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AHMED BOUDAOUI, TOMÁS CARABALLO, AND ABDELGHANI OUAHAB

Abstract. In this paper, we prove the existence of mild solutions for the
following first-order impulsive semilinear stochastic functional differential in-

clusions driven by a fractional Brownian motion with infinite delay in the case

where the right hand side is convex or nonconvex-valued. The results are
obtained by using two fixed point theorems for multivalued mappings.

1. Introduction

The theory of stochastic differential and partial differential equations or inclu-
sions has become an active area of investigation due to their applications in the
fields such as mechanics, electrical engineering, medicine biology, ecology etc.

In recent years, stochastic differential and partial differential inclusions have been
extensively studied. For instance, in [1, 2, 3, 5] it is investigated the existence of so-
lutions of nonlinear stochastic differential inclusions by Banach fixed point theorem
and semigroup approach. Balasubramaniam [4] obtained existence of solutions of
functional stochastic differential inclusions by Kakutani’s fixed point theorem, Bal-
asubramaniam et al. [5, 6] initiated the study of existence of solutions of semilinear
stochastic delay evolution inclusions in a Hilbert space by using the nonlinear alter-
native of Leray-Schauder type [15]. In [25] the authors study the existence results
for impulsive neutral stochastic evolution inclusions in Hilbert spaces where they
considered a class of first-order evolution inclusions with convex and nonconvex
cases for the above problem by a fixed point theorem due to Dhage and Covitz and
Nadler’s theorem for contraction multivalued maps (see [16]).

Meanwhile, impulsive differential systems and evolution differential systems are
used to describe various models of real processes and phenomena studied in physics,
chemical technology, population dynamics, biotechnology and economics. That is
why in recent years they have been the object of investigations. We refer to the
monographs of Bainov and Simeonov [7], Benchohra et al. [8], Lakshmikantham et
al. [22], Samoilenko and Perestyuk [28] where numerous properties of their solutions
are studied, and a detailed bibliography is given. Semilinear functional differential
equations and inclusions with or without impulses have been extensively studied
where the operator A generates a C0-semigroup. Existence and uniqueness, among
other things, are derived; see the books of Dejabli et al. [14] and Graef et al [18].
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The existence of neutral stochastic functional differential equations driven by
a fractional Brownian motion has attracted great interest of researchers. For ex-
ample, Boufoussi and Hajji analyzed in [12] the existence and uniqueness of mild
solutions for a neutral stochastic differential equation with finite delay, driven by
a fractional Brownian motion in a Hilbert space, and established some sufficient
conditions ensuring the exponential decay to zero in mean square for the mild solu-
tion. Caraballo and Diop [13] studied the existence and uniqueness of mild solutions
to neutral stochastic delay functional integro-differential equations perturbed by a
fractional Brownian motion.

Recently, Boudaoui et al. [11] proved the existence of mild solutions to stochas-
tic impulsive evolution equations with time delays, driven by fractional Brownian
motion and Krasnoselski-Schaefer type fixed point theorem.

Let BHQ is a fractional Brownian motion on a real and separable Hilbert space
K, with Hurst parameter H ∈ (1/2, 1), and with respect to a complete probability
space (Ω,F ,Ft, P ) furnished with a family of right continuous and increasing σ-
algebras {Ft, t ∈ J} satisfying Ft ⊂ F . We are interested in the existence problem
of the following stochastic differential inclusions:

dy(t) ∈ [Ay(t) + F (t, yt)]dt+ g(t)dBHQ (t), t ∈ J = [0, T ], t 6= tk,

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,
y(t) = φ(t) ∈ D, J0 = (−∞, 0],

(1.1)

in a real separable Hilbert space H with inner product (·, ·) and norm ‖·‖, where A :
D(A) ⊂ H −→ H is the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators S(t), 0 ≤ t ≤ T.

Assume F : J×D −→ P(H) is a bounded, closed and convex-valued multivalued
map, g : J → L0

Q(K,H). Here, L0
Q(K,H) denotes the space of allQ-Hilbert-Schmidt

operators from K into H, which will be also defined in the next section.
As for the impulse functions we will assume that Ik ∈ C(H,H) (k = 1, 2, . . . ,m)

are bounded. Moreover, the fixed times tk satisfy 0 < t1 < t2 < . . . < tm < T , y(t−k )
and y(t+k ) denotes the left and right limits of y(t) at t = tk. As for yt we mean the
segment solution which is define in the usual way, that is, if y(·, ·) : (−∞, T ]×Ω→
H, then for any t ≥ 0, yt(·, ·) : (−∞, 0]× Ω→ H is given by

yt(θ, ω) = y(t+ θ, ω), for θ ∈ (−∞, 0], ω ∈ Ω,

belong to some abstract phase space D, that is a phase space defined axiomatically.
Thus D is a linear space of functions mapping [0, T ] × Ω into H endowed with a
seminorm ‖ · ‖DT

. Consider the following space

DT :=
{
y : [0, T ]→ H, such that y|Jk

∈ C(Jk,H) and there exist y(t+k ),

and y(t−k ) with y(tk) = y(t−k ), k = 1, · · · ,m, sup
t∈[0,T ]

E(|y(t)|2) <∞

}
where y|Jk

is the restriction of y to Jk = (tk, tk+1], k = 1, 2, · · · ,m. We endow DT
with a norm ‖.‖DT

on DT defined by

‖y‖DT
= sup

0≤s≤T
(E‖y(s)‖2)

1
2

We will assume that D satisfies the following axioms suggested by Hale and
Kato [19] and Hino et al. [20]. The axioms of the space D are established for
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F0-measurable functions from J0 into H, endowed with the seminorm ‖ · ‖D. We
will assume that D satisfies the following axioms:

(A-1): If y : (−∞, T ] −→ H, T > 0 is such that y|[0,T ] ∈ D and y0 ∈ D, then
for every t ∈ [0, T ) the following conditions hold

(i): yt is in D
(ii): ‖y(t)‖ ≤ L‖yt‖D
(iii): ‖yt‖D ≤ K(t) sup ‖y(s)‖ : 0 ≤ s ≤ t + N(t)‖y0‖D, where L > 0 is

a constant; K,N : [0,∞) −→ [0,∞), K is continuous, N is locally
bounded and L,K,N are independent of y(·).

(A-2): For the function y(·) in (A-1), yt is a D-valued function [0, T ).
(A-3): The space D is complete.

Set

D∗T = {y : (−∞, T ] −→ H, y ∈ DT ∩ D}

‖.‖D∗T on D∗T , it is defined by

‖y‖D∗T = sup
0≤s≤T

(E‖y(s)‖2)
1
2 = ‖φ‖D + sup

0≤s≤T
(E‖y(s)‖2)

1
2 , y ∈ D∗T .

Denote

K̃ = sup{K(t) : t ∈ J} and M̃ = sup{M(t) : t ∈ J}.

The plan of this paper is as follows. In Section 2 we introduce notations, defi-
nitions, and preliminary facts which are useful throughout the paper. In Section 3
we prove existence of mild solutions for problem (1.1), where the right-hand side is
convex or nonconvex by some appropriate fixed point theorems.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
will be used throughout this paper.

In particular, we consider fractional Brownian motion as well as the Wiener
integral with respect to it. We also establish some important results which will be
needed throughout the paper.

Definition 2.1. Given H ∈ (0, 1), a continuous centered Gaussian process βH =
{βH(t), t ∈ R}, with the covariance function

RH(t, s) = E[βH(t)βH(s)] =
1
2

(|t|2H + |s|2H − |t− s|2H), t, s ∈ R

is called a two−sided one−dimensional fractional Brownian motion, and H is the
Hurst parameter.

