
Trabajo Fin de Máster

Constrained Support Vector
Machines Theory and

Applications to Health Science

Presented by:

Sandra Beńıtez Peña

Supervisors:
Dr. Rafael Blanquero Bravo, Universidad de Sevilla
Dr. Emilio Carrizosa Priego, Universidad de Sevilla

External Supervisor:
Dr. Pepa Raḿırez Cobo, Universidad de Cádiz

June 24, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51406279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Agradecimientos

En primer lugar, me gustaŕıa dar las gracias a los doctores Emilio Carrizosa
Priego y Rafael Blanquero Bravo. Gracias a ellos, estoy aqúı ahora. Y gra-
cias a ellos, estoy haciendo lo que me gusta. Creo que no existen palabras
suficientes para agradecerles todo lo que han hecho por mı́, tanto por lograr
que se vaya haciendo realidad el sueño que he tenido desde pequeña como
por lo infinitamente pacientes, comprensivos y buenos que han sido conmigo,
aśı como por lo mucho que he podido aprender de ellos en estos últimos años.

También, dar las gracias a la doctora Pepa Ramı́rez Cobo, a quien he
conocido este año y me ha ayudado a más no poder, demostrando la grand́ısima
profesional y persona que es.

Como no, agradecerle a mis padres, Emilia y Hermenegildo, todos los
esfuerzos que han hecho por lograr que poco a poco vaya alcanzando mi
meta. A mi hermana, Raquel, por ser mi compañera de rabietas mientras
estudiabamos, y siempre confiar en mi. A Juan Manuel, por ser el que
(quizás) más ha tenido que aguantarme. Por siempre ayudarme a seguir
para adelante, confiar tanto en mi, y estar siempre a mi vera.

2

Contents

1 Introduction 6

2 Classification Methods 8
2.1 Linear classifiers . 9
2.2 Nearest-neighbor classifiers . 10
2.3 Classification trees . 10

3 Support Vector Machines 12
3.1 Linear Support Vector Machine 12

3.1.1 The Linearly Separable Case 13
3.1.2 The Linearly Nonseparable Case 18

3.2 Nonlinear Support Vector Machine 20
3.2.1 The “Kernel Trick” . 22
3.2.2 Kernels and Their Properties 23
3.2.3 Examples of Kernels 25

3.3 Multi-class SVM . 27
3.3.1 One-against-one . 27
3.3.2 One-against-all . 28

3.4 SVM in R . 29
3.5 SVM in AMPL . 37

3.5.1 Examples. Iris Data 41
3.5.2 Examples. Breast Cancer Wisconsin data 48

4 Adding new constraints in SVM 54
4.1 Theoretical motivation . 54

4.1.1 Markov’s inequality . 56
4.1.2 Central Limit Theorem (CLT) 57
4.1.3 Hoeffding’s inequality 58

4.2 General framework . 58
4.2.1 m samples of independent set well classified 60
4.2.2 Specifying a minimum sensitivity and specificity 62

4

4.2.3 Specifying a minimum accuracy 64
4.3 AMPL . 64

4.3.1 Breast Cancer Wisconsin data 66
4.4 Conclusions . 74

5

Chapter 1

Introduction

Recently, data mining has become a very important tool for handling data
and also for discovering patterns in order to produce information for decision-
making. One of the most important tasks in data mining is supervised clas-
sification, which has been successfully applied in many different fields such
as biology or medicine.

The focus of this work is on Support Vector Machines (SVMs) classifiers,
which were first introduced by Vapnik in early 90s and right now they are
one of the main exponents in supervised classification.

This work is structured in three chapters apart from this introduction. In
Chapter 2, we provide the necessary theory about general classification. In
Chapter 3, SVMs theory is introduced, focusing on the two-class classification
problem. Then, a brief explanation of the theory behind the classification
of more than two classes (also called multiclass classification) is presented.
After that, also in Chapter 3, some applications of SVMs are shown, using the
R package e1071 and AMPL. Then, in Chapter 4, new constraints are added
to the classical SVMs formulation in order to improve some performance
measurements in the classification. Afterwards, and using the formulation
in AMPL, the classification obtained with this approach in Breast Cancer
Wisconsin data is compared with the results obtained in Chapter 3.

6

Chapter 2

Classification Methods

Different classification methods have been proposed in the literature. The
differences between them is mainly due to the statistical asspumptions made
on the data and the type of algorithms required to build the classifier. The
whole set of classification methods can be divided into tree big categories
that we will expose right after: linear classifiers, nearest-neighbor classifiers
and classification trees, [1].

Before entering in detail in each of the classifiers commented above, we
must discuss two important elements in supervised learning: the scoring func-
tions and the performance criteria.

At every moment, we must keep in mind that supervised classification
seeks procedures for classifying objects in a set Ω into a set C of classes.
Each object ui ∈ Ω has two components (xi, yi), where xi is called the pre-
dictor vector and takes values on a set X such as e.g. Rr and yi ∈ C is the
class membership of ui.

Scoring functions. For each c ∈ C, a scoring function fc : X → R is
built from the training set I ∈ Ω (objects in Ω whose membership is known),
and upcoming objects with predictor vector x are classified in the class y(x)
in C with highest score. That is to say, the classifier is given by

y(x) ∈ arg max
c∈C

fc(x).

In the two-class case, when C = {−1, 1}, setting f−1 = 0, the expression
above takes the form

y(x) = sign(f1(x)),

where sign(a) = 1 if a > 0 and sign(a) = −1 if a < 0.

8

Performance criteria. Many criteria can be used to evaluate the perfor-
mance of supervised classification. For instance, the main one in the so-called
generalization power, that tells how good the built classifier would correctly
classify upcoming objects. Another example is the accuracy, i.e., the fraction
of correctly classified individuals.

Different criteria are needed if the misclassification costs differ between
the classes. One of the performance measurement preferred in this case is
the so-called area under the Receiver Operating Characteristic (ROC) curve,
AUC. The ROC curve shows the sensitivity (proportion of correctly classified
objects of class 1) against the specificity (proportion of correctly classified
objects of class -1).

Sensitivity and Specificity are not more than particular cases of the so-
called Correct Clasification Rate (CCR), which gives us the fraction of sam-
ples well classified in each class ∈ C. Other performance metrics are, for
example: precision, lift, F-score,. . . , [2].

2.1 Linear classifiers

One of the simplest classifiers that can be obtained are those in which we
assume the scoring functions fc to be affine, i.e.,

fc(x) = wtcx+ βc.

Hence, the set of samples classified in class c is given by the polyhedron

Xc = {x ∈ R : wtcx+ βc ≥ wtc′ + βc′ ∀c′ ∈ C}

Another popular linear classifier is obtained in Linear Discriminant Anal-
ysis (LDA), summarized as follows: For each class ∈ C, the predictor vector
x of all individuals in such class, is assumed to follow a Gaussian distribution
with mean µc and common covariance matrix Σ. Also, let πc be the prior
probability of an incoming individual of being in group c, given. For a given
predictor vector, its posterior probability (pc(x)) of each class is calculated
by Bayes theorem, and a sample is classified in its most (posterior) probable
class. Then, the scoring function fc for this classifier is

fc(x) = xtΣ−1µc −
1

2
µtcΣ

−1µc + log(πc).

9

It should be remarked that, in practice, the parameters πc, µc and Σ are
unknown but they can be estimated via sample estimates.

And the list of linear classifiers does not stop here: there are many other
linear classifiers such as Support Vector Machines, in which our work will
focus.

2.2 Nearest-neighbor classifiers

Let δ be a dissimilarity measure in X. In the basic k-nearest neighbors
method, for a given sample x, let Nk(x) be the set of k objects in the training
sample I nearest to x, according to δ. Then, x will be classified in the
most frequent class c in Nk(x). Hence, the scoring function of the k-nearest
neighbors method, fc(x), is equal to the cardinality of the subset of Nk(x)
with label c. Mathematical optimization appears in three different aspects
in this method: evaluation of δ, choice of δ and data (prototype) selection.

2.3 Classification trees

A classification tree is a classifier defined as series of if-then rules. This
classifier is identified with a rooted tree T , in which each node represents
a partition of the space X. In the simplest case, T is a binary tree, where
each node symbolizes a partition of X into the sets {x ∈ X : xV ≥ t} and
{x ∈ X : xV < t} for some variable V and threshold t. The set of leaf nodes
of the tree, S, induces a partition {Xs : s ∈ S} of X and the classifier assigns
to any x ∈ Xs the most frequent class in the training sample whose predictor
vector belongs to Xs.

10

Chapter 3

Support Vector Machines

Support Vector Machines are one of the most popular machine learning al-
gorithms. They became very popular in early 90s and today they are still
considered one of the most powerful classification algorithms due to their high
performance with very little tunning. In this chapter we overview Support
Vector learning, starting with linear SVMs and following with their extension
to the nonlinear case, [3].

3.1 Linear Support Vector Machine

In the binary classification setting, assume we have available a non-empty
set of data Ω, where each ui ∈ Ω has two components:

Ω = {ui = (xi, yi) : i = 1, 2, . . . , n}

where xi ∈ Rr is the so-called predictor vector, and yi ∈ {1,−1} are two
given classes of ui. We now have a non-empty set I, which will be called the
learning set and that will be composed of ui = (xi, yi), where yi is given, ∀ i.
The two-class classification problem is based on predicting, from the data of
I, the yi class of a given ui ∈ Ω. It is used β ∈ Rr and β0 ∈ R in order to
build a function f : Rr→R such that:

f(x) = βtx+ β0.

This function, called separation function, [7], classifies as class 1 those xi ∈ Rr

with f(x) > 0 and as class -1 those xi ∈ Rr with f(x) < 0.

The goal is to have a function f such that all positive points (yi = 1) in
I are assigned to class 1 and negative points (yi = −1) in I to class -1.
Points x with f(x) = 0 will be classified according to a predeterminied rule.
According to that,

12

yi(β
txi + β0) ≥ 0 ∀i ∈ I

3.1.1 The Linearly Separable Case

First, we will consider the simplest case, in which we suppose that the positive
(yi = 1) and negative (yi = −1) data points from the learning set I can be
separated by a hyperplane of the form

{x : f(x) = β0 + xtβ = 0}

where β is the weight vector with norm ‖β‖, and β0 is the bias. If this hy-
perplane can separate the two given classes of the learning set without error,
the hyperplane is called a separating hyperplane.

If positive and negative data points can be separated by the hyperplane
H0 := β0 + xtβ = 0, then

H+ = β0 + βtxi > 0, if yi = 1
H− = β0 + βtxi < 0, if yi = −1

For separable sets, there are an infinite number of such hyperplanes. So in
order to construct the classifier we have to decide on a reasonable way which
of those separating hyperplanes to use. The simplest choice is the maximal
margin hyperplane, which can be built as follows: first, consider any separat-
ing hyperplane. Then, let d− and d+ be, respectively, the shortest distance
from this separating hyperplane to the nearest negative data point and to
the nearest positive one. We say that the hyperplane is an optimal separat-
ing hyperplane if it maximizes the distance between the hyperplane and the
closest observation.

In order to find the best separating hyperplane, we use a norm ‖ · ‖ in Rr,
and derive the distances between the two given classes and the separating
hyperplane. First, let us consider the Euclidean case, with the Euclidean
norm ‖x‖2 = xtx:

Property. Let ‖ · ‖ be the Euclidean distance. Then, given x, we have

d− = d(x, {y : β0 + βty ≤ 0}) = max
{β0 + βtx, 0}
‖β‖

(3.1)

d+ = d(x, {y : β0 + βty ≥ 0}) = max
{−(β0 + βtx), 0}

‖β‖
(3.2)

13

Proof. Let x be a fixed point. We have the following optimization problem,
which formulate the distance between the point x and the separating hyper-
plane:

min ‖x− y‖
subject to: β0 + βty = 0

(3.3)

which is equivalent to

min ‖x− y‖2
subject to: β0 + βty = 0

(3.4)

As we are using the Euclidean distance, we can use the Karush-Kuhn-Tucker
(KKT) conditions. Let L(y, λ) be the Lagrange function defined as:

L(y, λ)=‖y − x‖2 − λ(β0 + βty)

Proceeding as the method KKT says:

∂

∂y
L(y, λ) = 0: 2(y − x)− λβ = 0

∂

∂λ
L(y, λ) = 0: β0 + βty = 0⇒ βty = −β0.

Thus, if we multiply
∂

∂y
L(y, λ) on the left by βt and operate

2βt(y − x)− λβtβ = 0 ⇒
βty=−β0

−2β0 − 2βtx = λβtβ.

And if we solve for λ, we get

λ =
−2β0 − 2βtx

βtβ
.

Applying norm ‖ · ‖ and replacing λ in equation of
∂

∂y
L(y, λ) we obtain

2(y−x) = λβ =⇒
App. norm ‖·‖

‖y−x‖ =
|λ|
2
‖β‖ =

Repl. λ

∣∣∣∣−2β0 − 2βtx

βtβ

∣∣∣∣ ‖β‖2 =

=
|β0 + βtx|
‖β‖2

‖β‖ =
|β0 + βtx|
‖β‖

.

