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Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the
prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many
others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to
the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of
monotonicity of the discrete breather’s energy as a function of the breather frequency. Our analysis suggests
and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence
are generically unstable in soft (hard) nonlinear potentials.
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Introduction.—Discrete breathers, also referred to as
intrinsic localized modes, are time periodic and exponen-
tially localized in space coherent structures that have been
extensively studied over the last three decades; see, e.g.,
[1,2]. Their relevance has been recognized not only theo-
retically but, importantly, via physical experiments in areas
as diverse as Josephson junction arrays [3,4], micromechan-
ical cantilever arrays [5,6], coupled antiferromagnetic layers
[7], electrical transmission lines [8], halide-bridged tran-
sition metal complexes [9], and torsionally coupled pendula
[10] among numerous others. Remarkably, their areas of
purview continue to grow with a recent example being, e.g.,
granular crystals inmaterial science [11,12]. Essentially, it is
recognized that broad classes of nonlinear dynamical
lattices, including the paradigmatic (for nonlinear science)
case of the Fermi-Pasta-Ulam (FPU) problem [13,14], as
well as that of Klein-Gordon (KG) chains support a plethora
of such states.
Since the energy function is typically the only conserved

quantity for the FPU and KG chains, stability criteria that
are well established for solitary waves, such as the famous
Vakhitov-Kolokolov (VK) slope condition [15], do not
apply to classify their stability. As a result, most studies of
stability of discrete breathers chiefly rely on numerical
experiments and a qualitative analysis of eigenvalues in the
Floquet-Bloch spectra of the time-periodic linearization
operators [16–19]. Some analytical results on the stability
of discrete breathers for KG lattices were obtained by using
the limit of small coupling between nearest lattice sites,
typically referred to as the anticontinuum (AC) limit [20]. In

this limit, asymptotic stability of the fundamental (single-
site) breathers was established in [21]. Spectral stability of
excited (multisite) breathers was classified near the AC limit
in thework of [22–24], depending on the phase difference in
the nonlinear oscillations between different sites of the
lattice. More recently, nonlinear instability of spectrally
stable two-site breatherswas shown in [25].Nevertheless, an
overarching criterion of breather stability tantamount to the
VK criterion remains unknown up to now.
In this work, we fill in this important void by deriving a

universal energy criterion both for the KG and FPU lattices.
In particular, we show that a transition from stability to
instability of a discrete breather will occur at frequency ω,
where the energy-frequency dependence features an
extremum, i.e., at H0ðωÞ ¼ 0, where H is the breather’s
energy. The previously known lattices that exhibit energy
thresholds for discrete breathers like in [26,27] represent
case examples of such an instability transition. Yet, here we
illustrate the generality of such a conclusion both through an
analytical theory and through a number of prototypical
numerical examples (KG, monoatomic FPU, and diatomic
FPU). In the vicinity of the bifurcation point, where
H0ðωÞ ¼ 0, our asymptotic analysis and numerical compu-
tations suggest the following general conclusion: Breathers
with increasing (decreasing) energy-frequency dependence
are generically unstable in soft (hard) nonlinear potentials.
On the other hand, breathers with decreasing (increasing)
energy-frequency dependence in soft (hard) potentials are
generally free of the instability associatedwith this criterion,
yet they may experience other instability forms (including
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e.g. period doublings, oscillatory instabilities, etc. [1,2]). Let
usmention that here, the potential is referred to as soft (hard)
when the energy-frequency dependence of individual oscil-
lators is monotonically decreasing (increasing) [28].
Mathematical setup.—We consider a one-dimensional

(1D) chain of nonlinear oscillators under Newtonian
dynamics:

ün þ V 0ðunÞ ¼ W0ðunþ1 − unÞ −W0ðun − un−1Þ; ð1Þ

where n is defined on a 1D lattice, V is an on-site
(substrate) potential, and W is the inter-site potential for
nearest-neighbor interaction. Both V and W are assumed
smooth. The associated energy function for the lattice (1)
is given by