Now we aim at introducing the Wiener integral with respect to the one-dimensional
βH .

Let T > 0 and denote by Λ the linear space of R−valued step functions on [0, T ],
that is, ψ ∈ Λ if

ψ(t) =
n−1∑
i=1

yi1[si,si−1)(t),
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where t ∈ [0, T ], yi ∈ R and 0 = s1 < s2 < · · · < sn = T. For ψ ∈ Λ we define its
Wiener integral with respect to βH as∫ T

0

ψ(σ)dβH(σ) =
n−1∑
i=1

yi(βH(si+1)− βH(si)).

Let H be the Hilbert space defined as the closure of Λ with respect to the scalar
product

〈1[0,t], 1[0,s]〉H = RH(t, s).
Then, the mapping

ψ =
n−1∑
i=1

yi1[si,si+1) 7→
∫ T

0

ψ(σ)dβH(σ)

is an isometry between Λ and the linear space span {βH(t), t ∈ [0, T ]}, which can
be extended to an isometry between H and the first Wiener chaos of the fractional
Brownian motion spanL

2(Ω){βH(t), t ∈ [0, T ]} (see [27]). The image of an element
ψ ∈ H by this isometry is called the Wiener integral of ψ with respect to βH . Our
next goal is to give an explicit expression of this integral. To this end, consider the
kernel

KH(t, s) = cHs
1/2−H

∫ t

s

(u− s)H−3/2uH−1/2du,

where cH =
(

H(2H−1)

B(2−2H,H− 1
2 )

)1/2

, with B(·, ·) denoting the Beta function, and t ≤ s.
It is not difficult to see that

∂KH

∂t
(t, s) = cH

( t
s

) 1
2−H

(t− s)H− 3
2 .

Consider the linear operator K∗H : Λ −→ L2([0, T ] given by

(K∗HΦ)(s) =
∫ t

s

Φ(t)
∂KH

∂t
(t, s)dt.

Then
(K∗H1[0,t])(s) = KH(t, s)1[0,t](s).

and K∗H is an isometry between Λ and L2([0, T ]) that can be extended to Λ (see
[3]). Considering W = {W (t), t ∈ [0, T ]} defined by

W (t) = βH((K∗H)−11[0,t]),

it turns out that W is a Wiener process and βH has the following Wiener integral
representation:

βH(t) =
∫ t

0

KH(t, s)dW (s).

In addition, for any Φ ∈ Λ,∫ T

0

Φ(s)βH(s)dW (s) =
∫ T

0

(K∗HΦ)(t)dW (t)

if and only if K∗HΦ ∈ L2([0, T ]).

Also denoting

L2
H([0, T ]) = {Φ ∈ Λ,K∗HΦ ∈ L2([0, T ])},
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since H > 1/2, we have

L1/H([0, T ]) ⊂ L2
H([0, T ]), (2.1)

see [24]. Moreover, the following useful result holds:

Lemma 2.2. [26]. For Φ ∈ L1/H([0, T ]),

H(2H − 1)
∫ T

0

∫ T

0

|Φ(r)‖Φ(u)‖r − u|2H−2drdu ≤ cH‖Φ‖2L1/H([0,T ]).

Next we are interested in considering a fractional Brownian motion with values
in a Hilbert space and giving the definition of the corresponding stochastic integral.

Let L(K,H) denote the space of all bounded linear operators from K to H and
Q ∈ L(K,H) be a non-negative self−adjoint operator. Denote by L0

Q(K,H) the
space of all ξ ∈ L(K,H) such that ξQ

1
2 is a Hilbert-Schmidt operator. The norm

is given by
|ξ|2L0

Q(K,H) = tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to H.
Let {βHn (t)}n∈N be a sequence of two-sided one-dimensional standard fractional

Brownian motions mutually independent on (Ω,F , P ). When one considers the
following series

∞∑
n=1

βHn (t)en, t ≥ 0,

where {en}n∈N is a complete orthonormal basis in K, this series does not necessarily
converge in the space K. Thus we consider a K−valued stochastic process BHQ (t)
given formally by the following series:

BHQ (t) =
∞∑
n=1

βHn (t)Q
1
2 en, t ≥ 0,

is well-defined as a K-valued Q-cylindrical fractional Brownian motion.
Let ϕ : [0, T ] 7→ LQ0 (K,H) such that

∞∑
n=1

‖K∗H(ϕQ
1
2 en)‖L1/H([0,T ],H) <∞ (2.2)

Definition 2.3. Let ϕ : [0, T ] −→ L0
Q(K,H) satisfy (2.2). Then, its stochastic

integral with respect to the fractional Brownian motion BHQ is defined, for t ≥ 0, as
follows∫ t

0

ϕ(s)dBHQ (s) :=
∞∑
n=1

∫ t

0

ϕ(s)Q1/2endβ
H
n (s) =

∞∑
n=1

∫ t

0

(K∗H(ϕQ1/2en))(s)dW (s).

Notice that if
∞∑
n=1

‖ϕQ1/2en‖L1/H([0,T ];H) <∞, (2.3)

then in particular (2.2) holds, which follows immediately from (2.1).



6 A. BOUDAOUI, T. CARABALLO, AND A. OUAHAB

Lemma 2.4. [12] if ϕ : [0, T ] −→ L0
Q(K,H) satisfies∫ T

0

‖ϕ(s)‖2L0
Q(K,H)ds <∞,

and for any α, β ∈ [0, T ] with α > β, then the above sum in (2.3) is well defined as
a H-valued random variable and we have

E
∣∣∣ ∫ α

β

ϕ(s)dBHQ (s)
∣∣∣2 ≤ 2H(α− β)2H−1

∫ α

β

‖ϕ(s)‖2L0
Q(K,H)ds.

Let us introduce the following notations:

Pcl(H) = {A ∈ P(H) : A closed },

Pb(H) = {A ∈ P(H) : A bounded },
Pc(H) = {A ∈ P(H) : A convex },
Pcp(H) = {A ∈ P(H) : A compact },

Pcp,c(H) = {A ∈ P(H) : A compact and convex },
Pb,cl(H) = {A ∈ P(H) : A bounded and closed }.

Consider Hd : P(H)× P(H) −→ R ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

, d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then, (Pb,cl(H), Hd) is a
metric space and (Pcl(H), Hd) is a generalized metric space [21].

A multivalued map F : H −→ P(H) is convex (closed) valued if F (y) is convex
(closed) for all y ∈ H, F is bounded on bounded sets if F (B) =

⋃
y∈B F (y) is

bounded in H for all B ∈ Pb(H), i.e., sup
x∈B
{sup{|y| : y ∈ F (y)}} ≤ ∞. F is called

upper semi-continuous (u.s.c. for short) on H if for each y0 ∈ H the set F (y0) is a
nonempty of H, and for each open set U of H containing F (y0), there exists an open
neighborhood V of y0 such that F (V) ∈ U . F is said to be completely continuous
if F (B) is relatively compact for every B ∈ Pb(H).

If the multivalued map F is completely continuous with nonempty compact
valued, then F is u.s.c. if and only if F has a closed graph, i.e., xn −→ x∗, yn −→ y∗,
yn ∈ F (xn) imply y∗ ∈ F (x∗).
A multi-valued map F : J −→ Pcl(H) is said to be measurable if for each y ∈ H,

the mean-square distance between y and F (t) is measurable.

