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Abstract

Bivariate count data arise in several different disciplines and the bivariate Poisson distribution is

commonly used to model them. This paper proposes and studies a computationally convenient

goodness-of-fit test for this distribution, which is based on an empirical counterpart of a system of

equations. The test is consistent against fixed alternatives. The null distribution of the test can be

consistently approximated by a parametric bootstrap and by a weighted bootstrap. The goodness

of these bootstrap estimators and the power for finite sample sizes are numerically studied. It is

shown that the proposed test can be naturally extended to the multivariate Poisson distribution.
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1. Introduction

Univariate count data appear in many real life situations and the univariate Poisson dis-

tribution is frequently used to model this kind of data (see for example Haight, 1967;

Johnson and Kotz 1969; Sahai and Khurshid, 1993). Gürtler and Henze (2000) present

a wide variety of procedures for testing goodness-of-fit (gof) for the univariate Poisson

distribution.

In practice, bivariate count data appear in different areas of knowledge and the bi-

variate Poisson distribution (BPD), being a generalization of the Poisson distribution,

plays a key role in modelling them, provided that such data present a positive correlation.
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Different authors have given a definition for the BPD (see for example Kocherlakota and

Kocherlakota, 1992). In this article we will work with the one that has received more

attention (see for example Holgate, 1964; Johnson, Kotz and Balakrishnan, 1997). Let

X1 = Y1 +Y3 and X2 =Y2 +Y3,

where Y1,Y2 and Y3 are mutually independent Poisson random variables with means

θ′1 = θ1 − θ3 > 0, θ′2 = θ2 − θ3 > 0 and θ3 > 0, respectively. The joint distribution of

the vector (X1,X2) is called BPD with parameter θ = (θ1,θ2,θ3), (X1,X2) ∼ BP(θ) for

short. In the statistical literature on gof tests for the BPD, which is not so rich as in the

univariate case, we found the following: the tests given by Crockett (1979), Loukas and

Kemp (1986), Rayner and Best (1995) – these three tests are not consistent against all

fixed alternatives – and, more recently, the tests in Novoa-Muñoz and Jiménez-Gamero

(2014) (hereafter abbreviated to NJ).

The two tests in NJ are consistent against all fixed alternatives. The results in Janssen

(2000) assert that the global power function of any nonparametric test is flat on balls of

alternatives except for alternatives coming from a finite dimensional subspace. Because

of this reason, it is interesting to propose new gof tests able to detect different sets of

alternatives.

This paper presents a consistent gof test for the BPD. It is based on the following:

since the probability generating function (pgf) of the BPD is the unique pgf satisfying

certain system of partial differential equations, and the empirical probability generat-

ing function (epgf) consistently estimates the pgf, the epgf should approximately satisfy

such system. The proposed test statistic is a function of the coefficients of the polyno-

mials of an empirical version of that system. The asymptotic behaviour of the proposed

test under alternatives is shared with the ones in NJ. An advantage of the test proposed

in this paper over those in NJ is that its application does not entail the choice of a weight

function, which is rather arbitrary.

The null distribution of the test statistic can be consistently approximated by a para-

metric bootstrap as well as by means of a weighted bootstrap. The finite sample perfor-

mance of the proposed test is investigated by means of a simulation study, where the

goodness of the proposed approximations is numerically studied and the test is com-

pared, in terms of power, to the tests cited above. The numerical power study reveals

that, as expected from the results in Janssen (2000), there is no test yielding the highest

power against all considered alternatives. In most cases, the power of the proposed test

is quite close to the highest one; in other cases, the proposed test is the most powerful.

In addition, from a computational point of view, the test proposed in this paper is more

efficient than its competitors.

The work is organized as follows. Section 2 introduces the test statistic and derives

its asymptotic null distribution. Since the asymptotic null distribution does not provide

a useful means of approximating the null distribution of the test statistic, Section 3 stud-
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ies two bootstrap estimators. Specifically, it is shown that the parametric bootstrap and

a conveniently defined weighted bootstrap estimators produce consistent null distribu-

tion estimators. This Section also studies the power of the resulting tests against fixed

alternatives. Section 4 deals with the practical implementation of the bootstrap null dis-

tribution estimators as well as other related issues. Section 5 reports a summary of the

results of a simulation study carried out to examine the finite sample performance of the

tests and to compare them with the existing ones. All stated results are valid for θ3 > 0.

Section 6 deals with the case θ3 = 0. Section 7 shows how the proposed technique can

be applied to the general multivariate case. All proofs are relegated to the last section.

Hereinafter we shall use the following notation: all vectors are row vectors and vT

is the transposed of the row vector v; for any vector v, vk denotes its kth coordinate,

and ‖v‖ its Euclidean norm; N0 = {0,1,2,3, . . .}; I{A} denotes the indicator function

of the set A; Pθ denotes the probability law of the BPD with parameter θ; P denotes

the probability law of the data; Eθ denotes expectation with respect to the probability

function Pθ; E denotes expectation with respect to the true probability function of the

data; P∗ denote the probability law, given the data; all limits in this work are taken as n→
∞;

L−→ denotes convergence in distribution;
P−→ denotes convergence in probability;

a.s.−→ denotes almost sure (a.s.) convergence; for any function h : S ⊂R
m →R, for some

fixed m ∈ N, we will denote

Da1···amh(u) =
∂ k

∂u
a1
1 · · ·∂u

am
m

h(u),

∀a1, . . . ,am ∈ N0 such that k = a1 + · · ·+am.

2. The test statistic and its asymptotic null distribution

Let X1 = (X11,X12),X2 = (X21,X22), . . . ,Xn = (Xn1,Xn2) be independent identically dis-

tributed (iid) from a random vector X =(X1,X2)∈N
2
0. Based on the sample X1,X2, . . . ,Xn,

the objective is to test the hypothesis

H0 : (X1,X2)∼ BP(θ1,θ2,θ3), for some (θ1,θ2,θ3) ∈ Θ,

against the alternative

H1 : (X1,X2)≁ BP(θ1,θ2,θ3), ∀(θ1,θ2,θ3) ∈ Θ,
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where Θ =
{

(θ1,θ2,θ3) ∈ R
3 : θ1 > θ3, θ2 > θ3, θ3 > 0

}

. Since the distribution of a

random vector X = (X1,X2) ∈ N
2
0 is determined by its pgf g(u) = E

(

u
X1
1 u

X2
2

)

, u =

(u1,u2) ∈ [0,1]2, and the joint pgf of a random vector X ∼ BP(θ) is

g(u;θ) = Eθ(u
X1
1 u

X2
2 ) = exp

{

θ1(u1 −1)+ θ2(u2 −1)+ θ3(u1 −1)(u2−1)
}

, (1)

testing H0 vs H1 is equivalent to testing

H0 : g(u) = g(u;θ), ∀u ∈ [0,1]2, for some (θ1,θ2,θ3) ∈ Θ,

versus

H1 : g(u) 6= g(u;θ), for some u ∈ [0,1]2, ∀(θ1,θ2,θ3) ∈ Θ.

