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Abstract

Support Vector Machine has shown to have good performance in many practical
classification settings. In this paper we propose, for multi-group classification, a
biobjective optimization model in which we consider not only the generalization
ability (modelled through the margin maximization), but also costs associated with
the features. This cost is not limited to an economical payment, but can also refer
to risk, computational effort, space requirements, etc. We introduce a biobjective
mixed integer problem, for which Pareto optimal solutions are obtained. Those
Pareto optimal solutions correspond to different classification rules, among which
the user would choose the one yielding the most appropriate compromise between
the cost and the expected misclassification rate.
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1 Introduction

In the last years operations researchers have made significant contributions to problems
related with Data Mining (e.g. [2, 5, 8, 9, 23, 28]), such as Supervised Classification.
Roughly speaking, supervised classification consists of building a rule to predict the class-
membership of new objects from the same population than those in a given database.
Support Vector Machine (SVM), e.g. [11, 13, 20], has shown to be a powerful tool for
Supervised Classification. When only two groups exist, this method attempts to build a
hyperplane with maximal margin that separates the two groups. Margin can be seen as
a value that is zero when there are misclassified objects and otherwise it measures the
confidence in the prediction, [1]. It has been shown (e.g. [11, 32, 33]) that this method
enjoys good generalization properties, in the sense that one can expect the good behavior
obtained in the available data to be generalized to the population which data come from,
since the probability of misclassifying a forthcoming individual can be bounded by a
function which is decreasing in the margin.

Generalization ability, addressed via margin maximization, will be our first goal. How-
ever, in real-word classification problems it is very convenient to obtain classification rules
that, not only achieve good classification behavior, but are also cheap or quick. A typical
example is medical diagnosis, where some tests are much more expensive or take much
longer than others. If the classification rule does not use variables based on the most ex-
pensive tests, classifying new patients will be much cheaper or quicker, perhaps without
deteriorating significantly the quality of classification.

Together with misclassification costs, which are related with the generalization ability
of the rule, other costs, linked to the variables or attributes, can be defined. In the
simplest model we associate equal costs to each feature; keeping the total cost below a
given level amounts to stating an upper bound on the number of features to be used.
Turney [31] proposed other types of nontrivial cost, for instance the test cost, also called
measurement cost, where each test (attribute, measurement, feature) has an associated
cost, such as economical payment, computational effort or some kind of complexity.

The aim of minimizing such costs has been mentioned before in the literature as a
desirable consequence of feature selection, see e.g. [18], but hardly directly addressed.

In this paper, we address classification problems in which both misclassification rate
and measurement costs are relevant. To do this, we formulate a biobjective program of
simultaneous minimization of misclassification rate, via the maximization of the margin
(the natural measure in SVM), and measurement costs. Pareto-optimal solutions, i.e.
classifiers that cannot be improved at the same time in both objectives, are sought.
The set of Pareto-optimal solutions of the biobjective program gives us a finite set of
classification rules, in such a way that any rule which is not Pareto-optimal should be
discarded, since it is beaten in terms of margin and cost by another rule. Choosing one
out of the set of Pareto-optimal rules is done by choosing an appropriate compromise
between the two criteria involved.

We have structured the paper as follows. In Section 2 the problem is formally in-



troduced. In Section 3 we model the first goal: the measurement cost. Maximizing the
margin, as a surrogate of minimizing the misclassification rate, will be our second goal.
Formal definitions of margin are given in Section 4, by generalizing the concept of margin
for two groups. A Biobjective Mixed Integer Program formulation is given in Section 5,
where a method to find the Pareto-optimal classifiers, the Two-Phase Method [34], is pro-
posed. In Section 6, such biobjective formulations are modified to allow some points in
the training sample to be misclassified. Doing this we avoid the problem called overfitting.
Finally, some numerical results are presented in Section 7.

2 The problem

We have a finite set of classes C = {1,2,...,C}, and a set of objects €2, each object u
having two components (z*, ¢*). The first component z* is called the predictor vector and
takes values in a set X. The set X is usually assumed to be a subset of IR”, and then,
the components xz;, [l = 1,2, ..., p, of the predictor vector = are called predictor variables.
The other component ¢*, with values in the set of classes C, is called the class-membership
of object u. Object u is said to belong to class c*.