Definition 2.5. The multi-valued map F : J × D → P(H) is said to be L2-
Carathéodory if

(i): t 7→ F (t, v) is measurable for each v ∈ H;
(ii): v 7→ F (t, v) is u.s.c. for almost all t ∈ J ;
(iii): for each q > 0, there exists hq ∈ L1(J,R+) such that

‖F (t, v)‖2 := sup
f∈F (t,v)

E‖f‖2 ≤ hq(t), for all ‖v‖2D ≤ q and for a.e. t ∈ J.

Lemma 2.6. [23] Let I be a compact interval and H be a Hilbert space. Let F
be an L2-Carathéodory multi-valued map with NF,y 6= ∅ . and let Γ be a linear
continuous mapping from L2(I,H) to C(I,H). Then, the operator

Γ ◦NF : C(I,H) −→ Pcp,c(H), y 7−→ (Γ ◦NF )(y) = Γ(NF , y),
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is a closed graph operator in C(I,H)×C(I,H), where NF,y is known as the selectors
set from F and given by
f ∈ NF,y = {f ∈ L2([0, T ],H) : f(t) ∈ F (t, y) for a.e.t ∈ [0, T ]}.

Definition 2.7. A multivalued operator G : J −→ Pcl(H) is called a contraction
if and only if there exists 0 ≤ γ < 1 such that

Hd(G(x), G(y)) ≤ γd(x, y) for each x, y ∈ H,
and we say that a multivalued operator G has a fixed point if there exists y ∈ H

such that y ∈ G(y).
Now we recall a Leray-Schauder a fixed point theorem which will be useful for

our analysis

Lemma 2.8. [16] Let X be a Banach space with C ⊂ X a closed and convex subset
of X. Assume U is a relatively open subset of C, with 0 ∈ U , and let G : U −→ C
be a compact map. Then either,

(a): G has a fixed point in U , or
(b): there is a point u ∈ ∂U and λ ∈ (0, 1), with u = ∂G(u).

3. Existence results

3.1. The Convex Case. In this section, we will show same results concerning the
existence results of mild solutions for convex case of system (1.1)in the convex case.
Our main results are based on the following lemma.

Lemma 3.1. [15]
Let X be a Banach space with C ⊂ X convex. Assume U is a relatively open

subset of C, with 0 ∈ U , and let G : X −→ Pcp,c(X) be an upper semicontinuous
and compact map. Then either,

(a): G has a fixed point in U , or
(b): there is a point u ∈ ∂U and λ ∈ (0, 1), with u ∈ ∂G(u).

First, we define what we mean by a mild solution.

Definition 3.2. A stochastic process y : (−∞, T ] × Ω −→ H is called a mild
solution of the system (1.1) if

• y(t) is measurable and Ft-adapted, for each t ≥ 0;
• y(t) ∈ H has càdlàg paths on t ∈ [0, T ] a.s., for every 0 ≤ s < t ≤ T , there

exist f ∈ NF,y such that the following integral equation holds

y(t) = S(t)φ(0) +
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(y(t−k )), t ∈ J.
(3.1)

• y0(·) = φ ∈ D on J0 satisfies ‖φ‖D <∞.
We are now in a position to state and prove our existence result for the problem

(1.1). First we will list the following hypotheses which will be imposed in our main
theorem.

(H1): Operator A : D(A) ⊂ H → H is the infinitesimal generator of a
strongly continuous semigroup of bounded linear operators {S(t)}, t ∈ J
which is compact for t > 0 in H such that ‖S(t)‖2 ≤ M for same M ≥ 0
and for each t ∈ [0, T ].
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(H2): The function g : J −→ L0
Q(K,H) satisfies∫ T

0

‖g(s)‖2L0
Q
ds = Λ <∞, t ∈ J

(H3): There exist constants ck > 0, k = 1, . . . ,m for which |Ik(y)|2 ≤
ck, for all y ∈ H.

(H4): F : [0, T ]×D −→ Pcp,c(H) is an L2-Carathdory function and for every
t ∈ [0, T ] the multifunction t→ F (t, yt), yt ∈ D is measurable.

(H5): There exist η ∈ L2(J, IR+) and p : IR+ −→ (0,∞) is continuous and
increasing such that

E|F (t,Θ)|2 = {supE(|f |)2 : f ∈ F (t,Θ)}} ≤ η(t)p(‖Θ‖2D), t ∈ J, Θ ∈ D,

where

8K̃2M(tk − tk−1)
∫ tk

tk−1

η(s)ds ≤
∫ ∞
Nk−1

du

p(u)
, k = 1, · · · ,m+ 1,

and

N0 = v0(0) = 16K̃2MHt2H−1
1

∫ t1

0

‖g(s)‖2L0
Q
ds+ C,

C = 4K̃2ME|φ̂(0)|2 + 4M̃2‖φ̂‖2D
and for k = 2, · · · ,m+ 2,

Nk−1 = 4K̃2
[
4M sup

y∈(−∞,tk−1]

E|Ik−1(yt2−1(tk−1))|2

+8K̃2M(tk−1 − tk−2)2H−1

∫ tk−1

tk−2

‖g(s)‖2L0
Q
ds
]

+ C,

M̂k−2 = Γ−1
k−1

(
8K̃2M(tk−1 − tk−2)

∫ tk−1

tk−2

η(s)ds
)

with

Γl(x) =
∫ x

Nl−1

du

p(u)
x ≥ Nl−1, l ∈ {1, · · · ,m+ 1}.

Theorem 3.3. Assume that hypotheses (H1)− (H5) hold. Then the problem (1.1)
has at least one integral solution on (−∞, T ].

Proof. The proof will be given in several steps.
Step1. Consider the problem (1.1) on (−∞, t1]

dy(t) ∈ [Ay(t) + F (t, yt)]dt+ g(t)dBHQ (t), if t ∈ [0, t1],
y(t) = φ(t), if t ∈ (−∞, 0].

(3.2)

Let
Dt0 = {y ∈ C([0, t1],H) : sup

t∈[0,t1]

E(|y(t)|2) <∞}.

Set
D∗t0 = D ∩Dt0 .
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We transform the problem (3.2) into a fixed point problem. Consider the multi-
valued operator Φ : D∗t0 → P(D∗t0) defined by

Φ(y) =

ρ ∈ Dt1 ρ(t) =


φ(t), if;t ∈ (−∞, 0],

S(t)φ(0) +
∫ t

0

S(t− s)f(s)ds

+
∫ t

0

S(t− s)g(s)dBH(s), if t ∈ [0, t1]


where f ∈ NF,y = {f ∈ L2([0, t1],H) : f(t) ∈ F (t, yt) for a.e.t ∈ [0, t1]}.

We will prove that Φ has a fixed point.
Let φ̂ : (−∞, t1] −→ H be the function defined by

φ̂(t) =
{
φ(t), t ∈ (−∞, 0],
S(t)φ(0), t ∈ [0, t1];

Then φ̂ is an element of D∗t0 and φ̂0 = φ.
Let y(t) = z(t) + φ̂(t),−∞ < t ≤ t1.Obviously, if y satisfies the integral equation

y(t) = S(t)φ(0) +
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s), t ∈ [0, t1]. (3.3)

then z satisfies z0 = 0, t ∈ (−∞, 0] and

z(t) =
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s), t ∈ [0, t1], (3.4)

where f(t) ∈ F (t, zt + φ̂t) for a.e. t ∈ [0, t1].
Set D0

t0 =
{
z ∈ D∗t0 , such that z0 = 0 ∈ D

}
and for any z ∈ D0

t0 we have

‖y‖D0
t0

= ‖z0‖D + sup
t∈[0,t1]

(E‖z(t)‖2)
1
2 = sup

t∈[0,t1]

(E‖y(t)‖2)
1
2 .

