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Abstract

Let µ be a finite positive Borel measure with compact support K ⊆ C, and regard L∞(µ) as an algebra of
multiplication operators on the Hilbert space L2(µ). Then consider the subalgebra A(K) of all continuous
functions on K that are analytic on the interior of K, and the subalgebra R(K) defined as the uniform
closure of the rational functions with poles outside K. Froelich and Marsalli showed that if the restriction
of the measure µ to the boundary of K is discrete then the unit ball of A(K) is strongly precompact, and
that if the unit ball of R(K) is strongly precompact then the restriction of the measure µ to the boundary
of each component of C\K is discrete. The aim of this paper is to provide three examples that go to clarify
the results of Froelich and Marsalli; in particular, it is shown that the converses to both statements are false.
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1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a separable, infinite dimensional complex
Hilbert space H. We are interested in operator algebras R ⊆ B(H) such that the unit ball {R ∈ R: ‖R‖ ≤ 1}
is precompact in the strong operator topology.

Marsalli [7] showed that a von Neumann algebra has a strongly precompact unit ball if and only if it can
be decomposed as a direct sum of finite dimensional von Neumann algebras.

Let µ be a finite measure of compact support defined on the Borel subsets of the complex plane and
let K ⊆ C denote the support of µ. Any function algebra R ⊆ L∞(µ) can be regarded as an algebra of
multiplication operators on L2(µ). The following is a characterization of the subalgebras R ⊆ L∞(µ) with
the property that the unit ball of R is precompact in the strong operator topology.

Theorem 1.1 (Froelich and Marsalli [4]). Let R be a subalgebra of L∞(µ). The following are equivalent:

1. The unit ball of R is precompact in the strong operator topology.
2. The natural embedding R ↪→ L2(µ) is a compact operator.
3. Any bounded sequence in R has a subsequence that converges µ-almost everywhere.

We consider the following subalgebras of L∞(µ). First of all, P (K) is the uniform closure of the analytic
polynomials. Next, R(K) is the uniform closure of the rational functions with poles outside K, and A(K) is
the algebra of all continuous functions on K that are analytic on int(K). As customary, C(K) is the algebra
of all continuous functions on K.

Let G0 denote the unbounded component of C\K. Recall that the polynomially convex hull of K is the

compact set K̂ = C\G0. It is plain that K ⊆ K̂ and that C\K̂ is connected.
Froelich and Marsalli [4] considered the problem of characterizing among the above function algebras the

ones that have a unit ball that is precompact in the strong operator topology. They proved the following
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Theorem 1.2. 1. The algebra L∞(µ) has a strongly precompact unit ball if and only if the measure µ is
discrete.

2. The algebra C(K) has a strongly precompact unit ball if and only if the measure µ is discrete.
3. The algebra P (K) has a strongly precompact unit ball if and only if the restriction of the measure µ

to the boundary of K̂ is discrete.
4. The algebra R(K) has a strongly precompact unit ball provided that the restriction of the measure µ to

the boundary of K is discrete.
5. The algebra A(K) has a strongly precompact unit ball provided that the restriction of the measure µ to

the boundary of K is discrete.

The authors [6] obtained independently a characterization of those normal operators that generate an
algebra whose unit ball is precompact in the strong operator topology. This characterization is similar to
part (3) of Theorem 1.2.

Froelich and Marsalli [4] claimed that the sufficient conditions for the unit ball to be strongly precompact
stated in parts (4) and (5) of Theorem 1.2 were also necessary.

We were told in a private communication that they discovered after their paper was published that there
was an inaccuracy in their argument and that they did not really know if those conditions were necessary.
A negative answer to this question is given by Theorem 2.2.

Let us explain why their argument is inaccurate. Let {Gn}∞n=1 denote the sequence of the bounded
components of C\K. Froelich and Marsalli [4] showed that if the function algebra R(K) has a strongly
precompact unit ball then the measure µ restricted to each ∂Gn is discrete. Then, they concluded that the
measure µ restricted to ∂K is also discrete by using the identity

∂K =

∞⋃
n=0

∂Gn.

Although this is the case, for instance, when C\K has finitely many components, in general this identity
does not hold and the best that can be said about the boundary of K is that

∂K ⊇
∞⋃
n=0

∂Gn.

