following system of random differential equations,
or, in another words, a system of non-autonomous differential equations with ran-
dom parameters:

dx(t, ω)
dt

= x(t)[−b1(θtω) + a12y(t) + a13z(t)], (7)

dy(t, ω)
dt

= y(t)[b2(θtω)− a21x(t)− a22y(t)− a23z(t)]−m1(θtω)x(t)y(t), (8)

dz(t, ω)
dt

= z(t)[b3(θtω)− a31x(t)− a32y(t)− a33z(t)] +m2(θtω)x(t)y(t), (9)
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where bj(θtω), (j = 1, 2, 3) and mj(θtω), (j = 1, 2) are continuous and essentially
bounded, i.e.,

bj(θtω) ∈ Bj · [1− σj , 1 + σj ], Bj > 0, 0 < σj < 1, j = 1, 2, 3,

mj(θtω) ∈Mj · [1− εj , 1 + εj ], Mj > 0, 0 < εj < 1, j = 1, 2.
Bounded noise can be modeled in various ways (see [2]). For example, given a (driv-

ing) stochastic process Zt such as an Ornstein-Uhlenbeck process, the stochastic
process ζ(Zt) := ζ0

(
1− 2σ Zt

1+Z2
t

)
, where ζ0 and σ are positive constants with σ ∈

(0, 1), takes values in the interval ζ0[1−σ, 1+σ] and tends to peak around ζ0(1±σ).
It is thus suitable for a noisy switching scenario. In the theory of random dynamical
systems the driving noise process Zt(ω) is replaced by a canonical driving system
θtω. This simplification allows a better understanding of the path-wise approach to
model noise: a system influenced by stochastic processes for each single realization
ω can be interpreted as wandering along a path θtω in Ω and thus may provide
additional statistical/geological information to the modeler.

2.1. Preliminaries. In this subsection we first present some concepts (from [1])
related to general random dynamical systems (RDSs) and random attractors that
we require in the sequel.

Let (X, ‖ · ‖X) be a separable Banach space and let (Ω,F ,P) be a probability
space where F is the σ−algebra of measurable subsets of Ω (called “events”) and
P is the probability measure. To connect the state ω in the probability space Ω at
time 0 with its state after a time of t elapses, we define a flow θ = {θt}t∈R on Ω
with each θt being a mapping θt : Ω→ Ω that satisfies

(1) θ0 = IdΩ,
(2) θs ◦ θt = θs+t for all s, t ∈ R,
(3) the mapping (t, ω) 7→ θtω is measurable and
(4) the probability measure P is preserved by θt, i.e., θtP = P.

This set-up establishes a time-dependent family θ that tracks the noise, and (Ω,F ,P, θ)
is called a metric dynamical system [1].

Definition 2.1. A stochastic process {ϕ(t, ω)}t≥0,ω∈Ω is said to be a continuous
random dynamical system (RDS) over (Ω,F ,P, (θt)t∈R) with state space X if ϕ :
[0,+∞)×Ω×X → X is (B[0,+∞)× F ×B(X), B(X))–measurable, and for each
ω ∈ Ω,

(i) the mapping ϕ(t, ω) : X → X, x 7→ ϕ(t, ω)x is continuous for every t ≥ 0;
(ii) ϕ(0, ω) is the identity operator on X;

(iii) (cocycle property) ϕ(t+ s, ω) = ϕ(t, θsω)ϕ(s, ω) for all s, t ≥ 0.

Definition 2.2. (i) A random setK is a measurable subset ofX×Ω with respect
to the product σ−algebra B(X)×F .
The ω−section of a random set K is defined by

K(ω) = {x : (x, ω) ∈ K}, ω ∈ Ω.

When a set K ⊂ X × Ω possesses closed or compact ω−sections, then it is
a random set provided that the mapping ω 7→ d(x,K(ω)) is measurable for
every x ∈ X, see [14]. Then K will be said to be a closed or compact random
set, respectively.