Thus (D0
t0 , ‖.‖D0

t0
) is a Banach space. Let the operator Φ̂ : D0

t0 → P(D0
t0) defined

by

Φ̂(z) =

ρ̂ ∈ D0
t0 ρ̂(t) =


0, if;t ∈ (−∞, 0],∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBH(s) if t ∈ [0, t1].


Clearly, that the operator Φ has a fixed point is equivalent to Φ̂ having a fixed

point, and so we turn our attention to proving that Φ̂ does in fact have a fixed
point. We shall show that Φ̂ satisfies the assumptions of Lemma 3.1.

Claim 1. Φ̂(z) is convex for each z ∈ D0
t0 .

Let ρ̂1,ρ̂2 ∈ Φ̂2(z), then there exist f1, f2 ∈ NF,z+bφ such that, for each t ∈ [0, t1]
we have

ρ̂i(t) =
∫ t

0

S(t− s)fi(s)ds+
∫ t

0

S(t− s)g(s)dBH(s).

Let 0 ≤ δ ≤ 1. Then, for each t ∈ [0, t1], we have

(δρ̂1 + (1− δ)ρ̂2)(t) =
∫ t

0

S(t− s)[δf1(s) + (1− δ)f2(s)]ds+
∫ t

0

S(t− s)g(s)dBH(s)
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Since NF,z+bφ is convex (F (t, z) has convex values), one has

δρ̂1 + (1− δ)ρ̂2 ∈ Φ̂(z)

Claim 2. Φ̂ maps bounded sets into bounded sets in D0
t0 .

Indeed, it is enough to show that there exists a positive constant ζ such that
for each ρ̂ ∈ Φ̂z, w ∈ Bq = {z ∈ D0

t0 , ‖z‖
2
D0

t0
≤ q} one has ‖ρ̂‖2D0

t0
≤ ζ.

Let ρ̂ ∈ Φ̂, then there exists f ∈ NF,z+bφ such that for t ∈ [0, t1], we have

ρ̂(t) =
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBH(s).

From (A1) we have

‖zt + φ̂t‖2D ≤ 2(‖zt‖2D + ‖φ̂t‖2D)
≤ 4((k(t))2 sup

s∈[0,t]

E|z(s)|2 + (M(t))2‖z0‖2D)

+4((K(t))2 sup
s∈[0,t]

E‖φ̂(s)‖2 + (M(t))2‖φ̂0‖2D)

≤ 4(M̃2‖φ‖2D + K̃2(q +ME|φ(0)|2)) = q
′
.

From (H1)− (H4), we obtain for t ∈ [0, t1],

E|ρ̂(t)|2 = E
∣∣∣ ∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBH(s)
∣∣∣2

≤ 2E
∣∣∣ ∫ t

0

S(t− s)f(s)ds
∣∣∣2 + 2E

∣∣∣ ∫ t

0

S(t− s)g(s)dBH(s)
∣∣∣2

≤ 2Mt1

∫ t

0

E|f(s)|2ds+ 4MHt2H−1
1

∫ t1

0

‖g(s)‖2L0
Q
ds

≤ 2Mt1p(q
′
)
∫ t

0

η(s)ds+ 4MHt2H−1
1 Λ

:= ζ,

Claim 3. Φ̂ maps bounded sets into equicontinuous sets of D0
t0 .

Let 0 < τ1 < τ2 ∈ [0, t1], Bq be a bounded set of D0
t0 as in Claim 2. For each

z ∈ Bq and ρ̂ ∈ Φ̂z, there exists f ∈ NF,z+bφ such that

ρ̂(t) =
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBH(s), t ∈ [0, t1].

Then we have

E|ρ̂(τ2)− ρ̂(τ1)|2 ≤ 4t1p(q
′
)
∫ τ2

0

|S(τ2 − s)− S(τ1 − s)|2η(s)ds

+4t1p(q
′
)
∫ τ2

τ1

|S(τ1 − s)|2η(s)ds

+4
∫ τ2

0

|S(τ2 − s)− S(τ1 − s)|2E|g(s)dBH(s)|2

+4
∫ τ2

τ1

|S(τ1 − s)|2E|g(s)dBH(s)|2

The right-hand side of the above inequality tends to zero as τ2 −→ τ1, since
S(t) is strongly continuous operator and the compactness of S(t) for t > 0 implies
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the continuity in the uniform operator topology [29]. Thus, the set {Φ̂z : z ∈ Bq}
is equicontinuous.

As a consequence of Claims 2 and 3, together with the Arzelá-Ascoli theorem,
it suffices to show that Φ̂ maps Bq into a precompact set in H.

Let 0 < t < t1 be fixed and let ε be a real number satisfying 0 < ε < t. For
z ∈ Bq we define

(Φ̂εz)(t) = S(ε)
∫ t−ε

0

S(t− s− ε)f(s)ds+ S(ε)
∫ t−ε

0

S(t− s− ε)g(s)dBH(s),

where f ∈ NF,z+bφ.
Since S(t) is a compact operator, the set

Vε(t) = {Φ̂ε(z)(t) : z ∈ Bq}
is precompact in H for every ε, 0 < ε < t. Moreover, for every z ∈ Bq we have

E|(Φ̂z)(t)− (Φ̂ε(z)(t)|2 ≤ 2t1
∫ t

t−ε
|S(t, s)|2η(s)p(q)ds+ 2

∫ t

t−ε
S(t− ε)E|g(s)dBH(s)|2

≤ 2t1M
∫ t

t−ε
η(s)p(q

′
)ds+ 4MHt2H−1

1

∫ t1

0

‖g(s)‖2L0
Q
ds.

Therefore, there are precompact sets arbitrarily close to the set Vε(t) = {Φ̂ε(z)(t) : z ∈
Bq}. Hence the set V (t) = {Φ̂(z)(t) : z ∈ Bq} is precompact in H, Hence, the
Arzelá-Ascoli shows that Φ̂ is a compact multi-valued map.

Claim 4. Φ̂ has a closed graph.
Let zn −→ z∗, ρ̂n ∈ Φ̂zn and ρ̂n −→ ρ̂∗ as n −→ ∞, we shall prove that

ρ̂∗ ∈ Φ̂z∗. ρ̂n ∈ Φ̂zn means that there exists fn ∈ NF,zn+bφ such that

ρ̂n(t) =
∫ t

0

S(t− s)fn(s)ds+
∫ t

0

S(t− s)g(s)dBH(s), t ∈ [0, t1].

We must prove that there exists f∗ ∈ NF,z∗+bφ such that

ρ̂∗(t) =
∫ t

0

S(t− s)f∗(s)ds+
∫ t

0

S(t− s)g(s)dBH(s), t ∈ [0, t1].

Consider the linear continuous operator

Γ : L2([0, t1],H) −→ D0
t0 , Γ(f)(t) =

∫ t

0

S(t− s)f(s)ds.

From lemma (2.6), it follows that Γ ◦NF is a closed graph operator. Moreover,
we have that

ρn(t)−
∫ t

0

S(t− s)g(s)dBH(s) ∈ Γ(N1
F,zn+bφ).

