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Abstract

Optimal capacity and location of a sequence of landfills are studied, and the interactions between

both decisions are pointed out. The decision capacity has some spatial implications, because it affects

the feasible region for the rest of landfills, and some temporal implications, because the capacity

determines the lifetime of the landfill and hence the instant of time where next landfills will need to

be constructed. Some general mathematical properties of the solution are provided and interpreted

from an economic point of view. The resulting problem turns out to be no convex and therefore it can

not be solved by conventional optimization techniques. Some global optimization methods are used

to solve the problem in a particular case, in order to illustrate the behavior of the solution depending

on parameter values.
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1 Introduction

The increasing generation of municipal solid waste has become an important issue from a social, eco-

nomic and environmental point of view point, and the optimal management of this waste constitutes an

important technical challenge for regional and local policy makers1 . The location of treatment or disposal

facilities are among the main decisions that need to be made concerning waste management (see Highfill

et.al 1994, Kunreuther and Easterling 1996, Swallow et.al. 1992, Quah and K. 2002).

From the viewpoint of a resource manager or policy maker, the decision of locating a landfill implies

selecting a specific piece of land, among the available possibilities, which will be devoted to waste disposal

for some time. Since a landfill will typically be in use for quite a long period, that decision will have some

associated (economic and environmental) temporal costs and consequences about the future availability

of land close to the landfill. Therefore, it is crucial to perform a careful design of landfills, and specifically,

to make optimal capacity and location decisions.

∗The latest version of this paper was written while F.J. André was visiting the department of Economics at Tilburg

University. We thank the participants in the ’XXVII Simposio de Análisis Económico’ and the ’Sevilla Workshop on

Dynamic Economics and the Environment’ for interesting comments. Financiation from centrA and Fundación Ramón

Areces is acknowledged.
1See Quadrio-Curzio et al 1994, Beede and Bloom 1995, Porter 2002 or Fullerton and Kinnaman 2002 for a revision of

different aspects about waste management.
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As a matter of fact, the operation of disposal facilities, concerning their location and capacity, has

changed dramatically during the last 20 years for both economic and environmental reasons. The location

of landfills has been typically moving further away from cities because of the growing price of land in

densely populated urban areas and the increased concern for the effects of dumps on our health and the

environment. Regarding capacity, at the start of the 1970’s, there were 20,000 landfills in the United

States, but by the end of the 1980s only 6,000 and by 1998 barely 2,000 (U.S. EPA 1988; Repa 2000).

Small landfills closed and big landfills grew in number and size. By the end of the 1980s, a few hundred

landfills handled half of all the municipal solid waste generated in the United States.

Some papers in the literature on economics and operations research have studied the optimal location

or the optimal capacity of landfills, but to the best of our knowledge, no one has studied both decisions

at the same time. We present a model where the decisions on capacity and location of landfills are jointly

made and show how these decisions interact with each other. This approach allows us to take explicit

account of the space constraints, which are one the main real problems which waste managers are faced

with, and also to measure the cost of space in every part of the feasible region.

The location of facilities has been thoroughly studied in the literature (see, for example, Kuhn, 1967;

Love et al, 1988; Francis et al, 1992; Wesolowsky, 1993, Drezner, 1994 and Drezner et al, 2002). The

so-called Fermat or Weber Problem problem consists of finding a point (for example, the location of a

disposal facility or landfill) which minimizes the sum of weighted distances from itself to a number of

fixed points (say, cities). Weiszfeld (1936) provided an iterative procedure to find the solution to the

Weber problem and showed that this solution is on the convex envelope of the fixed points. If there are

some constraints concerning the region where the facility can be feasibly located (i.e., some forbidden

regions), then we are faced with a so-called Constrained Weber Problem. This is obviously the case when

dealing with landfill location. Forbidden regions can refer to military areas, protected regions, such as

ecological parks or, of course, inhabited areas. A central result for the problem with forbidden regions is

the boundary theorem due to Aneja and Parlar (1994) and Hamacher and Nickel (1995), which states that

if the feasible region is a connected set, then the Constrained Weber Problem has an optimal solution on

the boundary of the feasible set. Hansen, Peeters and Thisse (1981) showed that the solution necessarily

lies in the visible boundary of the set of restrictions, as projected from the unconstrained solution.

In the economics literature, (the capacity of) landfills have been sometimes rationalized as a particular

kind of natural resource. As noted in Ready and Ready (1995), landfills can be viewed as depletable and

replaceable resources. Unlike other natural resources, whose depletion is irreversible, once a landfill is full

it can be replaced at some cost, by constructing a new one. The new landfill will also be depleted and

so on. There are at least two additional important features related to landfill management that make

it different from standard natural resource problems. First, the building of landfills is characterized by

high setup costs -given by the tasks of building and preparing the new landfills to be used, as well as

closing the full ones- as compared to the operating costs, which are basically given by the transportation

and processing of residuals. Second, unlike other resources (whose initial stock is given by nature), the

capacity of a landfill can be chosen by the decision maker who is responsible for waste management.

Deciding the capacity of a landfill has some relevance for the setup costs and also for the switching time

of a sequence of landfills. On the one hand, the smaller the capacity of the landfill to be constructed, the

smaller the construction cost but, on the other hand, the lifetime of such a landfill will be shorter as well,

so that the construction of a new landfill will have to be undertaken sooner. This conflict between present
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and future costs gives rise to a dynamic decision problem implying that a planning time horizon has to be

divided into several subintervals, the length of which is endogenously determined. As a consequence, the

capacity of a landfill should not be decided just by considering its own associated costs, but also the costs

linked to the following ones. The sequential nature of the use of landfills is also recognized in a number of

papers, like Jacobs and Everett (1992), Ready and Ready (1995), Huhtala (1997), Gaudet, Moreaux and

Salant (2001) and André and Cerdá (2001, 2004). In all these papers, except André and Cerdá (2001,

2003), landfill capacity is a given and therefore the problem of obtaining the optimal capacity is not

explicitly considered. André and Cerdá (2001, 2004) study the optimal capacity of a sequence of landfills

from a dynamic point of view and provide the so-called Optimal Capacity Condition, which determines

the optimal balance between present and future costs when determining such a sequence of capacities.

However, they do not study the optimal location of landfills.

In practice, both location and capacity of landfills are relevant for landfill management and there are

some important interactions between both decisions. The main idea is that the capacity decision has some

spatial and some temporal implications. Spatial, because the larger a landfill, the smaller the remaining

feasible region, and therefore the location of future landfills is affected by the capacity of the current

one. Temporal, because the capacity determines the lifetime of the landfill and hence the instant of time

where next landfills will need to be constructed. As a consequence, an optimal design of a sequence of

landfills requires the joint determination of both the capacity and location of the whole sequence.

This joint problem is modeled in this paper within an intertemporal setting, and some of its basic

mathematical and economic properties are discussed. In section 2 we present the problem and discuss

some of its basic features. We show that the problem is non-convex in nature, so that conventional

optimization techniques are not suitable to address it. In section 3 we analyze some basic mathematical

and economic properties of the solution. Specifically, we state the first order conditions and interpret

them form an economic point of view. This conditions make explicit the interaction between capacity

and location and provide a measure for the value of land depending on its scarcity around every landfill.

Furthermore, we derive some results concerning the optimal number of landfills and the possibility of

obtaining the counterintuitive result of an optimal excess capacity for the whole sequence of landfills.