(ii) A random set K(ω) is said to be bounded if K(ω) is bounded for a.e. ω ∈ Ω.
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(iii) A bounded random set K(ω) ⊂ X is said to be tempered with respect to
(θt)t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈K(θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω 7→ r(ω) ∈ R is said to be tempered with respect to
(θt)t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R
|r(θ−tω)| = 0, for all β > 0.

In what follows we use D(X) to denote the set of all tempered random sets of
X.

Definition 2.3. A random set Γ(ω) ⊂ X is called a random absorbing set in D(X)
if for any K ∈ D(X) and a.e. ω ∈ Ω, there exists TK(ω) > 0 such that

ϕ(t, θ−tω)K(θ−tω) ⊂ Γ(ω), ∀t ≥ TK(ω).

Definition 2.4. Let {ϕ(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, (θt)t∈R) with state
space X and let A(ω)(⊂ X) be a random set. Then A(ω) is called a global random
D attractor (or pullback D attractor) for {ϕ(t, ω)}t≥0,ω∈Ω if ω 7→ A(ω) satisfies

(i) (random compactness) A(ω) is a compact set of X for a.e. ω ∈ Ω;
(ii) (invariance) for a.e. ω ∈ Ω and all t ≥ 0, it holds

ϕ(t, ω)A(ω) = A(θtω);

(iii) (attracting property) for any K ∈ D(X) and a.e. ω ∈ Ω,

lim
t→∞

distX(ϕ(t, θ−tω)K(θ−tω), A(ω)) = 0,

where
distX(G,H) = sup

g∈G
inf
h∈H
‖g − h‖X

is the Hausdorff semi-metric for G,H ⊆ X.

Proposition 1. [10, 18] Let Γ ∈ D(X) be an absorbing set for the continuous ran-
dom dynamical system {ϕ(t, ω)}t≥0,ω∈Ω which is closed and satisfies the asymptotic
compactness condition for a.e. ω ∈ Ω, i.e., each sequence xn ∈ ϕ(tn, θ−tnω)Γ(θ−tnω)
has a convergent subsequence in X when tn →∞. Then the cocycle ϕ has a unique
global random attractor with component subsets

A(ω) =
⋂

τ≥TΓ(ω)

⋃
t≥τ

ϕ(t, θ−tω)Γ(θ−tω).

If the pullback absorbing set is positively invariant, i.e., ϕ(t, ω)Γ(ω) ⊂ Γ(θtω) for
all t ≥ 0, then

A(ω) =
⋂
t≥0

ϕ(t, θ−tω)Γ(θ−tω).

Remark 1. When the state space X = Rd as in this paper, the asymptotic com-
pactness follows trivially. Note that the random attractor is path-wise attracting
in the pullback sense, but does not need to be path-wise attracting in the forward
sense, although it is forward attracting in probability, due to some possible large
deviations, see e.g., Arnold [1].
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2.2. Properties of solutions. In this subsection we will prove the existence and
uniqueness of solutions, as well as positiveness and boundedness of solutions, to
system (7) – (9). For convenince, denote by u(t) = (x(t), y(t), z(t)) ∈ R3.

Theorem 2.5. For any ω ∈ Ω, t0 ∈ R and u0 := (x(t0), y(t0), z(t0)) ∈ R3, the
system (7)-(9) admits a unique nonnegative and bounded solution u(·; t0, ω,u0) ∈
C([t0,∞),R3

+) with u(t0; t0, ω,u0) = u0 provided that

M1(1− ε1)−M2(1 + ε2) + a21 − a12 > 0, and a31 − a13 > 0. (10)

Moreover the solution generates a random dynamical system ϕ(t, ω)(·) defined as

ϕ(t, ω)u0 = u(t; 0, ω,u0), ∀t ≥ t0,u0 ∈ R3
+, ω ∈ Ω.

Proof. Using the identification u(t) = (x(t), y(t), z(t)), the system (7)-(9) can be
written as

u̇(t) = A(θtω) · u + f(θtω,u) + g(u),
where

A(θtω) =

 −b1(θtω) 0 0
0 b2(θtω) 0
0 0 b3(θtω)

 ,

and f : Ω× R3
+ → R3 and g : R3

+ → R3 are given by

f(θtω,u) =

 0
−m1(θtω)xy
m2(θtω)xy

 , g(u) =

 a12xy + a13xz
−a21xy − a22y

2 − a23yz
−a31xz − a32yz − a33z

2

 .

