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We give a method computing the degrees of the minimal syzygies of a toric
variety by means of combinatorial techniques. Indeed, we complete the explicit
description of the minimal free resolution of the semigroup algebra associated,
using the simplicial representation of Koszul homology appeared in [8]. As
an application, we obtain an algorithm computing the Castelnuovo-Mumford
regularity of a projective toric variety. This regularity is explicity bounded by
means of the semigroup generators which parametrize the variety.
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INTRODUCTION

Let S ⊂ Zh be a finitely generated commutative semigroup with zero
element, such that S ∩ (−S) = {0}. Let {n1, . . . , nr} ⊂ S be a set of
generators for S. Let k be a field, let k[S] be the semigroup k−algebra
associated to S, and let R = k[X1, . . . , Xr] be the polynomial ring in r
variables. k[S] is obviously an S−graded ring, and R is S−graded assigning
the degree {ni} to Xi. Let m the irrelevant ideal of R. The k−algebra
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morphism,

ϕ : R −→ k[S],

defined by ϕ(Xi) = {ni}, is an S−graded morphism of degree zero. Thus,
the ideal IS = ker(ϕ) is an S−homogeneous ideal that it is called a Semi-
group Ideal or a Toric Ideal because it defines a toric variety.

The condition S ∩ (−S) = {0} guarantees the S−graded Nakayama’s
lemma (Proposition 1.4 in [4]). Then, there exists a minimal S−graded
free resolution of k[S].

Let Ni be the corresponding i-syzygy module (N0 = I) and consider the
k−vector spaces

Vi(m) :=
(Ni)m

(mNi)m
,m ∈ S.

By Nakayama’s lemma:

• A minimal generating set of Ni consists exactly of dimk(Vi(m)) ele-
ments of degree m, for each m.

• The elements of degree m in a minimal generating set of Ni, correspond
with a basis of Vi(m).

In particular, since R is noetherian, one has Vi(m) = 0 for all m but finite
many of values. It is well-known that there exist methods using Gröbner
Bases (Schreiyer’s Theorem) computing a minimal generating set of Ni (see
for example [11]).

However, we are interested in to understand combinatorially these gen-
erating sets, and therefore the minimal S−graded free resolution of k[S].

We introduced the following notation: Let Λ := {1, . . . , r}, and if F ⊂ Λ,
nF =

∑
i∈F ni (n∅ = 0). If m ∈ S, the set ∆m = {F ⊂ Λ | m− nF ∈ S}

is an abstract simplicial complex.
These simplicial complexes appear for the first time in the literature in

[8]. They are a generalization of some graphs defined in [20]. Although,
both works are inside the context of numerical semigroups, actually ∆m

appears in a lot of good papers inside more extensive contexts. For example,
consider H̃i(∆m) the k−vector space of the i-reduced homology. There
exists an isomorphism

(∗) H̃i(∆m) ' Vi(m).

The existence of this isomorphism is proved in [8]. The generalization to a
semigroup S with our initial conditions appears in [10]. A such isomorphism
is explicity constructed in [5]. Other very interesting papers inside this line
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are [1], [7],[15]. The connection between free resolutions and simplicial
complexes comes from [13] (see also [21] and [6]).

Continuing with our problem. Notice that the previous isomorphism
provides the following construction to obtain a minimal generating set for
Ni.

CONSTRUCTION:
STEP 1: Find the set Ci := {m ∈ S | H̃i(∆m) 6= 0} of S−degrees for the
minimal i-syzygies.
STEP 2: For any m ∈ Ci, take the images of the elements in a basis for
the i-reduced homology space H̃i(∆m) by the isomorphism.

Step 2 is solved with an algorithmic method in [5] (Remark 3.6). Thus,
Construction will be an algorithm when one knows an effective way of
computing the set Ci.

In particular, since the set C0 is arithmetically explicited in [10], this
construction provides an algorithm for i = 0 (Toric/Semigroup ideals) by
means of Integer Programming, [4]. Using a degree bound for the elements
in C0, other alternative algorithm appears in [12].

In [9] new simplicial complexes associated to a partition of Λ allows
the authors to deduce applications to concrete situations. However, they
cannot compute the finite sets Ci in the general case. Indeed, they establish
as the main problem in the computation of the minimal resolution to find
finite sets C ′i containing Ci.

A finite set containing C1 is effectively computed in [17]. Therefore, a
new method computing the first syzygy module N1 is obtained. Moreover,
an explicit bound for the degree of the minimal first syzygies is given. This
bound is described by means of the generators of the semigroups S.

In this paper, we generalize the results in [17] to all of higher order
syzygies (section 1). Therefore, we obtain a new method computing the
minimal generating set of the syzygy modules because we solve effectively
Step 1 in Construction. The results in this paper allow us to say that
Construction is an algorithm. In this way, we complete the combinatorial
description of the minimal S−graded free resolution of k[S] initiated in [8].

As an application, we consider the particular case of a projective toric
variety (section 4). We obtain an algorithm computing its Castelnuovo-
Mumford regularity. Without using this computation, we describe an ex-
plicit bound of the regularity by means of the semigroup generators which
parametrize the variety.