Summarizing, in the Euclidean case:

14

d(x, {y : β0 + βty = 0}) =
|β0 + βtx|
‖β‖

If β0 + βtx ≥ 0,

d(x, {y : β0 + βty ≥ 0}) = 0

d(x, {y : β0 + βty ≤ 0}) =
|β0 + βtx|
‖β‖

=
β0 + βtx

‖β‖

If β0 + βtx ≤ 0,

d(x, {y : β0 + βty ≤ 0}) = 0

d(x, {y : β0 + βty ≥ 0}) =
|β0 + βtx|
‖β‖

=
−(β0 + βtx)

‖β‖

In general:

d(x, {y : β0 + βty ≥ 0}) = max

{
0,
−(β0 + βtx)

‖β‖

}
d(x, {y : β0 + βty ≤ 0}) = max

{
0,
β0 + βtx

‖β‖

}
�

For another arbitrary norm, we can use the next result, which extends the
former property, [10]:

Theorem 1.1. For any norm ‖ · ‖ and any hyperplane H(β, β0) we have

d‖·‖(x,H(β, β0)) =

β0 − βtx
‖β‖◦

, when βtx ≤ β0,

βtx− β0
‖β‖◦

, when βtx > β0.

Here ‖β‖◦ denotes the dual norm of ‖β‖, which is defined as

‖β‖◦ = max utβ
subject to: ‖u‖ = 1

In the theorem 3.1.1, we have the formula of the distance from one point x
to a half-space. Now, given (x1, . . . , xn) with labels (y1, . . . , yn), the distance
of xi to the halfspace of misclassification is given by

15

di=
max{yi(β0 + βtxi), 0}

‖β‖0
, ∀ i ∈ I.

The minimum of this equation, dI=minui∈I di, is called margin.

Figure 3.1: Linear SVM with the margin

The goal is to maximize the margin. We get that solving the following
optimization problem:

max
β,β0

min
i

max{yi(β0 + βtxi), 0}
‖β‖◦

,

which is equivalent to,

min
β,β0

max
i

‖β‖◦

max{yi(β0 + βtxi), 0}
,

or,

min
β,β0

‖β‖◦

mini max{yi(β0 + βtxi), 0}
.

The function (β0, β) 7−→ ‖β‖◦

mini max{yi(β0 + βtxi), 0}
is homogeneus in R+

and hence we can assume (without loss of generality) that the denominator
equals 1. Thus, we have the next equivalent representation:

16

minβ0,β ‖β‖◦
subject to: mini yi(β0 + βtxi) = 1

β ∈ Rr, β0 ∈ R
(3.5)

which is equivalent to,

minβ0,β ‖β‖◦
subject to: mini yi(β0 + βtxi) ≥ 1

β ∈ Rr, β0 ∈ R
(3.6)

and equivalent to,

minβ0,β ‖β‖◦
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R
(3.7)

In the Euclidean case we have

minβ0,β βtβ
subject to: yi(β0 + βtxi) = 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R
(3.8)

which is an optimization problem with convex objective function and linear
constraints. Then, the problem above can be equivalent to:

minβ0,β βtβ
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R
(3.9)

For polyhedral norms, problem (3.7) can be written as a linear problem.
Let us consider the particular important cases ‖ · ‖ = ‖ · ‖1 and ‖ · ‖ = ‖ · ‖∞.
To achieve the dual of those norms we have the following property:

Property. Let ‖ · ‖p be a p − norm. Then, its dual norm is ‖ · ‖◦p = ‖ · ‖q,
where p and q satisfy

1

p
+

1

q
= 1.

If we have ‖ · ‖ = ‖ · ‖1, then its dual ‖ · ‖◦ is the infinity norm ‖ · ‖∞, and
the problem (3.7) can be expressed as follows:

17

minβ0,β ‖β‖∞
subject to: mini yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R
(3.10)

This problem can be reformulated as a linear problem,

min z
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

z ≥ βi ≥ −z
β ∈ Rr, β0 ∈ R, z ≥ 0

(3.11)

On the other hand, if we have ‖ · ‖ = ‖ · ‖∞, then its dual ‖ · ‖◦ is the 1-norm
‖ · ‖1, and our problem can be expressed as follows:

minβ0,β ‖β‖1
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R
(3.12)

which can also be converted in a linear problem,

min
∑

j zj
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

zj ≥ βi ≥ −zj, j = 1, . . . , r
β ∈ Rr, β0 ∈ R, zj ≥ 0

(3.13)

3.1.2 The Linearly Nonseparable Case

The previous section discussed the case where it is possible to linearly sep-
arate the data that belong to different classes. As our intuition says, the
previous formulation will not find a solution if the data cannot be separated
by a hyperplane. In fact, in practical applications for real data, it is unlikely
that there will be such a clear linear separation between the two classes.
More likely, there will be some overlap.

The overlap will cause problems for any classification rule, and depending
upon the extent of the overlap, the overlapping points could not be classified.

The nonseparable case occurs if either the two classes are separable, but
not linearly, or if no clear separability exists between the two classes, linearly
or nonlinearly.

18

As we mentioned before, in the previous section we assumed that I was
linearly separable. If this is not the case, the optimization problem formu-
lated above is infeasible. Therefore, we must find other method.

One of such method to solve the nonseparable case is to create a more
flexible formulation of the problem, which leads to a soft-margin solution
through maximization of this soft-margin. Let ε be a perturbation. Starting
from an infeasible problem, it is possible to perturb the constraints in order
to make it feasible. We must introduce a penalty in the objective function
to control the perturbation. Hence, the following problem can be formulated
as

min βtβ + C‖ε‖rr
subject to: yi(β0 + βtxi) + εi ≥ 1,∀ i ∈ I.

β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀i ∈ I

(3.14)

where C > 0 is the so-called regularization parameter. As an example, we
can discuss the case of `1 regularization. Then, the previous problem can be
written as

min βtβ + C
∑

i∈I εi
subject to: yi(β0 + βtxi) + εi ≥ 1,∀ i ∈ I.

β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀i ∈ I

(3.15)

equivalent to,

min 1
2
βtβ + C

∑
i∈I εi

subject to: yi(β0 + βtxi) + εi ≥ 1,∀ i ∈ I.
β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀i ∈ I

(3.16)

In the Euclidean case, we apply again the KKT method. So, fixed λ =
(λ1, . . . , λn)t ≥ 0 and η = (η1, . . . , ηn)t ≥ 0, let L(β,β0, λ, η ,εi) be the
Lagrange function, defined as

L(β, β0, λ, η, εi) =

=
1

2
βtβ + C

∑
i∈I

εi −
∑
i∈I

λi[yi(β0 + βtxi)− (1− εi)]−
∑
i∈I

ηiεi

Then, proceeding as the KKT method says,

19

∂

∂β
L(β, β0, λ,η, εi) = 0: β −

∑
i∈I λiyixi = 0

∂

∂β0
L(β, β0, λ,η, εi) = 0: −

∑
i∈I λiyi = 0

∂

∂εi
L(β, β0, λ,η, εi) = 0: C − λi − ηi

So from
∂

∂β
L(β, β0, λ,η, εi) = 0 we obtain

β =
∑

i∈I λiyixi

And from
∂

∂εi
L(β, β0, λ,η, εi) = 0 we get

λi = C − ηi.

Substituting in the equation L(β,β0, λ, η,εi) we get the dual of the problem
formulated above. Thus,

max
∑

i∈I λi −
1

2

∑
i,j∈I λiλjyiyjx

t
ixj

subject to:
∑

i∈I yiλi = 0
λi = C − ηi, ∀ i ∈ I
λi ≥ 0, ∀ i ∈ I
ηi ≥ 0, ∀ i ∈ I

(3.17)

and this can be rewritten as

max
∑

i∈I λi −
1

2

∑
i,j∈I λiλjyiyjx

t
ixj

subject to:
∑

i∈I yiλi = 0
0 ≤ λi ≤ C, ∀ i ∈ I

(3.18)

We can observe that 0 ≤ λi ≤ C. Also, we get λi = C when εi > 0 (which is
the case when yi(β0 +βtxi) < 1). In addition, when yi(β0 +βtxi) > 1, εi = 0
since no cost is incurred, and thus λi = 0. Futhermore, when yi(β0 +βtxi) =
1, λi can lie between 0 and C, [5].

3.2 Nonlinear Support Vector Machine

Up to now, we have only discussed methods for constructing linear SVM
classifiers. But there are many cases where linear classifiers are not appro-
priate for the data learning set. An extension to nonlinear decision surfaces

20

is necessary since real-life classification problems are hard to be solved by a
linear classifier.

The main key to constructing a nonlinear SVM is to observe that the ob-
servations in Ω only enter the dual optimization problem through the inner
products 〈xi, xj〉 = xtixj, i, j = 1, 2, . . . , n. In order to build a nonlinear SVM,
we need some nonlinear tranformations, [7]. Let φ be a nonlinear map, called
the feature map, and let H be an NH-dimensional feature space. The space
H may be very high-dimensional, possibly even infinite-dimensional. We will
generally assume that H is a Hilbert space of real-valued functions on R with
inner product 〈·, ·〉 and norm ‖ · ‖.

Suppose we transform each observation, xi ∈ Rr, in Ω using some nonlinear
mapping φ : Rr → H. Hence,

φ(xi) = (φ1(xi), . . . , φNH(xi))
t ∈ H, ∀ i = 1, 2, . . . , n.

The transformed sample is then (φ(xi), yi), where yi ∈ {−1, 1} identifies
the two classes. In this new space we must work with the learning set of
data Î={(φ(xi), yi) : ∀ ui ∈ I}, which is linearly separable. If we sub-
stitute φ(xi) by xi in the development of the linear SVM, then the data
would only enter the optimization problem by way of the inner products
〈φ(xi), φ(xj)〉 = φ(xi)

tφ(xj).

The dificulty in using nonlinear transformations in this way is computing
such inner products in high-dimensional space H.

Now, we want to solve the nonlinear problem. We proceed as in the lin-
early separable case and seek β ∈ F and β0 ∈ R to classify data points
according to the rule f :

f(x) = βtφ(x) + β0

Rule f is linear on the data when we transform it with the mapping φ, but f
is not linear on the original space Rr. Rule f assignes x to class 1 if f(x) > 0
and to class −1 if f(x) < 0.

The problem of maximizing the margin mentioned above, can be rewritten
as

min ‖β‖◦
subject to: yi(β0 + βtφ(xi)) ≥ 1, ∀ i ∈ I

β ∈ F , β0 ∈ R
(3.19)

21

If we use the Euclidean norm to measure distances in the new transformed
space, our previous problem can be written as:

min βtβ
subject to: yi(β0 + βtφ(xi)) ≥ 1,∀ i ∈ I

β ∈ F , β0 ∈ R.
(3.20)

This problem is equivalent to,

min 1
2
βtβ

subject to: yi(β0 + βtφ(xi)) ≥ 1,∀ i ∈ I
β ∈ F , β0 ∈ R

(3.21)

We now build its dual. In order to do this, we need to use the KKT method.
Fixed λ = (λ1, . . . , λn)t ≥ 0, let L(β, λ) be the Lagrange function as follows

L(β, β0, λ) =
1

2
βtβ −

∑
i∈I λi[yi(β0 + βtφ(xi))− 1]

And proceeding as the KKT method says,

∂

∂β
L(β, β0, λ) = 0: β −

∑
i∈I λiyiφ(xi) = 0

∂

∂β0
L(β, β0, λ) = 0: −

∑
i∈I λiyi = 0

Thus, by
∂

∂β
L(β, β0, λ) = 0 we have

β =
∑

i∈I λiyiφ(xi)

Replacing results in L(β, β0, λ) we have its dual,

max
∑

i∈I λi −
1

2

∑
i,j∈I λiλjyiyjφ(xi)

tφ(xj)

subject to:
∑

i∈I yiλi = 0
λi ≥ 0, ∀ i ∈ I

(3.22)

3.2.1 The “Kernel Trick”

We should remember that the idea behind nonlinear SVM was to find an
optimal separating hyperplane in the high-dimensional feature space H just
as we did for the linear SVM in the input space. The optimal separating hy-
perplane can be formulated with or without slack variables, as appropriate.

22

At first, someone could expect that the dimensionality ofH is a huge problem
to build an optimal separating hyperplane and a classification rule, because
of the course of dimensionality. But thanks to the “Kernel Trick”, which was
first applied to SVM by Cortes and Vapnik in 1995, [4], we do not have to
calculate the inner products explicitly, so dimensionality is not a problem.

The so-called kernel trick is an idea that is widely used in algorithms for
computing inner products of the form 〈φ(xi), φ(xj)〉 in feature space H. The
trick is that instead of computing these inner products in H, which would be
computationally expensive because of its high dimensionality, we compute
using a nonlinear kernel function, K(xi, xj) = 〈φ(xi), φ(xj)〉, in the input
space, which helps us to speed up the computations. With this support, we
just compute a linear SVM, but where the computations are carried out in
some other space.

3.2.2 Kernels and Their Properties

A kernel K is a function K : Rr × Rr → R, given by

K(xi, zi) = 〈φ(xi), φ(zi)〉, ∀ xi, zi ∈ Rr.

The kernel function is designed to compute inner-products in H by using
only the original input data. Thus, wherever we see the inner product
〈φ(xi), φ(zi)〉, we substitute the kernel function K(xi, zi). The choice of K
implicitly determines both φ and H. As example, the problem (3.22) can be
reformulated using the “Kernel Trick” as

max
∑

i∈I λi −
1

2

∑
i,j∈I λiλjyiyjK(xi, xj)

subject to:
∑

i∈I yiλi = 0
λi ≥ 0, ∀ i ∈ I

(3.23)

The big advantage of using kernels as inner products is that, if we are given
a kernel function K, then we do not need to know the explicit form of φ.

Kernel properties

Some kernels properties are

1. If K1(xi, yi) is a kernel and we have a positive real number a1, then

23

K(xi, zi) = a1K1(xi, zi)

is a kernel.

2. If K1(xi, zi) and K2(xi, zi) are two kernels and a1, a2 are two positive
real numbers, then

K(xi, zi) = a1K1(xi, zi) + a2K2(xi, zi)

is a kernel.