In general, class-membership of objects in €2 is known only for a subset I, called
the training sample: both predictor vector and class-membership are known for u € I,
whereas only z* is known for u € Q\ I.

For any ¢ € C, denote by I. the set of objects in I belonging to class ¢ : I, =
{u € I:c" = c}. We assume that each class is represented in the training sample, i.e.,
I. #0VeelC.

We use a classification model in which a score function, f = (f.)eec with f.: X — IR,
enables us to classify (allocate) any z € X as member of one of the classes as follows

zis allocated to the classcif f.(2) > f;(2), Vj # ¢, (1)
i.e. z is allocated to the class ¢* whose score function is highest:
¢" = argmax f(2). (2)

Notice that in case of ties, the object will be unclassified by this rule, and can be later
allocated randomly or by a prefixed order to some class in arg max.ec f.(z). Following a
worst-case approach, we will consider those objects as misclassified throughout the paper.
Score functions f. are assumed to have the form

foa) =Y afau(a) + 5, (3)

where a¢ € RN, 3¢ € IR, and G = {¢1, ¢, ..., ¢n} is a finite set of real-valued functions
on X. Hence, each f. belongs to a vector space F, generated by G. For instance, linear



classifiers correspond to scores generated by
Q:{xl,mg,...,xp}, (4)

whereas quadratic classifiers, [15, 16], are obtained by setting

g:{xl,xg,...,xp}U{xixj:1§i§j§p} (5)

i.e., the set of monomials of degree up to 2.
This framework also includes voting classifiers, such as boosting, e.g. [14, 17], in which
C = {1,2} and a set of primitive classifiers ¢ : X — {0, 1}

¢r(x) =1 iff x is allocated to class 1 via the k-th classifier, (6)

are combined linearly into a single score function of the form (3). For a very promising
strategy for generating such primitive classifiers see e.g. [7].

Denote the coefficients of the score function by A = (a!,...,a%) and b = (8',..., 39).
The problem of choosing f is reduced to the choice of its coefficients (A, b).

Definition 1 f = (f.)cec with f.: X — IR, is said to separate {I.: c € C} if
Jeu (") > fi(2") V5 #c*, Yuel. (7)

Moreover, {I.: ¢ € C} is said to be separable by the space F if there exists f = (fe)eec,
with f. € F, separating {I.: c € C}.

Now we compare the definition of separability given in Definition 1 with those existing
in the literature, [1, 19, 20, 32].

For the two-group case, C = {1, 2}, our definition is equivalent to the classical definition
of separability stating that the convex hulls of {¢(z*) : v € I} and {¢(z") : u € I} are
contained in open halfspaces with a common hyperplane as boundary.

Property 2 Let C = {1,2}. {I.: c € {1,2}} is separable iff there exists (w,v) € (RN \
{0}) x IR such that
wie(z*)+~v>0 Yuel

wh(x®) +v <0 Yue L. (8)
Proof. Take w = o' —a?, v = ' — 3% and conversely, given (w, ), satisfying (8), setting
al = w, B = v,a® = 0 and 3% = 0, we have a score function that correctly classifies
{I.: ce{1,2}}. O

For the multi-group case, |C| > 2, we have that, together with the concept of separa-
bility given in Definition 1, a natural alternative exists: we will say that {I.: ¢ € C} is
one-against-rest separable (OAR-separable) iff for all ¢1 € C, {Ic,,U.cc\ (o) L} is separa-
ble.



Property 3 One has
OAR-separability = separability

Proof. Let {I.: c € C} be OAR-separable. It means that, for each class c¢;, we have
two score functions: f,, associated with I.,, and f, associated with the objects in the

remaining classes U,ce\ o,y Le- Since (fe,, fo7) separates {Ie,, U.ec\ ey Ic}s then

f61 (xu> > fﬁ(xu> Vu € Icl

U u 9
o (@) > fa(z") Vu € Uece o Lo ©)
Set g. = fo— [z, for each ¢ € C. Then g.(z*) > 0 iff u € I.. The function g = (g1, 92, - - -, gc)
trivially separates {I.: ¢ € C}. Hence, OAR-separability implies separability. a

Notice that the converse implication does not hold: for instance, in Figure 1 we have
three classes 1,2,3 with elements denoted respectively by crosses (points (4, —3), (1,0)
and (4,3)), stars (points (—1,—1) and (3,—4)) and circles (points (—1,1) and (3,4)),
which, as one can see in Figure 1, are not OAR-separable, but they are separable by the
following score function,

fi(xy,29) = 4

fQ(Il, $2) = 22

f3(~’13’1, 56'2) = Tg.