The key idea to find finite sets C ′i containing Ci is the following:
For any F ⊂ Λ and for any τ triangulation of F into i-dimensional faces,
we consider a diophantine linear system. The set C ′i is obtained as a union
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of subsets of the Hilbert bases associated to all of these systems. C ′i is
finite because the Hilbert bases are finite (Dickson’s lemma). C ′i can be
computed in an effective way because there exist algorithms computing the
Hilbert basis (see, for example, [16]).

We can conclude that: the noetherian property of R as well as Inte-
ger Programming guarantee the set Ci is finite, but Integer Programming
provides also the way computing this finite set.

1. FINDING THE SET CI

We consider, as in the introduction, S =< n1, . . . , nr >⊂ Zh a finitely
generated semigroup with zero element such that S ∩ (−S) = {0}, the set
Λ = {1, . . . , r}, and for any m ∈ S the simplicial complex

∆m = {F ⊂ Λ | m− nF ∈ S},

where nF =
∑
i∈F ni. Given a field k, H̃i(∆m) is the k−vector space of the

i-reduced homology. We are looking for a finite set C ′i containing the set

Ci := {m ∈ S | H̃i(∆m) 6= 0}.

Recall that from the isomorphism (∗) in the introduction, Ci consists ex-
actly of the S−graded minimal i-syzygies for k[S], the semigroup k−algebra
associated of S.

Fix m ∈ S, choose an orientation on each face of ∆m, and consider the
augmented chain complex with values in the field k. Let C̃i(∆m) be the
k−vector space generated freely by the i-dimensional faces of ∆m, where
dimF = ]F − 1 (dim ∅ = −1), and let δi : C̃i(∆m) → C̃i−1(∆m) the
k−linear mapping given by

δi(F ) =
∑

F ′∈∆m,dimF ′=i−1

εFF ′F
′,

where εFF ′ = 0 if F ′ 6⊂ F , and εFF ′ = ±1 if F ′ ⊂ F , εFF ′ = 1 if the
orientation induced by F on F ′ is equal to the orientation chosen on F ′,
and εFF ′ = −1 otherwise. We are interested in the link

C̃i+1(∆m)
δi+1→ C̃i(∆m) δi→ C̃i−1(∆m)

with i ≥ 2. Indeed, the tildes can be omitted. However we keep them
because our results are true even if i ≥ 0. Let Z̃i(∆m) = ker(δi) and
B̃i(∆m) = Im(δi+1) be the spaces of cycles and borders. Then, we have
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that

H̃i(∆m) = Z̃i(∆m)/B̃i(∆m).

Lemma 1.1. Suppose that H̃i(∆m) 6= 0, and let c ∈ Z̃i(∆m)− B̃i(∆m),
c =

∑t
j=1 λjFj, λj ∈ k − {0} for any j = 1, . . . , t, Fj 6= Fl if j 6= l. Then,

if F =
⋃t
j=1 Fj one has that

∀p ∈ F ∃q, 1 ≤ q ≤ t | p /∈ Fq and Fq ∪ {p} /∈ ∆m.

Proof.
We begin proving that ∀p ∈ F ∃j, 1 ≤ j ≤ t, such that p /∈ Fj .

Suppose that p ∈ F and p ∈ Fj for any j, 1 ≤ j ≤ t. Then, c′ =∑t
j=1 λjεFjFj−{p}(Fj − {p}) ∈ C̃i−1(∆m).
Notice that c′ = 0 because δi(c) = 0, and therefore λj = 0, ∀j = 1, . . . , t.

But it is not possible because c 6= 0.
Fix p ∈ F . We can suppose that p /∈ F1. If F1 ∪ {p} /∈ ∆m we have

finished. Suppose then that F1 ∪ {p} ∈ ∆m. Set l := {j | p /∈ Fj} and
F ′1 = F1 ∪ {p}.

We consider c1 := c − λ1εF ′1F1δi+1(F ′1). Notice that c1 ∈ Z̃i(∆m) −
B̃i(∆m). Moreover,

c1 =
t∑

j=2

λjFj +
∑

dim(F ′)=i,F ′ 6=F1

εF1F ′F
′.

Set c1 =
∑t(1)

j=1 λ
(1)
j F

(1)
j , where λ(1)

j ∈ k − {0} for any j = 1, . . . , t(1),

F
(1)
j 6= F

(1)
l if j 6= l, l(1) := ]{j | p /∈ F (1)

j }, and F (1) :=
⋃t(1)
j=1 F

(1)
j . The

following properties are satisfied

(∗)1 : ]F (1) ≤ F .

(∗∗)1 : If p /∈ F (1)
j , then there exists q, 2 ≤ q ≤ t such that F (1)

j = Fq.

(∗ ∗ ∗)1 : l(1) < l.