3. The multiplication of two kernels K1 and K2 yields a kernel

K(xi, zi) = K1(xi, zi)K2(xi, zi)

4. The above properties imply that any polynomial with possitive coeffi-
cients, pol+ = {

∑n
i=1 αix

i | n ∈ N, α1, . . . , αn ∈ R+}, evaluated at a
kernel K1, yields a kernel

K(xi, zi) = pol+(K1(xi, zi))

In particular, we have that

K(xi, zi) = exp(K1(xi, zi))

is a kernel by taking the limit of the series expansion of the exponencial
function.

5. If g is a real-valued function on Rr, then

K(xi, zi) = g(xi)g(zi)

is a kernel.

6. If ψ is a Rp-valued function on Rr, p < r, and K1 is a kernel on Rp×Rp,
then

K(xi, zi) = K1(ψ(xi), ψ(zi))

is also a kernel.

7. If A is a positive definite matrix of size r × r, then

24

K(xi, zi) = (xi)
tAzi

is a kernel.

We require that the kernel function be symmetric, K(xi, zi) = K(zi, xi),
and satisfy the inequality, [K(xi, zi)]

2 ≤ K(xi, xi)K(zi, zi), derived from the
Cauchy-Schwarz inequality. If K(xi, xi) = 1 ∀ xi ∈ Rr, this implies that
‖φ(xi)‖H = 1. A kernel K is said to have the reproducing property if, for
any f ∈ H,

〈f(·), K(xi, ·)〉 = f(xi)

If K has this property, we say it is a reproducing kernel. K is also called the
representer of evaluation. In particular, if f(·) = K(·, xi), then,

〈K(xi, ·), K(zi, ·)〉 = K(xi, zi)

Let {x1, . . . , xn} be any set of n points in Rr. Then, the (n×n)-matrix K =
(Kij), where (Kij) = K(xi, xj), i, j = 1, 2, . . . , n, is called the Gram matrix
of K with respect to {x1, . . . , xn}. If the Gram matrix K satisfies utKu ≥ 0,
for any n-vector u, then it is said to be nonnegative-definite with nonnegative
eigen values, in which case we say that K is a nonnegative-definite kernel or
Mercer kernel.

If K is a specific Mercer kernel on Rr×Rr, we can always construct a unique
Hilbert space HK, say, of real-valued functions for which K is its reproducing
kernel. We call HK a real reproducing kernel Hilbert space (rkhs). We can
write the inner product and norm of HK by 〈·, ·〉HK

and ‖ · ‖HK , respectively.

A kernel is called stationary, or traslation-invariant, if it has the general form
K(xi, zi) = k(xi − zi), where k : Rr −→ R. A kernel K(xi, zi) is isotropic
if it depends only upon the distance δ = ‖xi − zi‖, i.e., if K(xi, zi) = k(δ),
scaled to have k(0) = 1.

3.2.3 Examples of Kernels

We have the following table with some kernel functions, K(xi, zi), where
σ > 0 is a scale parameter, a, b, c ≥ 0 and d is an integer. We are also using
the Euclidean norm ‖x‖2 = xtx.

25

Kernel K(xi, zi)

Polynomial of degree d (xtizi + c)d

Radial basis function exp

(
−‖xi − zi‖

2

2σ2

)
Laplacian exp

(
‖xi − zi‖

σ

)
Thin-plate spline

(
‖xi − zi‖

σ

)2

log

(
‖xi − zi‖

σ

)
Sigmoid tanh(axtizi + b)

Table 3.1: Examples of Kernel functions

As an example of these kernels we have the inhomogeneous polynomial kernel
of degree d,

(xtizi + c)d, xi, zi ∈ Rr

where c and d are parameters. The homogeneous form of the kernel occurs
when c = 0 in the expression above. If d = 1 and c = 0, the feature map
reduces to the identity. Usually, we take c > 0.

A simple nonlinear map is given by the case Rr = R2 and d = 2. If
xi = (x1, x2)

t and zi = (z1, z2)
t, then,

K(xi, zi) = (xtizi + c)2 = (x1z1 + x2z2 + c)2 = 〈φ(xi), φ(zi)〉

where φ(xi) = (x21, x
2
2,
√

2x1x2,
√

2cx1,
√

2x2, c)
t and similary for φ(zi). In

this example, the function φ(xi) consists of six features (H= R6), all mono-
mials having degree at most 2. For this kernel, we see that c controls the
magnitudes of the constant term and the first-degree term.

In general, there will be dim(H) =

(
r + d
d

)
different features, consisting

of all monomials having degree at most d.

Other popular kernels are given in Table 3.1. For example, the radial basis

26

function, Laplacian, and thin-plate spline kernels are example or station-
ary, or translation-invariant, kernels having the general form K(xi, zi) =
k(xi− zi), as we explained before. The polynomial kernel is an example of a
nonstationary kernel.

Strictly speaking, the Sigmoid kernel is not a kernel. It satifies Mercer’s
conditions only for certain values of a and b. Despite this, it has become
very popular in that role in certain situations (e.g., two-layer neural net-
works).

It is not always obvious which kernel to choose in any given application.
Prior knowledge or a search through the literature can be helpful. If no such
information is available, the most popular approach is to try either a ra-
dial basis function, which has only a single parameter, σ, to be determined,
or a polynomial kernel of low degree(d = 1 or 2). If it is necessary, more
complicated kernels can then applied to compare results.

3.3 Multi-class SVM

As studied before, Support Vector Machines were initially designed for binary
classification. The traditional way to perform multi-class classification is to
use one of the following methods:

• one-against-one classification,

• one-against-all classification, or

• DAGSVM.

In the following subsections we will focus only in the two first: one-
against-one and one-against-all classifications. The third approach can be
seen more in detail in [11].

3.3.1 One-against-one

In this approach, suppose we have available a non-empty set of data Ω, where
each ui ∈ Ω has two components:

Ω = {ui = (xi, yi) : i = 1, . . . , n}

with xi ∈ Rr an r-dimensional vector of predictor variables and yi ∈ {1, 2, . . . ,M},
M given classes of ui.

27

As before in Section 3.1, we have the non-empty learning set I, composed
again of ui = (xi, yi), where yi is given, ∀i. The multi-class classification prob-
lem is based on predicting, from the data of I, the yi class of a given ui ∈ Ω.

A well-known method is the so-called “one-against-one method”. This
method builds M(M − 1)/2 binary classifiers that are trained to distinguish
the samples of one class from the samples of another class. For training data
from the kth and the lth classes, the following binary classification problem
is solved:

min
∑

i∈I:yi=k,l λi −
1
2

∑
i,j∈I:yi=k,l;yj=k,l λiλjyiyjφ(xi)

′φ(xj)

subject to:
∑

i∈I:yi=k,l yiλi = 0

0 ≤ λi ≤ C, ∀i ∈ I : yi = k, l

There are different procedures for doing the future testing after allM(M−
1)/2 classifiers are constructed. For example, the following voting strat-

egy, called “Max Wins”: if sign(β0 + βtφ(x)) (where β0 =
1

NS

∑
s∈S(ys −∑

m∈S λmymφ(xm)φ(xs)) and β =
∑

i∈I:yi=k,l λiyiφ(x), and S is the set com-
posed by {i : λi 6= 0}) says x is in the ith class, then, the vote for the ith
class is added by one. Otherwise, the jth is increased by one. Then, we
predict x is in the class with the largest vote, [6].

3.3.2 One-against-all

As before, M classes and n samples are considered:

Ω = {ui = (xi, yi) : i = 1, . . . , n},

where xi ∈ Rr is a r-dimensional vector of predictor variables and yi ∈
{1, 2, . . . ,M} is the corresponding class label.

In this way, “one-against-all” approach builds M binary SVM classifiers,
where each of the M classifiers is formed by one of the M different classes
and the rest, and hence renaming the class labels as detailed in the next
paragraph.

Each of the M SVM is trained as follows: For the ith SVM, take all the
training samples of the ith class with positive labels (+1), and all the others
with negative labels (-1). Hence, we can consider a new set Ω′ such that

Ω′ = {u′i = (xi, y
′
i) : i = 1, . . . , n},

28

where xi ∈ Rr is the former r-dimensional vector of predictor variables and
y′i ∈ {−1,+1} is the corresponding new class label after the rename.

Then, this ith SVM solves the following problem that yields the ith de-
cision function fi(x) = βtiφ(x) + β0i:

min
∑

i∈I′ λi −
1

2

∑
i,j∈I′ λiλjy

′
iy
′
jφ(xi)

′φ(xj)

subject to:
∑

i∈I′ y
′
iλi = 0

0 ≤ λi ≤ C, ∀i ∈ I ′

Finally, a sample x is classified in class i∗ so that, [6],

i∗ = max
i=1,...,M

fi(x) = max
i=1,...,M

(βtiφ(x) + β0i).

3.4 SVM in R

Here, we describe some R libraries which allow us to perform SVM in R.
A first library we should mention is the library “e1071”. This library has
three different commands: the first of them, svm, is used to build the SVM
classifier, the second one, predict, predicts values based upon a model trained
by “svm”, and the third one, “plot.svm”, enables us to visualize the SVM
results.

Along this section, we will work with the Breast Cancer Wisconsin dataset,
[9]. This dataset has 569 samples and 30 real-valued input features, appart
from the ID (ID number) and the diagnosis. Diagnosis has two classes: B
(bening) or M (malign).

Actually, only ten real-valued features are computed for each cell nucleus:

1) radius (mean of distances from center to points on the perimeter)

2) texture (standard deviation of gray-scale values)

3) perimeter

4) area

5) smoothness (local variation in radius lengths)

6) compactness (perimeter2 / area - 1)

7) concavity (severity of concave portions of the contour)

29

8) concave points (number of concave portions of the contour)

9) symmetry

10) fractal dimension (“coastline approximation” - 1)

then, the mean, standard error, and “worst” or largest velue (mean of the
three largest values) of these features were computed for each image, result-
ing in the complete set of 30 features. For instance, field 3 is Mean Radius,
field 13 is Radius SE and field 23 is Worst Radius. This dataset does not
have missing attribute values and its class distribution is: 357 benign and
212 malign.

In what follows, we are going to see and explain how to use the three
different commands in “e1071” mentioned avobe.

Build the SVM classifier.

The command used to build the classifier is called svm. Now, we are
going to see the use of such command.

If one goes to the R console and writes “?svm”, it will appear the help
window. In the Usage part we can see

S3 method for class ’formula’

svm(formula, data = NULL, ..., subset, na.action =

na.omit, scale = TRUE)

Default S3 method:

svm(x, y = NULL, scale = TRUE, type = NULL, kernel =

"radial", degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),

coef0 = 0, cost = 1, nu = 0.5,

class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon

= 0.1,

shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,

..., subset, na.action = na.omit)

“svm” command is used to train a support vector machine and thus, build
the model. It can be used to carry out general regression and classification, as
well as density-estimation. A formula interface is provided. If the predictor
variable include factors, the formula interface must be used to get a correct

30

model matrix. The probability model for classification fits a logistic distribu-
tion using maximum likelihood to the decision values of all binary classifiers,
and computes the a-posteriori class probabilities for the multiclass problem
using quadratic optimization. The probabilistic regression model assumes
laplace-distributed errors for the predictors, and estimates the scale param-
eter using maximum likelihood.

Once we have built an SVM clasifier, we have an object containing the fitted
model, and including

• SV: the resulting support vectors

• index: the index of the resulting support vectors in the data matrix.
Note that this index refers to the preprocessed data

• coefs: the corresponding coefficients times the training labels

• rho: the negative intercept

• sigma: in case of a probabilistic regression model, the scale param-
eter of the hypothesized laplace distribution estimated by maximum
likelihood

• probA, probB: numeric vectors of length
k(k − 1)

2
, where k is the num-

ber of classes, containing the parameters of the logistic distributions fit-

ted to the decision values of the binary classifiers

(
1

(1 + exp(ax+ b)

)
Now, we can see an example with the Breast Cancer Wisconsin dataset.