Since zn −→ z∗ and ρ̂n −→ ρ̂∗ , there is f∗ ∈ NF,z∗+bφ such that

ρ̂∗(t) =
∫ t

0

S(t− s)f∗(s)ds+
∫ t

0

S(t− s)g(s)dBH(s), t ∈ [0, t1].

Therefore Φ̂ is a completely continuous
Claim 5. There exist a priori bounds on solutions.
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Let z be a possible solution of the equation z ∈ λΦ̂(z) and z0 = φ, for some
λ ∈ (0, 1). Then,

E|z(t)|2 =E
∣∣∣ ∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBH(s)
∣∣∣2, t ∈ [0, t1].

≤2Mt1

∫ t

0

η(s)p(‖zs + φ̂s‖2D) + 4MHt2H−1
1

∫ t1

0

‖g(s)‖2L0
Q
ds, t ∈ [0, t1]

E|z(t)|2 ≤ 2Mt1

∫ t

0

η(s)p(‖zs + φ̂s‖2D) + 4MHt2H−1
1

∫ t1

0

‖g(s)‖2L0
Q
ds, t ∈ [0, t1].

(3.5)
But
‖zt + φ̂t‖2D ≤ 2(‖zt‖2D + ‖φ̂t‖2D

≤ 4K̃2 sup
s∈[0,t1]

E|z(s)|2 + 4K̃2ME|φ̂(0)|2 + 4M̃2‖φ‖2D

If we set w0(t) the right hand side of the above inequality we have that

‖zt + φ̂t‖2D ≤ w0(t)
and therefore (3.5) becomes

E|z(t)|2 ≤ 2Mt1

∫ t

0

η(s)p(w0(s)) + 4MHt2H−1
1

∫ t1

0

‖g(s)‖2L0
Q
ds, t ∈ [0, t1]. (3.6)

Using (3.6) in the definition of w0, we have that

w0(t) ≤ 4K̃2
[
2Mt1

∫ t

0

η(s)p(w0(s)) + 4MHt2H−1
1

∫ t1

0

‖g(s)‖2L0
Q
ds
]

+4K̃2ME|φ̂(0)|2 + 4M̃2‖φ̂‖2D, t ∈ [0, t1].
(3.7)

Denoting by v0(t) the right-hand side of the above inequality we have

w0(t) ≤ v0(t) t ∈ [0, t1],

v0(0) = 16K̃2MHt2H−1
1

∫ t1

0

‖g(s)‖2L0
Q
ds] + 4K̃2ME|φ̂(0)|2 + 4M̃2‖φ̂‖2D

and
v
′

0(t) = 8K̃2Mt1η(t)p(w0(t)) t ∈ [0, t1].
By using the nondecreasing character of p we obtain

v
′

0(t) ≤ 8K̃2Mt1η(t)p(v0(t)) t ∈ [0, t1].
Then for each t ∈ [0, t1] we have

Γ1(v0(t)) =
∫ v0(t)

v0(0)

du

p(u)
≤ 8K̃2Mt1

∫ 1

0

η(s)ds <
∫ ∞
v0(0)

du

p(u)
.

In view of (H4), we deduce

v0(t) ≤ Γ−1
1 (8K̃2Mt1

∫ t1

0

η(s)ds) = M2
0 .
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Since for every t ∈ [0, t1], ‖z(t)‖D0
t0
≤M0

Set
U0 = {z ∈ D0

t0 : sup
t∈[0,t1]

(E‖y(t)‖2)
1
2 } < M0 + 1.

From the choice of U0, there is no z ∈ ∂U0 such that z ∈ λΦ̂(z) for some λ ∈ (0, 1).
As a consequence of Lemma 3.1, we deduce that Φ̂ has a fixed point z0 ∈ U0.
Hence, Φ has a fixed point y that is a solution to the problem (1.1). Denote this
solution by y0.

Step2. Consider now the problem,

dy(t) ∈ [Ay(t) + F (t, yt)]dt+ g(t)dBHQ (t), if t ∈ (t1, t2],
y(t+1 )− y0(t−1 ) = I1(y0(t−1 )), y(t) = y0(t) if t ∈ (−∞, t1].

(3.8)

Let

Dt1 = {y ∈ C([t1, t2],H) : y(t+1 ) exists , sup
t∈[t1,t2]

E(|y(t)|2) <∞)}.

Set
D∗t1 = D ∩Dt0 ∩ Dt1

Consider the operator Φ1 : Dt1 −→ P(Dt1) defined by,

Φ1(y) =

ρ1 ∈ Dt2 ρ1(t) =


y0(t), if t ∈ (−∞, t1],

y0(t−1 ) + S(t− t1)I1(y0(t−1 )) +
∫ t

t1

S(t− s)f(s)ds

+
∫ t

t1

S(t− s)g(s)dBH(s), if t ∈ (t1, t2]


where f ∈ NF,y = {f ∈ L2([t1, t2],H) : f(t) ∈ F (t, yt) for a.e.t ∈ [t1, t2]}.
Let φ̂(·) : (−∞, t2] −→ H be the function defined by

φ̂(t) =
{
y0(t), if;t ∈ (−∞, t1],
y0(t−1 ) + S(t− t1)I1(y0(t−1 )), if t ∈ (t1, t2]

Then φ̂t1 is an element of D∗t1 and φ̂t1 = y0.

Let y(t) = z(t)+φ̂(t), t1 < t ≤ t2. Obviously, if y satisfies the integral equation

y(t) = y0(t−1 )+S(t−t1)I1(y0(t−1 ))+
∫ t

t1

S(t−s)f(s)ds+
∫ t

t1

S(t−s)g(s)dBHQ (s), t ∈ [t1, t2],

(3.9)
that z satisfies z(t1) = 0, t ∈ (−∞, t1] and

z(t) =
∫ t

t1

S(t−s)f(s)ds+
∫ t

t1

S(t−s)g(s)dBHQ (s)+S(t−t1)I1(z0(t−1 )+φ̂(t−1 )), t ∈ [t1, t2].

(3.10)
Set D1

t1 =
{
z ∈ D∗t1 , such that zt1 = 0

}
Let the operator Φ̂ : D1

t1 → P(D1
t1) be defined by

Φ̂(z) =

ρ̂ ∈ D1
t1 ρ̂(t) =


0, if;t ∈ (−∞, t1],∫ t

t1

S(t− s)f(s)ds+
∫ t

t1

S(t− s)g(s)dBH(s)

+S(t− t1)(I1(z(t−1 ) + φ(t−1 )) if t ∈ [t1, t2].
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where

f ∈ NF,z+bφ = {f ∈ L2([t1, t2],H) : f(t) ∈ F (t, zt1 + φ̂t1)a.e.t ∈ [t1, t2]}.