Since each bj(θtω) is bounded, the operator A generates an evolution system on
R3. Moreover, due to the boundedness of mi(θtω), the function f is locally Lipschitz
and the function g is continuously differentiable in R3. Hence the system (7)-(9)
possesses a unique local solution.

To prove the positiveness of solution we observe that each solution has to take
value 0 before it reaches a negative value. Then since the plane x = 0 and y = 0
are invariant and on the plane z = 0 the vector field is tangent or point inward R3

+,
we conclude that the set R3

+ is positively invariant. Then for any u0 ∈ R3
+, the

solution u(·;ω,u0) ∈ R3
+ for t ∈ [0,∞).

In order to prove the boundedness of solutions we consider the norm

‖u(t)‖1 := S(t) = x(t) + y(t) + z(t).

Then by equations (7), (8) and (9) we have
dS(t)

dt
= −b1(θtω)x+ b2(θtω)y + b3(θtω)z − a22y

2 − a33z
2 − (a23 + a32)yz

−[m1(θtω)−m2(θtω) + a21 − a12]xy − (a31 − a13)xz
≤ −b1(1− σ1)x+ b2(1 + σ2)y + b3(1 + σ3)z − a(y + z)(x+ y + z)
≤ (y + z)[b− aS(t)], (11)

where

a := min {a22, a33, a23 + a32,

M1(1− ε1)−M2(1 + ε2) + a21 − a12, a31 − a13} , (12)
b := max{b2(1 + σ2), b3(1 + σ3)}. (13)
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(1) If S(t0) ∈ {S(t) : S(t) ≥ b
a} then S(t) will be non-increasing.

(2) If S(t) enters the complementary region {S(t) : S(t) < b
a} at some time

t1 ∈ R, then

y + z ≤ S(t) <
b

a
, for all t ≥ t1.

And hence
dS(t)

dt
<
b

a
· (b− aS(t)), for all t ≥ t1. (14)

These imply that

S(t) ≤ b

a
+ S(t1)ebt1 for all t ≥ t1,

and therefore ‖u(t)‖1 is bounded and the local solution can be extended to a global
solution u(·; t0, ω,u0) ∈ C1([t0,∞),R3).

It is straightforward to check the cocycle property

u(t+ t0; t0, ω, v0) = u(t; 0, θt0ω,u0)

for all t0 ∈ R, t ≥ t0, ω ∈ Ω,u0 ∈ R3
+. This allows us to define a mapping ϕ(t, ω)(·),

which will be our random dynamical system, as

ϕ(t, ω)u0 = u(t; 0, ω,u0), ∀t ≥ 0, u0 ∈ R3
+, ω ∈ Ω. (15)

Since the functions f(θtω,u) and g(u) are continuous in u, the mapping u : [0,∞)×
Ω×R3

+ → R3
+, defined by (t;ω,u0) 7→ u(t;ω,u0) is (B[0,∞)×F0×B(R3

+),B(R3
+))-

measurable. It then follows directly that (7)–(9) generate a continuous random
dynamical system ϕ(t, ω)(·) defined by (15).

From now on, we will simply write u(t;ω,u0) instead of u(t; 0, ω,u0). Also
in what follows, when ω ∈ Ω fixed, we will not mention explicitly the random
parameter and will write u(t;ω, v0) as u(t) in short.

2.3. Existence of global random attractors. The main goal of this subsection
is to prove the existence of a random attractor for the random dynamical system
(RDS) ϕ(t, ω)(·) generated by the solution to system (7) – (9). To this end, we
first prove in the following lemma that the RDS ϕ(t, ω)(·) has a tempered random
bounded absorbing set.

Lemma 2.6. Assume that

M1(1− ε1)−M2(1 + ε2) + a21 − a12 > 0 and a31 − a13 > 0.