Nevertheless, there is something that remains valid: if the measure µ restricted to ∂K is discrete then the
algebra A(K) has a strongly precompact unit ball, and if the algebra R(K) has a strongly precompact unit
ball then the measure µ restricted to each ∂Gn is discrete.

The aim of this paper is to provide several examples that go to illustrate the following phenomena. First,
in Theorem 2.2, it is shown that there is a measure µ that restricted to ∂K is not discrete although the unit
ball of A(K) is strongly precompact. Second, in Theorem 2.7, it is shown that there is a measure µ that
restricted to each ∂Gn is discrete, although the unit ball of R(K) fails to be strongly precompact. Third, in
Theorem 2.11, it is shown that there is a measure µ such that the unit ball of R(K) is strongly precompact
but the unit ball of A(K) fails to be strongly precompact.

A key for our approach is the fact that, for a compact subset L ⊆ K, a measure µ supported on L,
and for R = A(K) or R(K), the natural mapping R ↪→ L2(µ) is compact provided that the restriction
mapping R:R → C(L) is compact. In Theorem 2.12, it is shown that, given a compact subset L ⊆ K and
a subalgebra R ⊆ C(K), the natural mapping R ↪→ L2(µ) is compact for every measure µ supported on L
if and only if the restriction mapping R:R → C(L) does not fix a copy of `1.

2. The main results

Example 2.1. Let {qn} be a countable dense subset of [0, 1] with the property that 1/2n ≤ qn ≤ 1− 1/2n,
let zn = qn + i/2n, and let 0 < rn < 1/2n+3 to be chosen later on. Then, consider the open set

G =

∞⋃
n=1

D(zn, rn).
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Notice that the discs D(zn, rn) are all contained in the square [0, 1]× [0, 1] and that their projections onto
the imaginary axis are pairwise disjoint. Now, consider the compact set K = [−2, 2]× [−2, 2] \G, and notice
that its boundary is the set

∂K =

( ∞⋃
n=0

γn

)
∪ [0, 1],

where γ0 = ∂( [−2, 2]× [−2, 2] ) and γn = ∂D(zn, rn) for each n ≥ 1.

Our first result concerns measures supported on this compact set K, and it can be stated as follows.

Theorem 2.2. There is a suitable choice for the sequence of radii (rn) such that for any finite measure µ
defined on the Borel subsets of the complex plane whose support is the compact set K, if the restriction of
the measure µ to each γn is discrete then the algebra A(K) has a strongly precompact unit ball.

Notice that the restriction of the measure µ to the interval [0, 1] is not necessarily discrete, and in fact, it
can have any prescribed values. Such a measure µ can be constructed in the following way. Take a sequence
of complex numbers (zk) dense in

⋃∞
n=0 γn and let δzk denote the Dirac measure at zk. Next, let λ1 denote

the one dimensional Lebesgue measure on the real line, and let λ2 denote the two dimensional Lebesgue
measure on the complex plane. Then, let µ be the measure defined on the Borel subsets of the complex
plane by the expression

µ(B) = λ1(B ∩ [0, 1]) + λ2(B ∩K) +

∞∑
k=1

1

2k
δzk(B).

It is easy to see that supp(µ) = K, each restriction µ|γn is discrete, and the restriction µ|[0,1] is not discrete.
Now we state and prove three lemmas before we proceed with the proof of Theorem 2.2.

Lemma 2.3. If f ∈ A(K) and z ∈ int(K) then

f(z) =

∞∑
n=0

1

2πi

∮
γn

f(ξ)

ξ − z
dξ,

where γn is oriented counterclockwise when n = 0 and clockwise when n ≥ 1.

Proof of Lemma 2.3. Fix z ∈ intK, let N ≥ 1, and consider the rectangle

RN = [0, 1]× [0, (2−N + 2−(N+1))/2].

Then, choose N large enough, so that z /∈ RN . It follows from Cauchy’s integral formula that

f(z) =

(
N∑
n=0

1

2πi

∮
γn

f(ξ)

ξ − z
dξ

)
+

1

2πi

∮
∂RN

f(ξ)

ξ − z
dξ,

where ∂RN is oriented clockwise. Although the contour of integration is not contained in the interior of K,
we may use a standard approximation argument by slightly enlarging the radii of the circles γn and lowering
the bottom of RN a little bit, just enough to fit the contour inside the interior of K and to obtain the desired
identity after a limiting process. Finally,

lim
N→∞

1

2πi

∮
∂RN

f(ξ)

ξ − z
dξ = 0,

because, f being continuous, the integrals along the vertical segments of ∂RN can be made arbitrarily small,
while the integrals along the horizontal segments of ∂RN tend to cancel each other.