Indeed, we replace the face F1 in c with p /∈ F1, by several faces F ′ 6= F1

with p ∈ F ′ to construct c1.
We proceed by induction on ]F .
If ]F is minimal, in (∗)1 the equality holds. Therefore, p ∈ F (1) and

l(1) 6= 0. Using the similar arguments with c1, there exists j, 1 ≤ j ≤ t(1),
such that p /∈ F

(1)
j . By (∗∗)1, F (1)

j = Fq for some q, 2 ≤ q ≤ t. If

F
(1)
j ∪ {p} /∈ ∆m, we have finished. But, if F (1)

j ∪ {p} ∈ ∆m, we can
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obtain c2 ∈ Z̃i(∆m)− B̃i(∆m) from c1, similarly to the construction of c1
from c. Set c2 =

∑t(2)

j=1 λ
(2)
j F

(2)
j where λ(2)

j ∈ k−{0} for any j = 1, . . . , t(2),

F
(2)
j 6= F

(2)
l if j 6= l. Then, if l(2) := ]{j | p /∈ F (2)

j }, and F (2) :=
⋃t(2)
j=1 F

(2)
j

we obtain the properties:

(∗)2 : ]F (2) ≤ F (1).

(∗∗)2 : If p /∈ F (2)
j , then there exists q, 2 ≤ q ≤ t(1) such that F (2)

j =

F
(1)
q .
(∗ ∗ ∗)2 : l(2) < l(1).

Again, in (∗)2 the equality holds because ]F is minimal. Therefore p ∈
F (2) and l(2) 6= 0. Now, our result follows by recurrence because the
properties (∗∗∗) guarantees that this process must finish in a finite number
of steps.

Suppose then our result is true for any c′ ∈ Z̃i(∆m) − B̃i(∆m), c′ =∑t′

j=1 λ
′
jF
′
j where λ′j ∈ k − {0} for any j = 1, . . . , t′, F ′j 6= F ′l if j 6= l, with

]F ′ < ]F where F ′ =
⋃t′
j=1 F

′
j . Then:

If in (∗)1 the equality does not hold, it is enough to apply the induction
hypothesis to c1. We obtain that there exists F (1)

j such that p /∈ F (1)
j and

F
(1)
j ∪{p} /∈ ∆m. By (∗∗)1, F (1)

j = Fq with 2 ≤ q ≤ t, and we have finished.
If in (∗)1 the equality holds, we repeat the same argument that in the

case ]F minimal. If we don’t finish, we construct c2 as before. Again,
we obtain the result by induction if in (∗)2 the equality does not hold.
Otherwise, we begin the process. We finish in a finite number of steps by
the properties (∗∗∗) which are obtained in the recurrence. Now, our result
is proved.

Lemma 1.1 associates to m ∈ S with H̃i(∆m) 6= 0 sets F ⊂ Λ and
F1, . . . , Ft ∈ ∆m such that:

1. F =
⋃t
j=1 Fj

2. dim(Fj) = i, ∀j = 1, . . . , t
3. F /∈ ∆m

Notice that τ = {F1, . . . , Ft} is a triangulation of F into i-dimensional
faces of ∆m. This suggests the following definition.

Definition 1.1. Let F ⊂ Λ. We say that τ = {F1, . . . , Ft} is an
i-triangulation of F if the following properties are satisfies:

1. dim(Fj) = i, ∀j = 1, . . . , t

2. F =
⋃t
j=1 Fj
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We say that τ is an i-triangulation of F in ∆m, with m ∈ S, if Fj ∈ ∆m,
∀j = 1, . . . , t, and F /∈ ∆m.

Lemma 1.2. If H̃i(∆m) 6= 0, there exists F ⊂ Λ and τ i-triangulation
of F in ∆m.

Proof.
It is enough to take c ∈ Z̃i(∆m)−B̃i(∆m) and F, F1, . . . , Ft as in Lemma

1.1.

Remark 1. 1.
It is clear that given m ∈ S with H̃i(∆m) 6= 0, F is not unique in general.

Moreover, for a fixed F , the i-triangulation τ is not unique in general.

Suppose that τ = {F1, . . . , Ft} is an i-triangulation of F in ∆m. Notice
that the property F1 ∈ ∆m is equivalent to m− nF1 ∈ S. This means that
there exists αj ∈ N such that m =

∑r
j=1 αjnj , with αj ≥ 1 for any j ∈ F1.

Set A the matrix whose column vectors are the generators of S, A :=
(n1| . . . |nr) ∈Mh×r(Z).

Set eF1 ∈ Nr the vector with coordinates equal to zero, excepting the
jth one which is equal to one, for any j ∈ F1.

Then, F1 ∈ ∆m if and only if there exists α(1) ∈ Nr such thatAα(1) = m,
and α(1) � eF1 , where the symbol � stands for the natural partial order
in Nr.

With similar notations we can obtain an analogous condition for Fj ∈
∆m. This is: for any j, 1 ≤ j ≤ t, Fj ∈ ∆m if and only if there exists
α(j) ∈ Nr such that Aα(j) = m, and α(j) � eFj

.
Set

A(t) :=


A −A 0 0 0 0 0
0 A −A 0 0 · · · 0 0
0 0 A −A 0 0 0

. . . . . . . . .
0 0 0 0 0 A −A

 ∈Mh(t−1)×rt(Z)

and eτ := (eF1 , . . . , eFt) ∈ Nrt.
Then, from τ , an i-triangulation of F in ∆m, we can obtain a vector

α = (α(1), . . . , α(t)) ∈ Nrt which satisfies:

1. A(t)α = 0.
2. α� eτ
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3. m = Aα(1) = . . . = Aα(t).

But we cannot forget that we are looking for the m ∈ S such that
H̃i(∆m) 6= 0. Then, we must proceed on the contrary.