Finally, we discuss the optimal order of landfills and show that the model is consistent with the fact

that, as time goes on, landfills are typically constructed further away from cities. Despite the valuable

insight that the first order conditions provide, the non-convex structure of the problem prevents us from

finding the solution just by solving these conditions, so that some numeric global optimization technique

is needed. In section 4 we discussed some techniques that can be suitable for solving the problem and use

them to solve a specific numerical example. Some sensitivity analysis exercises are performed in order

to get some further insights about the effect of different parameters of the model. Specifically, we show

that a larger fixed construction cost makes it optimal to reduce the number of landfills and make the

sequence of capacities more decreasing and the opposite happens for the marginal construction cost. An

increment in the transportation cost leads to reduce the capacity of the first and the last landfills, while

an increment in the size of the planning horizon causes a stair-shape increment for the number of landfills

and a sawtooth shape for the average capacity. Section 5 summarizes the conclusions and offer some

guidelines for interesting extensions and future research.
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2 Formulation of the problem

Assume that there are m cities indexed by j = 1, . . . ,m, located at different points of the map Pj ≡

(pj1, pj2). At time t, every city generates an instantaneous amount of waste equal to qj (t). A planner

has to take the following actions in order to manage, with the smallest possible cost, the waste produced

in a time horizon [0, τ ]:

1. At instant t = 0, to construct a landfill, with arbitrary capacity Y0, located at a point R0 ≡

(r01, r02) ∈ Ω , being Ω a bounded feasible region. The construction cost depends on Y0, according to

the increasing, convex and twice differentiable cost function C (Y0).
2 Although the simplest approach

consists of rationalizing C (Y0) as being purely economic costs, it could also be constructed to measure

an aggregation of economic and environmental costs, by using a suitable valuation method for the latter.

The same consideration applies to the operating costs.

2. While the first landfill is being used, to pay the instantaneous waste operating costs, that are mainly

determined by the transportation costs from all the cities to the landfill, which equal φ
∑m

j=1
qj (t) d (Pj ,R0},

where d (Pj,R0) represents the distance between Pj and R0 and φ is a parameter which measures trans-

portation cost per unit of waste and distance. In the standard Weber location problem, the distance

from the facility to each city j is weighted by some coefficient wj. When the facility to be located is a

landfill, the weights are given, in a natural way, by the amount of waste generated by each city. The

general setting is compatible with any type of distance, but for the sake of clarity, we will focus on the

Euclidean distance. Moreover, we assume for simplicity that, although the landfills can be located just in

some specific feasible region, there are not forbidden regions concerning the transportation of residuals.

The parameter φ can be tailored to account for the average difficulty to travel across the whole region

under study.

3. When the capacity of the first landfill is exhausted, which happens at time T1, implicitly determined

by the condition
∫
T1

0
Q (t) dt = Y0, where Q (t) ≡

∑m

j=1 qj (t), the planner has to close it and to construct

a new one, with capacity Y1, at another location R1 ≡ (r11, r12). Note that the feasible region is now

smaller than the original one, because the new landfill can not be constructed too close to the first one.

In fact, there is a safety region around each landfill, because of sanitary, legal and environmental reasons.

Furthermore, the larger the landfill capacity, the more potential risks, so a wider safety region is needed.

We model this limitation by imposing the following constraint:

d (R0,R1) ≥ β (Y0 + Y1)

β being a known parameter. The construction costs are given by C (Y1). The new landfill will last until

time T2, which is given by
∫
T2

T1
Q (t) dt = Y1.

2As noted in André and Cerdá (2004), C (Y ) can be thought of as measuring the (discounted) aggregation of both

construction and closure costs. If G1 (Y ) denotes the construction cost and G2 (Y ) the closure cost of a landfill built at

time t = 0 with capacity Y , the present value of the aggregation of both costs is given by

G (Y,T ) ≡ G1 (Y ) + e
−δT

G2 (Y )

but, once Y is decided and Q being exogenous, T can be expressed as a function T (Y ), so that G (Y, T ) collapses to a

function depending only on Y and the parameters of the model:

G (Y, T ) ≡ G1 (Y ) + e
−δT

G2 (Y ) = G1 (Y ) + e
−δT (Y )

G2 (Y ) ≡ C (Y )
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4. From T1 to T2, he or she has also to pay the instantaneous transportation costs associated to the

waste produced in this period, given by φ
∑m

j=1 qj (t) d (Pj,R1).

And so on, until the last landfill, denoted by K− 1, K being a decision variable. In general, a landfill

constructed at time Ti, located at Ri ≡ (ri1, ri2), with capacity Yi will last until Ti+1, implicitly defined

by the equation
∫
Ti+1

Ti

Q (t) dt = Yi. The construction and instantaneous transportation costs associated

to such a landfill are given by C (Yi) and φ
∑m

j=1 qj (t) d (Pj, Ri) respectively. The location has to meet

the following constraints:

d (Ri,Rk) ≥ β (Yi + Yk) , k = 1, . . . , i− 1

The planner’s problem consists of finding a number of landfills K, a sequence of capacities Y ≡

{Y0, Y1, ..., YK−1}, a sequence of switching times T ≡ {T1, ..., TK} and a sequence of locations R ≡

{R0,R1, ..., RK−1} in order to minimize the function

H (K,Y,T,R) =
K−1∑

i=0

e
−δTi


C (Yi) +

∫
Ti+1

Ti

e
−δ(t−Ti)


φ

m∑

j=1

qj (t) d (Pj ,Ri)


 dt


 (1)

subject to the following constraints:

T0 = 0, TK ≥ τ ,∫
Ti+1

Ti

Q (t) dt = Yi, i = 0, 1, 2, ..., K − 1, (2)

V0 ≤ Yi ≤ V1,

Ri ⊂ Ω

d (Ri, Rk) ≥ β (Yi + Yk) , i �= k

where δ is the discount rate, while V0 and V1 represent some minimum and maximum capacity constraints,

which can be given by legal or technical reasons. The constraint TK ≥ τ accounts for the fact that the

overall capacity of the whole sequence needs to be large enough to meet the waste requirements in the

time horizon [0, τ ]. We discuss below the rationale for considering this condition with inequality instead

of strict equality. To keep the analysis as simple as possible qj (t) is assumed to be constant across time
3
:

qj (t) ≡ qj ∀j, Q (t) ≡ Q, therefore, from (2), we have

Ti+1 = Ti +
Yi

Q
, i = 0, . . . , TK−1. (3)

Note that, substituting (3) for (2), problem (1) can be viewed as a discrete time, finite horizon optimal

control problem with free horizon, where Ti plays the role of state variable and Ri, Yi are control variables.

Nevertheless, we show now that it is also possible to address (1) as a static problem. For that purpose,

use (3) recursively to obtain

Ti =

∑
i−1

l=0
Yl

Q
i = 0, . . . , TK−1

3André and Cerdá (2001) study a case where the total flow of waste changes with time according to some specific dynamic

law of motion Q (t). Then, if we substitute the expression for Q (t) and solve the integral
∫ Ti+1
Ti

(∑m
j=1 Qj (t)

)
dt, we get a

condition of the type Yi = F (Ti, Ti+1) or, solving for Ti+1, a condition of the type Ti+1 = Φ(Ti, Yi), that can be regarded

as the state equation of an discrete-time optimal control problem where Ti is the state variable and Ri, Yi are control

variables. This makes the solution procedure quite more complicated, so we stick to the simpler case with constant waste

generation, to focus ourselves on the new issues arising from the interaction between capacity and location decisions.
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which can be substituted in the objective function to eliminate Ti and obtain the following alternative

expression:

J (K, Y,R) ≡ C (Y0) +
TC0

δ

(
1− e

−δ
Y0
Q

)
+

K−1∑

i=1

e

−

δ
Q

i−1∑

�=0

Y�

[
C (Yi)+

TCi

δ

(
1− e

−δ
Yi
Q

)]

where TCi ≡ φ
∑m

j=1
qjd (Pj, Ri) denotes total instantaneous transportation costs associated to landfill i.

Note that problem (1) involves deciding the optimal value of a discrete variable (K) and some continuous

variables (R and Y ). A possible way to solve it consists of finding the solution for all possible values of

K, and choosing that which provides the minimum total cost. For every possible value of K, we have the

following problem:

JK ≡ min
{Y,R}

J (K, Y,R)

s.t.
∑
K−1

i=0
Yi ≥ τQ

V0 ≤ Yi ≤ V1,

Ri ⊂ Ω

d (Ri,Rk) ≥ β (Yi + Yk) , i �= k

(4)

where JK represents the optimal value of the objective function when K landfills are constructed.