H ¼
X

n∈Z

1

2
_u2n þ VðunÞ þWðunþ1 − unÞ: ð2Þ

If W0ðuÞ ¼ Cu with coupling constant C while V satisfies
V 0ð0Þ ¼ 0 and V 00ð0Þ > 0, the chain is referred to as the
Klein-Gordon lattice. IfV 0ðuÞ¼0whileW satisfiesW0ð0Þ ¼
0 andW00ð0Þ > 0, the chain is referred to as the Fermi-Pasta-
Ulam (FPU) lattice. For clarity, we describe our results for
the KG lattice and draw parallels to the FPU case.
Discrete breathers of the KG lattice are T-periodic

solutions with unðtþ TÞ ¼ unðtÞ for every n. Setting the
breather frequency to ω ¼ 2π=T, we can normalize the
period of the breather to 2π using unðtÞ ¼ UnðτÞ, where
τ ¼ ωt and Unðτ þ 2πÞ ¼ UnðτÞ. The profile Un also
depends on frequency ω. We then have

ω2U00
nðτÞ þ V 0ðUnðτÞÞ ¼ CðΔUÞnðτÞ; ð3Þ

where ðΔUÞn denotes the discrete Laplacian. The spectral
stability of discrete breathers is determined by the linear-
ized equations of motion

ẅn þ V 00ðunÞwn ¼ CðΔwÞn; ð4Þ
where wn is a perturbation to un. According to the Floquet
theory, we are looking for solutions of the linearized
equation (4) in the form wnðtÞ ¼ eλtWnðτÞ, where λ ∈ C
is a spectral parameter and Wnðτ þ 2πÞ ¼ WnðτÞ. The
spectral stability problem is then

ω2W00
nðτÞ þ 2λωW0

nðτÞ þ λ2WnðτÞ þ V 00ðUnðτÞÞWnðτÞ
¼ CðΔWÞnðτÞ: ð5Þ

The (continuous) spectral bands can be identified on
the unit circle in terms of the Floquet multipliers μ ¼ eλT .
To be precise, the two bands are located at μ�ðθÞ ¼
e�iωðθÞT , where ωðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Csin2ðθ=2Þ

p
, θ ∈ ½−π; π�.

We assume that the two bands are bounded away from the
unit multiplier μ0 ¼ 1, which corresponds to the isolated

eigenvalue λ0 ¼ 0 in the spectral problem (5). Because of
the translational invariance symmetry (in time), we note
that the isolated eigenvalue λ0 ¼ 0 is at least double.
Indeed, the eigenvector WnðτÞ¼U0

nðτÞ satisfies (5) for
λ¼0. Furthermore, the generalized eigenvector ~WnðτÞ ¼∂ωUnðτÞ satisfies the derivative of (5) in λ for λ ¼ 0
given by

ðL∂ωUÞnðτÞ ¼ 2ωU00
nðτÞ; ð6Þ

where

ðLWÞnðτÞ ¼ CðΔWÞnðτÞ − V 00ðUnðτÞÞWnðτÞ − ω2W00
nðτÞ

is the linearized operator for the spectral problem (5).
Let us assume that the kernel of L is exactly one-

dimensional with the eigenvector WnðτÞ ¼ U0
nðτÞ. This

assumption is generally satisfied because no other sym-
metry exists in the lattice (1) besides the translational
symmetry in time. The most typical scenario of a discrete
breather becoming unstable occurs when a pair of Floquet
multipliers μ on the unit circle coalesces at μ0 ¼ 1 and splits
along the real axis. At the critical point, the eigenvalue
λ0 ¼ 0 of the spectral problem (5) is assumed to have a
higher-than-two-algebraic multiplicity. It is exactly that
condition which will provide us with the energy criterion
for spectral stability of discrete breathers, as follows.
The condition that λ0 ¼ 0 is at least quadruple (by

Hamiltonian symmetry, it has an even multiplicity) is
equivalent to the Fredholm condition of existence of a
solution to the second derivative of (5) in λ for λ ¼ 0. Using
the projection technique [28] yields the solvability con-
dition in the form