Let F ⊂ Λ and τ = {F1, . . . , Ft} an i-triangulation of F . Now, m is
not fixed. We are going to look for the elements m ∈ S such that τ is an
i-triangulation of F in ∆m.

As before, we consider eτ := (eF1 , . . . , eFt) ∈ Nrt. Set

Rτ := {α = (α(1), . . . , α(t)) ∈ Nrt | A(t)α = 0 , α� eτ}.

Notice that if α ∈ Rτ and it is written α = (α(1), . . . , α(t)) with α(j) ∈
Nr, for any j, 1 ≤ j ≤ t, it is obtained Aα(1) = . . . = Aα(t) = m ∈ S.

Set

ΣRτ := {m ∈ S | m = Aα(1), α = (α(1), α(2), . . . , α(t)) ∈ Rτ}.

At the moment it is also known that if m ∈ S is such that H̃i(∆m) 6= 0,
using Lemma 1.1 we find F and τ as before such that m ∈ ΣRτ . Then, we
obtain that

Ci =
⋃
F

⋃
τ

ΣRτ ,

where the union is over all of τ i-triangulation of F , and F ⊂ Λ with
]F ≥ i+ 2. (Notice that F comes from Lemma 1.1 and then ]F ≥ i+ 2).

The set ΣRτ is not finite in general. Therefore, we have yet not found
our set C ′i. However, Rτ , HRτ := {α ∈ Rτ | α is minimal for �} is
finite. We are going to prove that Ci is contained in a union as before, but
of subsets of

ΣHRτ := {m ∈ S | m = Aα(1), α = (α(1), α(2), . . . , α(t)) ∈ HRτ}.

By this way, we construct our desired finite set C ′i. We need to introduce
some new notation. On the elements of S, we define a partial order ≥S

m ≥S m′ ⇔ m−m′ ∈ S

If H ⊂ S, we shall say that m ∈ H is S−minimal in H if m ≥S m′ with
m′ ∈ H, implies that m = m′. Set

Cτ := {m ∈ S | m is S−minimal in ΣRτ}.
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Lemma 1.3. In the conditions as above, for any m ∈ ΣRτ , there exists
m′ ∈ Cτ and m′′ ∈ S such that m = m′ +m′′.

Proof.
If m ∈ Cτ , it is enough to take m′ = m and m′′ = 0. Otherwise, there

exists m′1 ∈ ΣRτ such that m ≥S m′1. Then, m = m′1 +m′′1 , with m′′1 ∈ S.
If m′1 ∈ Cτ we have finished. Otherwise, we begin the reasoning with m′1.
By recurrence we construct a sequence of elements m′j−1 = m′j+m′′j , where
m′j ∈ ΣRτ and m′′j ∈ S.

The condition S ∩ (−S) = {0} guarantees that the number of different
expressions of m as sum of non null elements in S is finite (Proposition 1.2
in [4]). Then, our process must finish.

Suppose that it finishes in the jth step. Then, m′j ∈ Cτ . Now m =
m′j +m′′1 + . . .+m′′j , hence it is enough take m′ = m′j and m′′ = m′′1 + . . .+
m′′j .

Lemma 1.4. In the conditions as above, Cτ ⊂ ΣHRτ . Therefore, the
set Cτ is finite.

Proof.
Let m ∈ Cτ . Then, m = Aα(1) with α = (α(1), . . . , α(t)) ∈ Rτ . If α ∈
HRτ , we have finished. Suppose that α /∈ HRτ . Then α = α′ + α′′, with
α′ ∈ HRτ and α′′ ∈ Nrt. Moreover, α′′ = α−α′ satisfies that A(t)α′′ = 0.
Then, if m′ = Aα′(1),m′ ∈ ΣHRτ . By m−m′ = m′′ = Aα′′(1) ∈ S and m

is S−minimal, we obtain that m = m′ ∈ ΣHRτ .

Proposition 1.1. If m ∈ S and H̃i(∆m) 6= 0, then there exists F ⊂ Λ
with ]F ≥ i + 2, and there exists τ i-triangulation of F in ∆m such that
m ∈ Cτ .

Proof.
If H̃i(∆m) 6= 0, let c ∈ Z̃i(∆m)− B̃i(∆m), c =

∑t
j=1 λjFj , λj ∈ k − {0}

for any j = 1, . . . , t, Fj 6= Fl if j 6= l. Then, if F = ∪tj=1Fj and τ =
{F1, . . . , Ft}, we have that τ is an i-triangulation of F in ∆m and m ∈ ΣRτ .

By Lemma 1.3 m = m′ + m′′ with m′ ∈ Cτ and m′′ ∈ S. If m′′ = 0,
then m = m′ ∈ Cτ and we have finished.