The last set of constraints in problem (4) are crucial and they imply that there is an important

interaction between capacity and location decisions, as illustrated in figure 1. Assume that the shadowed

area represents the feasible set Ω. Consider a solution with two landfills (K = 2) located at R0 = (r01, r02)

and R1 = (r11, r12), with capacities Y0 and Y1 respectively. The white circles around R0 and R1 represent

the safety regions. Suppose that Y0 increases while R0 and Y1 remain unchanged. It is clear that

R1 becomes unfeasible as a location for the second landfill. In the problem as a whole, the capacity

and location of a landfill affect the feasible capacities and locations for the rest of landfills. Figure 1

also illustrates the non-convex nature of the problem. Even if Ω is a convex set, once any landfill is

located, the remaining feasible set {Ω−BβY0 (R0)}, where BβY0 (R0) denotes the ball centered at R0

with radius βY0, is non-convex. We can also conclude that the feasible set is non-convex by noting

that d (Ri, Rk) is a convex function when we use the Euclidean distance or any metric of the type

d (Ri,Rk) = [(Ri1 −Rk1)
p + (Ri2 −Rk2)

p]
1

p
with p > 1

4
. The non-convex nature of the problem prevents

us from solving it by conventional optimization methods.

4For example, assume that β = 1, K = 2 and we have two feasible solutions given by

Y0 = 2 R0 = (0,0) Y1 = 3 R1 = (0,5)

Y ′

0
= 3 R

′

0
= (0,1) Y ′

1
= 2 R

′

1
= (4,4)

which satisfy d (R0, R1) = d
(
R

′

0
, R′

1

)
= Y0+Y1 = Y

′

0
+Y

′

1
. If we construct the following linear convex combination of both

solutions

Y
′′

0
= 0.5Y0 + 0.5Y ′

0
= 2.5 R

′′

0
= 0.5R0 + 0.5R′

0
= (0, 0.5)

Y ′′

1
= 0.5Y1 + 0.5Y ′

1
= 2.5 R′′

1
= 0.5R1 + 0.5R′

1
= (2, 4.5)

such a combination turns out to be unfeasible, given that d(R′′

0
,R′′

1
) < Y ′′

0
+ Y ′′

1
.
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Figure 1: Interaction between capacity and location

In the optimal solution, the condition d (Ri, Rk) ≥ β (Yi + Yk) may be binding for some pairs of

landfills and not binding for other. When this conditions holds with equality for two landfills i and k we

say that landfills i and k are ’as-close-as-possible’ (as illustrated in figure 1).

3 Basic properties of the solution and economic interpretation

3.1 Optimality conditions

For any value of K, we can construct the Lagrangian function

L = J (K,Y,R) + µ

(
τQ−

K−1∑

i=0

Yi

)
+

K−1∑

i=0

α0i (V0 − Yi)+
K−1∑

i=0

α1i (Yi − V1) +
K−1∑

i,k=0
i�=k

λik [β (Yi + Yk)−Dik]

where µ, α0i, α1i and λik are the multipliers associated to the constraints of the problem and, for the

sake of brevity, we denote as Dik ≡ d (Ri,Rk) the distance between landfills i and k. Note that all the

constraints are linearly independent and so the Kuhn-Tucker conditions apply although we should keep

in mind that, given the non-convexity of the problem, several local minima may exist so that a global

minimum can not be obtained just by solving the necessary conditions. Nevertheless, the study of these

conditions provide some useful insight into the mathematical and economic properties of the solution.

Given a value of K, the Kunh-Tucker conditions for problem (4) are

C
′(Y0) + e

−

δ
Q
Y0
TC0

Q
+ β

K−1∑

i=1

λ0i =

δ

Q

K−1∑

i=1

e
−

δ
Q

∑ i−1

�=0
Y�

[
C(Yi) +

(
1− e

−

δ
Q
Yi

)
TCi

δ

]
+ µ+ α00 − α10

(5)
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e
−

δ
Q

∑h−1

�=0
Y�

(
C

′(Yh) + e
−

δ
Q
Yh

TCh

Q

)
−

δ

Q

{∑
K−1

i=h+1
e
−

δ
Q

∑
i−1

�=0
Y�

[
C(Yi)+

(
1− e

−

δ
Q
Yi

)
TCi

δ

] }

= µ+ α0h −α1h − β
∑

i�=h

λhi h = 1, . . .K − 2

(6)

e
−

δ
Q

∑
K−2

�=0
Y�

(
C

′(YK−1)+ e
−

δ
Q
YK−1

TCK−1

Q

)
+ β

K−2∑

i=0

λK−1,i = µ+α0K−1 − α1,K−1 (7)

−

φ

δ
e
−

δ
Q

∑h−1

�=0
Y�

(
1− e

−

δ
Q
Yh

) m∑
j=1

qj

pj1 − rh1

djh
=

∑

i �=h

λih

ri1 − rh1

Dih

h = 0, . . .K − 1 (8)

−

φ

δ
e−

δ
Q

∑h−1

�=0
Y�

(
1− e

−

δ
Q
Yh

) m∑
j=1

qj

pj2 − rh2

djh

=

∑

i �=h

λih

ri2 − rh2

Dih

h = 0, . . .K − 1 (9)

µ

(
τQ−

K−1∑

i=0

Yi

)
= 0 (10)

α0i (V0 − Yi) = 0 i = 0, . . . ,K − 1 (11)

α1i (Yi − V1) = 0 i = 0, . . . ,K − 1 (12)

λik [β (Yi + Yk) −Dik] = 0 i, k = 0, . . . ,K − 1; i �= k (13)

µ, α0i, α1i, λik ≥ 0 i, k = 0, . . . ,K − 1; i �= k (14)

where djh ≡ d (Pj, Rh) denotes the distance between city j and landfill h.

Consider the economic interpretation of condition (5), related to Y0: when the capacity of the first

landfill marginally increases,some marginal costs and some marginal gains follow. Equation (5) states the

equalization of both marginal costs and marginal gains in the solution. The first term is the marginal

construction costs of the first landfill, as measured by the first derivative of C evaluated at Y0. The

second marginal costs comes from the fact that the first landfill will have a longer lifetime and hence the

transportation costs TC0 will have to be paid for a longer period. Both of these effects are discussed in

André and Cerdá (2001, 2004), but in the present problem there is a third possible source of marginal

cost from increasing Y0, which comes from the interaction between capacity and location. Assume that

landfills 0 and k, for some k �= 0, are as-close-and-possible. Then, an increment in Y0 leads to increase

the safety region of this landfill and therefore to reduce the available space to locate landfill k. Landfill

k will have to move to a different location, possibly augmenting its transportation cost. The term βλ0k

measures such a marginal cost increment and it can be interpreted, from an economic point of view, as

the shadow price of land (or space) between landfills 0 and k. Observe that, given the multi-location

structure of the problem, the shadow price of land varies across different regions in the map. Note also

that, if landfills 0 and k are not as-close-as-possible, then from condition (13) we know that λ0k = 0 and

the third effect does not show up. The total marginal cost linked to the third effect for landfill 0 (or,

8



alternatively, the total marginal cost of a unit of space around landfill 0) is given by Λ0 ≡ β
∑

i∈A0
λ0i,

where

A0 = {i = 1, . . . ,K − 1 / d (Ri,R0) = β (Yi + Y0)}

is the set of landfills that are as-close-as-possible to landfill 0 and we can define, in the same way, Λi

and Ai for any i = 1, . . .K − 1. The marginal gain of increasing Y0 (first term of the right-hand-side

of (5)) comes from the fact that a longer lifetime of the first landfill defers all the (construction and

transportation) costs of future landfills. Given the time preference, as measured by the discount rate δ,

this results in a smaller discounted cost. Concerning the rest of terms in the equation, the multiplier

µ is common for all landfills and it measures the marginal impact on the construction costs from an

additional unit on total waste, τQ. When an excess capacity exist, i.e. τQ >
∑
K−1

i=0
Yi, (10) implies

that this marginal impact equals zero, because marginally increasing the total amount of waste does

not involve any additional construction cost. The multipliers α00 and α01 account for the possibility of

the minimum and maximum capacity constraints being binding. For all the landfills, either αh0 = 0 or

αh1 = 0, or both hold. In an interior solution (concerning capacity) we have α00 = α01 = 0. The same

interpretation applies for conditions (6) linked to Yh, h = 1, . . . ,K−2, and condition (7), linked to YK−1.