First, we install and load the “e1071” package:

install.packages(‘e1071’, dependencies=TRUE)

library(e1071)

After that, we download the dataset and delete its first column, which indi-
cates the patient’s ID number:

dataset <- read.csv(’http://archive.ics.uci.edu/ml/

machine-learning-databases/breast-cancer-wisconsin/

wdbc.data’, head=FALSE)

datos <- dataset[,2:32]

31

Then, we define index as the datos ’ number of rows. Afterwards, we ran-
domly divide the information between testset and trainset. Test set and train
set have, respectively, the 30 % and the 70 % of the samples.

index <- 1:nrow(datos)

testindex <- sample(index, trunc(length(index)*30/100))

testset <- datos[testindex,]

trainset <- datos[-testindex,]

Now, we can use a function called tune.svm. This function tunes the hyper-
parameters of the svm method using a grid search over supplied parameter
ranges:

tuned <- tune.svm(V2v., data = trainset, gamma = 10^(-6:-1),

cost = 10^(-1:1))

summary(tuned)

whose output is:

tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:

gamma cost

0.001 10

- best performance: 0.02269231

- Detailed performance results:

32

gamma cost error dispersion

1 1e-06 0.1 0.38064103 0.06718161

2 1e-05 0.1 0.38064103 0.06718161

3 1e-04 0.1 0.38064103 0.06718161

4 1e-03 0.1 0.28801282 0.05210964

5 1e-02 0.1 0.06025641 0.04768070

6 1e-01 0.1 0.07275641 0.04340948

7 1e-06 1.0 0.38064103 0.06718161

8 1e-05 1.0 0.38064103 0.06718161

9 1e-04 1.0 0.27051282 0.04288968

10 1e-03 1.0 0.05275641 0.04354054

11 1e-02 1.0 0.02769231 0.02527300

12 1e-01 1.0 0.05525641 0.04857604

13 1e-06 10.0 0.38064103 0.06718161

14 1e-05 10.0 0.27051282 0.04288968

15 1e-04 10.0 0.05525641 0.04407908

16 1e-03 10.0 0.03769231 0.03198968

17 1e-02 10.0 0.02269231 0.02240474

18 1e-01 10.0 0.06275641 0.04773855

In addition, the names of the variables can be seen typing names(datos) in
the R console,

[1] "V2" "V3" "V4" "V5" "V6" "V7" "V8" "V9" "V10" "V11" "V12" "V13"

[13] "V14" "V15" "V16" "V17" "V18" "V19" "V20" "V21" "V22" "V23"

[25] "V24" "V25" "V26" "V27" "V28" "V29" "V30" "V31" "V32"

As we mentioned before, variable V1 is the ID number which was previ-
ously deleted, so this is the reason of why "V1" does not appear in the
output above. To conclude, we implement the svm model with the radial

basis function kernel, using the best γ =
1

2σ2
and C parameters according to

the results obtained in the “tune.svm” output, i.e. γ = 0.001 and C = 10:

model <- svm(V2v., data = trainset, kernel="radial", gamma=0.001,

cost=10)

print(model)

summary(model)

Then, its output is the following:

33

Call:

svm(formula = V2v., data = trainset, kernel = "radial",

gamma = 0.001, cost = 10)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 10

gamma: 0.001

Number of Support Vectors: 82 (41 41)

Number of Classes: 2

Levels:

B M

Predict Method for SVM.

In order to predict using the classifier obtained before, the command we
must use is called predict.svm. Command “predict” is applied on an object
of class “svm”, as can be seen in the following example.

If we write “?predict.svm” in the R console, we obtain

S3 method for class ’svm’:

predict((object, newdata, decision.values = FALSE,

probability = FALSE, ..., na.action = na.omit))

This function predicts values based on a model trained by “svm”. The output
of command “predict.svm” is a vector of predicted values (for classification a
vector of labels, for density estimation a logical vector). If decision.value is
TRUE, the vector gets a “decision.value” attribute containing an n×c matrix

of all c classifiers decision values. There are
k(k − 1)

2
classifiers, where k is

the number of classes. The colnames of the matrix indicate the labels of the
two classes. If probability is TRUE, the vector gets probabilities attribute
containing an n× k matrix of the class probabilities.

Some tools are used on the command:

34

• object: describe an object of class ”svm”, created by command ”svm”

• newdata: is an object containing the new input data: either a matrix
or a sparse matrix. A vector will be transformed to a n× 1 matrix

• decision.values: is a logical controlling whether the decision values
of al binary classifiers computed in multiclass classification shall be
computed and returned

• probability: is a logical indicating whether class probabilities should
be computed and returned. only possible if the model was fitted with
the probability option enabled

• na.action: is a function to specify the action to be taken if NA’s are
found. The default action is ”na.omit”, which leads to rejection of
cases with missing values on any require variable

Using the test set as before, we will implement an example of “pre-
dict.svm” command, in order to predict the classes for each sample:

prediction <- predict(model, testset[,-1])

The -1 is because the label column to intance classes, V2, is in the first
column. To produce the confusion matrix type:

tab <- table(pred = prediction, true = testset[,1])

The confusion matrix obtained with those predictions is:

True

M B

Prediction M 55 0

B 5 110

Here, there were 110 benign instances in the test set and all of them were pre-
dicted as benign ones. On the other hand, there were 60 malign instances in
the test set, 55 of which were predicted correctly, and 5 as benign instances,
and thus erroneously.

Let us consider the following values:

• TP: true positive, i.e., malign instances correctly predicted

• TN: true negative, i.e., benign instances correctly predicted

35

• FP: false positive, i.e., benign instances predicted as malign

• FN: false negative, i.e., malign instances predicted as benign

• |P|: total of malign instances

• |N|: total of benign instances

Then, some of the performance values introduced in Chapter 2, can be cal-
culated as follows

• Sensitivity=
TP

|P |

• Specificity=
TN

|N |

• Accuracy=
TP + TN

|P |+ |N |

• Precision=
TP

TP + FP

Hence, for this particular problem we have:

• Sensitivity=
55

60
= 0.916

• Specificity=
110

110
= 1

• Accuracy=
55 + 110

60 + 110
= 0.971

• Precision=
55

55 + 0
= 1

Plot SVM Objects.

In this last part, the so-called command plot.svm is explained. In order
to make a plot of the SVM output, we simply apply the command “plot” on
a class “svm”.

As before, if we write ?plot.svm in the R console, we could see:

36

S3 method for class ’svm’

plot(x, data, formula, fill = TRUE, grid = 50, slice = list(),

symbolPalette = palette(), svSymbol = "x", dataSymbol = "o", ...)

As we can see above, the command “plot.svm” has the following arguments:

• x: object of class “svm”

• data: the data which we will visualize. Should be the same used for
fitting

• formula: the formula selecting the visualized two dimensions

• fill: a switch indicating whether a contour plot for the class regions
should be added

• slice: only needed if more than two variables are used. Is a list of
named values for the dimension held constant

• symbolPalette: the color palette used for the class the data points
and support vectors belong to

• svSymbol: symbols used for support vectors

• dataSymbol: symbols used for data points

We can use additional graphics parameters. “plot.svm” generates a scat-
ter plot of the input data of a svm fit for classification models by highlighting
the classes and support vectors. Optionally, it draws a filled contour plot of
the class regions.

3.5 SVM in AMPL

The use of AMPL in needed, since new additional constraints will be added
to SVM in order to guarantee a minimum value in a given performance mea-
surement in an independent or validation dataset. This can be difficult to
implement in R, and thus an optimization problem in integer numbers is
defined and solved.

The following AMPL model was used to solve the following dual SVM prob-
lem

37

max
∑

i∈I λi −
1
2

∑
i,j∈I λiλjyiyjK(xi, xj)

subject to:
∑

i∈I yiλi = 0
0 ≤ λi ≤ C ∀i ∈ I

In particular, the cases whenK(xi, xj) = xtixj andK(xi, xj) = exp (−γ‖xi − xj‖2)
are considered.

Model document

Number of training samples

param l;

Number of independent samples

param l2;

Number of variables

param n;

C parameter of SVM

param C;

Parameters of RBF kernel

param gamma;

Label vectors

param y {1..l};
param y2 {1..l2};

Data (variables) matrices

param x{1..l,1..n};
param x2{1..l2,1..n};

Dual problem variables a (lambda) and C constraint

var a{1..l} >= 0, <= C;

Optimization problem (linear kernel)

maximize svmlin: sum{i in 1..l}a[i]-0.5*
sum{i in 1..l,j in 1..l}a[i]*a[j]*y[i]*y[j]*
(sum{k in 1..n}x[i,k]*x[j,k]);

38

Optimization problem (RBF kernel)

maximize svmrad: sum {i in 1..l}a[i]-0.5*
sum{i in 1..l,j in 1..l}a[i]*a[j]*y[i]*y[j]*
exp(-gamma*(sum{k in i..n}(x[i,k]-x[j,k])^2));

Constraints

s.t. rest1: sum{i in 1..l}a[i]*y[i]=0;

Command document

We solve SVM optimization problem

solve;

And display the a variables

display a;

Initialization of some required parameters

param b{1..n} default 0;

param b0 default 0;

param counter default 0;

param primea{1..l} default 0;

param confmat{1..2,1..2} default 0;

param prediction{1..l2} default 0;

b (beta) vector from linear kernel

let {j in 1..n} b[j]:= sum{i in 1..l} a[i]*y[i]*x[i,j];

Make a counter of support vectors and display results

for{i in 1..l} {
if a[i] >=10^(-8) then let counter:= counter+1;

if a[i] >=10^(-8) then let primea[i]:=1;

}
display counter;

display primea;

b0 from linear kernel

let b0 := 1/counter*(sum{ i in 1..l} primea[i]*

(y[i]- sum{j in 1..l} a[j]*y[j]*

(sum{k in 1..n} x[j,k]*x[i,k])));

b0 from radial kernel

39

let b0 := 1/counter*(sum{ i in 1..l} primea[i]*

(y[i]- sum{j in 1..l} a[j]*y[j]*

(sum{k in 1..n}exp(-gamma*(sum{k in i..n}(x[i,k]-x[j,k])^2)))));

Show b (beta) from linear kernel

display b;

Show b0 from linear/radial kernel

display b0;

Prediction linear kernel

let {j in 1..l2} prediction[j]:=b0+sum{i in 1..n}b[i]*x2[j,i];

prediction radial kernel

let {jj in 1..l2} prediction[jj]:=

b0+sum{j in 1..l}primea[j]*a[j]*y[j]*
exp(-gamma*(sum{k in i..n}(x2[jj,k]-x[j,k])2̂))

Prediction as -1 or +1

let {j in 1..l2} prediction[j]:=

if prediction[j] <= 0 then -1 else 1;

Show the prediction vector

display prediction;

Construction of confusion matrix

for {i in 1..l2}{
if prediction[i] == y2[i] and prediction[i]=1

then let confmat[1,1]:= confmat[1,1] + 1;

}
for {i in 1..l2}{

if prediction[i] == y2[i] and prediction[i]=-1

then let confmat[2,2]:= confmat[2,2] + 1;

}
for {i in 1..l2}{

if prediction[i]*y2[i]==-1 and prediction[i]=1

then let confmat[1,2]:= confmat[1,2] + 1;

}
for {i in 1..l2}{

if prediction[i]*y2[i]==-1 and prediction[i]=-1

then let confmat[2,1]:= confmat[2,1] + 1;

40

}

Show confusion matrix

printf "confmat is the confusion matrix of our classification

problem. confmat[1,1] is TP, confmat[2,2] is TN, confmat[1,2]

is FP and confmat[2,1] is FN \n";
display confmat;

3.5.1 Examples. Iris Data

Now, we will make three different experiments with the code above. As data,
we will use iris data from R. As such data is composed of three classes and
we focus in binary classification, we will select two of them for each example.
In the first example we choose setosa and versicolor, and in the second and
third ones, versicolor and virginica. In order to have an easier representa-
tion of the data, we only use two variables, both to represent the data and
to build the SVM classifier. The first example, is a linearly separable case.
The second one, is an almost linearly separable case. In the last one, data
are completely “mixed”.

In the three examples, we will select (randomly) as training set a 66% of
the total amount of samples, and the rest will be used as test set.

Linearly separable data. Hard margin SVM. The next picture shows
the data we have select as training.

41

Once the optimization problem is solved, the values of b and b0 (β and
β0, respectively) from the primal problem are obtained:

b = (-1.29412,-0.823529)t

b0 = 3.78824

And thus, the separating line results

X2 =
−1.29412

0.823529
X1 +

3.78824

0.823529

where X1 ≡ Petal.Length and X2 ≡ Petal.Width.

In the picture below we can observe how such line separates perfectly the
data.

In fact, the confusion table obtained when our previous optimization
problem is solved is

True

setosa versicolor

Prediction setosa 33 0

versicolor 0 33

Hence

CCRsetosa = CCRversicolor = Accuracy = Precision = 1,

42

where CRCk is the Correct Clasification Rate for class k, introduced in Chap-
ter 2.

Also, after making the validation in the test data, we obtain the confusion
table

True

setosa versicolor

Prediction setosa 17 0

versicolor 0 17

so the performance measurements in this validation dataset, as before in the
training one, are

CCRsetosa = CCRversicolor = Accuracy = Precision = 1.

In fact, the results we obtain in the validation dataset can be seen in the
following picture, which confirms the values above.

Nonlinearly separable data. Soft margin SVM. Let us present a sec-
ond example but in non-separable data this time. The C value chosen in this
experiment will be C = 1.

The picture below shows the new dataset selected as training.

43

Once the optimization problem is solved again, the values of b and b0 (β
and β0) from the primal problem are:

b = (-1.91555e-09,6.66667)t

b0 = -10.9

And thus, the separating line results

X2 =
−1.91555e− 09

−6.66667
X1 +

−10.9

−6.66667

where X1 ≡ Sepal.Width and X2 ≡ Petal.Width.

Now, we can observe in the figure below that data is not separated at all.

44

In fact, the confusion table obtained for this training data is

True

versicolor virginica

Prediction versicolor 25 2

virginica 1 38

So

• CCRversicolor =
25

26
= 0, 9615

• CCRvirginica =
38

40
= 0, 95

• Precision =
25

27
= 0, 9259

• Accuracy =
63

66
= 0, 9545.

Now, as before, we validate the model in the test data. What we got can
be seen in the picture below

In this case, the confusion table is

True

versicolor virginica

Prediction versicolor 23 2

virginica 1 8

and thus

45

• CCRversicolor =
23

24
= 0, 9583

• CCRvirginica =
8

10
= 0, 8

• Precision =
23

25
= 0, 92

• Accuracy =
31

34
= 0, 9118.

Nonlinearly separable data. Radial basis function SVM. The next
picture shows the data we have select as training.

As we can observe, data are completely mixed. Because of this fact, we
use the radial basis function in this case.

As before, we run the AMPL code (with C = 1 and γ = 0.5), and the
confusion table obtained is

True

versicolor virginica

Prediction versicolor 26 10

virginica 7 23

and thus

• CCRversicolor =
26

33
= 0, 7879

46

• CCRvirginica =
23

33
= 0, 697

• Precision =
26

36
= 0, 7222

• Accuracy =
49

66
= 0, 7424.