Then for each ω ∈ Ω, there exists a tempered bounded closed random absorbing set
B(ω) ∈ D(R3

+) of the random dynamical system {ϕ(t, ω)}t≥0,ω∈Ω such that for any
K ∈ D(R3

+) and each ω ∈ Ω, there exists TK(ω) > 0 yielding

ϕ(t, θ−tω)K(θ−tω) ⊂ B(ω), ∀t ≥ TK(ω).

More precisely, for a given δ > 0, the set B(ω) can be chosen as the deterministic
set

Bδ :=
{

(x, y, z) ∈ R3
+ : x+ y + z ≤ b

a
+ δ

}
for all ω ∈ Ω, i.e. B(ω) = Bδ for all ω ∈ Ω and where a and b are defined as in
(12) and (13) respectively.
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Proof. For any δ > 0, we consider the set Bδ as defined above. We start by proving
that Bδ is invariant.

(a) For any solution of (7)–(9) starting from a point inside the set

B0 := {(x, y, z) ∈ R3
+ : x+ y + z ≤ b/a

}
,

using that Ṡ(t) ≤ 0 on x + y + z = b/a, inequality (14) and the positive
invariance of R3

+ we have that S(t) ≤ b/a for all t ≥ t0. This means that B0

is positively invariant.
Moreover, using inequality (14), for any S(t) ∈ B0 we have

dS(t)
dt

≤ S(t)(b− aS(t)).

Then, integrating the Bernoulli type inequality (2.3), we deduce

S(t) ≤ bS(t0)
aS(t0) + (b− aS(t0))e−b(t−t0)

,

which implies that

lim
t→∞

S(t) ≤ b

a
, and lim

t0→−∞
S(t) ≤ b

a

(b) If a solution starts inside the set Bδ \ B0, then inequality (2.3) ensures that
Ṡ(t) ≤ 0 and, as a consequence, the solution cannot leave the set Bδ.

From the arguments (a) and (b) we conclude that the set Bδ is positively
invariant for any δ ≥ 0.

(c) It remains to study the case S(t) ≥ b/a+ δ since we have already proved that
Bδ is positively invariant. Similar to inequality (11) we can write

Ṡ(t) ≤ −b1(1− σ1)x+ (y + z)[b− aS(t)] ≤ −b1(1− σ1)x− aδ(y + z)
≤ −min{b1(1− σ1), aδ} · S(t).

Integrating the previous inequality, and making the dependence on the ran-
dom parameter explicit (for better representation of subsequent computa-
tions), we obtain

S(t, ω) ≤ S0(ω)e−min{b1(1−σ1),aδ}·(t−t0), (16)

where S0(ω) := S(t0, ω). Replacing ω by θ−tω in (16) gives

S(t; θ−tω, S0(θ−tω)) ≤ sup
v∈K(θ−tω)

‖v‖ · e−min{b1(1−σ1),aδ}·(t−t0).

If we denote the solution of system (7)–(9) satisfying u(0;ω,u0) = u0 as u(t;ω,u0) =
ϕ(t, ω)u0, then for any u0 := u0(θ−tω) ∈ K(θ−tω), we can write

‖ϕ(t, θ−tω)u0‖1 = ‖u(t; θ−tω, ϕ0(θ−tω)‖1 ≤ S(t; θ−tω, S0(θ−tω)).

Using the three steps above we deduce the existence of a time TK(ω) such that when
t > TK , ϕ(t, θ−tω)u0 ∈ Bδ for all u0 ∈ K(θ−tω), i.e., Bδ is a compact absorbing
set for any δ > 0 and absorbs all tempered random sets of R3

+, in particular all
bounded sets of R3

+.

Finally by Proposition 1, Lemma 2.6, and Remark 1 we obtain immediately the
following theorem:
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Theorem 2.7. The random dynamical system generated by system (7)–(9) pos-
sesses a global random attractor provided that

M1(1− ε1)−M2(1 + ε2) + a21 − a12 > 0 and a31 − a13 > 0.

3. A stochastic semi-Kolmogorov model. In this section we will introduce a
stochastic system for the semi-Kolmogorov model in random environments. This
stochastic system is set up based on the assumption that the random environments
can be modeled by a Markov chain. In fact, it has been observed that the switching
between different environments is memoryless and the waiting time for the next
switch is exponentially distributed (see [11], [20], [35]). Hence it is sensible to
model the random environments and other random factors by a continuous-time
Markov chain α(t), t ≥ 0, that takes values in a finite state space S = {1, 2, . . . ,m}.