In the latter case, note that the effect of deferring future costs is not present, because future does not

exist.

Concerning the optimality conditions for rh1 and rh2, (8) and (9), note that changing the location

of a landfill h (while keeping other variables unchanged) has two effects: the first one is related to the

distance from landfill h to the different cities and hence the (discounted) transportation cost from each

one. For example, an increment in rh1 increases (decreases) the distance between landfill h and city j

if rh1 > rj1 (rh1 < rj1). A change in the location of a landfill necessarily affects the distance between

such a landfill and every city, so that, this effect needs to be added up across all cities. Observe that

when the location of landfill h changes, its distance from some cities may increase while from other can

decrease. So, some of the terms in the sum
∑m

j=1 qj
pj2−rh2

djh
in (8), and the equivalent one in (9), may be

positive and other negative. The second effect has to do with the relative position of landfills. Suppose

that landfills h and i are as-close-as-possible, then a marginal change in the location of landfill h will

require a movement in the location of landfill i (as far as landfill h moves ”towards” landfill i), and hence

to change the (transportation) cost associated to landfill i. To evaluate the economic effect of a marginal

movement of landfill h, with respect to landfill i, we have to multiply by the shadow price λih. Obviously,

this effect does not show up for those landfills that are not as-close-as-possible to landfill h (displaying

λih = 0).

If we manipulate the first order condition (6) for the capacity of two consecutive landfills Yh, Yh+1,

and assume that the minimum and maximum capacity constraints are not binding (so that α0h = α1h =

α0,h+1 = α1,h+1 = 0), then we obtain the following non linear first order difference equation relating

Yh and Yh+1, which can be considered as a generalization of the so-called Optimal Capacity Condition

presented by André and Cerdá (2001, 2004):

C
′ (Yh) = e

−

δ
Q
Yh

[
C

′ (Yh+1)+
δ

Q
C (Yh+1)+

(TCh+1 − TCh)

Q

]
+ e

δ
Q

∑h−1

�=0
Y� [Λh+1 −Λh] (15)

Equation (15) can be interpreted as a no-arbitrage condition stating that no benefit can be made by

transferring some capacity from landfill h to landfill h + 1 or vice versa. If we disregard, for a moment,
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the last term (assuming that Λh+1 = Λh) and moreover assume that there is no time preference, and

therefore δ = 0, we get the following simpler condition:

C
′ (Yh)+

TCh

Q
= C ′ (Yh+1) +

TCh+1

Q

meaning that the marginal cost of a unit of capacity in landfill h (as measured by the marginal construction

cost plus the transport cost per unit of waste) needs to be equal to that of landfill h + 1. If there is a

positive time preference, we have to discount the marginal cost in period h + 1 and take into account

that, when the capacity (and hence the lifetime) of landfill h increases, the whole building cost of landfill

h+1 will be delayed implying a smaller discounted cost (second term in square brackets in (15)). Finally,

the last term accounts for the different value of space around landfill h and around landfill h+1. Given

that, by construction, Λh measures the value of space in present value at time t = 0, it is necessary to

multiply by e
δTh

= e

δ
Q

∑h−1

�=0
Y� to make the comparison in present value at time t = Th.

Assume that problem (4) has a fully interior solution, meaning that all the ”≥” and ”≤” constraints

hold with strict inequality. Now, consider that, starting from an optimal solution, we exogenously vary

the capacities of the landfills and compute the optimal movements of the locations. Given the continuity

of the problem for a given value of K, the optimal locations will vary continuously. In a similar way,

suppose that, starting from an optimal solution for problem (1), -once the optimal value of K has been

found- we perform some ”small” change in the value of any of the parameters of the problem (δ, φ, Q, τ ).

Then, given the continuous nature of the problem, the solution (both the capacities and the locations)

should vary continuously. Nevertheless, since the solution is not typically interior, in most cases changing

the value of the parameters results in jump effects on the solution. Moreover, for some -large enough-

parameter changes, the optimal value of K can change. K being a discrete variable, this will also result in

a jump, in such a way that the solution of the problem typically turns out to be a piece-wise continuous

function of the parameters. We illustrate this feature in section 4.

3.2 Discussion about the number of landfills

Note that the minimum capacity constraint, together with the fact that Ω is a bounded set, guarantee

that K is a finite number. Define τ 0 ≡
V0

Q
and τ 1 ≡

V1

Q
, so that

τ

τ 0

≡ τ

Q

V0
and

τ

τ 1

≡ τ

Q

V1
. Using these

definitions, the following propositions determines the minimum and maximum value of K in the solution

of the problem.

Proposition 1 The number of optimal landfills in problem (1) is bounded by:

Ψ

(
τ

τ1

)
≤ K ≤ Ψ

(
τ

τ 0

)

where

Ψ (x) ≡

{
x if x is an integer

Int (x+1) otherwise

where the operator Int denotes the integer part of the argument.

Proof. See section 6.1
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If condition
∑
K−1

i=0
Yi ≥ τQ in problem (4) is replaced with

∑
K−1

i=0
Yi = τQ (so that excess capacity

is ruled out), then the second part of proposition 1 changes into K ≤ Int

(
τ

τ0

)
. To see this, note that

the minimum capacity constraint implies that, when K landfills are constructed, KV0 ≤ τQ holds, and

using the definition of τ 0, we get K ≤
τ

τ 0

. But if
τ

τ 0

is not an integer, K = Int (x+1) is not feasible

because
∑
K−1

i=0
Yi ≥ KV0 > τQ, so the maximum feasible number of landfills is Int

(
τ

τ0

)
.

Using proposition 1 we can perform the following analysis of the solution depending on the value

of τ . Pick up an integer value � ∈

[
V1

V0
− 1,

V1

V0

]
so that τ 1 ∈ [� τ 0, (� + 1)τ 0]. Split the range of pos-

sible values for τ in subintervals of the type [nτ 1, (n+ 1) τ 1] for n = 0, 1, . . . and subintervals of the

type [mτ 0, (m+ 1) τ 0] for m = 0, 1, . . . As, by definition, τ 1 > τ0, within any interval of the type

[nτ 1, (n+ 1) τ 1], several subintervals of the type [mτ 0, (m+1) τ 0] may be contained. We come up with

the following possibilities:

1. Assume τ ∈ [0, τ 1],

If τ ∈ [0, τ 0], then τQ ≤ V0. We trivially obtain that the solution is Y0 = V0 and consequently we

have K = 1.

If τ ∈ [jτ 0, (j +1) τ 0], for j = 1, . . . , �− 1, the number of landfills is bounded by 1 ≤K ≤ j + 1.

If τ ∈ [�τ 0, τ 1], we have 1 ≤ K ≤ �+ 1.

2. If τ ∈ [τ 1,2τ 1], then K = 1 is ruled out and we always have K ≥ 2.

If τ ∈ [τ1, (�+ 1) τ 0], then the number of landfills is bounded by 2 ≤ K ≤ �+ 1.

If τ ∈ [(�+ j) τ 0, (� +2) τ 0], for j = 1, . . . , �− 1, we have 1 ≤ K ≤ j + 1.

and so on. Summing up:

A. If we have τ ∈ [mτ0, (m+ 1) τ 0] and [mτ 0, (m+ 1) τ 0] ⊂ [(n− 1) τ 1, nτ 1], or alternatively τ ∈

[mτ0, (n − 1) τ 1] and [(n− 1) τ 1, (m+ 1) τ 0] ⊂ [m0τ 0, (m+ 1) τ 0], then the number of landfills in the

solution is bounded by n ≤ K ≤m+ 1.

B. If we have τ ∈ [mτ 0, (n− 1) τ 1] and [mτ 0, (n− 1) τ 1] ⊂ [mτ 0, (m+ 1) τ0], then n − 1 ≤ K ≤

m+ 1.