The definition of separability, as given in Definition 1, depends on the generator G.
Under weak assumptions, there exists a generator, G, rich enough to enable separability
of {I.: ceC}.

Property 4 If X is a subset of IR” and " # x¥, Yu,v € I with ¢* # ", then there exists
a finite generator G such that {I.: ¢ € C} is separable in the space F generated by G.

Proof. For each ¢ € C, consider the function
folx) = = ] d(w,2")?
uecl.

where d(+,-) stands for the Euclidean distance. This function is zero for all z* with u € I,
and strictly negative otherwise. Then, for u € I., and ¢ # ¢,

fc(xu) - fc’(xu) = _fc’(xu) > 07

thus, such set of functions separates {I.: ¢ € C}.
Moreover, each f. is a polynomial in the variables 1, 29, .. ., x,, then it can be written
as

fe(z) = > af, [To)™, (10)

h=(h1,....hp)€{0,1,.. 2] [.[}r k=1
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Figure 1: separable, but not OAR-separable

belonging to the space F generated by G the set of monomials of degree up to 2|I|. O

Suppose that F is rich enough to enable separability, which ensures the existence of
separating functions f. However, uniqueness never holds. Indeed, it is easy to see that
given (&, 3) € RV ™ the classification rules obtained by (A, b) and (A, b) with & = Aa‘+da
and 3¢ = A\3°+ 3 for all ¢ € C, are equivalent for all A > 0, in the sense that both allocate
objects to the same classes.

Moreover, there are also more than one score function that separates {I. : ¢ € C} and
they are not equivalent. For instance, given a score function separating {I.: ¢ € C}, let
€ be any number satisfying:

0 < e < minmin { feu(2") — f;(2")}.
uel j#ct
The function f€ = (f; +¢, f2,..., fo) also separates {I. : ¢ € C}. We need a criterion for
choosing one of them. Following Vapnik’s publications in generalization ability, e.g. [32],
we will use the margin maximization criterion, as will be explained in Section 4.



3 Measurement costs

Finding classifiers separating conveniently the groups is a plausible criterion when obtain-
ing the predictor vector x" is costless. When this is not the case, we should also take into
account the cost associated with the evaluation of the classification rule.

In many practical applications, as medical diagnosis, the predictor variables of the data
may be some diagnosis test (such as blood test, ...) that have associated a cost, either
money, or risk/damage incurred to the patient. If the classifier built does not depend on
some of these variables, we could avoid their measurement (and the corresponding cost)
in the diagnosis of new patients. In this situation, we should seek a classifier that enjoys
good generalization properties, and at the same time, has low cost.

Obtaining cheaper or quicker classification rules have been mentioned as one of the
desirable consequences of feature selection, where the aim is to reduce the number of
variables or features used by the classification rule. However costs associated with such
variables or features have seldom been considered.

Several authors have addressed measurement cost issues related with classification. For
instance, [24, 25, 30] consider classification trees whose branching rule takes such costs
into account. See [31] for a comparison of such methods and [3, 31] and the references
therein for other proposals. In most cases, the unique goal is to minimize some surrogate
of the expected misclassification cost, and, since the algorithm takes somehow into account
measurement costs, it is hoped that the measurement cost of individuals with the rule
obtained this way is not too high.

In this paper, however, we explicitly consider the minimization of measurement costs
as one criterion, whose trade-off with margin optimization is to be determined by the
user.

Costs are modelled as follows: Denote by II; the cost associated with evaluating the
feature ¢ € G at a given x. For instance, if we are following a linear approach, as given
by (4), II; represents the cost of measuring the predictor variable [ in a new object.

Given the parameter A = (a!,...,a"), define

S(A)={k|ceC:al£0,1<k<N}.