From (H4), for each t ∈ [t1, t2], we have

E|z(t)|2 =E
∣∣∣ ∫ t

t1

S(t− s)f(s)ds+
∫ t

t1

S(t− s)g(s)dBH(s) + S(t− t1)I1(z0(t−1 ) + φ̂(t−1 ))
∣∣∣2,

≤2M(t2 − t1)
∫ t

t1

η(s)p(‖zs + φ̂s‖2D)

+ 8MH(t2 − t1)2H−1

∫ t2

t1

‖g(s)‖2L0
Q
ds,

+ 4M sup
t∈(−∞,t1]

E(I1(z0(t1)) + φ̂(t1))|2, t ∈ [t1, t2]. (3.11)

If we set w1(t) the right hand side of the above inequality we have that

‖zt + φ̂t‖2D ≤ w1(t),
and therefore (3.11) becomes

E|z(t)|2 ≤2M(t2 − t1)
∫ t

t1

η(s)p(w1(s)) + 8MH(t2 − t1)2H−1

∫ t2

t1

‖g(s)‖2L0
Q
ds,

+ 4M sup
t∈(−∞,t1]

E(I1(z0(t1)) + φ̂(t1))|2, t ∈ [t1, t2]. (3.12)

Using (3.12) in the definition of w1, we have that

w1(t) ≤4K̃2
[
2M(t2 − t1)

∫ t

t1

η(s)p(w1(s)) + 8MH(t2 − t1)2H−1

∫ t2

t1

‖g(s)‖2L0
Q
ds,

+ 4M sup
t∈(−∞,t1]

E(I1(z0(t1))
]

+ 4MK̃2E|φ̂(0)|2 + 4M̃2‖φ̂‖2D, t ∈ [t1, t2],

=N1 + 8K̃2M(t2 − t1)
∫ t

t1

η(s)p(w1(s)). (3.13)

Denoting by v1(t) the right-hand side of the above inequality we have

w1(t) ≤ v1(t) t ∈ [t1, t2],

v1(t1) = N1

and
v
′

1(t) = 8K̃2M(t2 − t1)η(t)p(w1(t)) t ∈ [t1, t2].
By using the nondecreasing character of p get

v
′

1(t) ≤ 8K̃2M(t2 − t1)η(t)p(v1(t)) t ∈ [t1, t2].
Then for each t ∈ [0, t1] we have∫ v1(t)

N1

du

p(u)
≤ 8K̃2M(t2 − t1)

∫ t2

t1

η(s)ds.



STOCHASTIC DELAY EVOLUTION INCLUSIONS WITH IMPULSES 15

In view of (H4), we obtain

v1(t) ≤ Γ−1
2 (8K̃2M(t2 − t1)

∫ t2

t1

η(s)ds) = M2
1 .

Since for every t ∈ [t1, t2], ‖z(t)‖D2
t1
≤M1

Set

U1 = {z ∈ D1
t1 : sup

t∈[t1,t2]

(E‖z(t)‖2)
1
2 } < M1 + 1.

As in Step 1 we can show that Φ̂ : U1 −→ Pcv(D1
t1) is a compact multivalued

map and u.s.c.
From the choice of U1, there is no z ∈ ∂U1 such that z ∈ λΦ̂(z) for some

λ ∈ (0, 1). As a consequence of Lemma 3.1, we deduce that Φ̂ has a fixed point
z1 ∈ U1. Hence, Φ has a fixed point y that is a solution to the problem (1.1).
Denote this solution by y1.

Step3. We continue this process and take into account that zm := z|∈[tm,T ] is
a fixed point of the operator Φ̂m defined by

Let the operator Φ̂ : Dmtm → P(Dmtm) defined by

Φ̂(z) =

ρ̂ ∈ Dmtm ρ̂(t) =


0, if t ∈ (−∞, tm],∫ t

tm

S(t− s)f(s)ds+
∫ t

tm

S(t− s)g(s)dBH(s)

+S(t− tm)(Im(zm−1(t−m) + φ(t−m)) if t ∈ [tm, T ].


where

f ∈ Nz+bφ = {f ∈ L2([tm, T ],H) : f(t) ∈ F (t, ztt + φ̂t)a.e.t ∈ [tm, T ]}.

Let

Dtm = {z ∈ ([tm, T ],H), z(t+m) existe , sup
t∈[tm,T ]

E(|y(t)|2) <∞)}

Set

D∗tm = D ∩Dm−1 ∩ Dm

and Dmtm =
{
z ∈ D∗tm , such that ztm = 0

}
Then, there exists a fixed point zm of Φ̂m, The fixed point z of the operator

Φ̂ is then defined by

z(t) =



z0(t), if t ∈ (−∞, t1],
z1(t), if t ∈ (t1, t2],
·
·
·
zm(t), if t ∈ (tm, tm+1],

Hence, Φ has a fixed point y that is a solution to the problem (1.1). This
completes the proof.

�
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3.2. The nonconvex case. In this section we present a result for the problem (1.1)
in the spirit of the nonlinear alternative of Leray-Schauder type (Lemma 2.8), for
single-valued maps, combined with a selection theorem due to Bressan and Colombo
[10] for lower semicontinuous multivalued maps with decomposable values.

Let A be a subset of J ×D. A is L⊗B measurable if A belongs to the σ-algebra
generated by all sets of the form J × D where J is Lebesgue measurable in J
and D is Borel measurable in D. A subset A of L2(J,H) is decomposable if for
all w, v ∈ A and J ∈ J measurable, wχJ + vχJ−J ∈ A, where χ stands for the
characteristic function.

Let G : H −→ P(H) be a multivalued operator with nonempty closed values. G
is lower semi-continuous (l.s.c.) if the set {y ∈ H : G(y) ∩ B 6= ∅} is open for any
open set B in H.

Definition 3.4. Let Y be a separable metric space and let N : Y −→ P(L2(J,H)
be a multivalued operator. We say that N has property (BC) if

1): N is lower semi-continuous (l.s.c.);
2): N has nonempty closed and decomposable values.

Let F : J ×D −→ P(H)) be a multivalued map with nonempty compact values.
Assign to F the multivalued operator

Ψ : D∗T −→ P(L2(J,H)),

by letting

Ψ(y) = {f ∈ L2(J,H) : f(t) ∈ F (t, yt) for a.e. t ∈ J}.
The operator Ψ is called the Niemytzki operator associated to F .

Definition 3.5. Let F : J ×H −→ P(H) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its
associated Niemytzki operator Ψ is lower semi-continuous and has nonempty closed
and decomposable values.

Next we state a selection theorem due to Bressan and Colombo [10].

Theorem 3.6. Let Y be a separable metric space and let N : Y −→ P(L2(J,H)) be
a multivalued operator which has property (BC). Then N has a continuous selection,
i.e. there exists a continuous function (single-valued) g̃ : Y −→ L2(J,H) such that
g̃(y) ∈ N(y) for every y ∈ Y .

Let us introduce the following hypotheses which are assumed hereafter:
(H6): F : J × D −→ P(H) is a nonempty compact valued multivalued map

such that:
a): (t, y) 7−→ F (t, y) is L⊗B measurable and for every t ∈ J , the multi-

function t→ F (t, yt) is measurable.
b): (t, y) 7−→ F (t, y) is lower semi-continuous for a.e. t ∈ J .

(H7): E|F (t,Θ)|2 = sup{E(|f |)2 : f ∈ F (t,Θ)}} ≤ η(t)p(‖Θ‖2D), t ∈
J, Θ ∈ D,
where η ∈ L2(J, IR+) and p : IR+ −→ (0,∞) is continuous and increasing
with

8K̃2MT

∫ T

t0

η(s)ds ≤
∫ ∞
N

du

p(u)
,
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N = 4K̃2
[
4Mm

m∑
k=1

ck + 8K̃2MT 2H−1

∫ T

0

‖g(s)‖2L0
Q
ds
]

+ C.

The following lemma is crucial in the proof of our main theorem.

Lemma 3.7. [17] Let F : J × D −→ Pcp(H) be a multivalued map. Assume that
(H6) and (H7) hold. Then F is of l.s.c. type.

Theorem 3.8. Assume that hypotheses (H1)− (H3) and (H6)− (H7) hold. Then
the impulsive initial value problem (1.1) has at least one solution.