Define the indirect cost function for K landfills as JK(Θ) ≡ min
{Y ,R}

J (K, Y,R,Θ), where Θ denotes the

set of parameters of the problem, including τ , φ, δ, β, Q, V0, V1 and other possible parameters included in

the cost function. The following proposition states the impact of any of these parameters on the indirect

cost function.

Proposition 2 JK(Θ) is non-decreasing in τ , φ, β, Q, V0 and non-increasing in δ and V1.

Proof. See section 6.2

3.3 Discussion about excess capacity

Note that inequality TK ≥ τ in problem (1), or alternatively
∑
K−1

i=0
Yi ≥ τQ in problem (4), explicitly

recognizes the possibility of an excess capacity, in such a way that when time τ is reached there is

some capacity (of the last landfill5) that remains unexhausted. Since construction cost is increasing

with capacity, it seems unreasonable that a rational decision maker could be willing to incur such an

5 It is immediate to conlude that it is never optimal to under-exhaust any landfill h = 0, . . . ,K − 2, because total

discounted cost could be reduced just by exhausting landfill h and so delaying the costs of the whole following sequence

h+ 1, . . . ,K − 1.
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excess capacity. André and Cerdá (2004, proposition 1) show that this counter-intuitive may arise when

dealing with landfill construction and provide a necessary and sufficient condition for it to show up, in

a context were all the landfills are constrained to have the same capacity. The presence of an (optimal)

excess capacity is even more surprising in this model that in the one by André and Cerdá (2004), for two

reasons: first, because we are jointly modelling the capacity and location decisions, the scarcity of space

implies an additional cost, in terms of wasted space, coming from constructed but unexhausted capacity.

Secondly, unlike the case studied in André and Cerdá (2004), in this paper the capacity of landfills is

assumed to be variable, so it is possible, in general, to increase the capacity of the first landfill(s) in order

to delay future costs, and then decrease that of the last one(s) to avoid an excess capacity and reduce

total discounted cost.

Nevertheless, as we will show below, this result can also show up in this case. Specifically, there is

a particular situation where some excess capacity can arise in a natural way; namely, when the lower

capacity constraint is binding for all, or at least for some landfills. The simplest case is that in which

τ < τ 0, implying Qτ < V0, so that, even the capacity of the smallest feasible landfill is too large to meet

the requirements in the planning horizon. In this case, the solution implies K = 1 and Y0 = V0 > τQ.

Assume now K = 2. If we set Ỹ0 = Qτ − V0,
˜Y1 = V0, and choose locations R0, R1 consistent with ˜Y0

and ˜Y1, then we have a feasible solution without excess capacity. Now assume that the derivative of the

Lagrangians with respect to Y0, evaluated at ˜Y0,
˜Y1 is negative, what happens is the following condition

holds,

C
′(Ỹ0) + e

−

δ
Q

(Ỹ0)TC0

Q
+ βλ01 <

δ

Q
e
−

δ
Q

(Ỹ0)

[
C(Ỹ1)+

(
1− e

−

δ
Q

˜Y1

)
TC1

δ

]
+ µ+ α00 − α10

(16)

Then, the total discounted cost would be reduced by increasing Y0. That would result in an overall

excess capacity that could not be eliminate by reducing Y1, which is already at its minimum possible

value. The main idea behind (16) is that, if the marginal cost is ”low enough”, a small increment of

the capacity of the first landfill would result in a small cost increment that could be overcompensated

because discounted cost reduces as a consequence of postponing the construction of future landfills (in

the example, just the second one).

As a numerical illustration, consider the following example. The construction cost function is given

by C (Y ) = 2100 + 10Y . There are 5 cities located at the points (0,0); (1,0); (1,1); (0,1); (2,2),

which produce the following amounts of waste: 3; 4; 2; 1; 3, so that Q = 13. The feasible re-

gion is the rectangle defined by the extreme points (2,3) and (17,16). The rest of parameter val-

ues are β = 0.01, δ = 0.05, τ = 63, φ = 1, V0 = 90, V1 = 400. If we solve the problem for

K = 9 landfills, we obtain the optimal sequence of locations R∗

= {(9.8,5.5) , (4.1 5.1) , (4.9, 10.0) ,

(10.9, 11.1) , (14.5, 6.8) , (6.8, 3.9) , (16.1, 3.9) , (14.9, 10.0) , (6.6, 6.6)} and the optimal sequence of ca-

pacities Y ∗

= {247, 208, 288, 324, 236, 90, 90, 90, 90}. Note that
∑

8

i=0
Y

∗

i
= 1665 > τQ = 819, so

that there is an excess capacity equal to 846. The discounted cost of this solution equals 10383. Assume

we try to improve the solution by reducing the capacity of some landfills. The capacities Y5, . . . , Y8 can not

be reduced because they are already set equal to the lower bound. We set Y0 = 99, Y1 = · · · = Y9 = 90,

while keeping unchanged the locations of all the landfills. In the new solution there is no excess capacity;

nevertheless the discounted cost is 15204, which is larger than that of {R∗, Y ∗}6.

6As a matter of fact, the locations of the alternative proposed solution are not optimal and the cost can be reduced by
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Note that, in the solution {R∗, Y ∗}, the capacity of the last landfills is set equal to the lower bound.

This is what typically happens when there is an excess capacity. The idea is that, for the last landfill,

there is not gain in increasing capacity, because future costs can not be delayed, as future does not exist.

The following lemma shows that, if some excess capacity exists, the minimum capacity constraint binds

at least for the last landfill.

Lemma 1 In the solution to problem (4), if
∑
K−1

i=0
Yi > τQ, then it must be the case that YK−1 = V0.

Proof. From condition (10), we know that µ = 0. The left-hand side of (7) is always positive, so it

is immediate to conclude that α1,K−1 = 0, α0K−1 > 0, and then YK−1 = V0 follows from (11)

3.4 Discussion about location and optimal order of landfills

Once the optimal number of landfills K∗

, the optimal capacities Y ∗

≡

(
Y
∗

0
, ..., Y ∗

K−1

)
, and the optimal

locations R∗

≡

(
R
∗

0
, ...,R∗

K−1

)
have been determined, since {K∗, Y ∗,R∗} is feasible by definition, any

solution
{
K

∗

,
˜Y , ˜R

}
, where ˜Y is a permutation of the elements of Y ∗ and ˜R is the associated permutation

of the elements of R∗

, would yield a feasible (although not necessarily optimal) solution. So, it is relevant

to study the optimal order in which landfills should be used, once we know their capacity and location.

Since landfill space can be understood as a natural resource, different landfills can also be conceptu-

alized as several deposits of a natural exhaustible resource. A classic result by Herfindahl (1967) states

that, in a situation where several deposits of a natural resource exist, the deposits have to be exploited

in an increasing order of marginal extraction costs. André and Cerdá (2001) show that the Herfindahl’s

result holds for the problem of landfill construction in the sense that, if the only difference among the

various places available for building landfills is the attached management (or transportation) cost per unit

of waste, then it is optimal to make use of such places beginning from the lowest cost one and following

in the order of increasing unit cost. In the case of a single city or waste generating center, this result

implies that the distance to the city should be increasing across the sequence of landfills (i.e. landfill i

is closer to the city than landfill j, for any j > i). The equivalent result in our model would imply the

weighted distance, or equivalently the instantaneous transportation costs TCi, to be increasing in i.

Nevertheless, in Herfindahl (1967) both the location and capacity of the resource deposits are given and

in André and Cerdá (2001), although different landfills are assumed to have different transportation costs,

the location decision is not explicitly modelled as space constraints are not taken into account. Proposition

3 shows that, when location and capacity decisions are jointly made, what matters to determine the

optimal order of landfills is the aggregation of both construction and transportation costs. Nevertheless,

using corollary 1, we also show that, if the capacity of landfills is not very increasing, then we also get

the result that TCi turns out to be increasing in i.

For that purpose, define the total discounted cost of landfill i as TDi ≡ C (Yi) +
TCi

δ

(
1− e

−δ
Yi
Q

)
.

Then the following result holds.