3



Lemma 2.4. If the sequence of radii (rn) satisfies

∞∑
n=1

2nrn <∞, then for every f ∈ A(K) and for every

x ∈ [0, 1] we have

f(x) =

∞∑
n=0

1

2πi

∮
γn

f(ξ)

ξ − x
dξ.

Proof of Lemma 2.4. Consider for each z ∈ [0, 1]× [−1, 0] the series of functions

∞∑
n=0

1

2πi

∮
γn

f(ξ)

ξ − z
dξ.

and notice that ∣∣∣∣ 1

2πi

∮
γn

f(ξ)

ξ − z
dξ

∣∣∣∣ ≤ ‖f‖∞ rn
d(z, γn)

≤ ‖f‖∞ rn
2−n − rn

=
‖f‖∞ 2nrn
1− 2nrn

.

It follows from the Weierstrass M-test that the series of functions converges uniformly on [0, 1]× [−1, 0] to
a continuous function, say g. According with Lemma 2.3, we have f(z) = g(z) for every z ∈ [0, 1]× [−1, 0),
and it follows from continuity that f(x) = g(x) for each x ∈ [0, 1].

Lemma 2.5. If

∞∑
n=1

2nrn <∞ then the restriction mapping T : A(K)→ C[0, 1] is a compact operator.

Proof of Lemma 2.5. According with Lemma 2.4, we have the series expansion for the restriction operator

T =

∞∑
n=0

Tn,

where each operator Tn:A(K)→ C[0, 1] is given by the expression

(Tnf)(x) =
1

2πi

∮
γn

f(ξ)

ξ − x
dξ.

Also, it follows from the computations in Lemma 2.4 that we have the estimate

‖Tn‖ ≤
rn

2−n − rn
,

so that the series converges in the uniform topology. Moreover, each Tn is a compact operator. Indeed, if
f ∈ A(K) satisfies ‖f‖∞ ≤ 1 then a quick computation with x, y ∈ [0, 1] leads to the inequality

|(Tnf)(x)− (Tnf)(y)| ≤ rn
(2−n − rn)2

· |x− y|.

Hence, Tnf satisfies a Lipschitz condition with a Lipschitz constant that only depends on n. Therefore,
{Tnf : f ∈ A(K), ‖f‖∞ ≤ 1} is an equicontinuous family and it follows from Ascoli’s Theorem that Tn is
a compact operator. Hence, T is the limit in the uniform topology of a sequence of compact operators, so
that T is a compact operator itself, as we wanted.

Proof of Theorem 2.2. Let (fn) be a bounded sequence in A(K). It follows from Montel’s theorem that there
is a subsequence (fnj

) that converges uniformly on compact subsets of int(K). Since the restriction of µ
to each γn is discrete, we may apply a standard diagonal procedure to extract a subsequence (fnjk

) that
converges µ-almost everywhere on the union

⋃
n γn. Finally, we may apply Lemma 2.5 to extract a further

subsequence (fnjkl
) that converges uniformly on the interval [0, 1]. Since we have the decomposition

K = int(K) ∪

( ∞⋃
n=0

γn

)
∪ [0, 1],
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we conclude that the subsequence (fnjkl
) converges µ-almost everywhere on K. It follows from Theorem 1.1

that the algebra A(K) has a strongly precompact unit ball.

Example 2.6. Consider the compact set K ⊆ C defined by the expression

K = ({0, 1} × [−1, 1]) ∪ ([0, 1]× { 1

n
:n ∈ Z, n 6= 0}) ∪ ([0, 1]× {0}).

Since K has zero planar measure, we get from the Hartogs-Rosenthal Theorem that R(K) = C(K). (See
the book of Gamelin [5, p.47] for a reference on the Hartogs-Rosenthal Theorem.) The complement of K in
the complex plane is the union of the sequence of disjoint components,

C\K =

∞⋃
n=0

Gn,

and the following relationship with the boundaries is fulfilled

∂K\
∞⋃
n=0

∂Gn = (0, 1).