Stochastic ecological population models in Markovian environments have been
studied extensively lately (see, e.g., [3, 15, 16, 22, 23, 29, 33, 34, 35] and references
therein). Yet all the studies up to date are on Kolmogorov type systems such as
Lotka-Volterra systems. In this section we will investigate a 3-dimensional stochas-
tic semi-Kolmogorov model, in the sense that two equations are in the Kolmogorov
format but one equation is not. This allows the consideration of important indirect
effects, but at the same time increases the complexity of the analysis involved.

Let the Markov chain α(·) be generated by the transition rate matrix Q, whose
elements, qij , are the transition rates that represent the derivatives with respect to
time of the transition probabilities between states i and j in S. Mathematically we
have

Prob (α(t+ ∆t) = j|α(t) = i) = δij + qij∆t+ o(∆t),
where δij is the Kronecher Symbol, qij ≥ 0 for i, j = 1, 2, · · · ,m with i 6= j, and
the values qii are such that the rows of Q have sum 0, i.e.,

m∑
j=1

qij = 0, for any i ∈ S.

In this work we will focus on effects of Markovian environments on carrying
capacities bj ’s and indirect effects mj ’s, i.e., we assume all the direct competition
coefficients aij ’s are constant. The resulting stochastic semi-Kolmogorov model in
Markovian environments can be described by the following system of stochastic
differential equations with regime switching:

dx(t) = x(t)[−b1(α(t)) + a12y(t) + a13)z(t)]dt
+µ1(α(t))x(t) ◦ dw1(t), (17)

dy(t) = y(t)[b2(α(t))− a21x(t)− a22y(t)− a23z(t)]dt
−m1(α(t))x(t)y(t)dt+ µ2(α(t))y(t) ◦ dw2(t), (18)

dz(t) = z(t)[b3(α(t))− a31x(t)− a32y(t)− a33z(t)]dt
+m2(α(t))x(t)y(t)dt+ µ3(α(t))z(t) ◦ dw3(t), (19)

where w(·) = (w1(·), w2(·), w3(·)) is a three dimensional standard Brownian Motion.
Here we assume that both the Markov chain α(·) and the Brownian motion w(·)
are defined on a complete probability space (Ω,F ,P), and that α(·) and w(·) are
independent. Without loss of generality, we also assume that the initial conditions
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α(0), (x(0), y(0), z(0)) are deterministic. Furthermore, throughout this section we
assume that the direct competition among same species are strictly positive, i.e.,

aii > 0, aij ≥ 0, i, j = 1, 2, 3. (20)

3.1. Preliminaries. Notice that system (17) – (19) is equivalent to the following
stochastic differential system in the Itô sense (for simplicity of notation, we write
α(t) as α in short):

dx(t) = x(t)[−b1(α) +
1
2
µ2

1(α) + a12y(t) + a13z(t)]dt

+µ1(α)x(t)dw1(t), (21)

dy(t) = y(t)
[
b2(α) +

1
2
µ2

2(α)− a21x(t)− a22y(t)− a23z(t)
]

dt

−m1(α)x(t)y(t)dt+ µ2(α)y(t)dw2(t), (22)

dz(t) = z(t)
[
b3(α) +

1
2
µ2

3(α)− a31x(t)− a32y(t)− a33z(t)
]

dt

+m2(α)x(t)y(t)dt+ µ3(α)z(t)dw3(t). (23)

Denote by u(t) = (x(t), y(t), z(t)), w(t) = (w1(t), w2(t), w3(t)),

f(u, α) =

 x[−b1(α) + 1
2µ

2
1(α) + a12y + a13z]

y
[
b2(α) + 1

2µ
2
2(α)− a21x− a22y − a23z

]
−m1(α)xy

z
[
b3(α) + 1

2µ
2
3(α)− a31x− a32y − a33z

]
+m2(α)xy


:= (f1(u, α), f2(u, α), f3(u, α)), (24)

and

F (u, α) =

 µ1(α)x 0 0
0 µ2(α)y 0
0 0 µ3(α)z

 .