Proposition 3 In the optimal solution for problem (1), TDi ≤ TDj holds for any pair of landfills i, j,

such that i ≤ j.

relocating the landfills. The optimal solution without excess capacity (imposing the condition
∑
K−1

i=0
Yi = τQ), consists of

the locations are R = {(4.8, 5.8) , (2.9 3.9) , (2.9, 5.7) , (2.9, 7.5) , (4.7, 3.9) , (6.7, 5.7) , (6.5,3.9) , (8.1, 4.6) , (9.8, 3.9)} and

the optimal capacities are those proposed in the main text. Nevertheless, with this combination, the discounted cost is

12767, which is still larger than that of {R∗, Y ∗}.
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Proof. See section 6.3

Using the definition of TDi, and the fact that C (Y ) is increasing, the following corollary follows

immediately from proposition 3.

Corollary 1 In the optimal solution for problem (1), if Yi ≥ Yj holds for any pair of landfills i �= j, then

TCi ≤ TCj .

From corollary 1, and using a continuity argument, we can conclude that, for any j > i if Yj is not

much larger than Yi, then the weighted distance of landfill j is larger than that of landfill i. This result is

consistent with the evidence that, as time goes on, landfills are normally constructed further away from

cities. We obtain this result in most of the empirical exercises performed in the next section.

4 Empirical methodology and results

The complex structure of the problem, together with its non-convex nature, prevents us from obtaining

an analytical solution, so that some numerical optimization method is needed to obtain an operational

solution. Specifically, to overcome the difficulty arising from the possibility of having different local

minima, the right approach is that of using some global optimization technique. We briefly review some

of the basic features about the global optimization approach and present an empirical example which

allows us to get some further insight about the behavior of the solution.

4.1 Global Optimization

Many problems of continuous location theory are expressed as global optimization problems (see Hansen,

1995). A global optimization problem is specified in the form

(GOP ) : min f(x)

s.t. x ∈ C
(17)

where C ⊂ R
n is a compact set and f : C → R is a continuous function defined on C. The theorem of

Weiesrstrass assure that, under these assumptions, a minimum and a maximum for f exist in C. Points

x ∈ C are called feasible, and a solution of (17) is a feasible point x̂ ∈ C such that

f(x̂) = min
x∈ C

f(x) (18)

A local minimizer only satisfies f(x̂) ≤ f(x) for all x ∈ C in some neighborhood of x̂. Since every

global minimizer is a local minimizer, the solutions for (17) are the local minimizers with smallest objec-

tive function value. The main difficulties in global optimization stem from the fact that there are generally

many local minimizers but only one, or a few of them are global minimizers, and that the feasible region

may be disconnected. Among the most well-known global optimization methods are branch and bound,

interval methods, constraint satisfaction techniques, genetics algorithms and radial basis function algo-

rithms. Stochastic methods and genetic algorithms use only function values but their rate of convergence

is slow. Deterministic methods like branch and bound, assume that one can compute a lower bound of f

on a subset H, what can be done if we know a Lipschitz constant on f . A basic reference on most aspects

of global optimization is the handbook of Global optimization by Horst and Pardalos (1995) ((?)). It is

also possible to see the state of the art in COCONUT (2001).
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In our case, we solve a global optimization problem for every possible value of K and choose that

which provides the minimum value of the objective function. We use the optimization environment

Tomlab, which implements several global optimization methods in Matlab language (see Holsmtröm,

1999). Specifically we use as benchmark glcCluster solver, implementing an extended version of the

routine DIRECT, which is a modification of the standard Lipschitzian approach that eliminates the need

to specify a Lipschitz constant (see Jones, 2001). The results are also checked using the radial basis

function routine glcSolver (see Gutmann, 20017) and genetic algorithms.

4.2 Numerical Illustration

We now construct a numerical example which allows us to analyze the behavior of the solution and perform

some sensitivity analysis. Assume that the construction cost function is of the linea type C (Y ) = a+bY .

Parameter a represents some fixed cost and parameter b measures marginal cost, indicating how total

construction cost increases with capacity. There are five cities located at points (0,0), (1, 0), (1, 1), (0,1)

and (2, 2), which produce the amounts of waste 3, 4, 2, 1 and 3 respectively, so that the total amount

Q equals 13. The feasible region is given by the rectangle defined by the extreme points (2, 3), (17,16).

To guarantee that all the landfills and also their safety regions fall within the feasible region, we add

to the optimization problem the constraints 2 + βYi ≤ ri1 ≤ 17 − βYi , 3 + βYi ≤ ri2 ≤ 16 − βYi , for

i = 0, . . .K − 1. We set the following values for the parameters:

a = 1000 V0 = 90 β = 0.01 δ = 0.05

b = 10 V1 = 400 φ = 1 τ = 56

(19)

From proposition (1), we know that the number of landfills is bounded by 2 ≤ K ≤ 9. We solve

numerically the global optimization problem and obtain that the optimal number of landfills isK∗

= 3, the

optimal locations areR∗

= {(3.97,4.97), (8.54,5.65), (4.66,9.55)} and the optimal capacities Y ∗

= {197.15,

265.09, 265.72}. The solution is illustrated in figure 2. The left panel displays the location of landfills. The

triangles represent cities and the squares represent landfills. The order of landfills is indicated by numbers

1, 2, 3. The feasible region is delimited by the white rectangle. The right panel shows the sequence of

capacities. Observe that there is no excess capacity and the sequence of capacities is increasing but, as

we will show below, no general result can be drawn about this sequence being increasing or decreasing.

The instantaneous transportation costs associated of landfills are given by TC1 = 68.49, TC2 = 118,36,

7Gutmann (2001) show that for most types of radial basis functions, convergence can be achieved without further

assumptions on the objective function. The rbfSolver use radial basis function to define a utility function. The goal is to

compute a response surface that interpolates the objective function in given points, and to choose the global minimizer of

the surface. Gutmann finds a response surface proposed by Jones (1996) and using radial basis functions as interpolants he

find that the uniqueness of an interpolant is achieved under very mild conditions on the location of the interpolation points.
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TC3 = 125.12, so that they are increasing as predicted by proposition 3 and corollary 1.
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Figure 2: Optimal location and capacity of landfills in the benchmark example

We performed now some sensitivity analysis exercises starting from the benchmark parameter values

given in (19) and show now the most interesting results. First, note that the location an the order of

landfills is primarily determined by the position of cities. As an illustration, assume that the location of

the second city is moved from the point (1, 0) to the point (1, 20), while keeping unchanged the rest of

the setting. The new solution, illustrated in figure 3, is given by K∗

= 3; R
∗

= {(4.20,5.20), (4.85,10.22),

(8.41,6.59)}; Y
∗

= {220.32, 285.41, 222.27}. Note that the locations of the landfills are very similar to

those in the benchmark case, but the order is different. Now the second landfill is that one closer to the

city at (1,20) to minimize total discounted cost. Observe also that, in this case, the sequence of capacity

is not monotonically increasing or decreasing, but it displays a inverted-U shape. This feature depends

on the specific combination of the parameter values and no general statement can be made. If, starting

from this set of parameter values, we increase the weight (i.e., the amount of waste) associated to the

city located at (1, 20), the locations of all landfills progressively move north to be closer to this point.
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Figure 3: Optimal location and capacity after changing the location of a city

An increment in parameter a makes the construction of any landfill more expensive irrespective of

its capacity. As a consequence, when a increases enough, it becomes optimal to reduce the number of
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landfills (and therefore to increase their average capacity) to avoid incurring many times a large fixed

cost. See left panel of figure 4. Another interesting result is that increasing a makes the sequence of

capacities to be more decreasing, i.e., the capacity of the first landfills becomes larger and that of the last

landfills become smaller. The economic interpretation for this is that, as the set-up cost becomes higher,

it pays more to increase the capacity of the first landfill(s) -recall that a is a fixed costs, so it does not

affect to impact of capacity on total cost- in order to postpone the construction of future landfills. See

right panel of figure 4. To appreciate the effect on the sequence of capacities, we just show a range of a

for which K∗ is constant (in this case, K∗

= 3).
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Figure 4: Impact of parameter a on the solution

This exercises also gives us the opportunity to observe empirically the interaction between capacity

and location. When a increases, it pays to build more landfills with a larger capacity. But as the capacity

of a landfill increases, so does the safety region around it. Take the value a = 3300. The optimal solution

implies buying two landfills with capacities Y ∗

= {328, 400} located at R∗

= {(5.32, 6.32); (12.57, 6.96)},

as illustrated in figure 5. Note that there is a trade-off when increasing the capacity of the first landfill.