Suppose that m′′ 6= 0. Let m′′ =
∑r
j=1 βjnj with βj ∈ N for any

j, 1 ≤ j ≤ r. We can suppose that β1 6= 0. If 1 ∈ F , we apply lemma
1.1 for p = 1. Then, there exists q, 1 ≤ q ≤ t, such that 1 /∈ Fq and
Fq ∪ {1} /∈ ∆m. However, m− nFq

− n1 ∈ S because Fq ∈ ∆m, β1 6= 0 and
1 /∈ Fq. This is a contradiction with Fq ∪ {1} /∈ ∆m. Therefore, 1 /∈ F .
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By 1 /∈ F we obtain that m − nFj − n1 ∈ S, for any j. But it is not
possible because then,

c′ =
t∑

j=1

λj(Fj ∪ {1}) ∈ C̃i+1(∆m)

satisfies that δi+1c
′ = c, but c /∈ B̃i(∆m). Therefore m′′ = 0, and our result

is proved.

By Proposition 1.1 Ci ⊂
⋃
F

⋃
τ Cτ , where F ⊂ Λ, ]F ≥ i + 2, and τ

is an i-triangulation of F . Then, we have found a finite set containing Ci
because Cτ is finite (Lemma 1.4). We could call this set C ′i, however we can
obtain a smaller subset of this one containing Ci. Notice that if m ∈ Cτ
with τ = {F1, . . . , Ft} i-triangulation of F , it is guaranteed that Fj ∈ ∆m,
for any j, 1 ≤ j ≤ t, but it is not that F /∈ ∆m. Set

C ′τ := {m ∈ Cτ | F /∈ ∆m},

and

Ci(F ) :=
⋃
τ

C ′τ ,

where the union is over the i-triangualtion of F . Then, we obtain the
following theorem.

Theorem 1.1. The set of the minimal i-syzygy S−degrees for k[S], Ci,
is contained in the finite set

C ′i :=
⋃

F⊂Λ,]F≥i+2

Ci(F ).

Remark 1. 2.
1) The set C ′i can be obtained in an effective way by Integer Programming
methods. Therefore, Theorem 1.1 solves the Step 1 of Construction in the
introduction. Moreover, Construction is now an algorithm computing a
minimal generating set of Ni, the i-syzygy module of k[S].
2) Although we are considering S ⊂ Zh all our previous results are true
even if

S ⊂ Zh ⊕ Z/a1Z⊕ . . .⊕ Z/asZ
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with aj ∈ Z, 1 ≤ j ≤ s.
This is equivalent to consider a finitely generated commutative cancella-

tive semigroup. The new in this case is that the diophantine linear systems
that appear, have congruences. In section 1 of [17] the necessary back-
ground about this type of systems is considered.
3) Our set C ′i is different of Ci in general.

2. COMPARISON WITH FORMER RESULTS

Now, we are going to compare Theorem 1.1 with the former results in
the literature.

The case i = 0 is the more extensively developed. Now, N0 = I a
Toric/Semigroup Ideal, and C0 = {m ∈ S | ∆m is non-connected },
because H̃0(∆m) is the reduced homology. Indeed, the set C0 is arith-
metically explicited in [10]. Here, the elements in C0 is characterized by
three aritmethical conditions (Theorem 1 in [10]). This characterization is
reformulated in [4] with the introduction of new combinatorial elements,
ladders associated to some diophantine liner systems. By this way, Inte-
ger Programming solves the computation of C0 and, at the same time, a
minimal generating set of I in constructed. (Algorithm 5.1 in [4]). A nice
combinatorial description of these generating sets is obtained. However, as
algorithm, this method needs to solve diophantine linear systems for any
C ⊂ Λ with ]C ≤ r/2 (notice that if H̃0(∆m) 6= 0 there exists a connected
component C ∈ ∆m with ]C ≤ r/2). Hence, the algorithm is not faster
than the methods using Gröbner Bases given in [3], and in [14], or if the
semigroup has torsion non trivial in [23].

Theorem 1.1 in the case i = 0 can be improved. In fact, we can reduced
the union to the sets F ⊂ Λ with ]F = 2. Notice that if H̃0(∆m) 6= 0, it is
enough to take F with two points in ∆m in different connected components.
Moreover, there exists an unique 0-triangulation of F in ∆m. But even with
this reduction, the subset C ′0 obtained can be bigger than C0.

In [9] a method computing an alternative C ′0 appears. However this
method can only be applied to a subclass of semigroup S. This subclass
includes the simplicial semigroups, but is strictly contained in our class.

The case i = 1 is solved in [17]. Indeed, the techniques and the reasoning
scheme used in this paper are the same ones employed in [17]. However,
there is a crucial difference. We are going to explain where this difference
is.

Suppose m ∈ S, F = {i1, . . . , it} ⊂ Λ, t ≥ 3. In [17] a polygon σ whose
vertex set is F is called an F−cavity of ∆m if the following conditions are
satisfied:
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1. Fj ∈ ∆m, ∀j = 1, . . . , t, where Fj := {ij , ij+1}, ∀j = 1, . . . , t− 1, and
Ft := {it, i1}, are the faces of σ.

2. If Fj 6= F ′ ⊂ F , ]F ′ ≥ 2, then F ′ /∈ ∆m.

Notice that an F−cavity defines a special type of 1-triangulation of F
in ∆m. By the condition 1, {F1, . . . , Ft} is an 1-triangulation of F , with
Fj ∈ ∆m, ∀j, and by condition 2, F /∈ ∆m.