Then system (21)–(23) can be written in a simpler form as

du(t) = f(u, α)dt+ F (u, α)dw(t). (25)

For future convenience we introduce the following generalized Itô’s Formula (see
[26]).

Proposition 2. For any function V : R3×R+×S → R such that V (·, t, α) is twice
continuously differentiable with respect to variable u for each α ∈ S and t ∈ R+,
we have

EV (u(τ2), τ2, α(τ2)) = EV (u(τ1), τ2, α(τ1)) + E
∫ τ2

τ1

L V (u(t), t, α(t))dt,

for any stopping time 0 ≤ τ1 ≤ τ2 <∞, where

L V = Vt(u, t, α) + Vu(u, t, α)f(u, α)

+
1
2

Trace[FT (u, α)Vuu(u, t, α)F (u, α)] +
m∑
β=1

qαβV (u, t, β), (26)

and
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Vt(u, t, α) =
∂

∂t
V (u, t, α),

Vu(u, t, α) =
(
∂

∂x
V (u, t, α),

∂

∂y
V (u, t, α),

∂

∂z
V (u, t, α)

)
,

Vuu(u, t, α) =


∂2

∂x2V (u, t, α) ∂2

∂x∂yV (u, t, α) ∂2

∂x∂zV (u, t, α)
∂2

∂y∂xV (u, t, α) ∂2

∂y2V (u, t, α) ∂2

∂y∂zV (u, t, α)
∂2

∂z∂xV (u, t, α) ∂2

∂z∂yV (u, t, α) ∂2

∂z2V (u, t, α)

 .

3.2. Properties of solutions. In this subsection we will discuss the existence and
uniqueness of solutions, as well as the positiveness and boundedness of solutions,
to system (25).

Theorem 3.1. For any initial condition u0 = (x0, y0, z0) ∈ R3
+ and any α0 =

α(0) ∈ S, system (25) admits a unique solution u(t) that will remain in R3
+ almost

surely, i.e., u(t) ∈ R3
+ for any t ≥ 0 with probability 1.

Proof. Since the coefficients of system (25) are locally Lipschitz, then according
to Theorem A2 in [22], system (25) has a unique local solution up to a blow-up
time, τb, for any u0 ∈ R3

+. In order to obtain a global solution, we next prove that
τb =∞ a.s.

The proof follows a similar idea to those used in [22] and [23]. Let k0 > 0 be a
positive integer, large enough, such that

x(0) ∈
(

1
k0
, k0

)
, y(0) ∈

(
1
k0
, k0

)
, z(0) ∈

(
1
k0
, k0

)
.

For any k ≥ k0 we define the sequence of “stopping times”, {τk}, by

τk := inf
{
t ∈ [0, τb) : x(t) /∈

(
1
k
, k

)
or y(t) /∈

(
1
k
, k

)
or z(t) /∈

(
1
k
, k

)}
.

Clearly the sequence {τk}k=1,2,··· is increasing. Denote by τ∞ = limk→∞ τk, then
τ∞ ≤ τb. We next show that τ∞ =∞ a.s.

Consider the following Lyapunov function on R3
+ × S

V (u, α) = c1(x− 1− lnx) + c2(y − 1− ln y) + c3z,

where cj > 0 for j = 1, 2, 3. Clearly V (u, α) ≥ 0 for any u ∈ R3
+ and α ∈ S, and

by using (26) we obtain

L V (u, α) = c1

(
1− 1

x

)
f1(u, α) + c2

(
1− 1

y

)
f2(u, α) + c3f3(u, α)

+
1
2
c1µ

2
1(α) +

1
2
c2µ

2
2(α), (27)

where functions f1, f2, f3 are defined as in (24). Simplifying (27) gives

L V (u, α) = −c2a22y
2 − c3a33z

2 − (c3a31 − c1a13)xz − (c3a32 + c2a23)yz
−(c2a21 + c2m1(α)− c1a12 − c3m2(α))xy

+c1x(−b1 +
1
2
µ2

1) + c2y(b2 +
1
2
µ2

2) + c3z(b3 +
1
2
µ2

3)− b1c1 − b2c2.
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Denote by m := minα∈S{mj(α) : j = 1, 2}, m̄ := maxα∈S{mj(α) : j = 1, 2}, and
pick c1, c2, c3 such that

c2a21 + c2m− c1a12 − c3m̄ ≥ 0, c3a31 − c1a13 ≥ 0.