0 ¼
Z

2π

0

X

n∈Z
U0

nðτÞ½2ω∂ωU0
nðτÞ þ U0

nðτÞ�dτ ¼ TH0ðωÞ;

where HðωÞ is the time-independent breather energy that
follows from (2). The higher multiplicity condition (signal-
ing the potential transition between stability and instability)
is thus satisfied if ω is a critical point of the breather
energy HðωÞ.
The solvability condition H0ðωÞ ¼ 0 cannot be satisfied

in the AC limit, where the individual oscillator is always
stable with H0ðωÞ > 0 for hard potentials and H0ðωÞ < 0
for soft potentials [28]. However, far from the AC limit
such a bifurcation may (and often does) occur. If at the
critical point, λ0 ¼ 0 is exactly quadruple, i.e., if a pair of
simple Floquet multipliers coalesces with the double unit
multiplier μ0 ¼ 1 at H0ðωÞ ¼ 0, then an expansion of the
eigenvalue problem (5) near the bifurcation point yields:

λ2TH0ðωÞ þ λ4M þOðλ6Þ ¼ 0; ð7Þ
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where M ≠ 0. Then, if M > 0, the breathers are stable if
H0ðωÞ > 0 and unstable if H0ðωÞ < 0, whereas if M < 0,
then the breathers are stable if H0ðωÞ < 0 and unstable if
H0ðωÞ > 0. Detailed asymptotic analysis [28] suggests that
the former case is intrinsic for hard potentials and the latter
case is typical for soft potentials, at least in the small-
amplitude limit of KG breathers.
The same conclusion is also drawn in the FPU case when

reformulated in terms of the strain variable rn ¼ unþ1 − un,
because it is the strain variable that decays to zero at infinity
for FPU breathers [28].
Numerical illustrations: 2D KG breathers.—We con-

sider a two-dimensional (2D) version of the KG lattice with
the hard ϕ4 potential VðuÞ ¼ u2=2þ u4=4 [6] and the soft
Morse potential VðuÞ ¼ ðexpð−uÞ − 1Þ2=2. The latter has
been ubiquitously utilized for the study of breathers in
DNA denaturation settings where it is used to model the
hydrogen bond connecting the two bases in a pair [36].
Figure 1 shows the energy-frequency dependence for a

fixed coupling constant C, as well as the real Floquet
multipliers (recall that instability is tantamount to jμj > 1)

for both hard and soft potentials. We observe a perfect
correlation, as prescribed by the theory, between the
stability changes and energy extrema. Indeed, the breather
is stable (unstable) at the regions of increasing (decreasing)
energy HðωÞ for hard potentials, and this trend is reversed
for soft potentials.
Notice that in the case of the hard potential, the breather

is still stable for every ω past the upper limit shown in
Fig. 1. However, in the case of the Morse potential,
an instability emerges for ω below the lower limit of the
figure. This instability is a precursor of breather mobility
that is not predicted by our energy criterion and typically
happens within the Morse potential [37].
Numerical illustrations: 1D FPU breathers.—We con-

sider both monoatomic and diatomic FPU chains [14]. In
general, these chains are modeled by the FPU equation

Mnün ¼ W0ðunþ1 − unÞ −W0ðun − un−1Þ; ð8Þ

with Mn being the particle masses. We choose
WðuÞ ¼ u2=2þ αu3=3þ βu4=4. In the monoatomic case,
Mn ¼ 1 for all sites, whereas in the diatomic case, Mn ¼ 1