In other words, S(A) represents the set of features we have to use in order to classify new
objects. In principle, these are the features we have to pay for, so a score function with
coefficients (A, b) will have associated a measurement cost equal to

m(Ab) = ) I (11)

keS(A)

Pure linearity, as assumed in (11), may be unrealistic in some practical situations. For
instance, it may be the case that, once we have incurred a cost for obtaining some feature
¢k, some other features may be given for free or at reduced cost. This may happen,
for example, in a medical context when the measurement of a variable requires a blood



extraction, and some other variables can be measured using the same blood test. Another
context where one encounters this, is the case in which some features are functions of other
features: In model (5), feature ¢(x) = z;x; is obtained for free if both features ¢(x) = z;
and ¢(x) = z; have been previously inspected.

In Table 1 one can see the costs of a simple example with two classes C' = 2, and
G ={¢1,...,05} with different costs.

features | 1 o d3 D4 @5
costs| 2 5 3 0 2

Table 1: Example of feature cost.

The score function given by fi; = ¢y +4¢s and fo = 3¢1 + 2 incurs a cost of 242 = 4.

Suppose that precedence constraints, in the form of a partial order < between the
features, is given. This means that if A < k, the use of the feature ¢, requires also the
payment for feature ¢,. Moreover, in computing the total cost, the cost for every feature
has to be summed at most once. In order to formalize this, define an auxiliary variable
z, € {0,1} for each k =1,..., N, representing

| 1 if payment of II} is needed
* = { 0 otherwise (12)
in other words:
| 1 if he S(A) for some h with k < h (13)
= 0 otherwise
Thus, cost associated with a score function with coefficients (A, b) will be
N
k=1

Particular cases already suggested in the literature can be easily accommodated into
our framework. For instance, in [26] variables are grouped in a way that, if one variable
from a group is requested, then all the others in the same group are available for zero
additional cost. To model this case in our setting, define the cost of one variable from each
group to be equal to the cost of the group it belongs to, and set the remaining variables
to have zero cost. Moreover, choose a partial order < for which h < j iff variables h and
7 are in the same group and h has nonzero cost.

Moreover, this modelling technique allows us to use, but it is not limited to, polynomial
kernels. Indeed, suppose a kernel k(z,y) = ®(z)"®(y) for some ® : X — F. If ® holds

e [ is a finite dimensional feature space, F C IRY,



e for any component ¢p, k = 1,2,...,N of & = (¢1,¢9,...,¢n), the information
about what original variables are needed to calculate ¢ is available,

then, the cost associated to a score function can be modelled using the methodology
explained in this section.

We will show in Sections 5 and 6, that this modelling technique allows formulations as
Biobjective Mixed Integer Programs. For these models there exist suitable techniques for
finding their Pareto-optimal solutions. Biobjective problems for more general problems,
such as e.g. measurement cost minimization using kernels which are not of polynomial
type, [36], can also be formulated. However, they yield combinatorial problems which are
much harder to solve in practice.

Minimizing (14) will be one of our goals. However, our main goal is finding classifiers
with good generalization properties. This, the second objective in our model, will be
discussed in detail in the following section.

4 Margin optimization

Throughout this section, unless explicitly stated, we assume that F is rich enough to
enable separability:

Assumption 1 {I.: c € C} is separable by F.

We may observe that we can always consider F' as in Property 4, and therefore As-
sumption 1 will be hold. However we expect in practice to attain separability with smaller
generators.

Since by Assumption 1 objects in I will be correctly classified, the substantial matter
is the classification of objects u € Q \ I. Hence, we are interested in obtaining classifiers
with good generalization properties, via margin maximization,[11, 32, 33]). The concepts
of functional and geometrical margin, introduced in Cristianini and Shawe-Taylor [13] for
the case of two groups, are extended below to the multi-group case.

Definition 5 The functional margin of an object u with respect to the score function f,
with coefficients (A, b), is the quantity

~

0"(A,b) = min {feu (") — f;(2")} (15)

The functional margin of a score function f, with coefficients (A,b) with respect to a
training sample I is equal to R R
0'(A,b) = min 6“. (16)

uel

We immediately obtain



Property 6 A score function f with coefficients (A,b) separates {I.: ¢ € C} if and only
if, the margin 01(A,b) is strictly positive.

The choices (A,b) and (AA, \b) yield the same classification rule, but have different
functional margins. Hence, as in the two-group case, we need to normalize this quantity
in order to be able to compare score functions.