On the one hand, the construction of the second landfill will need to be undertaken later (reducing

discounted cost). On the other hand, the safety region around landfill 1 increases, so that the location of

landfill 2 is displaced further away from the cities, implying larger transportation costs.
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Figure 5: Solution with a = 3300
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Parameter b, which measures marginal construction cost, has the contrary effect to that of a. As

b increases, it becomes more costly to construct large landfills, so that, it becomes profitable to built

many small landfills. As a consequence, K∗ is increasing with b and the average capacity,
∑
K−1

i=0
Yi/K is

decreasing with b. As landfills become smaller, so do their safety regions and therefore, they also become

closer among them and to the waste-generating cities. It is also interesting to note that, as b increases, the

capacity of the first landfills tends to decrease and the capacity of the last landfills tends to increase. The

reason is that now a larger capacity implies a larger construction cost, and that effect is more important

for the initial landfills given the time preference (see illustration in figure 6). As we could expect, the

optimal value of the objective function increases with a and b, and the impact of the rest of parameters

on the objective function are those predicted in proposition 2.
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Figure 6: Impact of parameter b on the solution

Figure 7 illustrates the impact of parameter τ on the optimal number of landfills K∗ (left panel) and

the average capacity ¯Y =

∑
K−1

i=0
Yi/K (right panel)8. An increment in parameter τ implies a larger

overall amount of waste to be landfilled, which is given by Qτ . As a consequence, feasibility requires

either increasing the number or the capacity of landfills. As shown in the figure, ”small” increments of τ

lead to increase the average individual capacity and keep K∗ unchanged, up to a point that the increase

of τ is large enough to cause a new landfill to be profitable, allowing a reduction in average capacity.

Henceforth, K∗, as a function of τ , has a stair shape and ¯Y , as a function of τ , has a sawtooth shape.

8 In order to keep the problem being feasible, while we performed this exercise, the feasible region was enlarged to the

rectangle [2, 50]× [3, 50].
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Figure 7: Impact of parameter τ on the solution

To save some space, we just offer a brief summary of the results concerning the rest of the parameters

in (19). Increasing the discount rate δ makes the optimal number of landfills to increase and the sequence

of capacities to be more decreasing, since the costs associated to the first landfill become more important

for the objective function. Concerning parameter φ, after performing a sensitivity analysis for the range

φ ∈ [0.5, 20], we obtain, first, that it does not show any effect on the number (and hence, on the average

capacity) of landfills. If keeping the rest of parameters at their benchmark values given in (19), the

optimal number is always K∗

= 3. Interestingly, as φ increases, the capacity of the first and the third

landfill increase, while the capacity of the second decreases, and the locations adjust accordingly. The

effect of parameter β is rather predictable, as it makes the safety regions around landfills to increase

and so they become more distant one from another. This reduces the feasible region and the problem

may ultimately become infeasible if β gets large enough. Changes in parameters V0 and V1 only become

relevant when the lower and upper capacity limits are binding, and the effect is the trivial one in capacity

(i.e., if the lower capacity constraint is binding for some landfills and V0 increases, then the capacity of

such landfills have to increase and so on), and the locations optimally adjust to this changes.

5 Conclusions and further research

We have presented a sequential model to study the joint determination of the optimal capacity and

location of landfills and shown how these decisions interact with each other. Summing up, the capacity

decision has some spatial implications because the capacity of a landfill affects the feasible region for

the rest of landfills, and also temporal implications, because the capacity determines the lifetime of the

landfill and hence the instant of time where next landfills will need to be constructed. We have shown

that this structure gives rise to a non-convex problem which can not be solved with traditional methods.

From the first order conditions we get, as a by-product, a measure of the value of land which varies

across different areas, from one landfill to another. We also get the Optimal Capacity Condition, which

establishes the impossibility to reduce cost by transferring capacity from one landfill to another.

Despite the fact that construction cost depends positively on the capacity of landfills, under some

circumstances it may be optimal to setup an excess capacity if the marginal construction cost is over-
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compensated by the reduction in total discounted cost achieved by deferring the construction of future

landfills. This result implies that the lower capacity constraint binds for at least the last landfill of the

sequence.

Given a feasible sequence of locations and capacities, any permutation is also feasible. Optimality

requires that landfills are used in such an order that the total discounted cost is increasing. This, in turn,

implies that, if the sequence of capacities is not very increasing, then landfills are used in increasing order

of distance from the cities, as it usually happens in practice.

We have illustrated the use of global optimization methods to find the solution in a specific example

with a linear construction cost function. From the sensitivity analysis performed we know that a larger

fixed construction costs results in optimally deceasing the number of landfills and making the sequence

of capacities to be more decreasing. If marginal construction cost increases, the optimal number of

landfills increases and the optimal sequence of capacities becomes more decreasing. When the time

horizon varies, the optimal number of landfills behaves as a stair-shape function and the average capacity

displays a sawtooth shape.

Some interesting lines of further research and extensions for this paper are the following. First, we

observe that there is an increasing interest for recycling so that it is interesting to study the joint decision

of landfilling and recycling. Apart from the setting of disposal (and perhaps recycling) facilities, societies

have to decide which proportion of waste should be devoted to each treatment method. Obviously, this

decision interacts with those of capacity and location of waste facilities. Moreover, the flow of waste may

not be constant, as it has been historically the case in practice. Taking this fact into account introduces

a new dynamic element in the problem.

When deciding the location of landfills we have only included a generic cost function, which can be

suitably interpreted to measure purely economic costs. As a matter of fact, there are some important

social and environmental costs associated to waste management that could be explicitly addressed by

means of a multicriteria approach.

Finally, in order to calculate transportation costs, some distance measure is needed. We have restricted

ourselves to the standard Euclidean distance, but this is not necessary the best measure in practice.

For example, the Manhattan distance could be more suitable for cities and the different mathematical

properties of this distance can result in different properties of the solution.

6 Appendix

6.1 Proof of proposition 1

If K landfills are constructed, given the maximum capacity constraint, we have KV1 ≥
∑
K−1

i=0
Yi and

using the feasibility constraint
∑
K−1

i=0
Yi ≥ τQ, we get KV1 ≥ τQ or, using the definition of τ 1, K ≥

τ

τ 1

.

If
τ

τ 1

is an integer, Ψ

(
τ

τ 1

)
=

τ

τ 1

and he have proved the first part of the proposition. If
τ

τ 1

is

not an integer, note that K = Int

(
τ

τ 1

)
violates the feasibility constraint, so K = Int

(
τ

τ 1
+ 1

)

is the smallest feasible value of K. To prove the second part, suppose we have a solution given by

{Y ∗

,R∗} ≡
{
Y
∗

0
, . . . , Y ∗

K−1
;R

∗

0
, . . . ,R∗

K−1

}
where K > Ψ

(
τ

τ 0

)
. Given that both K and Ψ

(
τ

τ 0

)
are
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integers by definition, we have K ≥ Ψ

(
τ

τ 0

)
+ 1, and given the lower bound for the capacity and the

definitions of Ψ and τ0, we have the following chain of inequalities

K−2∑

i=0

Yi ≥ (K − 1)V0 ≥ Ψ

(
τ

τ 0

)
V0 ≥

τ

τ 0

V0 ≡ Qτ

implying that the combination {Y ∗′
,R∗′} ≡

{
Y

∗

0
, . . . , Y ∗

K−2
;R

∗

0
, . . . ,R∗

K−2

}
is a feasible solution and

has a strictly smaller discounted cost than that of {Y ∗, R∗}, so that Y ∗ can not be the cost-minimizing

solution.