Once again, we validate this model with the test dataset. Such dataset
is represented in the next picture.

As in the training dataset case, data is completely mixed. Now, the
confusion table is

True

versicolor virginica

Prediction versicolor 12 6

virginica 5 11

and thus

• CCRversicolor =
12

17
= 0, 7059

• CCRvirginica =
11

17
= 0, 6471

• Precision =
12

18
= 0, 6667

• Accuracy =
23

34
= 0, 6765.

47

3.5.2 Examples. Breast Cancer Wisconsin data

Now, as in Sections 3.4, we will use Breast Cancer Wisconsin data, [9]. In
this section, however, we will use only two of the 30 total variables that there
are in the complete dataset. The reason of why we do that is because we
want a “bad” separation between the data in order to compare the results
obtained here with the ones that we will obtain with the new formulation of
SVM presented in Chapter 4, in which we impose to have a minimum value
of a given perfomance index.

As before, data will be separated into the training set (70%) and the test
set (30%). Also, as the data we will use is only composed by two variables,
they can be represented in the plane, giving

First, we apply a linear SVM to this data. For that, we select the best C
in a range of C of the form {2−6, 2−5, . . . , 25, 26}.

For each C the different perfomance values obtained are

48

C TP TN FP FN Sens Spec Acc Prec
2−6 102 0 68 0 1 0 0.6 0.6
2−5 102 0 68 0 1 0 0.6 0.6
2−4 102 3 65 0 1 0.04 0.62 0.61
2−3 93 30 38 9 0.91 0.44 0.72 0.71
2−2 97 24 44 5 0.95 0.35 0.71 0.69
2−1 101 5 63 1 0.99 0.07 0.62 0.62
20 97 22 46 5 0.95 0.32 0.7 0.68
21 94 27 41 8 0.92 0.4 0.71 0.7
22 84 41 27 18 0.82 0.6 0.74 0.76
23 84 41 27 18 0.82 0.6 0.74 0.76
24 84 42 26 18 0.82 0.62 0.74 0.76
25 84 42 26 18 0.82 0.62 0.74 0.76
26 84 42 26 18 0.82 0.62 0.74 0.76

Now, we apply a radial SVM. As in the linear case, we will use a set
of ranges, this time for both C and γ, the parameters of radial SVM, so
actually we will use a grid. The grid will be composed by the values of
C = {2−5, 2−4, . . . , 24, 25} and γ = {2−5, 2−4, . . . , 24, 25}.

Now, the results obtained are shown in the following table

C γ TP TN FP FN Sens Spec Acc Prec
2−5 2−5 102 0 68 0 1.00 0.00 0.60 0.60
2−5 2−4 102 0 68 0 1.00 0.00 0.60 0.60
2−5 2−3 102 0 68 0 1.00 0.00 0.60 0.60
2−5 2−2 102 0 68 0 1.00 0.00 0.60 0.60
2−5 2−1 102 0 68 0 1.00 0.00 0.60 0.60
2−5 20 102 0 68 0 1.00 0.00 0.60 0.60
2−5 21 96 12 56 6 0.94 0.18 0.64 0.63
2−5 22 90 17 51 12 0.88 0.25 0.63 0.64
2−5 23 84 24 44 18 0.82 0.35 0.64 0.66
2−5 24 82 32 36 20 0.80 0.47 0.67 0.69
2−5 25 87 34 34 15 0.85 0.50 0.71 0.72
2−4 2−5 102 0 68 0 1.00 0.00 0.60 0.60
2−4 2−4 102 0 68 0 1.00 0.00 0.60 0.60
2−4 2−3 102 0 68 0 1.00 0.00 0.60 0.60
2−4 2−2 102 0 68 0 1.00 0.00 0.60 0.60
2−4 2−1 102 3 65 0 1.00 0.04 0.62 0.61
2−4 20 91 14 54 11 0.89 0.21 0.62 0.63

Continued on next page

49

Table 3.2 – Continued from previous page
C γ TP TN FP FN Sens Spec Acc Prec

2−4 21 82 20 48 20 0.80 0.29 0.60 0.63
2−4 22 77 30 38 25 0.75 0.44 0.63 0.67
2−4 23 77 38 30 25 0.75 0.56 0.68 0.72
2−4 24 79 39 29 23 0.77 0.57 0.69 0.73
2−4 25 79 39 29 23 0.77 0.57 0.69 0.73
2−3 2−5 102 0 68 0 1.00 0.00 0.60 0.60
2−3 2−4 102 0 68 0 1.00 0.00 0.60 0.60
2−3 2−3 102 0 68 0 1.00 0.00 0.60 0.60
2−3 2−2 99 4 64 3 0.97 0.06 0.61 0.61
2−3 2−1 90 14 54 12 0.88 0.21 0.61 0.63
2−3 20 81 20 48 21 0.79 0.29 0.59 0.63
2−3 21 75 31 37 27 0.74 0.46 0.62 0.67
2−3 22 74 43 25 28 0.73 0.63 0.69 0.75
2−3 23 73 43 25 29 0.72 0.63 0.68 0.74
2−3 24 73 40 28 29 0.72 0.59 0.66 0.72
2−3 25 74 41 27 28 0.73 0.60 0.68 0.73
2−2 2−5 102 0 68 0 1.00 0.00 0.60 0.60
2−2 2−4 102 0 68 0 1.00 0.00 0.60 0.60
2−2 2−3 98 6 62 4 0.96 0.09 0.61 0.61
2−2 2−2 90 15 53 12 0.88 0.22 0.62 0.63
2−2 2−1 79 24 44 23 0.77 0.35 0.61 0.64
2−2 20 74 36 32 28 0.73 0.53 0.65 0.70
2−2 21 74 43 25 28 0.73 0.63 0.69 0.75
2−2 22 70 43 25 32 0.69 0.63 0.66 0.74
2−2 23 69 44 24 33 0.68 0.65 0.66 0.74
2−2 24 71 42 26 31 0.70 0.62 0.66 0.73
2−2 25 72 43 25 30 0.71 0.63 0.68 0.74
2−1 2−5 102 0 68 0 1.00 0.00 0.60 0.60
2−1 2−4 98 6 62 4 0.96 0.09 0.61 0.61
2−1 2−3 90 15 53 12 0.88 0.22 0.62 0.63
2−1 2−2 77 30 38 25 0.75 0.44 0.63 0.67
2−1 2−1 74 43 25 28 0.73 0.63 0.69 0.75
2−1 20 71 43 25 31 0.70 0.63 0.67 0.74
2−1 21 70 44 24 32 0.69 0.65 0.67 0.74
2−1 22 68 44 24 34 0.67 0.65 0.66 0.74
2−1 23 67 44 24 35 0.66 0.65 0.65 0.74
2−1 24 70 43 25 32 0.69 0.63 0.66 0.74
2−1 25 70 44 24 32 0.69 0.65 0.67 0.74

Continued on next page

50

Table 3.2 – Continued from previous page
C γ TP TN FP FN Sens Spec Acc Prec
20 2−5 98 6 62 4 0.96 0.09 0.61 0.61
20 2−4 90 15 53 12 0.88 0.22 0.62 0.63
20 2−3 75 33 35 27 0.74 0.49 0.64 0.68
20 2−2 70 44 24 32 0.69 0.65 0.67 0.74
20 2−1 67 45 23 35 0.66 0.66 0.66 0.74
20 20 67 45 23 35 0.66 0.66 0.66 0.74
20 21 67 45 23 35 0.66 0.66 0.66 0.74
20 22 67 45 23 35 0.66 0.66 0.66 0.74
20 23 67 45 23 35 0.66 0.66 0.66 0.74
20 24 70 44 24 32 0.69 0.65 0.67 0.74
20 25 70 44 24 32 0.69 0.65 0.67 0.74
21 2−5 90 15 53 12 0.88 0.22 0.62 0.63
21 2−4 74 38 30 28 0.73 0.56 0.66 0.71
21 2−3 67 46 22 35 0.66 0.68 0.66 0.75
21 2−2 58 47 21 44 0.57 0.69 0.62 0.73
21 2−1 63 47 21 39 0.62 0.69 0.65 0.75
21 20 66 46 22 36 0.65 0.68 0.66 0.75
21 21 67 45 23 35 0.66 0.66 0.66 0.74
21 22 67 45 23 35 0.66 0.66 0.66 0.74
21 23 67 46 22 35 0.66 0.68 0.66 0.75
21 24 70 44 24 32 0.69 0.65 0.67 0.74
21 25 70 46 22 46 0.60 0.68 0.63 0.76
22 2−5 74 42 26 28 0.73 0.62 0.68 0.74
22 2−4 64 47 21 38 0.63 0.69 0.65 0.75
22 2−3 57 50 18 45 0.56 0.74 0.63 0.76
22 2−2 55 50 18 47 0.54 0.74 0.62 0.75
22 2−1 58 49 19 44 0.57 0.72 0.63 0.75
22 20 65 46 22 37 0.64 0.68 0.65 0.75
22 21 67 45 23 35 0.66 0.66 0.66 0.74
22 22 67 45 23 35 0.66 0.66 0.66 0.74
22 23 67 46 22 35 0.66 0.68 0.66 0.75
22 24 70 44 24 32 0.69 0.65 0.67 0.74
22 25 69 46 22 33 0.68 0.68 0.68 0.76
23 2−5 60 48 20 42 0.59 0.71 0.64 0.75
23 2−4 54 50 10 48 0.53 0.83 0.64 0.84
23 2−3 53 51 17 49 0.52 0.75 0.61 0.76
23 2−2 54 50 18 48 0.53 0.74 0.61 0.75
23 2−1 58 49 19 44 0.57 0.72 0.63 0.75

Continued on next page

51

Table 3.2 – Continued from previous page
C γ TP TN FP FN Sens Spec Acc Prec
23 20 65 47 21 37 0.64 0.69 0.66 0.76
23 21 67 46 22 35 0.66 0.68 0.66 0.75
23 22 67 45 23 35 0.66 0.66 0.66 0.74
23 23 67 46 22 35 0.66 0.68 0.66 0.75
23 24 70 44 24 32 0.69 0.65 0.67 0.74
23 25 69 46 22 33 0.68 0.68 0.68 0.76
24 2−5 0 68 0 102 0.00 1.00 0.40 -
24 2−4 0 68 0 102 0.00 1.00 0.40 -
24 2−3 0 68 0 102 0.00 1.00 0.40 -
24 2−2 1 68 0 101 0.01 1.00 0.41 1.00
24 2−1 16 68 0 86 0.16 1.00 0.49 1.00
24 20 41 60 8 61 0.40 0.88 0.59 0.84
24 21 53 50 18 49 0.52 0.74 0.61 0.75
24 22 58 49 19 44 0.57 0.72 0.63 0.75
24 23 63 47 21 39 0.62 0.69 0.65 0.75
24 24 67 47 21 35 0.66 0.69 0.67 0.76
24 25 67 46 22 35 0.66 0.68 0.66 0.75
25 2−5 0 68 0 102 0.00 1.00 0.40 -
25 2−4 0 68 0 102 0.00 1.00 0.40 -
25 2−3 0 68 0 102 0.00 1.00 0.40 -
25 2−2 1 68 0 101 0.01 1.00 0.41 1.00
25 2−1 16 68 0 86 0.16 1.00 0.49 1.00
25 20 41 60 8 61 0.40 0.88 0.59 0.84
25 21 53 50 18 49 0.52 0.74 0.61 0.75
25 22 58 49 19 44 0.57 0.72 0.63 0.75
25 23 63 47 21 39 0.62 0.69 0.65 0.75
25 24 67 47 21 35 0.66 0.69 0.67 0.76
25 25 67 46 22 35 0.66 0.68 0.66 0.75

52

Chapter 4

Adding new constraints in
SVM

In this chapter we make an attempt to improve the classification of the SVM
(in one or more of the performance indices such as sensitivity, specificity,...).
In order to do that, a new set of constraints is proposed. Before we make
the proposal of new constraints, some theory is presented.

4.1 Theoretical motivation

Let us suppose that we have available a non-empty set of data Ω,

Ω = {ui = (xi, yi) : i = 1, . . . , n}

where each ui ∈ Ω has two components: with xi ∈ Rr an r-dimensional
vector of predictor variables and yi ∈ {−1,+1} two given classes of ui

(xi, yi)
n
i=1 where yi ∈ {−1, 1} and x ∈ Rr.

Let p be

• the probability of correct classification of any sample in a class, i.e.,

p = Sensitivity =
true positive

true positive + false negative

p = Specificity =
true negative

true negative + false positive

54

• a predictive value

p = PPV =
true positive

true positive + false positive

p = NPV =
true negative

true negative + false negative
;

• or another measurement, such as e.g. the accuracy, defined as the over-
all probability of correct classification

Our objective is to get a classifier such that p ≥ p0, where p0 is a fixed
desired value. As the distribution of the data is unknown, we cannot evaluate
p. Instead, given a independent sample Ind, we can calculate an estimator
p̂(Ind) of p, and try to impose p̂(Ind) ≥ p0.

But if we have a classifier which gets p̂(Ind) ≥ p0 for a given dataset,
it does not mean it will happen in other different samples: it can not be
guaranteed that the probability of correct classification to be greater than
a certain value. Instead, for a random variable X we have several ways to
obtain an inequality of the form

P (X − E[X] ≥ c) ≤ g(c),

which we can be solved for c and make g(c) = α. Then, we have

P (E[X] ≥ X − cα) ≥ 1− α,

i.e., an 1− α% confidence interval (CI) for E[X] is (X − cα, 1).