The normalization done here is made dependent on a norm || - ||, which can be different
from the standard choice of the Euclidean norm, [13]. This will allow us, as shown
in Section 5, to formulate the resulting optimization problems as mixed integer linear
problems, solvable with existing commercial software.

Definition 7 Let ||-|| be a norm in IR“*Y. The geometrical margin of an object u with
respect to the score function (A,b), with A # 0, is the quantity

~

eu
1Al

(A, b) = (17)

The geometrical margin of a score function (A,b) with respect to a training sample I is

the minimum:
0’ (A, b) = min 6. (18)

uel

Now, we consider the problem of maximizing the geometrical margin

min,e; 0“(A, b)
ma; . 19
A Al (19)

We have an alternative formulation, in terms of the functional margin, as given by the
following proposition.

Proposition 8 Problem (19) is equivalent to:

max minges 0“(A, b)
st 1Al < 1, (20)
in the sense that any optimal solution of (20) is also optimal for (19), and for any optimal
solution (A*,b*) of (19),
P 1
(A, D) = ——(A",b") (21)
[A%]

is an optimal solution of (20).

Property 9 Problem (20) has finite optimal value.

10



Proof. Let (A,b) = (a!,...,a% B, ..., %) be a feasible solution of (20).
Let w € I and j # ¢*, then

@ p(z") + 57 — ol (a") — |
= (o™ —a)g(a") + 87 — F|

(
< (@ —a)o(a") + 157 — 7] (22)

To bound the first term, observe that, since all norms are equivalent, there exists K
such that |of| < K forall k =1,2,...,N, c€C.
Hence,

U

(@ — a?)g(a")|
N
< 3 laf —afllon(a)
k=1

< U — /!
< 2KN1Sanl]%?<u€I|¢k(a: ) =K' <

Now, we will bound the term |3<" — 37]. Since each class is represented, I; # 0, let
v € ;. Solution (A, b) feasible for (20) implies both u and v are correctly classified,

a” (") + B — (dp(z*) + ) >0
a” g(z’) + B — (P p(z”) + ) < 0

yielding, , : ;
(0" — al)(a") < — 5 < (0" — a)(a"). (23)
Thus
17 — 3] ‘
< max{|(a” — a?)p(z")],[(a — o’ )e(z")|}
< max{|(a” — o/)o(=")]}
< 2KN max |op(z")] = K'.

1<k<N,vel
Hence the objective function is bounded by

min #* = min min |a® ¢(z*) + B — alp(z") — ] < 2K’ (24)

ucl u€l j#ct
(Il
We have assumed that F is rich enough to enable separability of {I. : ¢ € C}. However,
it may be useful to have a method to check such separability. In case we do not know if

{I.: ¢ € C} is separable in a space F, solving Problem (20) allow us to check it. Indeed
we have the property:

11



Property 10 {I.: ¢ € C} is separable if and only if Problem (20) has strictly positive
optimal value.

Another reduction of Problem (20) is even possible. For all A € IR the score functions
defined by (A, b) and (A, l;), with b = b+ A for all ¢ € C, are equivalent in the sense that
both classify objects to the same classes, and both have the same margins. Then, we can
restrict the coefficients 3¢ to be nonnegative, yielding the problem:

max min,e; 0*(A,b)
s.t.: I|A] <1 (25)
(A,b) € RNC x RS.

Property 11 Problems (20) and (25) are equivalent in the sense that every optimal so-
lution of (25) is also optimal for (20), and, for any optimal solution of (20), there exists
a feasible solution of (25) that is also optimal in both problems.

5 A biobjective approach

In the last sections we have described the two objectives of our problem, namely, maxi-
mizing the margin and minimizing the measurement cost. Hence we have the following
biobjective problem:

max 6(A,b)
min (A, D)
st IA] < 1 (26)

(A,b) € RNY x RS.
Property 12 The set of Pareto-optimal outcomes of the biobjective problem (26) is finite.