6.2 Proof of proposition 2

Let S
∗

Θ
≡ {Y ∗, R∗/Θ} denote the solution for problem (4) given the value of Θ. If, starting from Θ,

τ or Q decrease then S∗

Θ
is still feasible (although not necessarily optimal), so JK can not increase.

Symmetrically, when τ or Q increase, JK can not decrease. φ and δ do not affect the feasible set, so

that, after a change in φ or δ, S∗

Θ
is still feasible. Consequently, just by computing the derivative of the

objective function with respect to these parameters, we see that, if φ decreases or δ increases, JK can

not increase and vice-versa. A decrease (increase) in V0 or a increase (decrease) in V1 does not affect

directly the objective function, but it increases (decreases) the size of the feasible set, so that JK can not

decrease (increase).

6.3 Proof of proposition 3

First, note that the objective function of problem (1) can be expressed as J (K, Y,R) ≡
K−1∑

i=1

γ
i
TDi, where γi

≡ e
−δTi and γ

i
> γj , ∀i > j. Assume the optimal solution si given by {K∗

,Y ∗,R∗},

such that TDi > TDi+1 for some i = 0, . . . ,K − 2. Then consider the alternative solution

{
K

∗

,
˜Y , ˜R

}

where ˜Y is constructed by shifting the positions of landfills i and i+1 and R̃ is the associated permutation

of the elements of R∗

, while keeping the rest of element of {K∗, Y ∗, R∗} unchanged. It is immediate to

show that

{
K

∗

,
˜Y , ˜R

}
is feasible and provides a smaller discounted cost than {K∗, Y ∗, R∗}, therefore

{K∗

,Y ∗,R∗} can not be the optimal solution for (1).

References

[1] André, F.J. and E. Cerdá (2001) ’Optimal Sequence of Landfills in Solid Waste Management’, Op-

timal Control Applications and Methods 22, 1-25.

[2] André, F.J. and E. Cerdá (2004) ’Landfills Construction and Capacity Expansion’, Environmental

and Resource Economics, Forthcoming.

[3] Aneja, Y.P. and M. Parlar.(1994) ’Algorithms fro Weber Facility Location in the Presence of For-

bidden Regions and/or Barriers to travel’, Transportations Science 28, 70-76.

[4] Beede D.N. and D.E. Bloom (1995) ’Economics of the Generation and Management of Municipal

Solid Waste’. National Bureau of Economic Research, Working Paper Series No. 5116.

21



[5] COCONUT (2001) ’COCONUT Delivery D1. Algorithms for Solving Nonlinear Constrained and

Optimization Problems: The State of The Art’. The Coconut Project

[6] Drezner, T. (1994) ’Locating a Single New Facility among Existing, Unequally Attractive Facilites’,

Journal of Regional Science 34(2), 237-252.

[7] Drezner, Z. and G.O. Wesolowsky (1980) ’A maximin location problem with maximin distance con-

straints’, AIIE Transaction 23, 249-252.

[8] D������ Z., K�����	
 K., S�
�
�� A. ��� W��������� G.O. (2002):” The Weber Prob-

lem”: Facility Location.Aplications and Theory. Springer-Verlag Berlin.

[9] Fullerton, D. and T. Kinnaman (eds.) (2002) The Economics of Household Garbage and Recycling

Behavior. New Horizons in Environmental Economics. Edward Elgar. Cheltenham, UK; Northamp-

ton, MA, USA.

[10] Francis R.L., F.Leon, L.F. McGinnis and J.A. White(1992): ’Facility Layout and Location: An

Analytial Approach’, Prentice-Hall, New-York, 2nd Edition.

[11] Gaudet, G., M. Moreaux and S.W. Salant (2001), ’Intertemporal Depletion of Resource Sites by

Spatially Distributed Users’. American Economic Review 91(4), 1149-59.

[12] G������ H.M. (2001): " A Radial Basis Function Method for Global Optimization ".

Journal of Global Optimization , 19 , 201− 227

[13] H����� S.L. (1.983): " On locating new facilities in a competitive environment " . Eur. J. Opens.

Res. ,12 , 29− 35

[14] Hamacher H.W. and S. Nickel.(1995): ’Restricted Planar Location Problems and Applications’,

Naval Research Logistics, 42, 967-992.

[15] Hansen P.J. D.Peeters and J-F. Thisse.(1981): ’An Algorithm for a Constrained Weber Problem’,

Management Science, 28, 1285-1295.

[16] Hansen P.J. Jaumard B. and Tuy H..(1995): ’Global Optimization in Location: Facility Location.

A survey of Applications and Methods’, Springer, New-York.

[17] Highfill, J., M. McAsey and R. Weinstein (1994) ’Optimality of Recycling and the Location of a

Recycling Center’, Journal of Regional Science 34(4): 583-597.

[18] Holmström, K. (1999) ’The TOMLAB Optimization Environment in Matlab’. Advanced Modeling

and Optimization, 1(1): 4769, 1999.

[19] R. H���� ��� H. T��. (1.995)." Handbook of Global Optimization".

Kluwer. Dordrech.

[20] Huhtala, A.(1997): ’A Post-consumer Waste Management Model for Determining Optimal Levels of

Recycling and Landfilling’, Environmental and Resource Economics, 10, 301-314 ).

22



[21] H����� A.P. - S�������� M.K. - W�	
��� R.E. (1.975): ” Solutions of constrained location

problems ”. Management Science , 22 , 51− 56.

[22] Jacobs, T.L. and J.W. Everett(1992): ’Optimal Scheduling of Consecutive Landfill Operations with

Recycling’, Journal of Environmental Engineering, 118, 420-429.

[23] Jones, D.R. (1996): ’Global Optimization with response surfaces’, Fifth SIAM Conference on Opti-

mization, Victoria, Canada.

[24] Jones, D.R. (2001) ’Encyclopedia of Optimization’. To be published.

[25] K������ H�����	
� ��� A���	� G
	��. (2003) " User’s Guide for Tomlab 4.0.5".

Tomlab Optimization.

[26] Kuhn, H. W.(1973): ’A Note on Fermat’s Problem’, Mathematical Programming, 4, 98-107.

[27] Kunreuther, H. and D. Easterling (1996) ’The Role of Compensation in Siting Hazardous Facilities’,

Journal of Policy Analysis and Management 15(4): 601-22.

[28] Love, R. F., J.G. Morris and G.O. Wesolowsky(1988): ’Facilities Location:Models and Metods’,

North-Holland.

[29] Porter, R. (2002), The Economics of Waste. Resources for the Future. Washington, D.C.

[30] Quah, E. and K. Tan (2002) ’Siting environmentally unwanted facilities: Risks, trade-offs and choices’

Cheltenham, U.K. and Northampton, Mass.: Elgar.

[31] Repa, E.W. (1997), Interstate Movement. Waste Age, June.

[32] Quadrio-Curzio, A., L. Prosperitti and R. Zoboli (eds.) (1994), The Management of Municipal

Solid Waste in Europe. Economic, Technological and Environmental Perspectives. Elsevier Science.

Developments in Environmental Economics, vol. 5.

[33] Ready, M.J. and R.C. Ready (1995):’Optimal Pricing of Depletable, Replaceable Resources: The

Case of Landfill Tipping Fees’, Journal of Environmental Economics and Management, 28, 307-323

.

[34] Swallow, S., J. Opaluch and T. Weaver (1992) ’Siting Noxious Facilities: An Approach That Inte-

grates Technical, Economic, and Political Considerations’ Land Economics 68(3): 283-301.

[35] P. V�� H���������, L. M	�
�� ��� Y. D�
	��� (1.997). ”Numerica: A Modeling Language for

Global Optimization”. MIT Press, Cambridge, MA

[36] US EPA (1988), The Solid Waste Dilemma: An Agenda for Action. EPA-530-SW-88-054A. Septem-

ber. Washingont, DC: U.S. EPA.

[37] Weiszfeld E.(1936): ’Sur le Points Pour Lequel la Somme des Distances de n Points Donnes es

Minimum’, The Tohoku Mathematical Journal, 43, 355-386.

[38] Wesolowsky G.O.(1993): ’The weber Problem:History and Perspectives’, Location Science, 1, 5-23.

23