Proposition 2 in NJ shows that g(u1,u2;θ) is the only pgf in G2 = {g : [0,1]2 → R,

such that g is a pgf and ∂
∂u1

g(u1,u2) and ∂
∂u2

g(u1,u2) exist ∀(u1,u2) ∈ [0,1]2} satisfying

the following system,

Di(u;θ) = 0, i = 1,2, ∀u ∈ [0,1]2,

where

D1(u;θ) =
∂

∂u1

g(u1,u2)−
{

θ1 + θ3(u2 −1)
}

g(u1,u2),

D2(u;θ) =
∂

∂u2

g(u1,u2)−
{

θ2 + θ3(u1 −1)
}

g(u1,u2).

Now we consider the following empirical versions of the functions Di(u;θ), i = 1,2,

D1n(u; θ̂) =
∂

∂u1

gn(u1,u2)−
{

θ̂1 + θ̂3(u2 −1)
}

gn(u1,u2),

D2n(u; θ̂) =
∂

∂u2

gn(u1,u2)−
{

θ̂2 + θ̂3(u1 −1)
}

gn(u1,u2),

where θ̂ = (θ̂1, θ̂2, θ̂3) is a consistent estimator of θ and gn(u1,u2) is the epgf associated

to the data,

gn(u1,u2) =
1

n

n
∑

i=1

u
Xi1
1 u

Xi2
2 .
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Proposition 1 in NJ shows that g(u) and its derivatives can be consistently estimated by

the epgf and the derivatives of the epgf, respectively. Thus, if H0 is true then D1n(u; θ̂)
and D2n(u; θ̂) should be close to 0, ∀u ∈ [0,1]2. This proximity to 0 can be interpreted in

several ways. For example, NJ interpreted this proximity as

Sn,w(θ̂) = n

∫

{D1n(u; θ̂)2 +D2n(u; θ̂)2}w(u)du ≈ 0, (2)

where w(u) is a non-negative function on [0,1]2.

Here we present another interpretation, reasoning as in Nakamura and Pérez-Abreu

(1993) for the univariate case. With this aim, observe that

Din(u; θ̂) =
∑

r≥0

∑

s≥0

di(r,s; θ̂)ur
1us

2, i = 1,2, (3)

where

d1(r,s; θ̂) = (r+1)pn(r+1,s)− (θ̂1− θ̂3)pn(r,s)− θ̂3pn(r,s−1),

d2(r,s; θ̂) = (s+1)pn(r,s+1)− (θ̂2− θ̂3)pn(r,s)− θ̂3pn(r−1,s),

and

pn(r,s) =
1

n

n
∑

k=1

I(Xk1 = r,Xk2 = s)

is the relative frequency of the pair (r,s). Thus, Din(u; θ̂) = 0, ∀u ∈ [0,1]2, i = 1,2, if and

only if the coefficient of ur
1us

2 in the right hand side of (3) is null, ∀r,s ≥ 0, i = 1,2. This

leads us to consider the following statistic for testing H0,

Wn(θ̂) =
∑

r≥0

∑

s≥0

{d1(r,s; θ̂)2 +d2(r,s; θ̂)2}=
M
∑

r,s=0

{d1(r,s; θ̂)2 +d2(r,s; θ̂)2}, (4)

where M = max{X(n)1,X(n)2}, X(n)k = max1≤i≤n Xik, k = 1,2.

Taking into account that

dk(r,s; θ̂) =
1

n

n
∑

i=1

φkrs(Xi; θ̂), k = 1,2,
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with

φ1rs(x;θ) = (r+1)I(x1 = r+1,x2 = s)− (θ1− θ3)I(x1 = r,x2 = s)− θ3I(x1 = r,x2 = s−1),

φ2rs(x;θ) = (s+1)I(x1 = r,x2 = s+1)− (θ2− θ3)I(x1 = r,x2 = s)− θ3I(x1 = r−1,x2 = s),

where x = (x1,x2), the statistic Wn(θ̂) can be expressed as follows,

Wn(θ̂) =
1

n2

n
∑

i, j=1

h(Xi,X j; θ̂),

with

h(x,y;θ)= h1(x,y;θ)+h2(x,y;θ),

h1(x,y;θ)=
∑

r≥0

∑

s≥0φ1rs(x;θ)φ1rs(y;θ)

= {x2
1 +(θ1 − θ3)

2 + θ2
3}I(x1 = y1,x2 = y2)− (θ1− θ3)x1I(x1 = y1 +1,x2 = y2)

−θ3x1I(x1 = y1 +1,x2 = y2 +1)+(θ1− θ3)θ3I(x1 = y1,x2 = y2 +1)

−(θ1 − θ3)y1I(y1 = x1 +1,y2 = x2)− θ3y1I(y1 = x1 +1,y2 = x2 +1)

+(θ1 − θ3)θ3I(y1 = x1,y2 = x2 +1),

h2(x,y;θ)=
∑

r≥0

∑

s≥0φ2rs(x;θ)φ2rs(y;θ)

= {x2
2 +(θ2 − θ3)

2 + θ2
3}I(x1 = y1,x2 = y2)− (θ2− θ3)x2I(x1 = y1,x2 = y2 +1)

−θ3x2I(x1 = y1 +1,x2 = y2 +1)+(θ2− θ3)θ3I(x1 = y1 +1,x2 = y2)

−(θ2 − θ3)y2I(y1 = x1,y2 = x2 +1)− θ3y2I(y1 = x1 +1,y2 = x2 +1)

+(θ2 − θ3)θ3I(y1 = x1 +1,y2 = x2),

where x = (x1,x2) and y = (y1,y2).

In order to give a sound justification of Wn(θ̂) as a test statistic for testing H0 we next

derive its a.s. limit.

Theorem 1 Let X1,X2, . . . ,Xn be iid from X = (X1,X2) ∈ N
2
0 with E(X2

k ) < ∞, k = 1,2.

Let p(r,s) = P(X1 = r,X2 = s). If θ̂
a.s.−→θ, for some θ ∈ R

3, then

Wn(θ̂)
a.s.−→
∑

r,s≥0

{

a1(r,s;θ)2+a2(r,s;θ)2
}

= η(P;θ),

where
a1(r,s;θ) = (r+1)p(r+1,s)− (θ1− θ3)p(r,s)− θ3p(r,s−1),

a2(r,s;θ) = (s+1)p(r,s+1)− (θ2− θ3)p(r,s)− θ3p(r−1,s).
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Note that η(P;θ)≥ 0 and, taking into account that

Dk(u;θ) =
∑

r≥0

∑

s≥0

ak(r,s;θ)ur
1us

2, k = 1,2,

it follows that η(P;θ) = 0 if and only if H0 is true. Thus, a reasonable test for testing H0

should reject the null hypothesis for large values of Wn(θ̂). Now, to determine what are

large values we must calculate its null distribution, or at least an approximation to it.

We first try to estimate the null distribution of Wn(θ̂) by means of its asymptotic null

distribution. In order to derive it, it will be assumed that the estimator θ̂ is asymptotically

linear, as expressed in the next assumption.