Proof. The set of all outcomes of (26) can be calculated by solving the problem

max 0(A, D)
s.t.: Al <1
m(Ab) <7 (27)

(A,b) € RNC x RS
for any 7 in the set of possible costs:

{m(A,b) : (A,b) € RV x RS},

12



which is contained in the finite set {3, Il : S C {1,2,...,N}}. O

Using the notation of section above, (26) can also be reformulated as

max Yy
min Z’]jzl Hka 4
st S on(@) (ol —ad) + B = —y>0, Vi#jiijeC uel

Al <1
2 <Y e o <z, VYh=1,2,...,N (28)
af unrestricted Vk=1,2,...,N;ceC
y unrestricted
pe=0 VeeC
2 € {0,1} Vk=1,2,...,N
In this formulation if || - || is the L., then the normalization constraint is redundant.

Due to the presence of a nonlinear constraint (||A|| < 1), Problem (28) is a biobjective
mixed integer nonlinear program.

Many classical SVM implementations have used the Euclidean norm [13], yielding a
quadratic program. Mangasarian [22] proposes the use of other norms. In particular
Linear Programming approaches have been implemented by different authors using poly-
hedral norms, [4, 29, 35]. Empirical results are shown in [27], where it is concluded that
‘in terms of separation performance, L;, L, and Euclidean norm-based support vector
machines tend to be quite similar’.

Instead of using the Euclidean norm, we suggest the use of a polyhedral norm, such
as, for instance, a scaled Li-norm, [|A[|; = & SV 529 | |ag|. Then Problem (26), can be
rewritten as a biobjective mixed integer linear problem, as stated below.

Property 13 Let ||-|| be a scaled Li-norm, ||Al1 = %25:1 25:1 |ag|. Then, Problem
(26) can be formulated as the following Biobjective Mized Integer Problem,

max Yy
min S~ T2
st Yl dp(a) (o —al — o +al )+ 0= —y >0,
Vi ji,jeC ucl
S Sy (0 +aty) <N

Zk:h<k2§:1 (e +a%y) S Nz, Vh=1,2,....N (29)
y unrestricted

al, >0 Vk=1,2,...,N;ceC

at, >0 Vk=1,2,....N;ceC

6¢>0 VeeC

2z € {0,1} Vk=1,2,...,N

13



We focus on the generation of Pareto-optimal solutions of Problem (26) for a scaled
Li-norm by using formulation (29) as dicussed below. The very same approach can be
used if one chooses any other polyhedral norm, such as the L., norm, instead of the L,
norm, in the definition of geometrical margin.

Problem (29) is a biobjective mixed integer linear problem, which can be tackled
for instance, by adapting the two-phase method of [34] designed for solving biobjective
knapsack problems.

In the first phase, one obtains the so-called supported solutions, namely, those which
are found as solution of the scalarized problem

max )\10(14, b) — )\27T(A, b)
s.t.: |A] <1 (30)
(A,b) € RNC x R

for some weights A, Ay € [0, 1], with A\; + Ay = 1. These points describe, in the outcome
space, the frontier of the convex hull of the Pareto-optimal outcomes.
Since we face a bi-objective problem, the set of possible weights

A={(M, ) €RE: N\ + Xy =1}

that describe the supported efficient outcomes is unidimensional, and only a finite number
of weights describe different outcomes. This fact can be exploited to find all supported
outcomes in a sequential way.

A solution with minimal (zero) cost is the trivial solution (A,b) = (0,0). Note that
with this solution, points are classified arbitrarily by the tie-break rules, since all the score
functions will be zero.

When we are optimizing only the first objective, namely maximizing the margin, the
optimal value can be obtained by solving Problem (20), which can be easily reformulated
as a linear program. Denote by 6* its optimal value. Given an optimal solution (A*, b*) of
(20), a feasible solution (A*, b*, z*) of the biobjective problem (26) can be built by setting

. 1, if a;¢ # 0 for some c € C,
10, otherwise .

If (A*,b*) is the unique optimal solution, then (A*, b*, 2*) will be a Pareto-optimal
point. Otherwise, a Pareto-optimal point of (26) can be found by maximizing the margin,
i.e., by solving,

min (A, b)
s.t.: |A] <1
6(A,b) > 6*

(A,b) € RNC x RS

Once we have both a Pareto-optimal solution with minimal cost, i.e. (0,0), and a
Pareto-optimal solution with maximal margin, namely (A, by), we construct an ordered

14



list (sorted by either margin or by cost) whose elements can be built from any two con-
secutive already known elements (Aj, b;) and (A, by) by the scalarized Problem (30) for
certain \; and A\y. Denote 01 and 3 the margin of solution (Aj, by) and (As, be) respectively
and costs IT' and II?. The scalarization needed in the problem is

«92—91
)\1:
62 — 61 + 112 — 11!
H2_H1
Ay =

62 — 6 + 112 — 11V
All optimal solutions of such scalarized problem are Pareto-optimal points. If both (or
any of) (Ay, by) and (As, be) are solutions of the scalarized problem, the set of its optimal
solutions yield the only supported Pareto outcomes between those of (A, by) and (As, bs),
so we do not need to seek more supported Pareto points between them. Since the number
of Pareto outcomes is finite, the process ends in finite time.