for n even and Mn ¼ 1=ϵ2 for n odd, where ϵ2 is the
parameter for mass ratio of the diatomic FPU chain [18,19].
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FIG. 1. Breathers in a 2D KG lattice with a hard quartic
potential in the case of C ¼ 0.5 (left panels) and a Morse
potential with C ¼ 0.2 (right panels). The top panels show the
profile of two unstable breathers with a portion of the unit circle
shown in the inset, corresponding to C ¼ 0.5, ω ¼ 2.3 (left) and
C ¼ 0.2, ω ¼ 0.992 (right). Central panels shows the energy-
frequency dependence, whereas the bottom panels display the
Floquet multipliers with jμj > 1 (i.e., associated with instability)
versus ω.
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FIG. 2. Breathers in a monoatomic FPU chain with α ¼ −1,
β ¼ 1. Left (right) panels correspond to the bond-centered (site-
centered) mode. The top panels show the breather profiles, in the
strain variable, for ω ¼ 2.1. The middle panel shows the energy-
frequency dependence, whereas the bottom panel displays
modulus of the Floquet multipliers with jμj > 1 versus ω.
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It was demonstrated in [27], for the monoatomic chain,
that the large-amplitude breathers possess a minimum of
HðωÞ since their amplitude does not tend to zero at the band
edge ω → 2. The energy threshold exists when α is taken
below a critical value of αc ¼ −

ffiffiffi
3

p
=2 ≈ −0.86 (for β ¼ 1).

However, in [27], the instability related to the energy
minimum was not considered. Here we show that the
energy threshold results in the change of stability of
discrete breathers.
As is typically the case in both FPU and KG chains, there

are two principal breathers: the bond-centered and site-
centered modes. The former is, in general, exponentially
unstable. Figure 2 shows, as dictated by our stability
criterion for hard potentials, that an exponential instability
arises at the energy minimum for bothmodes when ω → 2.
In the site-centered mode, this transition manifests itself as
the appearance of an exponential instability of the pre-
viously stable structure. In the already unstable bond-
centered mode, a second unstable Floquet multiplier
appears as ω → 2 (for a secondary instability which rapidly
overtakes the previous one as the instability with the largest
growth rate).

In the diatomic case, there is an opening of a frequency
gap within the phonon spectrum,

2ϵ2W00ð0Þ < ω2 < 2W00ð0Þ:
This allows the existence of breathers with frequency ω in
the gap of the phonon spectrum (so-called gap breathers).
Such structures can exist even in the case of soft potentials
[38], bifurcating from the bottom of the optical phonon
band; see also [11] for a relevant experimental manifestation
of such modes. For the soft potential, see the right panels on
Fig. 3, no global energy minimum exists but extrema in the
energy-frequency curve may occur even if α ¼ 0. In full
agreement with the energy criterion for soft potentials, the
instability of such gap breathers is perfectly correlated with
the increasing energy-frequency dependence.
Finally, gap breathers also exist for hard potentials,

bifurcating from the top of the acoustic band; see the left
panels on Fig. 3. Their stability and energetic properties are
similar to the breathers in the monoatomic FPU lattice, also
necessitating a nonzero α for the existence of energy
minima.
Conclusions.—In this work we have presented a system-

atic and general energy criterion for spectral stability of
breathers in nonlinear dynamical lattices. The energy stability
criterion for discrete breathers is strongly reminiscent of the
VKcriterion for solitarywaves; in fact, as illustrated in [28], it
reduces to theVKcriterion in the small amplitude limit where
the breathers can be approximated as solitary waves. In view
of that, the proposed criterion can be considered as the
definitive analogue of the VK criterion for breathers.
We have corroborated the validity of the energy criterion

for stability of discrete breathers via a wide range of models,
both KG and FPU, both 1D and 2D, both homogeneous and
heterogeneous, showcasing that its generality transcends the
specific such properties of the model. It follows from our
numerical results that the breathers are unstable in soft (hard)
potentials if the energy-frequency dependence is increasing
(decreasing).
Admittedly, a general classification of instabilities of

breathers (more generally of periodic orbits, including non-
localized ones, such as plane waves in Hamiltonian
systems) in the same spirit as the well developed theory
of solitary waves of the nonlinear Schrödinger equation is
still incomplete. Nevertheless, the present criterion we
believe constitutes an important step towards future work
in this direction, and on understanding nonlinear stability of
breathers in lattices.
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