Assumption 1 Under H0, if θ = (θ1,θ2,θ3) ∈ Θ denotes the true parameter value, then

√
n
(

θ̂− θ
)

=
1√
n

n
∑

i=1

ℓ(Xi;θ)+oP(1),

where ℓ :N2
0×Θ−→R

3 is such that Eθ {ℓ(X1;θ)}= 0 and J(θ)=Eθ

{

ℓ(X1;θ)
T
ℓ(X1;θ)

}

< ∞.

Assumption 1 is not restrictive at all since it is fulfilled by some commonly used

estimators such as the moment estimator, the maximum likelihood estimator, the double

zero estimator, the even points estimator and the conditional even points estimator (see

Kocherlakota and Kocherlakota, 1992, and Papageorgiou and Loukas, 1988).

The next result gives the asymptotic null distribution of Wn(θ̂).

Theorem 2 Let X1,X2, . . . ,Xn be iid from X = (X1,X2) ∼ BP(θ1,θ2,θ3). Suppose that

Assumption 1 holds. Then

nWn(θ̂)
L−→
∑

j≥1

λ jχ
2
1 j,

where χ2
11,χ

2
12, . . . are independent χ2 variates with one degree of freedom and the set

{λ j} are the non-null eigenvalues of the operator C(θ) defined on the function space

{τ : N2
0 → R, such that Eθ

[

τ 2(X)
]

< ∞,∀θ ∈ Θ}, as follows

C(θ)τ(x) = Eθ{K(x,X;θ)τ(X)},

with K(x,y;θ)= h(x,y;θ)+ℓ(x;θ)µ(y;θ)T+ℓ(y;θ)µ(x;θ)T+ℓ(x;θ)S(θ)ℓ(y;θ)T, µ(x;θ)=
(µ1(x;θ),µ2(x;θ),µ3(x;θ)),
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µ1(x;θ) = −x1Pθ(x1 −1,x2)+ θ3Pθ(x1,x2 +1)+(θ1− θ3)Pθ(x1,x2),

µ2(x;θ) = −x2Pθ(x1,x2 −1)+ θ3Pθ(x1 +1,x2)+(θ2− θ3)Pθ(x1,x2),

µ3(x;θ) = −µ1(x;θ)− x1Pθ(x1 −1,x2 −1)+ θ3Pθ(x1,x2)+(θ1 − θ3)Pθ(x1,x2 −1)

−µ2(x;θ)− x2Pθ(x1 −1,x2 −1)+ θ3Pθ(x1,x2)+(θ2 − θ3)Pθ(x1 −1,x2),

S(θ) =
∑

r,s≥0 Srs(θ),

Srs(θ) =





a2 0 a(b−a)

0 a2 a(c−a)
a(b−a) a(c−a) (b−a)2+(c−a)2



 ,

a = Pθ(r,s), b = Pθ(r,s−1), c = Pθ(r−1,s),

The asymptotic null distribution of Wn(θ̂) does not provide a useful approximation

to its null distribution since it depends on the unknown true value of θ. Even if θ were

known or replaced by an appropriate estimator, to determine the eigenvalues of an oper-

ator is a rather hard problem.

So, we next study two further ways of approximating it: a parametric bootstrap (PB)

estimator and a weighted bootstrap (WB) estimator.

3. Approximating the null distribution

3.1. Parametric bootstrap

Let X1,X2, . . . ,Xn be iid taking values in N
2
0 such that θ̂ = θ̂(X1,X2, . . . ,Xn) ∈ Θ. Let

X
∗
1,X

∗
2, . . . ,X

∗
n be iid from a population with distribution BP

(

θ̂
)

, given X1,X2, . . . ,Xn,

and let W ∗
n (θ̂

∗) be the bootstrap version of Wn(θ̂) obtained by replacing X1,X2, . . . ,Xn

and θ̂ = θ̂
(

X1,X2, . . . ,Xn

)

by X
∗
1,X

∗
2, . . . ,X

∗
n and θ̂ ∗ = θ̂

(

X
∗
1,X

∗
2, . . . ,X

∗
n

)

, respectively,

in the expression of Wn(θ̂). To prove that the PB can be used to consistently approximate

the null distribution of Wn(θ̂), we will assume the following, which is a bit stronger than

Assumption 1.

Assumption 2 Assumption 1 holds and the functions ℓ and J satisfy

(1) supϑ∈Θ0
Eϑ

[

‖ℓ(X;ϑ)‖2I{‖ℓ(X;ϑ)‖> γ}
]

→ 0, as γ → ∞, where Θ0 ⊆ Θ is an

open neighborhood of θ.

(2) ℓ(X;ϑ) and J(ϑ) are continuous as functions of ϑ at ϑ = θ and J(ϑ) is finite

∀ϑ ∈ Θ0.
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Theorem 3 Let X1,X2, . . . ,Xn be iid from X = (X1,X2) ∈N
2
0. Suppose that Assumption

2 holds and that θ̂
a.s.−→θ, for some θ ∈ Θ. Then

sup
x∈R

∣

∣P∗
{

nW ∗
n (θ̂

∗)≤ x
}

−Pθ
{

nWn(θ̂)≤ x
}∣

∣

a.s.−→ 0.

Let w∗
n,α = inf{x : P∗(W ∗

n (θ̂
∗) ≥ x) ≤ α} be the α upper percentile of the PB distri-

bution of Wn(θ̂) and let Wobs be the observed value of the test statistic. From Theorem 3,

the test function

Ψ∗
PB =

{

1, if Wn(θ̂)≥ w∗
n,α ,

0, otherwise,

or equivalently, the test that rejects H0 when p∗ = P∗
(

W ∗
n (θ̂

∗)≥Wobs

)

≤ α, is asymptot-

ically correct in the sense that Pθ(Ψ
∗
PB = 1)→ α.

3.2. Weighted bootstrap

From the proof of Theorem 2, when H0 is true, we have that nWn(θ̂) = nW1n(θ)+oP(1),

where

nW1n(θ) =
1

n

n
∑

i, j=1

K(Xi,X j;θ),

which converges in law to W0 =
∑

j≥1λ jχ
2
1 j. As observed before, the greatest difficulty

with W0 is to determine the set {λ j}. Nevertheless, Delhing and Mikosch (1994) have

shown that the eigenvalues {λ j} can be consistently (a.s.) approximated by the eigen-

values of the matrix

Hn =

(

1

n
K(Xi,X j;θ)

)

1≤i, j≤n

,

say λ̂1, . . . , λ̂n. Therefore, we could approximate the null distribution of nW1n(θ̂) (and

thus that of nWn(θ̂)) through the conditional distribution, given X1, . . . ,Xn, of

nW ∗
1n =

n
∑

j=1

λ̂ jχ
2
1 j.