Proof. Consider the operator G : D∗T → P(D∗T ) defined by

G(y) =



φ(t), if t ∈ (−∞, 0],

S(t)φ(0) +
∫ t

0

S(t− s)f(s)ds

+
∫ t

0

S(t− s)g(s)dBH(s) +
∑

0<tk<t

S(t− tk)Ik(y(t−k )), if t ∈ [0, T ]

Let φ̂ : (−∞, T ] −→ H be the function defined by

φ̂(t) =
{
φ(t), t ∈ (−∞, 0],
S(t)φ(0), t ∈ [0, T ];

Then φ̂ is an element of D∗T and φ̂0 = φ. It is evident that z satisfies z0 =
0, t ∈ (−∞, 0] and

z(t) =
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(z(t−k ) + φ̂(t−k )), t ∈ J.

where f(t) ∈ F (t, zt + φ̂t) for a.e. t ∈ [0, T ].
Set D∗∗T = {z ∈ D∗T , such that z0 = 0 ∈ D} and for any z ∈ D∗∗T we have

‖z‖D∗∗T
= ‖z0‖D + sup

t∈[0,T ]

(E‖z(t)‖2)
1
2 = sup

t∈[0,T ]

(E‖z(t)‖2)
1
2

thus (D∗∗T , ‖.‖D∗∗T
) is a Banach space.

We define the Niemytzki operator associated to F ,

Ψ : D∗∗T −→ P(L2(J,H)),

by letting

Ψ(z) = {f ∈ L2(J,H) : f(t) ∈ F (t, zt + φ̂t) for a.e. t ∈ J}
be a selection set of Ψ. From (H6) and (H7) imply by Lemma 3.7 that F is of
lower semi-continuous type. Then from Theorem 3.6 there exists a continuous
function f : D∗∗T −→ L2(J,H) such that f(z) ∈ Ψ(z + φ̂) for all z ∈ D∗∗T .

Consider the problem,


dz(t) ∈ [Az(t) + f(zt + φ̂t)]dt+ g(t)dBHQ (t), t ∈ J = [0, T ], t 6= tk,

z(t+k )− z(t−k ) = Ik(z(t−k ) + φ̂(t−k )), k = 1, . . . ,m,
z(t) = 0, J0 = (−∞, 0],

(3.14)
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and consider the operator Ĝ1 : D∗∗T → D∗∗T defined by

Ĝ1(z) =


0, if;t ∈ (−∞, 0],∫ t

0

S(t− s)f(zs + φ̂s)ds+
∫ t

0

S(t− s)g(s)dBH(s)

+
∑

0<tk<t

S(t− tk)Ik(z(t−k ) + φ̂(t−k )), if t ∈ [0, T ],

 .

where f(z) ∈ Ψ(z + φ̂).
Clearly, if z ∈ D∗∗T is fixed point of Ĝ1, then z is fixed fixed point of Ĝ. Thus,

there exists y ∈ D∗T such that y is a fixed point of the operator G,
Clearly, Ĝ1 is completely continuous and there exists MT > 0 such that for

every solution of z = λĜ1(z), for some λ ∈ (0, 1), we have ‖z‖D∗∗T
≤MT . Set

U = {z ∈ D∗∗T : ‖z‖D∗∗T
< MT + 1}.

We see that U is an open set in D∗∗T . From the choice of U there is no z ∈ ∂U
such that z = λĜ1(z) for some λ ∈ (0, 1). As a consequence of the nonlinear
alternative of Leray Schauder type lemma 2.8, we deduce that Ĝ1(z) has a fixed
point z in U . Hence, G has a fixed point y that is a solution to the problem
(1.1) �

Now we present a second result for the problem (1.1) with a nonconvex valued
right-hand side. Our considerations are based on a fixed point theorem for contrac-
tion multivalued operators given by Covitz and Nadler in 1970 (see also Deimling
[16], Theorem 11.1).

Lemma 3.9. [16] Let (X, d) be a complete metric space. If the multivalued operator
G : X −→ Pcl(X) is a contraction , then G has at least one fixed point.

Let us introduce the following hypotheses:
(H8): F : J ×D −→ Pcp(H); (t, y) −→ F (t, y) is measurable for each y ∈ D.
(H9): There exists a function lf ∈ L2(J, IR+) (denote l∗ =

∫ T
0
l2(t)dt) ,such

that

EH2
d(F (t, x), F (t, y)) ≤ lf (t)‖x− y‖2D for each x, y ∈ D, t ∈ J.

Theorem 3.10. Assume that hypotheses (H1), (H2) and (H8) hold. Then the
problem (1.1) has at least one mild solution.

Although the proof follows the same steps than the one of theorem 3.8, the technical
details necessary for the proof are different.

Proof. The proof will be given in several steps.
Consider the problem (1.1) on (−∞, t1]

dy(t) ∈ [Ay(t) + F (t, yt)]dt+ g(t)dBHQ (t), if t ∈ [0, t1],
y(t) = φ(t), if t ∈ (−∞, 0].

(3.15)

Let
Dt0 = {y ∈ C([0, t1],H) : sup

t∈[0,t1]

E(|y(t)|2) <∞}

Set
D∗t0 = D ∩Dt0
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We transform the problem (3.2) into a fixed point problem. Consider the multi-
valued operator Φ : D∗t0 → P(D∗t0) defined by

Φ(y) =

ρ ∈ D
∗
t0 : ρ(t) =


φ(t), if t ∈ (−∞, 0],

S(t)φ(0) +
∫ t

0

S(t− s)f(s)ds

+
∫ t

0

S(t− s)g(s)dBH(s), if t ∈ [0, t1]


where f ∈ NF,y = {f ∈ L2([0, t1],H) : f(t) ∈ F (t, yt) for a.e. t ∈ [0, t1]}.

We will prove that Φ has a fixed point.
Let φ̂ : (−∞, t1] −→ H be the function defined by

φ̂(t) =
{
φ(t), t ∈ (−∞, 0],
S(t)φ(0), t ∈ [0, t1];

Then φ̂ is an element of D∗t0 and φ̂0 = φ. Let y(t) = z(t) + φ̂(t),−∞ < t ≤ t1.

Obviously, if y satisfies the integral equation

y(t) = S(t)φ(0) +
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s), t ∈ [0, t1], (3.16)

then z satisfies z0 = 0, t ∈ (−∞, 0] and

z(t) =
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s), t ∈ [0, t1], (3.17)

where f(t) ∈ F (t, zt+φ̂t) for a.e. t ∈ [0, t1]. SetD0
t0 =

{
z ∈ D∗t0 , such that z0 = 0 ∈ D

}
and for any z ∈ D0

t0 we have

‖y‖D0
t0

= ‖z0‖D + sup
t∈[0,t1]

(E‖z(t)‖2)
1
2 = sup

t∈[0,t1]

(E‖y(t)‖2)
1
2

thus (D0
t0 , ‖.‖D0

t0
) is a Banach space. Let the operator Φ̂ : D0

t0 → P(D0
t0) defined

by

Φ̂(z) =

ρ̂ ∈ D0
t0 : ρ̂(t) =


0, if;t ∈ (−∞, 0],∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBH(s) if t ∈ [0, t1].


We shall show that Φ̂ satisfies the assumptions of Lemma 3.9. The proof will be
given in two claims.

Claim 1. Φ̂(z) ∈ Pcl(D0
t0) for each z ∈ D0

t0 .
Let zn ∈ Φ̂(z) and ‖zn − z‖2D0

t0
−→ 0. z ∈ D0

t0 and there exist f ∈ NF,z+bφ,
such that

zn(t) =
∫ t

0

S(t− s)fn(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s).