Although the theory showed above about the CI seems not to have a
strong relationship with our desire of getting a classifier such that p ≥ p0, it
has: if we have a set of independent variables {Yi}i∈S, Yi ∼ Be(p) ∀i such
that

Yi =

{
1, if record i is well classified
0, otherwise

then

Y =
1

|S|
∑
i∈S

Yi = p̂(Ind),

and
E[Y] = p = E[p̂(Ind)],

55

where S is a set of samples in which we are focusing, such as e.g. the samples
that correspond to the positive class (if we want a CI for the sensitivity), and
where Y and E[Y] act, respectively, like the previous X and E[X].

So what we can do is to search for a classifier such that, taking an inde-
pendent dataset, we can ensure that the value p0 is in the CI for E[Y] = p.
If we want that the lower endpoint of such CI is greater than p0, then
Y − cα = p̂(Ind)− cα ≥ p0, thus p̂(Ind) ≥ p0 + cα = p′0.

In the literature, there exist many ways to obtain the mentioned CI.
Confidence intervals for the mean of a random variable, Y , are based on the
mean of i.i.d. samples of that random variable:

Y =
1

n

n∑
i=1

Yi, Y1, Y2, . . . i.i.d.

Now, in the next subsections, we present tree ways to obtain such CI.

4.1.1 Markov’s inequality

Markov’s inequality may be used to construct a fixed-width CI for p =
E[p̂(Ind)]. This inequality makes relatively mild assumptions on the dis-
tribution of the random variable.

Let X be a nonnegative random variable and X + c ≥ 0, then

EX =

∫
xdF (x) =

∫ E[X]+c

0

xdF (x)+

∫ ∞
E[X]+c

xdF (x) ≥ 0+(E[X]+c)P (X > E[X]+c)⇒

⇒ P (X > E[X] + c) ≤ E[X]

E[X] + c

In our case, we have X = Y = p̂(Ind), and E[X] = E[Y] = E[p̂(Ind)] = p,
so

P (p̂(Ind) ≥ p+ c) ≤ p

p+ c
,

thus
P (p ≥ p̂(Ind)− c) ≥ 1− p

p+ c
.

Then, if we want an 1− α% CI for p, it should be

α =
p

p+ c
⇒ (p+ c)α = p⇒ pα + cα = p⇒ cα = p(1− α)⇒ c =

p(1− α)

α

56

and the CI resulting is

(p̂(Ind)− p(1− α)

α
, 1).

So, if we want the lower endpoint of the CI greater than p0, it must be

p0 ≤ p̂(Ind)− p(1− α)

α
, hence p̂(Ind) ≥ p0 +

p(1− α)

α
= p′0.

4.1.2 Central Limit Theorem (CLT)

Another option is to use the CLT, which describes how the distribution of
p̂(Ind) = Y approaches a Gaussian distribution as n→∞, i.e.

p̂ ≈ N
(
p,
p(1− p)

n

)
,

where p = E[p̂(Ind)].

Then,

P (p̂(Ind)− p > c) ≈ P (N
(
p,
p(1− p)

n

)
− p > c) =

= P (N
(

0,
p(1− p)

n

)
> c) = P (N (0, 1) >

c
√
n√

p(1− p)
) ≤

≤ P (N (0, 1) > 2c
√
n)

Which implies that

P (p ≥ p̂(Ind)− c) ≥ P (N (0, 1) ≤ 2c
√
n)

Therefore if we want to obtain an 1− α% CI for p, it must be

P (N (0, 1) ≤ 2c
√
n) = 1− α⇒ 2c

√
n = Φ−1(1− α)⇒

⇒ c =
Φ−1(1− α)

2
√
n

and the CI that we obtain is

(p̂(Ind)− Φ−1(1− α)

2
√
n

, 1)

And if we impose that the lower endpoint of the previous CI is greater than

p0, then p0 ≤ p̂(Ind)− Φ−1(1− α)

2
√
n

⇒ p̂(Ind) ≥ p0 +
Φ−1(1− α)

2
√
n

= p′0.

57

4.1.3 Hoeffding’s inequality

The last method we are going to discuss is based on Hoeffding’s inequality, [8].
Here, we suppose X1, . . . , Xn i.i.d., with 0 ≤ Xi ≤ 1 ∀i. Hence, our case is in
the conditions of this inequality, because we consider the random variables
{Yi}i∈S mentioned before. Then, for any c > 0, Hoeffding’s inequality says

P (X − E[X] ≥ c) ≤ e−2nc
2

In the case that concerns us, we haveX = Y = p̂(Ind) and E[X] = E[Y] = p,
so

P (p̂(Ind)− p ≥ c) ≤ e−2nc
2

so
P (p ≥ p̂(Ind)− c) ≥ 1− e−2nc2

And if we want to get an 1− α% CI for p as before, then

1−e−2nc2 = 1−α⇒ e−2nc
2

= α⇒ −2nc2 = logα⇒ c2 =
logα

−2n
=⇒
c>0

c =

√
logα

−2n

and the CI we get is

(p̂(Ind)−
√

logα

−2n
, 1)

Therefore, if we impose as before, that the lower endpoint of this CI is greater

than p0, then p0 ≤ p̂(Ind)−
√

logα

−2n
⇒ p̂(Ind) ≥ p0 +

√
logα

−2n
= p′0.

4.2 General framework

Suppose that we have available a non-empty set of training data Ω1, where
each ui ∈ Ω1 has two components:

Ω1 = {ui = (xi, yi) : i = 1, . . . , n}

with xi ∈ Rr an r-dimensional vector of predictor variables and yi ∈ {−1,+1}
two given classes of ui

(xi, yi)
n
i=1 where yi ∈ {−1, 1} and x ∈ Rr.

In addition, let us consider another set of data, Ω2, independent from the
previous one, formed by points of the form

Ω2 = {u′i = (xi, yi) : i = n+ 1, . . . , n′}

58

with xi ∈ Rr an r-dimensional vector of predictor variables and yi ∈ {−1,+1}
two given classes of u′i (∀i = n+ 1, . . . , n′), as before.

Furthermore, let I and Ind be, respectively, the indices set of the data
in Ω1 and Ω2.

As we have studied in the previous chapter, SVM can be expressed as the
following optimization problem in general:

max
∑

i∈I λi −
1
2

∑
i,j∈I λiλjyiyjK(xi, xj)

subject to:
∑

i∈I yiλi = 0
0 ≤ λi ≤ C ∀i ∈ I

Since SVM is not more than an optmization problem, new constraints
can be added. So, as an example, we can consider some performance mea-
surements in the independent set, and impose their values to be greater than
a certain threshold. Some examples of such performance measurements can
be

• A given sensitivity or specificity

• Probability of correct and incorrect classification

• Sum of probabilities (e.g., sensitivity + specificity)

• · · ·

So we want a new formulation of SVM, simply adding some new con-
straints, to get a SVM of the form

min
∑

i∈I λi −
1
2

∑
i,j∈I λiλjyiyjK(xi, xj)

subject to:
∑

i∈I yiλi = 0
0 ≤ λi ≤ C ∀i ∈ I

µ1(u
′
i, λ) ≥ a1

...
µl(u

′
i, λ) ≥ al

where (µi)
l
i=1 are some performance measures and (ai)

l
i=1 are their fixed lower

bounds.

It is very important to remark that, in the linear kernel case, it is not
completely necessary the dual formulation of SVM if we want to impose the
value of any perfomance measurement to be greater than a given value. This
fact can be observed in the later subsections.

59

4.2.1 m samples of independent set well classified

In order to classify in the correct class some of the instances in the inde-
pendent dataset Ω2, a new constraint must be imposed. First, we introduce
some new values zi, i ∈ Ind, defined as:

zi =

{
1, if individual i is well classified.
0, otherwise.

We consider first the values zi fixed.

For simplicity, we consider the linearly nonseparable case as basis. So the
original primal optimization problem is given by

minβ0,β,εi
1

2
βtβ + C

∑
i∈I εi

subject to: yi(β0 + βtxi) + εi ≥ 1, ∀i ∈ I
β0 ∈ R, β ∈ Rr

εi ≥ 0,∀i ∈ I
In this way, the new primal formulation of the desired SMV results

minβ0,β,εi
1

2
βtβ + C

∑
i∈I εi +M

∑
i∈Ind εizi

subject to: yi(β0 + βtxi) + εi ≥ 1, ∀i ∈ I
β0 ∈ R, β ∈ Rr

εi ≥ 0,∀i ∈ I
yi(β0 + βtxi) + εi ≥ 1, ∀i ∈ Ind
εi ≥ 0,∀i ∈ Ind

where M is sufficiently large.

We can group some of the constraints, and thus obtaining

minβ0,β,εi
1

2
βtβ + C

∑
i∈I εi +M

∑
i∈Ind εizi

subject to: yi(β0 + βtxi) + εi ≥ 1, ∀i ∈ I ∪ Ind
β0 ∈ R, β ∈ Rr

εi ≥ 0,∀i ∈ I ∪ Ind.

We now build its dual problem. In order to do this, we need to use
the KKT method. Fixed λ = (λ1, . . . , λn, λn+1, . . . , λn′)t ≥ 0 and η =
(η1, . . . , ηn, ηn+1, . . . , ηn′)t ≥ 0, let L(β0, β, λ, η, εi) be the Lagrange function,
defined as follows:

L(β0, β, λ, η, εi) =

60

=
1

2
βtβ+C

∑
i∈I

εi+M
∑
i∈Ind

εizi−
∑

i∈I∪Ind

λi[yi(β0+βtxi)−(1−εi)]−
∑

i∈I∪Ind

ηiεi

and proceeding as the KKT method says,

∂

∂β
L(β, β0, λ, η, εi): β −

∑
i∈I∪Ind λiyixi = 0

∂

∂β0
L(β, β0, λ, η, εi): −

∑
i∈I∪Ind λiyi = 0

∂

∂εi
L(β, β0, λ, η, εi):

{
C − λi − ηi = 0, ∀i ∈ I
Mzi − λi − ηi = 0, ∀i ∈ Ind

Substituting in the equation L(β0, β, λ, η, εi), we obtain the dual of the
problem above formulated. Hence:

maxλ,η
∑

i∈I∪Ind λi −
1

2

∑
i,j∈I∪Ind λiλjyiyjx

t
ixj

subject to:
∑

i∈I∪Ind yiλi = 0

λi =

{
C − ηi, ∀i ∈ I
Mzi − ηi, ∀i ∈ Ind

ηi, λi ≥ 0, ∀i ∈ I ∪ Ind
Equivalently, the problem above can be formulated as

maxλ
∑

i∈I∪Ind λi −
1

2

∑
i,j∈I∪Ind λiλjyiyjx

t
ixj

subject to:
∑

i∈I∪Ind yiλi = 0
λi ≤ C, ∀i ∈ I
λi ≤Mzi,∀i ∈ Ind
λi ≥ 0,∀i ∈ Ind ∪ I

But this is the formulation when the zi are previously fixed. We can
reformulate the previous optimization problem considering zi, i ∈ Ind as
binary variables, so we do not know which points are going to use the hard
or soft margins and impose that at least m points of the independent set are
going to be well classified, i.e, m points (at least) will use hard margin. This
leads us to the following problem:

maxλ,z
∑

i∈I∪Ind λi −
1

2

∑
i,j∈I∪Ind λiλjyiyjx

t
ixj

subject to:
∑

i∈I∪Ind yiλi = 0
λi ≤ C, ∀i ∈ I
λi ≤Mzi,∀i ∈ Ind∑

i∈Ind zi ≥ m
λi ≥ 0,∀i ∈ Ind ∪ I
zi ∈ {0, 1}, ∀i ∈ Ind.

61

Furthermore we can generalize the previous formulation. Using the kernel
trick as in Section 3.2.1, we get the following optimization problem

maxλ,z
∑

i∈I∪Ind λi −
1

2

∑
i,j∈I∪Ind λiλjyiyjK(xi, xj)

subject to:
∑

i∈I∪Ind yiλi = 0
λi ≤ C, ∀i ∈ I
λi ≤Mzi,∀i ∈ Ind∑

i∈Ind zi ≥ m
λi ≥ 0,∀i ∈ I ∪ Ind
zi ∈ {0, 1},∀i ∈ Ind

This problem is, as the standard SVM, concave quadratic with linear
constraints. However, it has, together with the continuous variables λi, the
binary variables zi, which makes the problem much harder to solve.

As mentioned at the begining of this section, in the linear case we can
use the primal formulation of SVM. It results:

min βtβ + C
∑

i∈I εi
subject to: yi(β0 + βtxi) + εi ≥ 1, ∀i ∈ I

yj(β0 + βtxj) ≥ −M(1− zj), ∀j ∈ Ind∑
i∈Ind zi ≥ m

εi ≥ 0, ∀i ∈ I
zj ∈ {0, 1}, ∀j ∈ Ind,

where zi and M are defined as before.

4.2.2 Specifying a minimum sensitivity and specificity

From the previous formulation, we can include other constraints in order to
get a desired value of sensitivity and specificity.

Having zi defined as before, it is easy to check that the number of samples

correctly classify in the −1 and +1 are, respectively,
∑

i∈Ind
zi(1− yi)

2
and∑

i∈Ind
zi(yi + 1)

2
. As the total number of positive and negative samples are,

respectively,
∑

i∈Ind
yi + 1

2
and

∑
i∈Ind

1− yi
2

, we obtain:

62

Formulation to specify a minimum sensitivity

maxλ,z
∑

i∈I∪Ind λi −
1

2

∑
i,j∈I∪Ind λiλjyiyjK(xi, xj)

subject to:
∑

i∈I∪Ind yiλi = 0
λi ≤ C, ∀i ∈ I
λi ≤Mzi,∀i ∈ Ind∑

i∈Ind
zi(yi + 1)

2∑
i∈Ind

yi + 1

2

≥ a1

λi ≥ 0,∀i ∈ I ∪ Ind
zi ∈ {0, 1},∀i ∈ Ind.