This is tantamount to approximate the null distribution of nW1n(θ̂) by means of the

conditional distribution, given X1, . . . ,Xn, of
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W ∗
1 =

1

n

n
∑

i, j=1

K(Xi,X j;θ)ξiξ j,

where ξ1, . . . ,ξn are iid from a standard normal distribution, N(0,1), independent of

X1, . . . ,Xn, that is, by means of the WB distribution of nW1n(θ̂), in the sense of Burke

(2000). The main problem with this approach is that K(x,y;θ) is unknown because it

depends on θ, which is unknown, and because it also depends on ℓ(x;θ), which is usually

unknown. To overcome this problem we replace θ by θ̂ and ℓ(x;θ) by ℓ̂(x; θ̂) which is

assumed to satisfy

1

n

n
∑

j=1

‖ℓ1(X j;θ)− ℓ̂(X j; θ̂)‖2 P−→ 0,

with E{‖ℓ1(X;θ)‖2}< ∞ and ℓ1(x;θ) = ℓ(x;θ) if H0 is true.

(5)

So, instead of nW ∗
1n(θ̂) we consider

nW ∗
2n(θ̂) =

n
∑

j=1

λ̃ jχ
2
1 j,

where λ̃1, . . . , λ̃n are the eigenvalues of the matrix

Ĥn =

(

1

n
K̂(Xi,X j;θ)

)

1≤i, j≤n

,

with K̂(x,y;θ)= h(x,y;θ)+ ℓ̂(x;θ)µ(y;θ)T+ ℓ̂(y;θ)µ(x;θ)T+ ℓ̂(x;θ)S(θ)ℓ̂(y;θ)T. The next

theorem gives the limit of the conditional distribution of nW ∗
2n(θ̂), given X1, . . . ,Xn.

Theorem 4 Let X1,X2, . . . ,Xn be iid from X = (X1,X2) ∈ N
2
0 with E(X2

k )< ∞, k = 1,2.

Suppose that θ̂
P−→θ, for some θ ∈ Θ and that (5) holds. Then,

sup
x

∣

∣P∗
{

nW ∗
2n(θ̂)≤ x

}

−P{W1 ≤ x}
∣

∣

P−→ 0, (6)

where W1 =
∑

j≥1λ1 jχ
2
1 j, {λ1 j} are the non-null eigenvalues of the operator C1(θ) de-

fined on the function space {τ : N2
0 → R, such that E

[

τ 2(X)
]

< ∞}, as follows

C1(θ)τ(x) = E{K1(x,X;θ)τ(X)},

with K1(x,y;θ) = h(x,y;θ)+ ℓ1(x;θ)µ(y;θ)T+ ℓ1(y;θ)µ(x;θ)T+ ℓ1(x;θ)S(θ)ℓ1(y;θ)T.
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Remark 1 If in addition to the assumptions in Theorem 4 we assume that θ̂
a.s.−→θ and

that the limit in (5) is a.s., then the convergence in (6) is a.s.

Remark 2 The result in Theorem 4 keeps on being true if instead of using the raw

multipliers, ξ1, . . . ,ξn, we use the centered multipliers, ξ1 − ξ̄, . . . ,ξn − ξ̄, as suggested in

Burke (2000) and Kojadinovic and Yan (2012).

Let w∗
2,n,α = inf{x : P∗(W ∗

2n(θ̂)≥ x)≤ α} be the α upper percentile of the WB distri-

bution of Wn(θ̂). From Theorems 2 and 4, the test function

Ψ∗
WB =

{

1, if Wn(θ̂)≥ w∗
2,n,α ,

0, otherwise,

or equivalently, the test that rejects H0 when p∗ = P∗
(

W ∗
2n(θ̂)≥Wobs

)

≤ α, is asymptot-

ically correct.

3.3. Behaviour against alternatives

This subsections shows that, in contrast to the tests given by Crockett (1979), Loukas

and Kemp (1986) and Rayner and Best (1995), the tests Ψ∗
PB and Ψ∗

WB are consistent,

that is, they are able to detect any fixed alternative.

As an immediate consequence of Theorems 1 and 3 (Theorems 1 and 4) the next

result gives the asymptotic power of the test Ψ∗
PB (Ψ∗

WB) against fixed alternatives.

Corollary 1 Let X1,X2, . . . ,Xn be iid from X ∈ N
2
0 with pgf g(u). Suppose that assump-

tions in Theorems 1 and 3 hold. If η(P;θ)> 0, then P(Ψ∗
PB = 1)→ 1.

Corollary 2 Let X1,X2, . . . ,Xn be iid from X ∈ N
2
0 with pgf g(u). Suppose that assump-

tions in Theorems 1 and 4 hold. If η(P;θ)> 0, then P(Ψ∗
WB = 1)→ 1.

It can be shown that the proposed tests are also able to detect local alternatives con-

verging to the null at the rate n−1/2. The statement and the proof of this result are quite

similar to those of Theorem 4 in NJ, for the PB, and of Theorem 4 in Jiménez-Gamero

and Kim (2015), for the WB. So, in order to save space, we omit it.

Although the tests Ψ∗
PB and Ψ∗

WB both asymptotically correct and consistent, their

power for finite sample sizes differ. This point will be numerically studied by simulation

in Section 5.
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4. Some practical considerations

4.1. Bootstrap algorithms

In practice, the exact bootstrap estimator of the null distribution of Wn(θ̂) cannot be

calculated. As usual, we approximate it by simulation as follows:

PB algorithm

1. Estimate θ through θ̂ and compute the observed value of the test statistic Wobs.

2. For some large integer B, repeat for every b ∈ {1, . . . ,B}:

(a) Generate X
∗b = (X∗b

1 ,X∗b
2 , . . . ,X∗b

n ), where X
∗b
1 ,X∗b

2 , . . . ,X∗b
n are iid from a

BP
(

θ̂
)

.

(b) Calculate the test statistic evaluated at X
∗b, obtaining W ∗b

n (θ̂∗b).

3. Approximate the p-value by p̂ = 1
B

∑B
b=1 I{W ∗b

n (θ̂∗b)>Wobs}.

In contrast to the PB distribution, the exact WB estimator of the null distribution of

Wn(θ̂) can be calculated by using some numerical approximation method, as for example

Imhof’s (1961) method. Thus, to calculate the WB distribution of Wn(θ̂) we can proceed

as follows:

WB algorithm 1

1. Estimate θ through θ̂ and compute the observed value of the test statistic Wobs.

2. Calculate mi j = K̂(Xi,X j; θ̂), 1 ≤ i ≤ j ≤ n. Note that m ji = mi j.

3. Calculate the eigenvalues of Ĥn, λ̃1, . . . , λ̃n.

4. Approximate the p-value by p̂ = P∗
(

∑n
j=1 λ̃ jχ

2
1 j >Wobs

)

.

The WB estimator can be also approximated by simulation as follows:

WB algorithm 2

1. Estimate θ through θ̂ and compute the observed value of the test statistic Wobs.

2. Calculate mi j = K̂(Xi,X j; θ̂), 1 ≤ i ≤ j ≤ n. Note that m ji = mi j.

3. For some large integer B, repeat for every b ∈ {1, . . . ,B}:

(a) Generate n iid N(0,1) variates ξ1, . . . ,ξn.