Since F (t, z(t) + φ̂(t)) is compact values and from (H8), we may pass to a sub-
sequence if necessary to get that fn converges to f in L2(J,H) . Then, for each
t ∈ [0, t1],
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E
∣∣∣zn(t) −

∫ t

0

S(t− s)f(s)ds−
∫ t

0

S(t− s)g(s)dBHQ (s)|2

−→ 0, as n −→ 0.
So we have that there exists a f(·) ∈ NF,z+bφ such that

z(t) =
∫ t

0

S(t− s)f(s)ds+ S(t− s)g(s)dBHQ (s)

which implies z ∈ Ĝ(z) .
Cliam 2. There exists γ < 1, such that

EH2
d(Φ̂(z1), Φ̂(z2)) ≤ γ‖z1 − z2‖D0

t0

for any z1, z2 ∈ D0
t0 . For all h1 ∈ Φ̂(z1), there exists f1(·) ∈ NF,z1+bφ , such that

h1(t) =
∫ t

0

S(t− s)f1(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s)

For Hd(F (t, z1(t) + φ̂(t)), F (t, z2(t) + φ̂)) ≤ l(t)|z1(t) − z2(t)|, there exists
f2(t) ∈ NF,z2 , such that

E|f1(t)− f2(t)|2 ≤ lf (t)‖z1(t)− z2(t)‖, a.e. t ∈ [0, t1].

Define

h2(t) =
∫ t

0

S(t− s)f2(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s)

and we have

E|h1(t)− h2(t)|2 ≤ E
∣∣∣ ∫ t

0

S(t− s)(f1(s)− f2(s))ds
∣∣∣2

≤ E
∣∣∣ ∫ t

0

S(t− s)(f1(s)− f2(s))ds
∣∣∣2

≤ MT

∫ t

0

l2(s)E|z1 − z2|2ds

≤
∫ t

0

l(s)E|z1 − z2|2ds

≤ 1
τ e
τL(t)‖z1 − z2‖2∗.

Thus,

e−τL(t)E|h1(t)− h2(t)|2 ≤ 1
τ
‖z1 − z2‖2∗

Therefore,

‖h1(t)− h2(t)‖2∗ ≤
1
τ
‖z1 − z2‖2∗,

where L(t) =
∫ t

0

L(s)ds, l(t) = MTl2(t) and ‖ · ‖∗ denote the Bielecki-type [9]

norm on C([0, t1], X) defined by

‖y‖2∗ = sup
t∈[0,t1]

E|y(t)|2e−τL(t), τ > 1

By an analogous relation, obtained by interchanging the roles of z1 and z2, it
follows that
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EH2
d(Φ̂(z1)− Φ̂(z2)) ≤ 1

τ
‖z1 − z2‖2∗

So, Φ̂ is a contraction, and thus, by Lemma 3.9, Φ̂ has a fixed point z, so the
problem (3.15) has at least one solution. Denote this solution by y0. Step2.
Consider now the problem,

dy(t) ∈ [Ay(t) + F (t, yt)]dt+ g(t)dBHQ (t), if t ∈ (t1, t2],
y(t+1 )− y0(t−1 ) = I1(y0(t−1 )), y(t) = y0(t) if;t ∈ (−∞, t1].

(3.18)

Let

Dt1 = {y ∈ C([t1, t2],H) : y(t+1 ) exists , sup
t∈[t1,t2]

E(|y(t)|2) <∞)}.

Set
D∗t1 = D ∩Dt0 ∩ Dt1

Consider the operator Φ1 : D∗t1 −→ P(D∗t1) defined by,

Φ1(y) =

ρ1 ∈ D∗t1 : ρ1(t) =


y0(t), if t ∈ (−∞, t1],

y0(t−1 ) + S(t− t1)I1(y0(t−1 )) +
∫ t

t1

S(t− s)f(s)ds

+
∫ t

t1

S(t− s)g(s)dBH(s), if t ∈ (t1, t2]


where f ∈ NF,y = {f ∈ L2([t1, t2],H) : f(t) ∈ F (t, yt) for a.e.t ∈ [t1, t2]}.
Let φ̂(·) : (−∞, t2] −→ H be the function defined by

φ̂(t) =
{
y0(t), if;t ∈ (−∞, t1],
y0(t−1 ) + S(t− t1)I1(y0(t−1 )), if t ∈ (t1, t2]

Then φ̂t1 is an element of D∗t1 and φ̂t1 = y0.

Let y(t) = z(t) + φ̂(t), t1 < t ≤ t2

Obviously, if y satisfies the integral equation

y(t) = y0(t−1 )+S(t−t1)I1(y0(t−1 ))+
∫ t

t1

S(t−s)f(s)ds+
∫ t

t1

S(t−s)g(s)dBHQ (s), t ∈ [t1, t2],

(3.19)
that z satisfies z(t1) = 0, t ∈ (−∞, t1] and

z(t) =
∫ t

t1

S(t−s)f(s)ds+
∫ t

t1

S(t−s)g(s)dBHQ (s)+S(t−t1)I1(z0(t−1 )+φ̂(t−1 )), t ∈ [t1, t2].

(3.20)
Set D1

t1 =
{
z ∈ D∗t1 , such that zt1 = 0

}
Let the operator Φ̂ : D1

t1 → P(D1
t1) defined by

Φ̂(z) =

ρ̂ ∈ D1
t1 : ρ̂(t) =


0, if;t ∈ (−∞, t1],∫ t

t1

S(t− s)f(s)ds+
∫ t

t1

S(t− s)g(s)dBH(s)

+S(t− t1)(I1(z(t−1 ) + φ(t−1 )) if t ∈ [t1, t2].
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where

f ∈ NF,z+bφ = {f ∈ L2([t1, t2],H) : f(t) ∈ F (t, zt1 + φ̂t1)a.e.t ∈ [t1, t2]}.

Similar to Step 1, we can prove that the problem (3.18) has at least one
solution, which we denote by y1.

Step3. We continue this process and take into account that zm := z|∈[tm,T ] is
a fixed point of the operator Φ̂m defined by

Let the operator Φ̂ : Dmtm → P(Dmtm) defined by

Φ̂(z) =

ρ̂ ∈ Dmtm ρ̂(t) =


0, if;t ∈ (−∞, tm],∫ t

tm

S(t− s)f(s)ds+
∫ t

tm

S(t− s)g(s)dBH(s)

+S(t− tm)(Im(zm−1(t−m) + φ(t−m)) if t ∈ [tm, T ].


where

f ∈ Nz+bφ = {f ∈ L2([tm, T ],H) : f(t) ∈ F (t, ztt + φ̂t)a.e.t ∈ [tm, T ]}.

Let

Dtm = {z ∈ ([tm, T ],H), z(t+m) existe , sup
t∈[tm,T ]

E(|y(t)|2) <∞)}

Set
D∗tm = D ∩Dm−1 ∩ Dm

and Dmtm =
{
z ∈ D∗tm , such that ztm = 0

}
Then, there exists a fixed point zm of Φ̂m, The fixed point z of the operator

Φ̂ is then defined by

z(t) =



z0(t), if t ∈ (−∞, t1],
z1(t), if t ∈ (t1, t2],
·
·
·
zm(t), if t ∈ (tm, tm+1],

has at least one solution, which we denote by

y(t) =



y0(t), if t ∈ (−∞, t1],
y1(t), if t ∈ (t1, t2],
·
·
·
ym(t), if t ∈ (tm, tm+1],

�
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