Then we have

L V (u, α) ≤ c1x(−b1 +
1
2
µ2

1) + c2y(b2 +
1
2
µ2

2) + c3z(b3 +
1
2
µ2

3)− b1c1 − b2c2,

and consequently there exists a positive constant γ1 such that

L V (u, α) ≤ γ1(1 + x+ y + z).

On the other hand, letting γ2 = min{c1, c2, c3}, it is straightforward to show that
for any (x, y, z) ∈ R3

+

x+ y + z ≤ 4 + 2 [(x− 1− lnx) + (y − 1− ln y) + z]

≤ 4 +
2
γ2
V (u, α).

And hence
L V (u, α) ≤ γ3[1 + V (u, α)], (28)

where
γ3 = max{5γ1, 2γ1/γ2}.

Now, arguing by contradiction, suppose that there exist T > 0 and ε > 0 such that

P(τ∞ ≤ T ) > ε.

As a consequence there exists K ≥ k0 such that

P(τk ≤ T ) > ε, for any k ≥ K.

Then by the generalized Itô Lemma and (28) we have for any k ≥ K that

V (u(T ∧ τk), α(T ∧ τk)) = V (u0, α0) +
∫ T∧τk

0

L V (u(s), α(s))ds

+c1
∫ T∧τk

0

(x(s)− 1)µ1(α(s))dw1(s)

+c2
∫ T∧τk

0

(y(s)− 1)µ2(α(s))dw2(s)

+c3
∫ T∧τk

0

z(s)µ3(α(s))dw3(s). (29)

Taking expectation of (29) and using (28) give

EV (u(T ∧ τk), α(T ∧ τk)) = V (u0, α0) + E
∫ T∧τk

0

L V (u(s), α(s))ds

≤ V (x0, α0) + E
∫ t∧τk

0

γ3[1 + V (u(s), α(s))]ds

≤ γ4 + γ3

∫ T∧τk

0

EV (u(s), α(s))ds.

where
γ4 = V (u0, α0) + γ3T.
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It follows immediately from Gronwall’s inequality that

EV (u(T ∧ τk), α(T ∧ τk)) ≤ γ4e
γ3T .

Observe that

EV (u(T ∧ τk), α(T ∧ τk)) ≥ EV (u(τk), α(τk))I{τk<T}

while

V (u(τk), α(τk)) ≥ γ2 max
{

(k − 1− ln k), (
1
k
− 1− ln k), k,

1
k

}
:= γ5(k).

Hence we conclude that
γ4e

γ3T ≥ γ5(k),

where γ5(k) goes to∞ as k →∞. This contradicts the assumption that there exist
T > 0 and ε > 0 such that P(τ∞ ≤ T ) > ε, and implies that

lim
k→∞

τk =∞ = τb a.s.

i.e., u(t) ∈ R3
+ a.s. for all t ≥ 0.

The above theorem states that for any initial condition u0 ∈ R3
+ and α0 ∈ S,

system (25) has a unique solution u(t) that stays in R3
+ almost surely. Next we

will investigate the boundedness of the solution u(t). In particular, we consider the
uniformly boundedness in mean defined as follows.

Definition 3.2. A stochastic process u(t) = (x(t), y(t), z(t)) ∈ R3
+ is said to be

uniformly bounded in mean if there exists a positive constant M such that

lim sup
t→∞

E[‖u(t)‖1] = lim sup
t→∞

E[x(t) + y(t) + z(t)] ≤M.

Theorem 3.3. For any u0 = (x0, y0, z0) ∈ R3
+ and α0 ∈ S, the solution to system

(25) is uniformly bounded in mean, provided that

a31 > a13 and a21 − a12 > m̄−m, (30)

where
m̄ := max

α∈S
{mj(α) : j = 1, 2}, m := min

α∈S
{mj(α) : j = 1, 2}.