(b) Calculate W ∗b
2n (θ̂) =

1

n2

∑

i, j ξiξ jmi j (or W ∗b
2n (θ̂) =

1

n2

∑

i, j(ξi − ξ̄)(ξ j − ξ̄)mi j,

as observed in Remark 2).

4. Approximate the p-value by p̂ = 1
B

∑B
b=1 I{W ∗b

2n (θ̂)>Wobs}.
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4.2. Point estimators

All above theory assumes that the considered estimator θ̂ satisfies Assumption 1. Com-

monly used estimators such as maximum likelihood estimators (MLE) and method of

moment estimators (MME) satisfy it. Lemmas 1 and 3 in Jiménez-Gamero and Kim

(2015) show that the functions ℓ associated to MLEs and MMEs can be approximated

by ℓ̂ satisfying (5), and give the expressions of such approximations. Specifically, if θ is

estimated by means of its MLE, then a choice for ℓ̂= ℓ̂ML satisfying (5) is

ℓ̂ML((x1,x2);θ) =

(

x1 − θ1,x2 − θ2,θ3

(

Pθ(x1 −1,x2)

Pθ(x1,x2)
+

Pθ(x1,x2 −1)

Pθ(x1,x2)
−2

)

+ f (θ)

(

Pθ(x1 −1,x2 −1)

Pθ(x1,x2)
− Pθ(x1 −1,x2)

Pθ(x1,x2)
− Pθ(x1,x2 −1)

Pθ(x1,x2)
+1

))

,

where

f (θ) =
θ2

3(θ1 + θ2 −2θ3)(Q−1)− θ2
3 +(θ1 −2θ3)(θ2 −2θ3)

(θ1θ2 − θ2
3)(Q−1)− θ1− θ2 +2θ3

,

Q =
∑

i, j∈N0

Pθ(i−1, j−1)2

Pθ(i, j)
.

If θ is estimated by means of its MME, then a choice for ℓ̂= ℓ̂MM satisfying (5) is

ℓ̂MM((x1,x2);θ) = (x1 − θ1,x2 − θ2,−θ2(x1 − θ1)− θ1(x2 − θ2)+ x1x2 − θ3 − θ1θ2).

5. Finite sample performance

The properties so far studied are asymptotic. To study the finite sample performance

of the proposed tests, we conducted a simulation experiment. In this section we briefly

describe it and display a summary of the results obtained. All computations in this paper

were performed by using programs written in the R language (R Development Core

Team, 2015).

We started by comparing the proposed approximations to the null distribution of the

test statistic Wn(θ̂) from the point of view of the required time to get a p-value. Several

values of θ1, θ2 and θ3 were considered. We observed that the value of θ3 has almost no

influence in the required computation time. In contrast, the values of θ1 and θ2 have a

high impact. We also tried two methods to estimate the parameters: maximum likelihood

(ML) and the method of moments (MM), and observed that the choice of the method

has little mark on the consumed time. The method used to estimate the null distribution

has a high repercussion on the consumed time. In order to value some of these facts,
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Table 1: CPU time (in seconds) to get a p-value with B = 1000.

ML n = 50 n = 100 n = 200

θ1 θ2 PB WB2 WB1 PB WB2 WB1 PB WB2 WB1

1 1 8.37 0.11 0.07 9.31 0.25 0.15 10.25 0.72 0.46

1 3 13.15 0.14 0.09 17.20 0.27 0.18 19.72 0.74 0.49

3 3 23.57 0.14 0.10 30.12 0.27 0.17 41.15 0.74 0.46

3 10 57.27 0.22 0.22 60.90 0.36 0.29 87.06 0.82 0.59

10 10 132.32 0.28 0.22 187.57 0.36 0.30 277.43 0.86 0.60

10 50 188.64 2.08 2.17 317.47 2.34 2.42 449.14 3.29 2.89

50 50 621.02 2.29 2.40 1160.52 2.48 2.43 2340.78 3.45 3.03

MM n = 50 n = 100 n = 200

θ1 θ2 PB WB2 WB1 PB WB2 WB1 PB WB2 WB1

1 1 7.69 0.11 0.07 9.82 0.25 0.15 10.53 0.72 0.45

1 3 11.62 0.13 0.10 14.89 0.26 0.17 21.18 0.73 0.47

3 3 25.73 0.14 0.10 31.81 0.28 0.17 43.13 0.74 0.46

3 10 69.31 0.22 0.20 60.15 0.36 0.28 79.80 0.81 0.57

10 10 88.90 0.27 0.22 195.39 0.38 0.31 278.02 0.85 0.58

10 50 174.27 2.07 2.17 280.04 2.31 2.43 462.41 3.26 2.91

50 50 717.87 2.28 2.24 1172.18 2.48 2.38 2402.07 3.43 2.89

Table 1 displays the CPU consumed time (in seconds) to get a p-value for several values

of θ1 and θ2. The value of θ3 was set so that the correlation coefficient between the

variables, ρ = θ3/
√
θ1 θ2, is equal to 0.5. To calculate the PB approximation and the

approximation in WB algorithm 2 we took B = 1000. There is almost no difference in

using the raw multipliers and the centered multipliers in WB algorithm 2. To calculate

the p-value of the approximation in WB algorithm 1 we used the function imhof of

the package CompQuadForm of the R language (Duchesne and Lafaye De Micheaux,

2010). From the results in this table it becomes evident that the PB is much more time

consuming than the WB, specially for large values of θ1, θ2 and the sample size. There

are small differences between WB algorithm 1 and WB algorithm 2.

We then studied the goodness of the proposed bootstrap approximations to the null

distribution of the test statistic for finite sample sizes. With this aim, we generated 1000

samples of size n = 50,100,200,300 from a BP(θ1,θ2,θ3), for several values of θ1 and

θ2, with θ3 such that ρ equals to 0.25 and 0.75, in order to examine the approximations

for low and high correlated data, respectively, when θ1 = θ2, and ρ = 0.25 for θ1 6=
θ2 (ρ = 0.75 was not considered because it gives values of θ3 out of the parametric

space for the tried values of θ1 6= θ2). Because of the results in Table 1, for θ1 = θ2 =

50, the PB was only tried for n = 50,100. For θ1 = θ2 = 50 the WB was also tried

for greater sample sizes. For each sample, the p-values were calculated with B = 500.

The p-values obtained with the WB approximation calculated by means of simulation

(WB algorithm 2 with raw and centered multipliers) and numerical approximation (WB
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algorithm 1 with Imhof’s method) were, as expected, quite close. As for raw multipliers

versus centered multipliers, a bit better results are obtained when using the centered

multipliers. Table 2 displays the fraction of estimated p-values less than or equal to

0.05 and 0.10, which are the estimated type I error probabilities for α = 0.05 and 0.10,

respectively by using PB and WB with centered multipliers. From the results in this table

it can be concluded that both approximations give rise to conservative tests for small

sample sizes. As the values of θ1 and θ2 increase, the tests become more conservative,

specially the one based on the WB approximation. For example, when θ1 = θ2 = 50 and

ρ= 0.25, the sample size required to get empirical levels close to the nominal values is

n = 4000. For θ1 = θ2 = 50 and ρ= 0.75, n = 3000 is enough. In general, better results

(in the sense of closeness to the nominal values) are obtained for ρ = 0.75 than for

ρ= 0.25. Finally, it is also observed a bit better results when the parameter is estimated

by the maximum likelihood estimator.