When all the supported Pareto outcomes are found, the non-supported ones may be
obtained in the following way. Let (Ajy,b;) be any Pareto-optimal point with cost IT' > 0.
Let @ be the minimal feature cost that is positive,

T= i I - 11 .

= e = 0

Then a Pareto-optimal point, with cost strictly lower than II!, is obtained by solving the
problem

max 6(A,0b)

s.t.: IIA] <1

w(Ab) <II' — 7

(A,b) € RN x RS.

Then, the next Pareto-optimal point can be found in the same way. Thus, starting

from any supported Pareto-optimal point with cost greater than zero, the non-supported
Pareto-optimal outcomes between it and the next supported one can be found.

(31)

6 Soft-margin biobjective optimization

In classification problems, when the number of parameters to be fitted is large, model
may incur a phenomenon called overfitting. It is said to happen when a classification rule
achieves very good performance in the training sample I, but does not generalize well,
thus yielding a bad performance in future objects.

Moreover, it may happen that [ is not separable in the feature space. Then, the models
proposed in the previous section do not apply, since they look for rules which correctly
classify all the objects in I. As stated in Property 4, other feature space could be used,
but usually they are more complicated and thus the model would incur overfitting.
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In order to both avoid overfitting and deal with the non-separability of I, the typical
SVM approach, called soft-margin maximization [13], is based on allowing some objects
in I to be misclassified. This is done by adding to the model some slack variables { € IR,
where n is the cardinal of the training sample. Using this idea, the biobjective Problem
(28) is replaced by the following problem:

max vy

min Zivzl 12

st.r SO on(z®) (042;_04@ + BB —y+E4>0, Vi#£ji,j€C ucl
[Al+ 72 e € <N

—N 2 <Y sk Yooy @ < Nz Vh=1,2,...,N (3
af unrestricted Vk=1,2,...,N;ceC

y unrestricted

6¢>0 VeeC

2z, €4{0,1} Vk=1,2,...,N
>0 Vu € I,

for some user-defined value «, which trades off the perturbations £ and the margin.

In the same way as for the hard-margin approach, when || - || is a polyhedral norm,
this problem can be formulated as a Biobjective Mixed Integer Problem. For instance, if
|| - || is a scaled Li-norm, then Problem (32) can be formulated as follows:

max y
min Z]kvzl 1}, 2
s.t.: Z]k;vzl ¢k($u) (Oéi_k - CVi_k - aik + O—’j,k) + ﬁz - 5j -y + fu Z Oa
Vi# 74,5 €C,uel;
Zf:l Zivzl (%) + Oéc—k) Y per SN

D ik 25:1 (0%, +a%,) < Nz Vh=1,2,...,N (33)
y unrestricted

al, >0 Vk=1,2,...,N;ceC

ac, >0 Vk=1,2,...,N;ceC
pe>0 Veel

2z, €{0,1} Vk=1,2,...,N

£ 20 Vue I

The Two-Phase Method proposed in Section 5 to find the Pareto-optimal classifiers
can also be used for solving (33). Note that in this case, the solution with minimal (zero)
cost is not the trivial solution (A4,b) = (0,0), but any optimal solution (33) with A set
equal to the null matrix. The following steps of the method remain analogous to the
hard-margin approach, and will not be repeated here.

16



7 Numerical results

In order to explore both, costs and quality, of the Pareto score functions obtained, we have
performed a series of numerical tests on four standard databases, publicly available from
the UCI Machine Learning Repository [6], namely, the BUPA Liver-disorders Database,
called here bupa; the Pima Indians Diabetes Database, called here pima; the New Diag-
nostic Database, contained in the Wisconsin Breast Cancer Databases, called here wdbc,
and the Credit Screening Databases, called here credit.