In [17] it is proved that if H̃1(∆m) 6= 0, then there exists an F−cavity
of ∆m satisfying

c :=
t∑

j=1

εjFj ∈ Z̃1(∆m)− B̃1(∆m),

for some εj = ±1, ∀j = 1, . . . , t. Therefore, following our reasoning, we
can only consider τ 1-triangulations of F which correspond to F−cavities.
These 1-triangulations have all the same shape, a polygon with ]F vertices.
Moreover, the condition 2 allows to us to consider a smaller matrix than
A(t). In fact, set AFj ∈Mh×(r−t+2)(Z) the matrix whose columns are the
semigroup generators corresponding to (Λ − F ) ∪ Fj , ∀j = 1, . . . , t. The
matrix A(t) can be replaced by the matrix


AF1 −AF2 0 0 0 0 0

0 AF2 −AF3 0 0 · · · 0 0
0 0 AF3 −AF4 0 0 0

. . . . . . . . .
0 0 0 0 0 AFt−1 −AFt

 ∈Mh(t−1)×(r−t+2)t(Z).

Also the condition 2 yields another reduction. The set C ′τ = {m ∈
Cτ | F /∈ ∆m} can be replaced by the smaller subset

{m ∈ Cτ | F ′ /∈ ∆m, for any F ′ 6= Fj , F
′ ⊂ F, ]F ′ ≥ 2}.

With these changes, our method provides a finite subset containing C1

which is the same one giving in [17].
There is not any former result for i ≥ 2. In the case i = 2, looking for a

generalization of an F−cavity in ∆m the following difficulties appear:
Difficulty 1. The shape of an F−cavity cannot be the same. Fix, for ex-
ample, F = {1, . . . , 9} and consider two 2-triangulations whose shape are
different (Figure 1 and Figure 2)
Difficulty 2. The condition 2 for F−cavity does not hold if i = 2. It is
possible that ∃F ′ ⊂ F , F ′ 6= Fj , ]F ′ < t such that F ′ ∈ ∆m. This
situation is verified by Figure 3 and Figure 4.
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F1 = {1, 2, 8} F2 = {1, 2, 9}
F3 = {2, 3, 8} F4 = {2, 3, 9}
F5 = {3, 4, 8} F6 = {3, 4, 9}
F7 = {4, 5, 8} F8 = {4, 5, 9}
F9 = {5, 6, 8} F10 = {5, 6, 9}
F11 = {6, 7, 8} F12 = {6, 7, 9}
F13 = {7, 1, 8} F14 = {7, 1, 9}

τ = {F1, · · · , F14}

FIG. 1.

F1 = {1, 3, 4} F2 = {3, 4, 6} F3 = {3, 6, 2}
F4 = {2, 6, 8} F5 = {2, 8, 1} F6 = {1, 8, 4}
F7 = {4, 6, 5} F8 = {6, 5, 7} F9 = {6, 7, 8}
F10 = {7, 8, 9} F11 = {8, 9, 4} F12 = {9, 4, 5}
F13 = {5, 1, 7} F14 = {1, 7, 3} F15 = {7, 3, 9}
F16 = {3, 9, 2} F17 = {9, 2, 5} F18 = {2, 5, 1}

τ = {F1, · · · , F18}

FIG. 2. A Torus
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FIG. 3. F ′ = {1, 2, 4} ∈ ∆m

FIG. 4. F ′ = {2, 3, 5, 6} ∈ ∆m

For these reasons, we have generalized the concept of F−cavity for i = 1
to the concept of i-triangulation of F in ∆m. Lemma 1.1 is the key to apply
the same reasoning scheme used in [17] to solve the case i = 2 as well as
the case i ≥ 2.

We can conclude then that Theorem 1.1 is a new result for i ≥ 2 and a
generalization of the former results for i = 0, 1.

Now, we are going to analyze some applications and consequences of
Theorem 1.1.

Begin analyzing Remark 1.2.1. Integer Programming methods compute
the finite set C ′i in Theorem 1.1 and the simplicial complexes ∆m with
m ∈ C ′i. Then, it is possible to check the elements m ∈ C ′i such that
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H̃i(∆m) 6= 0 using Linear Algebra. By this way, the set Ci is effectively
obtained and a basis for the k−vector space H̃i(∆m) is computed, for any
m ∈ Ci. Now, applying the isomorphism H̃i(∆m) ' Vi(m) explicited in
Remark 3.6 of [5], a basis for Vi(m) is obtained. By Nakayama’s Lemma,
the union of these bases for any m ∈ Ci yields a minimal generating set of
Ni.

Then, we can say that Theorem 1.1 provides an algorithm computing a
minimal generating set of Ni. Moreover, the minimal resolution of k[S] is
obtained by recursively applying this algorithm.

It is instructive to construct the minimal resolution of k[S] using the
simplicial complexes ∆m. However, this method cannot compete in speed
with the method using Gröbner Bases (Schreiyer’s Theorem). This is not
surprising. In the case i = 0 ([4]) and in the case i = 1 ([17]), the situation
was analogous. The main drawback is that it is necessary to solve linear
diophantine systems for any τ i-triangulation of F , for any F ⊂ Λ with
]F ≥ i+ 2. In spite of this, our view point is interesting because it allows
to obtain an explicit bound for the degree of the minimal i-syzygies. To find
this bound we need to introduced new notation in the following section.