To study the power we repeated the above experiment for samples with size n =

50 from the following alternatives: bivariate binomial distribution BB(m; p1, p2, p3),

where p1 + p2 − p3 ≤ 1, p1 ≥ p3, p2 ≥ p3 and p3 > 0; bivariate Hermite distribution

BH(µ,σ2;λ1,λ2,λ3), where µ> σ2(λ1+λ2 +λ3); bivariate logarithmic series distribu-

tion BLS(λ1,λ2,λ3), where 0 < λ1 +λ2 +λ3 < 1; bivariate Neyman type A distribution

BNTA(λ;λ1,λ2,λ3), where 0< λ1+λ2+λ3 ≤ 1; bivariate Poisson distribution mixtures

of the form pBP(θ)+ (1− p)BP(λ),0 < p < 1, denoted by BPP(p;θ,λ); and (X1,X2)
with X1 = max{Y1,Y3} and X2 = |Y1 −Y3| (type 1), X1 = max{Y2,Y3} and X2 = |Y2 −Y3|
(type 2), X1 = max{Y1,Y3} and X2 = min{Y2,Y3} (type 3), X1 = max{Y2,Y3} and X2 =

min{Y1,Y3} (type 4), X1 = max{Y1,Y3} and X2 = max{Y2,Y3} (type 5), where Y1,Y2,Y3

are independent variables taking values in N0 whose distribution are binomial B(m; p),

negative binomial BN(m; p), Poisson P(λ) and uniform on 1,2, . . . ,m, U(m). The val-

ues of the parameters were chosen so that the expectations E(X1) and E(X2) are small

for the PB and the WB not to be excessively conservative. In this part of the simulation

experiment we only considered the maximum likelihood estimator of the parameter.

In addition to the tests proposed in this paper, Ψ∗
PB and Ψ∗

WB, we also considered the

tests given in Crockett (1979) (denoted by T ), Loukas and Kemp (1986) (denoted by IB),

Rayner and Best (1995) (denoted by NIB) and NJ (denoted by Rn and Sn, with weight

function w(u) = 1). Table 3 displays the alternatives considered and the estimated power

for nominal significance level α= 0.05. Looking at this table we conclude that the tests

Ψ∗
PB, Ψ∗

WB, Rn and Sn are able to detect all considered alternatives while, as expected,

the other tests cannot, specially the tests based on IB and NIB. For the alternatives in the

first half of Table 3 we see that the powers of the new tests, Rn and Sn are quite close;

while for the other alternatives the tests proposed in this paper are more powerful than

Rn and Sn. We also compared these tests from a computational point of view. From the

results in Table 1 we saw that, in this respect, Ψ∗
WB is more efficient than Ψ∗

PB. Since Rn

and Sn are both based on a PB, for the comparisons to be fair, we compared Ψ∗
PB, Rn and

Sn. Table 4 reports the ratio of the average CPU to get a p-value. Clearly, regarding the

required computing time, Ψ∗
PB is more efficient than Rn and Sn.
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Table 4: Ratio of average CPU time (in seconds).

n = 30 n = 50 n = 70 n = 100 n = 200 n = 300

Rn/Ψ∗
PB 73.50 75.71 77.44 80.19 79.69 79.20

Sn/Ψ∗
PB 5.01 11.07 20.20 43.73 145.28 303.92

Table 5: Results for the real data sets.

Plants Health

Rn,(0,0) 0.003 0.000

Rn,(1,0) 0.005 0.000

Rn,(0,1) 0.010 0.000

Sn,(0,0) 0.005 0.002

Sn,(1,0) 0.009 0.000

Sn,(0,1) 0.011 0.000

Ψ∗
PB 0.049 0.000

θ̂n (0.64000, 0.94000, 0.19852) (0.30173, 1.21830, 0.12518)

To end this section, Ψ∗
PB is applied to two real data sets. The first one were first given

and analysed by Holgate (1966), and refers to the number of plants of the species Lacis-

tema aggregatum and Protium guianense in each of 100 contiguous quadrats. Crock-

ett (1979), Loukas and Kemp (1986), Rayner and Best (1995) and NJ tested the data

for agreement with the bivariate Poisson model, they all concluded the data were not

well modelled by a BPD. The second data set were analysed in Karlis and Tsiamyrtzis

(2008), who used two variables, the number of consultations with a doctor or a specialist

(X1) and the total number of prescribed and non-prescribed medications used in past 2

days (X2), from the Australian Health survey for 1977–1978. The sample size was quite

large (n = 5190). These authors assumed that (X1,X2) has a BPD. NJ tested these data

sets for agreement with the bivariate Poisson model, concluding that they were not well

modelled by a BPD. The p-values obtained by applying the test proposed in this paper to

these two real data sets are 0.049 and 0.000, respectively, in agreement with the previous

analyses.

Table 6: Simulations results for the type I error probabilities when θ3 = 0.

θ1 = θ2 = 1 θ1 = θ2 = 3 θ1 = θ2 = 10

ML MM ML MM ML MM

n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

100 3.4 7.4 3.5 7.9 3.1 7.3 3.0 7.3 1.0 3.4 0.9 3.4

200 4.2 8.0 4.3 9.1 3.4 8.0 3.3 7.9 2.2 6.6 2.3 6.6

300 4.4 8.7 4.6 9.4 3.7 8.5 3.7 8.5 3.7 7.9 3.7 8.0
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6. Case θ3 = 0θ3 = 0θ3 = 0

The case θ3 = 0 has been excluded from H0 because it is a boundary point. It is well-

known (see, for example Andrews, 1999, Self and Liang, 1987, and the references

therein) that in such a case the MLE is not asymptotically normally distributed and thus

Assumption 1 is not satisfied. Moreover, Andrews (2000) have proven that the bootstrap

does not provides a consistent estimator of the distribution. Therefore, the theory so far

developed is not valid for θ3 = 0.

Next we give two possible ways of dealing with this case. A first way consist in

applying the method in Feng and McCulloch (1992), which proposed to enlarge the

parametric space to θ ∈ R
3, so that negative values for θ̂3 are allowed. With this ap-

proach all required assumptions in our theory are satisfied. The only problem with this

solution is how to apply in practice the PB approximation because it implies the gen-

eration of samples from a BP(θ1,θ2,θ3) distribution with θ3 < 0. Nevertheless, the WB

approximation can be applied. Table 6 gives the result of a small simulation that studies

the goodness of this solution. Observe that the results are quite close to those obtained

for θ3 > 0.