In the linear kernel case it can be also formulated as

min βtβ + C
∑

i∈I εi
subject to: yi(β0 + βtxi) + εi ≥ 1, ∀i ∈ I

yj(β0 + βtxj) ≥ −M(1− zj), ∀j ∈ Ind∑
i∈Ind

zi(yi + 1)

2∑
i∈Ind

yi + 1

2

≥ a1

εi ≥ 0, ∀i ∈ I
zj ∈ {0, 1}, ∀j ∈ Ind.

Formulation to specify a minimum specificity

maxλ,z
∑

i∈I∪Ind λi −
1

2

∑
i,j∈I∪Ind λiλjyiyjK(xi, xj)

subject to:
∑

i∈I∪Ind yiλi = 0
λi ≤ C, ∀i ∈ I
λi ≤Mzi,∀i ∈ Ind∑

i∈Ind
zi(1− yi)

2∑
i∈Ind

1− yi
2

≥ a2

λi ≥ 0,∀i ∈ I ∪ Ind
zi ∈ {0, 1},∀i ∈ Ind.

63

Again, in the linear kernel case, it can be written as

min βtβ + C
∑

i∈I εi
subject to: yi(β0 + βtxi) + εi ≥ 1, ∀i ∈ I

yj(β0 + βtxj) ≥ −M(1− zj), ∀j ∈ Ind∑
i∈Ind

zi(yi + 1)

2∑
i∈Ind

yi + 1

2

≥ a2

εi ≥ 0, ∀i ∈ I
zj ∈ {0, 1}, ∀j ∈ Ind.

4.2.3 Specifying a minimum accuracy

As the total number of samples well classified is
∑

i∈Ind zi and the total
number of samples in the independent sample is n′, the acuracy is given by
the quotient of those two values. Thus, the formulation to specify a minimum
value of accuracy is given by

maxλ,z
∑

i∈I∪Ind λi −
1

2

∑
i,j∈I∪Ind λiλjyiyjK(xi, xj)

subject to:
∑

i∈I∪Ind yiλi = 0
λi ≤ C, ∀i ∈ I
λi ≤Mzi,∀i ∈ Ind∑

i∈Ind zi

n′
≥ a3

λi ≥ 0,∀i ∈ I ∪ Ind
zi ∈ {0, 1},∀i ∈ Ind.

Once again, in the linear case this is equivalent to

min βtβ + C
∑

i∈I εi
subject to: yi(β0 + βtxi) + εi ≥ 1, ∀i ∈ I

yj(β0 + βtxj) ≥ −M(1− zj), ∀j ∈ Ind∑
i∈Ind zi

n′
≥ a3

εi ≥ 0, ∀i ∈ I
zj ∈ {0, 1}, ∀j ∈ Ind.

4.3 AMPL

A common formulation in AMPL of the linear kernel SVM above can be
expressed as

64

Number of training samples

param l;

Number of test/independent samples

param l2;

Number of variables

param n;

C parameter of SVM

param C;

Large M

param M;

Parameter b SVM

param b;

Labels vectors

param y {1..l};
param y2 {1..l2};

Data (variables) matrices

param x{1..l,1..n};
param x2{1..l2,1..n};

Other SVM variables

var w{1..n};
var eps{1..l} >= 0;

Variables if hard margin for test samples

var z{1..l2} binary;

Optimization problem (linear kernel)

minimize svm: sum{i in 1..n}w[i]*w[i] + C*sum{j in 1..l}(eps[j]);

Constraints

subject to r1{i in 1..l}: y[i]*((sum{j in 1..n}w[j]*x[i,j])+b)+xi[i]>=1;

• Constraint of Amount

65

subject to r2{i in 1..l2}:
y2[i]*(sum{j in 1..n}w[j]*x2[i,j]+b)>= -(1-z[i])*M;

subject to restAm: (sum{i in 1..l2} z[i])>= a1

• Constraint of Accuracy
subject to r2{i in 1..l2}:

y2[i]*(sum{j in 1..n}w[j]*x2[i,j]+b)>= -(1-z[i])*M;

subject to restAcc: (sum{i in 1..l2} z[i])/l2 >= a2

• Constraint of Sensitivity
subject to r3{i in 1..l2 : y[i]=1}:

y2[i]*(sum{j in 1..n}w[j]*x2[i,j]+b)>= -(1-z[i])*M;

s.t. restSens: (sum{i in 1..l2 : y[i]=1}(z[i]*(y2[i]+1)/2))/
(sum{i in 1..l2}((y2[i]+1)/2)) >= a3;

• Constraint of Specificity
subject to r4{i in 1..l2 : y[i]=-1}:

y2[i]*(sum{j in 1..n}w[j]*x2[i,j]+b)>= -(1-z[i])*M;

s.t. restSpec: (sum{i in 1..l2 : y[i]=-1}(z[i]*(1-y2[i])/2))/
(sum{i in 1..l2}((1-y2[i])/2))>= a4;

Note that the run script for this model is the same as the one we pre-
sented in Section 3.5.

4.3.1 Breast Cancer Wisconsin data

Now, as we did in Sections 3.4 and 3.5.2, we will use Breast Cancer Wiscon-
sin data, from [9].

In order to make the experiment comparable to the previous one made
in Section 3.5.2, we will use only the two variables selected in such section.
As we mentioned, the reason of why we did that was because we wanted a
“bad” separation between the data (and thus, a “bad” classification) in order
to compare the results obtained here, with the new formulation of SVM (in
which we impose to have, e.g., a minimum value of accuracy), with the results
we got with the classical SVM.

Imposing a minimum value of Specificity
As we must predict if a given patient has a benign or a malign cancer,

let us imagine that we want to have a minimum number of patients with
bening cancer well classified (remember that in Section 3.5.2 such number

66

tended to be low). So in this case we want to impose a minimum value for the
specificity in an independent sample, in particular we take Specificity ≥ 0.5.

Due to this fact, we use the formulation in Subsection 4.2.2 and thus the
AMPL constraints for Specificity exclusively.

Now we can apply to this data a linear SVM. For that, we use range of
C of the form {2−6, 2−5, . . . , 25, 26}. Also, in order to make this linear SVM
more flexible, we include “b” (β0) as a parameter to tune; hence using a
range of the form {−0.6,−0.2, . . . , 2.2, 2.6}.

For each pair of C and b the different perfomance values obtained are
given in the following table. When both TP and FP are zero, then the
precision (Prec) cannot be calculated and thus a symbol “-” is used.

C b TP TN FP FN Sens Spec Acc Prec
2−6 -0.6 0 68 0 102 0.00 1.00 0.40 -
2−6 -0.2 11 55 13 91 0.11 0.81 0.39 0.46
2−6 0.2 79 34 34 23 0.77 0.50 0.66 0.70
2−6 0.6 79 34 34 23 0.77 0.50 0.66 0.70
2−6 1 79 34 34 23 0.77 0.50 0.66 0.70
2−6 1.4 79 34 34 23 0.77 0.50 0.66 0.70
2−6 1.8 79 34 34 23 0.77 0.50 0.66 0.70
2−6 2.2 79 34 34 23 0.77 0.50 0.66 0.70
2−6 2.6 79 34 34 23 0.77 0.50 0.66 0.70
2−5 -0.6 0 66 2 102 0.00 0.97 0.39 0.00
2−5 -0.2 31 35 33 71 0.30 0.51 0.39 0.48
2−5 0.2 79 34 34 23 0.77 0.50 0.66 0.70
2−5 0.6 79 34 34 23 0.77 0.50 0.66 0.70
2−5 1 79 34 34 23 0.77 0.50 0.66 0.70
2−5 1.4 79 34 34 23 0.77 0.50 0.66 0.70
2−5 1.8 79 34 34 23 0.77 0.50 0.66 0.70
2−5 2.2 79 34 34 23 0.77 0.50 0.66 0.70
2−5 2.6 79 34 34 23 0.77 0.50 0.66 0.70
2−4 -0.6 12 53 15 90 0.12 0.78 0.38 0.44
2−4 -0.2 33 34 34 69 0.32 0.50 0.39 0.49
2−4 0.2 91 34 34 11 0.89 0.50 0.74 0.73
2−4 0.6 81 34 34 21 0.79 0.50 0.68 0.70
2−4 1 79 34 34 23 0.77 0.50 0.66 0.70
2−4 1.4 79 34 34 23 0.77 0.50 0.66 0.70

Continued on next page

67

Table 4.1 – Continued from previous page
C b TP TN FP FN Sens Spec Acc Prec

2−4 1.8 79 34 34 23 0.77 0.50 0.66 0.70
2−4 2.2 79 34 34 23 0.77 0.50 0.66 0.70
2−4 2.6 79 34 34 23 0.77 0.50 0.66 0.70
2−3 -0.6 29 34 34 73 0.28 0.50 0.37 0.46
2−3 -0.2 33 34 34 69 0.32 0.50 0.39 0.49
2−3 0.2 91 34 34 11 0.89 0.50 0.74 0.73
2−3 0.6 85 34 34 17 0.83 0.50 0.70 0.71
2−3 1 81 34 34 21 0.79 0.50 0.68 0.70
2−3 1.4 81 34 34 21 0.79 0.50 0.68 0.70
2−3 1.8 79 34 34 23 0.77 0.50 0.66 0.70
2−3 2.2 79 34 34 23 0.77 0.50 0.66 0.70
2−3 2.6 79 34 34 23 0.77 0.50 0.66 0.70
2−2 -0.6 31 34 34 71 0.30 0.50 0.38 0.48
2−2 -0.2 33 34 34 69 0.32 0.50 0.39 0.49
2−2 0.2 83 34 34 19 0.81 0.50 0.69 0.71
2−2 0.6 91 34 34 11 0.89 0.50 0.74 0.73
2−2 1 88 34 34 14 0.86 0.50 0.72 0.72
2−2 1.4 85 34 34 17 0.83 0.50 0.70 0.71
2−2 1.8 85 34 34 17 0.83 0.50 0.70 0.71
2−2 2.2 85 34 34 17 0.83 0.50 0.70 0.71
2−2 2.6 81 34 34 21 0.79 0.50 0.68 0.70
2−1 -0.6 31 34 34 71 0.30 0.50 0.38 0.48
2−1 -0.2 35 34 67 34 0.51 0.34 0.41 0.34
2−1 0.2 82 34 34 20 0.80 0.50 0.68 0.71
2−1 0.6 93 34 34 9 0.91 0.50 0.75 0.73
2−1 1 91 34 34 11 0.89 0.50 0.74 0.73
2−1 1.4 91 34 34 11 0.89 0.50 0.74 0.73
2−1 1.8 90 34 34 12 0.88 0.50 0.73 0.73
2−1 2.2 88 34 34 14 0.86 0.50 0.72 0.72
2−1 2.6 88 34 34 14 0.86 0.50 0.72 0.72
20 -0.6 33 34 34 69 0.32 0.50 0.39 0.49
20 -0.2 37 34 34 65 0.36 0.50 0.42 0.52
20 0.2 73 34 34 29 0.72 0.50 0.63 0.68
20 0.6 86 34 34 16 0.84 0.50 0.71 0.72
20 1 93 34 34 9 0.91 0.50 0.75 0.73
20 1.4 91 34 34 11 0.89 0.50 0.74 0.73
20 1.8 91 34 34 11 0.89 0.50 0.74 0.73
20 2.2 91 34 34 11 0.89 0.50 0.74 0.73

Continued on next page

68

Table 4.1 – Continued from previous page
C b TP TN FP FN Sens Spec Acc Prec
20 2.6 91 34 34 11 0.89 0.50 0.74 0.73
21 -0.6 33 34 34 69 0.32 0.50 0.39 0.49
21 -0.2 38 34 34 64 0.37 0.50 0.42 0.53
21 0.2 69 34 34 33 0.68 0.50 0.61 0.67
21 0.6 86 34 34 16 0.84 0.50 0.71 0.72
21 1 86 34 34 16 0.84 0.50 0.71 0.72
21 1.4 93 34 34 9 0.91 0.50 0.75 0.73
21 1.8 93 34 34 9 0.91 0.50 0.75 0.73
21 2.2 93 34 34 9 0.91 0.50 0.75 0.73
21 2.6 91 34 34 11 0.89 0.50 0.74 0.73
22 -0.6 33 34 34 69 0.32 0.50 0.39 0.49
22 -0.2 38 34 34 64 0.37 0.50 0.42 0.53
22 0.2 68 34 34 34 0.67 0.50 0.60 0.67
22 0.6 83 34 34 19 0.81 0.50 0.69 0.71
22 1 86 34 34 16 0.84 0.50 0.71 0.72
22 1.4 93 34 34 9 0.91 0.50 0.75 0.73
22 1.8 93 34 34 9 0.91 0.50 0.75 0.73
22 2.2 93 34 34 9 0.91 0.50 0.75 0.73
22 2.6 93 34 34 9 0.91 0.50 0.75 0.73
23 -0.6 33 34 34 69 0.32 0.50 0.39 0.49
23 -0.2 38 34 34 64 0.37 0.50 0.42 0.53
23 0.2 68 34 34 34 0.67 0.50 0.60 0.67
23 0.6 82 34 34 20 0.80 0.50 0.68 0.71
23 1 86 34 34 16 0.84 0.50 0.71 0.72
23 1.4 89 34 34 13 0.87 0.50 0.72 0.72
23 1.8 93 34 34 9 0.91 0.50 0.75 0.73
23 2.2 93 34 34 9 0.91 0.50 0.75 0.73
23 2.6 93 34 34 9 0.91 0.50 0.75 0.73
24 -0.6 33 34 34 69 0.32 0.50 0.39 0.49
24 -0.2 43 34 34 59 0.42 0.50 0.45 0.56
24 0.2 82 34 34 20 0.80 0.50 0.68 0.71
24 0.6 86 34 34 16 0.84 0.50 0.71 0.72
24 1 86 34 34 16 0.84 0.50 0.71 0.72
24 1.4 93 34 34 9 0.91 0.50 0.75 0.73
24 1.8 93 34 34 9 0.91 0.50 0.75 0.73
24 2.2 93 34 34 9 0.91 0.50 0.75 0.73
24 2.6 93 34 34 9 0.91 0.50 0.75 0.73
25 -0.6 33 34 34 69 0.32 0.50 0.39 0.49