For each database, the name of the file (as called in the database), the total number
of objects [€2|, the number of groups C' and the number of variables (all quantitative) p
are given in Table 2.

Database filename | |2 C p
bupa bupa.data | 345 2 6
pima pima-indians-diabetes.data | 768 2 8
wdbc wdbc.data | 569 2 30

credit crx.data* | 768 2 8

Table 2: Parameters of the databases. *only the numerical variables were used.

For the sake of simplicity, the features are chosen as the original variables in the
database x1, s, ..., z, and their products, yielding monomials of degree up to g. However,
other feature spaces, as those proposed by [7], might give better classification rates.

Two types of costs are considered for the original variables. For the four databases,
costs are independently chosen, randomly in the interval (0, 1). Moreover, for the databases
bupa and pima there exists a file, donated by Turney [31] and publicly available in the
UCI repository [6], which contains an example for possible costs for the measurement of
the variables. The cost information comes from the Ontario Health Insurance Program’s
fee schedule. For these databases we have also considered such given costs. The remaining
features have zero cost. The partial order is given as follows: feature ¢ = x; precedes all
features of the form ¢(z) = xq(z) for some monomial g(z) of degree up to g — 1.

Data were standardized by subtracting its mean and dividing by its standard deviation.
Then, from each database, a random sample with two thirds of the objects is drawn and
used as training sample I. The supported Pareto-optimal solutions of Problem (32) were
computed by the first phase of the Two-Phase Method [34], described in Section 5. The
non-supported Pareto-optimal solutions can also be computed using formulation (31).
The trade-off parameter v is chosen to be equal to the number of objects in I.

The results are plotted in Figures 2-9. In the right side of such figures, measurement
costs of the Pareto-optimal rules (except for zero-cost solutions) are plotted against the
margin. Since only Pareto-optimal solutions are considered, we see that, the higher the
cost, the higher the margin.
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Figure 2: Database ‘bupa’, g = 1, random costs.

This is the plot the final user will obtain in real-world applications, and chose, with
this information, one classification rule.

However, margin maximization is only a surrogate for the minimization of the mis-
classification rate, which will remain unknown. In the right side of Figures 2-9 we have
plotted, for the Pareto-optimal classifiers obtained, costs against the percentage of cor-
rectly classified objects in the testing sample. Figures show clearly that high correct
classification rates correspond to high costs. Moreover, the trade-off between measure-
ment costs and margin translates into a similar trade-off between measurement costs and
percentage of correctly classified objects.

method ‘bupa’ ‘pima’ ‘wdbc’ ‘credit’
1-Nearest Neighbor 60.87 64.84 94.74 72.07
2-Nearest Neighbor 57.39  69.14  94.21 70.72
3-Nearest Neighbor 60.00 7227  95.26  T73.87
4-Nearest Neighbor 60.87 7227  95.26 72.52
5-Nearest Neighbor 62.61 7148  95.79 72.07
Classification Tree 67.83 70.31  90.53 72.97
SVM with linear kernel 7217 7422 95.79 77.48

SVM with polynomial kernel, grade =2 | 66.96  38.28  94.21 65.32
SVM with polynomial kernel, grade =3 | 59.13  66.41  93.68 69.37
SVM with polynomial kernel, grade =4 | 58.26 62.89  89.47 59.01
SVM with polynomial kernel, grade =5 | 57.39 67.19  91.58 75.23
SVM with radial basis function kernel 68.70 64.84  63.16 77.48

Table 3: Behavior of other methods.
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Figure 3: Database ‘bupa’, g = 1, Turney’s costs.

For comparative purposes, in Table 3, the percentage of correctly classified objects
is shown for different classification methods, such as classification trees [10], k—nearest
neighbor classifier [12] and the classical SVM approach as implemented in SVMlight [21].
It can be observed that the classification behavior of the Pareto-optimal classifiers are
among the best ones, even for low classification costs.

The method proposed in this paper, can thus be seen as a procedure that generates
a series of classification rules with different costs, and expected good classification beha-
vior supported by the theoretical generalization properties of the margin maximizer (e.g.
Vapnik [33]). Choosing one classification rule among them can be done by the user after
plotting the measurement costs against margins, as illustrated in the examples.
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