Another possible way of dealing with this case is to adapt the alternatives to the usual

bootstrap proposed in Andrews (2000). Two of them consists in subsampling, while the

other two are based on testing if the parameter is in the boundary. For the later methods

we could calculate a confidence interval for θ3 and look if it contains 0 by applying, for

example, the method in Feng and McCulloch (1992) but, as recognized by the authors,

it requires rather large sample sizes. Note that testing for θ3 = 0 is tantamount to having

two independent Poisson variables. Another way of investigating the independence of

the marginal distributions is by applying the classical χ2-test. Nevertheless, such test re-

quires the data to be grouped in classes, and the decision could depend on the grouping.

In our view, there is a need of a test for independence of variables taking values on N0,

which will be the topic of a future research.

If it can be reasonably assumed that the variables are independent, then by using

Raikov’s theorem (which states that the sum of two independent non-negative random

variables has a Poisson distribution if and only if both random variables have the Poisson

distribution), testing gof for an independent Poisson model is equivalent to testing gof

to the sum of the components to a univariate Poisson model. In the statistical literature

there is a variety of test for testing gof to a univariate Poisson model (see, for example,

the review in Gürtler and Henze, 2000).
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7. The general mmm-variate case

This section shows that the proposed test can be extended to the general m-variate case,

for any m ≥ 2. Let

X1 =Y1 +Ym+1, X2 =Y2 +Ym+1, . . . , Xm = Ym +Ym+1,

where Y1,Y2, . . . ,Ym+1 are mutually independent Poisson random variables with means

θ′1 = θ1 − θm+1 > 0, . . . ,θ′m = θm − θm+1 > 0 and θm+1 > 0, respectively. The joint dis-

tribution of the vector (X1,X2, . . . ,Xm) is called a m-variate Poisson distribution with

parameter θ = (θ1,θ2, . . . ,θm+1) (see Johnson, Kotz and Balakrishnan, 1997). The joint

pgf of (X1,X2, . . . ,Xm) is

g(u;θ) = exp

{

m
∑

i=1

θi (ui −1)+ θm+1

(

m

∏
i=1

ui −
m
∑

i=1

ui +m−1

)}

, ∀u ∈ R
m. (7)

Now, the objective is to test the hypothesis

H0m : (X1,X2, . . . ,Xm) has a m-variate Poisson distribution.

In order to extend the proposed test to the general m-variate case we will use the

following result in Proposition 3 in NJ which states that g(u;θ) is the only pgf in Gm =

{g : [0,1]m →R, such that g is a pgf and ∂
∂ui

g(u1,u2, . . . ,um) exists ∀u ∈ [0,1]m, 1 ≤ i ≤
m} satisfying the following system,

Di(u;θ) = 0, 1 ≤ i ≤ m, (8)

∀u ∈ [0,1]m, where Di(u;θ) =
∂

∂ui

g(u)−
{

θi + θm+1

(

∏
j 6=i

u j −1

)}

g(u), 1 ≤ i ≤ m.

Let (X1,X2, . . . ,Xm)∈N
m
0 be a random vector and let g(u1,u2, . . . ,um)=E

(

u
X1
1 u

X2
2 · · ·uXm

m

)

its pgf. Then, taking into account that

g(u) =
∑

r1,r2,...,rm≥0

u
r1
1 u

r2
2 · · ·urm

m p(r1,r2, . . . ,rm),

where p(r1,r2, . . . ,rm) = P(X1 = r1,X2 = r2, . . . ,Xm = rm), we can write

Di(u;θ) =
∑

r1,r2,...,rm≥0

{

(ri+1)p(r1, . . . ,ri−1,ri +1,ri+1, . . . ,rm)− (θi− θm+1)p(r1,r2, . . . ,rm)

−θm+1 p(r1−1, . . . ,ri−1 −1,ri,ri+1 −1, . . . ,rm −1)
}

u
r1
1 u

r2
2 · · ·urm

m , 1 ≤ i ≤ m.
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Let Din(u; θ̂) denote the empirical counterpart of Di(u;θ) obtained by replacing the pgf

g by the epgf gn and θ by a consistent estimator θ̂, 1 ≤ i ≤ m. If H0m is true then the

functions Din(u; θ̂), 1 ≤ i ≤ m, should be close to 0, ∀u ∈ [0,1]m. This proximity to zero

can be interpreted as we did in Section 2, for the bivariate case. Observe that

Din(u; θ̂) =
∑

r1,r2,...,rm≥0

di(r1,r2, . . . ,rm; θ̂)ur1
1 u

r2
2 · · ·urm

m , 1 ≤ i ≤ m,

where

di(r1,r2, . . . ,rm; θ̂) = (ri+1)pn(r1, . . . ,ri−1,ri +1,ri+1, . . . ,rm)

− (θ̂i − θ̂m+1)pn(r1,r2, . . . ,rm)

− θ̂m+1 pn(r1 −1, . . . ,ri−1 −1,ri,ri+1 −1, . . . ,rm −1), 1 ≤ i ≤ m,

and pn(r1,r2, . . . ,rm) =
1
n

∑n
k=1 I(Xk1 = r1,Xk2 = r2, . . . ,Xkm = rm) is the relative fre-

quency of (r1,r2, . . . ,rm). Therefore, Din(u; θ̂) = 0, ∀u ∈ [0,1]m, 1 ≤ i ≤ m, if and only

if the coefficients of u
r1
1 u

r2
2 · · ·urm

m in the previous expansions are null, ∀r1,r2, . . . ,rm ≥ 0.

This leads us to consider the following statistic for testing H0m,

Wm,n(θ̂)=
∑

r1,r2,...,rm≥0

{

m
∑

i=1

di(r1,r2, . . . ,rm; θ̂)2

}

=
M
∑

r1,r2,...,rm=0

{

m
∑

i=1

di(r1,r2, . . . ,rm; θ̂)2

}

,

where M = max{X(n)1,X(n)2, . . . ,X(n)m}, X(n)k = max1≤i≤n Xik, 1 ≤ k ≤ m. Similar results

to those stated in Sections 2 and 3 for the bivariate case can be established for Wm,n(θ̂).

8. Proofs

Here we give a sketch of the proofs of the results in Sections 2 and 3. A detailed deriva-

tion of the results can be obtained from the authors upon request.

Proof of Theorem 1 Observe that

d1(r,s; θ̂) = d1(r,s;θ)− (θ̂1− θ1)pn(r,s)+(θ̂3− θ3){pn(r,s)− pn(r,s−1)}

and

∑

r,s≥0

d1(r,s;θ)2 =
1

n2

∑

i6= j

h1(Xi,X j;θ)+
1

n2

n
∑

i=1

h1(Xi,Xi;θ).
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By the SLLN,

1

n

n
∑

i=1

h1(Xi,Xi;θ)
a.s.−→E







∑

r,s≥0

φ1rs(X1;θ)2







< ∞.

By the SLLN for U-statistics (Theorem 5.4 in Serfling, 1980),

1

n2

∑

i6= j

h1(Xi,X j;θ)
a.s.−→E{h1(X1,X2;θ)}=

∑

r,s≥0

a1(r,s;θ)2.

Therefore,

∑

r,s≥0

d1(r,s;θ)2 a.s.−→
∑

r,s≥0

a1(r,s;θ)2.