3. DEGREE BOUNDS

Notation 3.1.

• If x ∈ Zr, ||x||1 :=
∑r
j=1 |xj |.

• If L ⊂ Nr HL := {x ∈ L − {0} | x is minimal for �} if L 6= {0} and
H{0} := {0}.
• If A is an integer matrix

||A||1,∞ := supl
∑
j

|alj |

H(A) := H{x ∈ Nr | Ax = 0}(Hilbert basis of the system).

Remark 3. 1. It is known that if x ∈ H(A) then ||x||1 ≤ (1 + ||A||1,∞)s,
where s = rank(A). (Theorem 1 in [19], see also [18]).

In order to obtain our bound using Remark 3.1, we need to associate to
an element m ∈ Ci a homogeneous linear diophantine system.

Fix m ∈ Ci. Applying Proposition 1.1, there exists F ⊂ Λ, with ]F ≥
i+ 2, and there exists τ i-triangulation of F in ∆m, such that m ∈ Cτ . By
Lemma 1.4, m ∈ ΣHRτ . Then, there exists α ∈ HRτ such that m = Aα(1),
where α = (α(1), . . . , α(t)).
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Notice that α ∈ HRτ if and only if

α− eτ ∈ H{β ∈ Nrt | A(t)(β + eτ ) = 0}.

Set

Aτ := (A(t)| − A(t)eτ ).

We are looking for the relation with Hilbert basis of the homogeneous
systems

Aτβ′ = 0, β′ ∈ Nrt+1.

It is easy to verify that

H{β ∈ Nrt | A(t)β = −A(t)eτ} = {β ∈ Nrt | (β, 1) ∈ H(Aτ )}.

Lemma 3.1. With the notation and conditions as before, the following
inequality is satisfied

||(α− eτ , 1)||1 ≤ (1 + 4||A||1,∞)h(di−1),

being di :=
(

r
i+ 1

)
.

Proof.
Using the above reasoning we obtain that (α − eτ , 1) ∈ H(Aτ ). Then,

by Remark 3.1

||(α− eτ , 1)||1 ≤ (1 + ||Aτ ||1,∞)s,

where s = rank(Aτ ).
Recall that the matrix Aτ has h(t − 1) columns, where ]τ = t, τ =

{F1, . . . , Ft}, Fj ⊂ F , and ]Fj = i+1, for any j. Then t = ]τ ≤
(

]F
i+ 1

)
≤(

r
i+ 1

)
= di, and rankAτ ≤ h(t− 1) ≤ h(di − 1).

Finally, let see us that ||Aτ ||1,∞ ≤ 4||A||1,∞.
It is enough to notice that

||A||1,∞ = max1≤j≤t−1{||(A(2)| − A(2)(eFj , eFj+1))||1,∞}

and

||(A(2)| − A(2)(eFj , eFj+1))||1,∞ =
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max1≤p≤h{
r∑
q=1

|apq|+
r∑
q=1

| − apq|+
∑
q∈Fj

|apq|+
∑

q∈Fj+1

| − apq|} ≤ 4||A||1,∞

Theorem 3.2. If m ∈ S is an S−degree of a minimal i-syzygy for k[S],
then m = Ax with x ∈ Nr such that

||x||1 ≤ (1 + 4||A||1,∞)h(di−1) + (i+ 1)di − 1,

where di =
(

r
i+ 1

)
.

Proof.
With the notation in Lemma 3.1, m = Aα(1) with α = (α(1), . . . , α(t))

satisfying this lemma. Now, it is enough to notice that

||α(1)||1 ≤ ||α||1 = ||α−eτ+eτ ||1 ≤ ||α−eτ ||1+||eτ ||1 = ||(α−eτ , 1)||1−1+(i+1)t.

By Lemma 3.1, ||α(1)||1 ≤ (1 + 4||A||1,∞)h(di−1) + (i+ 1)di − 1.

We are going to see how it is possible to improve Theorem 3.2 in the
particular cases i = 0, 1.

Suppose i = 0. It is well-known that any minimal generating set for the
ideal I (the 0-syzygies) is contained in the Graver basis of A, GrA

GrA := {Xα −Xβ | (α, β) ∈ H(A(2))}

(see [22] for details).
Then, if m ∈ S is a minimal degree of I, we obtain that m = Aα = Aβ,

with (α, β) ∈ H(A(2)). Using again Remark 3.1 we have that

||α||1 ≤ (1 + 2||A||1,∞)h

because ||A(2)||1,∞ ≤ 2||A||1,∞.
This is clearly an improvement of Theorem 3.2 for the case i = 0.
Suppose i = 1. As we have seen before, we can reduce to a special type

of 1-triangulations of F in ∆m, the F -cavities. All of them have the same
shape, a polygon with ]F vertices. Thus, following the steps in the proof
of Theorem 3.2, we obtain that
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||x||1 ≤ (1 + 4||A||1,∞)h(r−1) + 2r − 1

because ]F ≤ r. The improvement now is that d1 =
(
r
2

)
> r because

r ≥ 3.
In [17] a similar result appears. Even forgetting the torsion, there exists

a small difference. In [17] the number

D := max{||Aτ ||1,∞ | τ is an F-cavity, ]F ≥ 3}

replaces to 4||A||1,∞. It is clear that D ≤ 4||A||1,∞ (the same arguments
used in Theorem 3.2 are right). The advantage of our version is that the
bound is straight forward obtained from A, without being necessary to
construct any matrix Aτ . It is also clear that in Theorem 3.2 the number

Di := max{||Aτ ||1,∞ | τ is a i-triangulation of F, ]F ≥ i+ 2}

can replace to 4||A||1,∞, but our version is more useful for the proof of
Theorem 4.1.