Proof. To unify notations to be used in the sequel, we first set

b̄ = max
α∈S
{bj(α) : j = 1, 2, 3}, b = min

α∈S
{bj(α) : j = 1, 2, 3},

µ̄ = max
α∈S
{µj(α) : j = 1, 2, 3}, µ = min

α∈S
{µj(α) : j = 1, 2, 3}.

Since the solution is positive, by using the assumptions (30) we have

dv(t) = x(t)
[
−b1(α) +

1
2
µ2

1(α) + (a12 − a21 +m2(α)−m1(α))y
]

dt

+y(t)
[
b2(α) +

1
2
µ2

2(α)− a22y − (a23 + a32)z
]

dt

+z(t)
[
b3(α) +

1
2
µ2

3(α)− a33z + (a13 − a31)x
]

dt+ µ1(α)x(t)dw1(t)

+µ2(α)y(t)dw2(t) + µ3(α)z(t)dw3(t)
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≤ x(t)
[
−b1(α) +

1
2
µ2

1(α)
]

dt+ µ1(α)x(t)dw1(t)

+y(t)
[
b2(α) +

1
2
µ2

2(α)− a22y

]
dt+ µ2(α)y(t)dw2(t)

+z(t)
[
b3(α) +

1
2
µ2

3(α)− a33z

]
dt+ µ3(α)z(t)dw3(t)

≤ x(t)(−b+
1
2
µ2)dt+ µx(t)dw1(t)

+y(t)
(
b̄+

1
2
µ2 − a22y

)
dt+ µy(t)dw2(t)

+z(t)
(
b̄+

1
2
µ2 − a33z

)
dt+ µz(t)dw3(t),

where
µ := max{|µ̄| ,

∣∣µ∣∣}.
Then by comparison of SDE, we have 0 ≤ v(t) ≤ x̄(t) + ȳ(t) + z̄(t), a.s., for t ≥ 0,
where x̄(t), ȳ(t) and z̄(t) satisfy the following equations respectively

dx̄(t) = x̄(t)(−b+
1
2
µ2)dt+ µx̄(t)dw1(t), x̄(0) = x0, (31)

dȳ(t) = ȳ(t)
(
b̄+

1
2
µ2 − a22ȳ(t)

)
dt+ µȳ(t)dw2(t), ȳ(0) = y0, (32)

dz̄(t) = z̄(t)
(
b̄+

1
2
µ2 − a33z̄(t)

)
dt+ µz̄(t)dw3(t), z̄(0) = z0. (33)

Solving equations (31) – (33) (see e.g. [24]) to obtain

x̄(t) = x0e
−bt+µw1(t),

ȳ(t) =
y0e

b̄t+µw2(t)

1 + a22y0

∫ t
0
eb̄s+µw2(s)ds

,

z̄(t) =
z0e

b̄t+µw2(t)

1 + a33z0

∫ t
0
eb̄s+µw3(s)ds

,

and it is straightforward to check that

lim sup
t→∞

E[‖u‖1] ≤ lim sup
t→∞

{E[x̄(t)] + E[ȳ(t)] + E[z̄(t)]}

≤
(
b̄+

1
2
µ2

)(
1
a22

+
1
a33

)
.

This completes the proof.

4. Closing remarks. In this paper we studied two different semi-Kolmogorov sys-
tems under random environments – first a system of random ordinary differential
equations with random parameters, and second a system of stochastic ordinary dif-
ferential equations with regime switching. For both system we obtain the existence,
uniqueness and positiveness of solutions. We have also proved that the solution to
each system is bounded under certain assumptions. It is worth mentioning that
although the two systems have different set-up, the sufficient conditions to have
bounded solutions are consistent with each other. This provides important infor-
mation on the intrinsic critical parameters a13, a31, a12, a21, m1 and m2, regardless
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the underlying model. We only proved the existence of a global random attrac-
tor for the random system. We leave the nontrivial construction of global random
attractors for the stochastic system in future work.
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