Since pn(r,s)
2 ≤ pn(r,s), ∀r,s ≥ 0, and

∑

r,s≥0 pn(r,s) = 1, we have

(θ̂1 − θ1)
2
∑

r,s≥0

pn(r,s)
2 ≤ (θ̂1 − θ1)

2 = o(1),

and analogously,

(θ̂3 − θ3)
2
∑

r,s≥0

{pn(r,s)− pn(r,s−1)}2 = o(1).

Thus,

∑

r,s≥0

d1(r,s; θ̂)2 a.s.−→
∑

r,s≥0

a1(r,s;θ)2. (9)

Following similar steps we get

∑

r,s≥0

d2(r,s; θ̂)2 a.s.−→
∑

r,s≥0

a2(r,s;θ)2. (10)

Finally, the result is obtained from (9) and (10).

Proof of Theorem 2 Let us consider the separable Hilbert space of functions H = {g :

N0 → R, so that‖g‖2
H

=
∑

r≥0

∑

s≥0 g(r,s)2 < ∞}. We have that
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√
ndk(r,s; θ̂) =

1√
n

n
∑

i=1

φkrs(Xi;θ)+
√

n(θ̂− θ)v̂k(r,s)
T, k = 1,2,

with v̂1(r,s) = (−pn(r,s),0, pn(r,s)− pn(r,s−1)) and v̂2(r,s) = (0,−pn(r,s), pn(r,s)−
pn(r−1,s)). From Assumption 1 and the SLLN, we get that

√
ndk(r,s; θ̂) =

√
nd1k(r,s;θ)+Rk(r,s), k = 1,2,

with

d1k(r,s;θ) =
1

n

n
∑

i=1

{

φkrs(Xi;θ)+ ℓ(Xi;θ)vk(r,s;θ)T
}

, k = 1,2,

v1(r,s;θ) = (−Pθ(r,s),0,Pθ(r,s)−Pθ(r,s−1)),

v2(r,s;θ) = (0,−Pθ(r,s),Pθ(r,s)−Pθ(r−1,s)),

and ‖Rk‖H = oP(1), k = 1,2. From the CLT in Hilbert spaces (see, for example, van

der Vaart and Wellner, 1996, pp. 50–51), it follows that ‖√nd1k‖2
H

= OP(1), k = 1,2,

and therefore

nWn(θ̂) = ‖
√

nd1k‖2
H +‖

√
nd12‖2

H +oP(1).

Routine calculations show that

‖
√

nd1k‖2
H +‖

√
nd12‖2

H =
1

n

n
∑

i, j=1

K(Xi,X j;θ).

The result is achieved by applying Theorem 6.4.1.B in Serfling (1980) to
1
n

∑n
i, j=1 K(Xi,X j;θ).

Proof of Theorem 3 Following similar steps to those given in the proof of Theorem 2

but instead of applying the CLT for iid random elements taking values in H , we apply

a CLT for triangular arrays, such as Theorem 1.1 in Kundu et al. (2000).

Proof of Theorem 4 nW ∗
2n(θ̂) can be expressed as nW ∗

2n(θ̂) = W ∗
1 +W ∗

2 + 2W ∗
3 +W ∗

4 ,

where

W ∗
1 =

1

n

n
∑

i, j=1

K(Xi,X j;θ)ξiξ j,
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W ∗
2 =

1

n

n
∑

i, j=1

{h(Xi,X j; θ̂)−h(Xi,X j;θ)}ξiξ j,

W ∗
3 =

1

n

n
∑

i, j=1

{ℓ̂(Xi; θ̂)µ(X j; θ̂)
T− ℓ1(Xi;θ)µ(X j;θ)

T}ξiξ j,

W ∗
4 =

1

n

n
∑

i, j=1

{ℓ̂(Xi; θ̂)S(θ̂)ℓ̂(X j; θ̂)
T− ℓ1(Xi;θ)S(θ)ℓ1(X j;θ)

T}ξiξ j.

From the results in Delhing and Mikosch (1994),

sup
x

|P∗{W ∗
1 ≤ x}−P{W1 ≤ x}| a.s.−→ 0.

Thus, to show the result it suffices to see that W ∗
k = oP∗(1) in probability, k = 2,3,4. We

first deal with W ∗
2 . Observe that

E∗(W
∗2
2 )≤ M

1

n2

n
∑

i, j=1

{h(Xi,X j; θ̂)−h(Xi,X j;θ)}2,

for some positive M > 0. From the assumptions made, the right-hand side of the above

expression is oP(1). Therefore, W ∗
2 = oP∗(1) in probability. As for W ∗

3 , we have that

W ∗
3 =W ∗

31W
∗⊤

32 +W ∗
33W

∗⊤
34 , with

W ∗
31 =

1√
n

n
∑

i=1

{ℓ̂(Xi; θ̂)− ℓ1(Xi;θ)}ξi,

W ∗
32 =

1√
n

n
∑

i=1

µ(Xi; θ̂)ξi,

W ∗
33 =

1√
n

n
∑

i=1

ℓ1(Xi;θ)ξi,

W ∗
34 =

1√
n

n
∑

i=1

{µ(Xi; θ̂)−µ(Xi;θ)}ξi.

From the assumptions made, E∗(W ∗2
31 ) = oP(1), E∗(W ∗2

32 ) is bounded in probability and

E∗(W ∗2
33 ) is bounded a.s.. Now taking into account that
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∂

∂θ1

Pθ(r,s) = Pθ(r−1,s)−Pθ(r,s),

∂

∂θ2

Pθ(r,s) = Pθ(r,s−1)−Pθ(r,s),

∂

∂θ3

Pθ(r,s) = Pθ(r−1,s−1)−Pθ(r−1,s)−Pθ(r,s−1)+Pθ(r,s),

it follows that

sup
r,s∈N0

|Pθ̂(r,s)−Pθ(r,s)| ≤ M‖θ̂− θ‖, (11)

for some positive M > 0. This implies that E∗(W ∗2
34 ) = oP(1). Therefore, W ∗

3 = oP∗(1) in

probability. By using (11) and the assumptions made, it readily follows that W ∗
4 = oP∗(1)

in probability. This concludes the proof.
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Novoa-Muñoz, F. and Jiménez-Gamero, M. D. (2014). Testing for the bivariate Poisson distribution. Metrika,

77, 771–793.

Papageorgiou, H. and Loukas, S. (1988). Conditional even point estimation for bivariate discrete distribu-

tions. Communications in Statistics–Theory and Methods, 17, 3403–3412.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statis-

tical Computing, Vienna, Austria. http://www.R-project.org.

Rayner, J.C. W. and Best, D.J. (1995). Smooth Tests for the bivariate Poisson distribution. Australian &

New Zealand Journal of Statistics, 37, 233–245.

Sahai, H. and Khurshid, A. (1993). Confidence intervals for the mean of a Poisson distribution: A review.

Biometrical Journal, 35(7), 857–867.

Self, S.G. and Liang, K.Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood

ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605–

610.

Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.

van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes. Springer, New

York.