Continued on next page

69

Table 4.1 – Continued from previous page
C b TP TN FP FN Sens Spec Acc Prec
25 -0.2 41 34 34 61 0.40 0.50 0.44 0.55
25 0.2 67 34 34 35 0.66 0.50 0.59 0.66
25 0.6 82 34 34 20 0.80 0.50 0.68 0.71
25 1 86 34 34 16 0.84 0.50 0.71 0.72
25 1.4 86 34 34 16 0.84 0.50 0.71 0.72
25 1.8 93 34 34 9 0.91 0.50 0.75 0.73
25 2.2 93 34 34 9 0.91 0.50 0.75 0.73
25 2.6 93 34 34 9 0.91 0.50 0.75 0.73
26 -0.6 33 34 34 69 0.32 0.50 0.39 0.49
26 -0.2 44 34 34 58 0.43 0.50 0.46 0.56
26 0.2 67 34 34 35 0.66 0.50 0.59 0.66
26 0.6 82 34 34 20 0.80 0.50 0.68 0.71
26 1 86 34 34 16 0.84 0.50 0.71 0.72
26 1.4 86 34 34 16 0.84 0.50 0.71 0.72
26 1.8 93 34 34 9 0.91 0.50 0.75 0.73
26 2.2 93 34 34 9 0.91 0.50 0.75 0.73
26 2.6 93 34 34 9 0.91 0.50 0.75 0.73

Imposing a minimum value of Accruracy As before, we must predict
if a given patient has a benign or a malign cancer. If we want to have a
minimum number of patients well classified (without take into account the
class), we must impose a minimum value for the accuracy in an independent
sample, in particular we take Accuracy ≥ 0.75.

Due to this fact, we use the formulation in Subsection 4.2.3 and thus the
AMPL constraints for Accuracy.

Now we can apply to this data a linear SVM. For that, we use a range of
C of the form {2−6, 2−5, . . . , 25, 26}. Also, in order to make this linear SVM
more flexible (as before), we include “b” (β0) as a parameter to tune; hence
using a range of the form {−0.6,−0.2, . . . , 2.2, 2.6}.

In what follows, for each pair of C and b, the different perfomance values
obtained are presented. When the constrained problem is unfeasible, the
values are replaced by the symbol “-”.

C b TP TN FP FN Sens Spec Acc Prec
2−6 -0.6 - - - - - - - -

Continued on next page

70

Table 4.2 – Continued from previous page
C b TP TN FP FN Sens Spec Acc Prec

2−6 -0.2 - - - - - - - -
2−6 0.2 90 39 29 12 0.88 0.57 0.76 0.76
2−6 0.6 89 40 28 13 0.87 0.59 0.76 0.76
2−6 1 89 39 29 13 0.87 0.57 0.75 0.75
2−6 1.4 90 39 29 12 0.88 0.57 0.76 0.76
2−6 1.8 89 40 28 13 0.87 0.59 0.76 0.76
2−6 2.2 89 40 28 13 0.87 0.59 0.76 0.76
2−6 2.6 90 40 28 12 0.88 0.59 0.76 0.76
2−5 -0.6 - - - - - - - -
2−5 -0.2 - - - - - - - -
2−5 0.2 90 39 29 12 0.88 0.57 0.76 0.76
2−5 0.6 89 40 28 13 0.87 0.59 0.76 0.76
2−5 1 89 39 29 13 0.87 0.57 0.75 0.75
2−5 1.4 90 39 29 12 0.88 0.57 0.76 0.76
2−5 1.8 89 40 28 13 0.87 0.59 0.76 0.76
2−5 2.2 89 40 28 13 0.87 0.59 0.76 0.76
2−5 2.6 90 40 28 12 0.88 0.59 0.76 0.76
2−4 -0.6 - - - - - - - -
2−4 -0.2 - - - - - - - -
2−4 0.2 90 39 29 12 0.88 0.57 0.76 0.76
2−4 0.6 89 40 28 13 0.87 0.59 0.76 0.76
2−4 1 89 39 29 13 0.87 0.57 0.75 0.75
2−4 1.4 89 39 29 13 0.87 0.57 0.75 0.75
2−4 1.8 89 40 28 13 0.87 0.59 0.76 0.76
2−4 2.2 89 40 28 13 0.87 0.59 0.76 0.76
2−4 2.6 90 40 28 12 0.88 0.59 0.76 0.76
2−3 -0.6 - - - - - - - -
2−3 -0.2 - - - - - - - -
2−3 0.2 91 38 30 11 0.89 0.56 0.76 0.75
2−3 0.6 89 40 28 13 0.87 0.59 0.76 0.76
2−3 1 89 39 29 13 0.87 0.57 0.75 0.75
2−3 1.4 90 39 29 12 0.88 0.57 0.76 0.76
2−3 1.8 89 40 28 13 0.87 0.59 0.76 0.76
2−3 2.2 89 40 28 13 0.87 0.59 0.76 0.76
2−3 2.6 89 39 29 13 0.87 0.57 0.75 0.75
2−2 -0.6 - - - - - - - -
2−2 -0.2 - - - - - - - -
2−2 0.2 91 38 30 11 0.89 0.56 0.76 0.75

Continued on next page

71

Table 4.2 – Continued from previous page
C b TP TN FP FN Sens Spec Acc Prec

2−2 0.6 90 39 29 12 0.88 0.57 0.76 0.76
2−2 1 90 39 29 12 0.88 0.57 0.76 0.76
2−2 1.4 89 40 28 13 0.87 0.59 0.76 0.76
2−2 1.8 89 40 28 13 0.87 0.59 0.76 0.76
2−2 2.2 89 39 29 13 0.87 0.57 0.75 0.75
2−2 2.6 90 40 28 12 0.88 0.59 0.76 0.76
2−1 -0.6 - - - - - - - -
2−1 -0.2 - - - - - - - -
2−1 0.2 92 37 31 10 0.90 0.54 0.76 0.75
2−1 0.6 92 38 30 10 0.90 0.56 0.76 0.75
2−1 1 90 39 29 12 0.88 0.57 0.76 0.76
2−1 1.4 90 39 29 12 0.88 0.57 0.76 0.76
2−1 1.8 89 40 28 13 0.87 0.59 0.76 0.76
2−1 2.2 89 40 28 13 0.87 0.59 0.76 0.76
2−1 2.6 90 40 28 12 0.88 0.59 0.76 0.76
20 -0.6 - - - - - - - -
20 -0.2 - - - - - - - -
20 0.2 87 40 28 15 0.85 0.59 0.75 0.76
20 0.6 91 38 30 11 0.89 0.56 0.76 0.75
20 1 91 37 31 11 0.89 0.54 0.75 0.75
20 1.4 92 36 32 10 0.90 0.53 0.75 0.74
20 1.8 89 40 28 13 0.87 0.59 0.76 0.76
20 2.2 89 40 28 13 0.87 0.59 0.76 0.76
20 2.6 90 40 28 12 0.88 0.59 0.76 0.76
21 -0.6 - - - - - - - -
21 -0.2 - - - - - - - -
21 0.2 92 37 31 10 0.90 0.54 0.76 0.75
21 0.6 91 38 30 11 0.89 0.56 0.76 0.75
21 1 91 37 31 11 0.89 0.54 0.75 0.75
21 1.4 92 37 31 10 0.90 0.54 0.76 0.75
21 1.8 91 38 30 11 0.89 0.56 0.76 0.75
21 2.2 92 38 30 10 0.90 0.56 0.76 0.75
21 2.6 92 38 30 10 0.90 0.56 0.76 0.75
22 -0.6 - - - - - - - -
22 -0.2 - - - - - - - -
22 0.2 91 37 31 11 0.89 0.54 0.75 0.75
22 0.6 91 38 30 11 0.89 0.56 0.76 0.75
22 1 91 37 31 11 0.89 0.54 0.75 0.75

Continued on next page

72

Table 4.2 – Continued from previous page
C b TP TN FP FN Sens Spec Acc Prec
22 1.4 92 37 31 10 0.90 0.54 0.76 0.75
22 1.8 91 38 30 11 0.89 0.56 0.76 0.75
22 2.2 91 38 30 11 0.89 0.56 0.76 0.75
22 2.6 91 37 31 11 0.89 0.54 0.75 0.75
23 -0.6 - - - - - - - -
23 -0.2 - - - - - - - -
23 0.2 91 37 31 11 0.89 0.54 0.75 0.75
23 0.6 91 38 30 11 0.89 0.56 0.76 0.75
23 1 91 37 31 11 0.89 0.54 0.75 0.75
23 1.4 92 37 31 10 0.90 0.54 0.76 0.75
23 1.8 91 38 30 11 0.89 0.56 0.76 0.75
23 2.2 91 38 30 11 0.89 0.56 0.76 0.75
23 2.6 91 37 31 11 0.89 0.54 0.75 0.75
24 -0.6 - - - - - - - -
24 -0.2 - - - - - - - -
24 0.2 92 37 31 10 0.90 0.54 0.76 0.75
24 0.6 91 38 30 11 0.89 0.56 0.76 0.75
24 1 91 37 31 11 0.89 0.54 0.75 0.75
24 1.4 92 37 31 10 0.90 0.54 0.76 0.75
24 1.8 91 38 30 11 0.89 0.56 0.76 0.75
24 2.2 91 38 30 11 0.89 0.56 0.76 0.75
24 2.6 91 37 31 11 0.89 0.54 0.75 0.75
25 -0.6 - - - - - - - -
25 -0.2 - - - - - - - -
25 0.2 87 40 28 15 0.85 0.59 0.75 0.76
25 0.6 92 38 30 10 0.90 0.56 0.76 0.75
25 1 91 37 31 11 0.89 0.54 0.75 0.75
25 1.4 92 37 31 10 0.90 0.54 0.76 0.75
25 1.8 91 38 30 11 0.89 0.56 0.76 0.75
25 2.2 91 38 30 11 0.89 0.56 0.76 0.75
25 2.6 91 37 31 11 0.89 0.54 0.75 0.75
26 -0.6 - - - - - - - -
26 -0.2 - - - - - - - -
26 0.2 92 37 31 10 0.90 0.54 0.76 0.75
26 0.6 91 38 30 11 0.89 0.56 0.76 0.75
26 1 91 37 31 11 0.89 0.54 0.75 0.75
26 1.4 92 37 31 10 0.90 0.54 0.76 0.75
26 1.8 91 38 30 11 0.89 0.56 0.76 0.75

Continued on next page

73

Table 4.2 – Continued from previous page
C b TP TN FP FN Sens Spec Acc Prec
26 2.2 91 38 30 11 0.89 0.56 0.76 0.75
26 2.6 91 37 31 11 0.89 0.54 0.75 0.75

4.4 Conclusions

In this work we have analyzed SVM in its basic form, as well as the extension
obtained when constraints are introduced to control different performance
measures. The models are expressed as mathematical optimization problems,
which have been programmed in R and in the modeling language AMPL to
be used with a quadratic solver such as CPLEX. As a summary, we observe
that improvements in the performance measures can be obtained by adding,
as done here, constraints to the optimization problem of maximization of the
margin. The price to pay is that, instead of quadratic concave maximiza-
tion problems with linear constraints, integer variables are now introduced,
leading to harder optimization problems.

74

Bibliography

[1] Emilio Carrizosa and Dolores Romero Morales. Supervised classifica-
tion and mathematical optimization. Computers & Operations Research,
40(1):150–165, 2013.

[2] Rich Caruana and Alexandru Niculescu-Mizil. Data mining in metric
space: an empirical analysis of supervised learning performance criteria.
In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 69–78. ACM, 2004.

[3] A Casado-Reinaldos. Mathematical optimization
and feature selection, 2015. Universidad de Sevilla.
https://idus.us.es/xmlui/handle/11441/40792.

[4] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[5] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The
entire regularization path for the support vector machine. The Journal
of Machine Learning Research, 5:1391–1415, 2004.

[6] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-
class support vector machines. IEEE transactions on Neural Networks,
13(2):415–425, 2002.

[7] A Izenman. Modern multivariate statistical techniques, volume 1.
Springer, 2008.

[8] Lan Jiang and Fred J Hickernell. Guaranteed monte carlo methods for
bernoulli random variables. arXiv preprint arXiv:1411.1151, 2014.

[9] M. Lichman. UCI machine learning repository, 2013.

[10] F Plastria and E Carrizosa. Gauge distances and median hyperplanes.
Journal of Optimization Theory and Applications, 110(1):173–182, 2001.

75

[11] John C Platt, Nello Cristianini, and John Shawe-Taylor. Large margin
dags for multiclass classification. In nips, volume 12, pages 547–553,
1999.

76