There is no result similar to Theorem 3.2 in the literature, for i ≥ 2.
In the following remark we consider the generalization to the case S with

torsion non trivial.

Remark 3. 2.

S ⊂ Zh ⊕ Z/a1Z⊕ . . .⊕ Z/asZ

with aj ∈ Z, 1 ≤ j ≤ s.
Now, A ∈M(h+s)×r(Z) and A(t) ∈M(h+s)(t−1)×rt(Z).
To use the reasoning in the without torsion case, we need to remove the

congruences in the systems of kind

A(t)β = −A(t)eτ .

Then, it is enough to consider the auxiliary matrices (see [17] for details)
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T =



0 0 0 0 · · · 0 0 0
...

...
...

0 0 0 0 · · · 0 0 0
a1 −a1 0 0 0 0 0
0 0 a2 −a2 0 · · · 0 0

. . . . . . . . .
0 0 0 0 0 as −as


∈M(h+s)×2s(Z),

and Ã(t) = (A(t)|T̃ ), where

T̃ =

 T 0 . . . 0 0
. . .

0 0 . . . 0 T

 ∈M(t−1)(h+s)×(t−1)2s(Z).

Using the system without congruences of kind

Ã(t)β = −A(t)eτ ,

the following result is obtained.
If m ∈ S is an S-degree of a minimal i-syzygy for k[S], then m = Ax

with x ∈ Nr such that

||x||1 ≤ (1 + 2a+ 4||A||1,∞)(h+s)(di−1) + (i+ 1)di − 1,

where a = max1≤j≤s|aj | and di =
(

r
i+ 1

)
.

4. REGULARITY OF PROJECTIVE TORIC VARIETIES

In this section we suppose that I is homogeneous for the natural gradua-
tion. This is equivalent to there exists a vector w ∈ Qh such that ni ·w = 1,
for any i = 1, . . . , r. (Lemma 4.14 in [22]). Geometrically, I defines a projec-
tive variety in Pr−1(k). Notice that if f ∈ I is S-homogeneous of S-degree
m ∈ S, then deg(f) = ||α||1, for any α ∈ Nr with Aα = m.

Suppose that {f1, . . . , fβ1} is a minimal generating set of I, S-deg(fi) =
pi ∈ S and deg(fi) = ||αi||1, where pi = Aαi, 1 ≤ i ≤ β1. If g =
(g1, . . . , gβ1) ∈ N1 is a 1-syzygy of S-degree m ∈ S, then S-deg(gi) = m−pi
and deg(gi) = ||βi||1 where Aβi = m − pi. Thus, m = A(αi + βi) and
deg(g) = ||αi + βi||1.
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More generally, if h = (h1, . . . , hβi) ∈ Ni is an i-syzygy of S-degree
m ∈ S, then deg(h) = ||α||1, for any α ∈ Nr such that m = Aα.

By this way, we obtain an explicit bound for the Castelnuovo-Mumford
regularity of I. In the following theorem, the symbol bc stands for integral
part.

Theorem 4.1.

With assumptions and notations as above,

reg(I) ≤ (1 + 4||A||1,∞)h(d−1) + (r + 1)(d− 1)

where d =
(

r
br/2c

)
.

Proof.
The regularity of I is reg(I) = max1≤i≤r{ti−i}, where ti is the maximum

degree of the i-syzygies of I (see, for example, [2]).
By Theorem 3.2,

ti ≤ (1 + 4||A||1,∞)h(di−1) + (i+ 1)di − 1,

with di =
(

r
i+ 1

)
. It is clear that di ≤ d, for any i. Then

ti − i ≤ (1 + 4||A||1,∞)h(d−1) + (r + 1)(d− 1).

It is enough to take maximum.

Finally, notice that the effective computation of the regularity of I doesn’t
require the computation of the minimal resolution. It is sufficient to use
the Step 1 of Construction in the introduction for any i. We describe this
algorithm.

Algorithm 1.

Computing the regularity

Input: Set of generators {n1, . . . , nr} of S. (Recall that they must lie on
a rational hiperplane.)
Output: The regularity of the ideal I of S.

1. For any i, 1 ≤ i ≤ r

• Compute the set C ′i (Theorem 1.1).

• Check the element m ∈ C ′i such that H̃i(∆m) 6= 0 and obtain Ci.
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• Compute ti = {||α||1 | m = Aα ∈ Ci}.
2. Output reg(I) = max{ti − i | i = 1, . . . , r}.
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17. P. PISÓN-CASARES, A. VIGNERON-TENORIO, First Syzygies of Toric Varieties
and Diophantine Equations in Congruence, Preprint of University of Sevilla 52
(1999).



22 E. BRIALES-MORALES, P. PISÓN-CASARES, A. VIGNERON-TENORIO
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