Theorem 2.7. There is a measure µ whose support is K and such that the unit ball of the algebra R(K)
fails to be strongly precompact although the restriction of µ to each ∂Gn is discrete.

Proof of Theorem 2.7. Let µ be a finite positive Borel measure whose support is K, such that the restriction
of µ to each ∂Gn is discrete and the restriction of µ to (0, 1) is the Lebesgue measure. Then, the sequence of
functions (fn) defined by fn(z) = e2πinRez is bounded in C(K) and its restriction to (0, 1) has no convergent
subsequence. Hence, the unit ball of R(K) fails to be strongly precompact.

Example 2.8 (The Swiss cheese). Consider an infinite sequence of open discs Dn = D(zn, rn) such that
Dn ⊆ D and Dn ∩Dm = ∅ when n 6= m, and such that the compact set

K = D\
∞⋃
n=1

Dn

has empty interior. Such a compact set is called a Swiss cheese. See the book of Gamelin [5, p.25] for
more information on this issue. There is some variety in the literature in the definition of Swiss cheeses.
Frequently, the requirement that the sum of the radii is finite is included. Some authors allow the discs to
touch or overlap, but strengthen other conditions to compensate. The reader can also find a survey of the
use of Swiss cheese constructions in the theory of uniform algebras in the paper of Feinstein and Heath [3].

Since K has empty interior, we have A(K) = C(K). If µ is a non discrete measure supported on K then
it follows from Theorem 1.2 that the unit ball of the algebra A(K) fails to be strongly precompact.

Our next goal is to show that there are a Swiss cheese K ⊆ C and a non discrete measure µ supported
on K such that the unit ball of the algebra R(K) is strongly precompact.

Lemma 2.9. If (Rn) is a sequence of positive numbers such that
∑∞
n=1R

2
n < 1 then there is a sequence of

positive numbers (rn) such that 0 < rn < Rn and there is a sequence of complex numbers (zn) in the unit
disc such that the set K = D\

⋃∞
n=1D(zn, rn) is a Swiss cheese and such that

∑∞
n=1 rn/Rn <∞.

Proof of Lemma 2.9. Let (sn) be a sequence of positive numbers with sn < Rn and with
∑∞
n=1 sn/Rn <∞.

Then, let W ⊆ D be a countable, dense subset, say W = {wn:n ∈ N}. Now, define the sequence of discs
{D(rn, zn)} inductively. Start with z1 = w1 and choose 0 < r1 ≤ s1 such that D(z1, r1) ⊆ D. Since the open
set D\D(z1, r1) is non empty, we may take

m2 = min{m ∈ N:wm ∈ D\D(z1, r1)}.
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It is clear that m2 ≥ 2. Define z2 = wm2 and let 0 < r2 ≤ s2 be such that D(z2, r2) ⊆ D\D(z1, r1). Now,

suppose that we have defined the indices mj for 1 ≤ j ≤ k, so that mk ≥ j and wm ∈
⋃k
j=1D(zj , rj) for

1 ≤ m ≤ mk. Also, suppose that we have constructed the discs D(zj , rj) for 1 ≤ j ≤ k, so that

D(zj , rj) ⊆ D\
j−1⋃
h=1

D(zh, rh).

Set mk+1 = min{m ∈ N:wm ∈ D\
⋃k
j=1D(zj , rj)} and notice that mk+1 ≥ k + 1. Set zk+1 = wmk+1

. Then
choose 0 < rk+1 ≤ sk+1 such that

D(zk+1, rk+1) ⊆ D\
k⋃
j=1

D(zj , rj).

It is plain that 0 < rk < Rk and
∑∞
n=1 rk/Rk <∞. We claim that the compact set K = D\

⋃∞
k=1D(zk, rk)

has empty interior. Otherwise we have int(K) ⊆ D and int(K)∩D(zn, rn) = ∅, so that int(K)∩D(zn, rn) = ∅.
Therefore we have

∅ 6= int(K) ⊆ D\
∞⋃
k=1

D(zk, rk).

Since W is dense in D, we have W ∩ intK 6= ∅, so that there is an l ∈ N such that wl ∈ D\
⋃∞
k=1D(zk, rk).

Finally, choose some k ≥ 1 such that l ≤ mk, and notice that wl ∈
⋃k
j=1D(zj , rj), which is a contradiction.

Lemma 2.10. There is a suitable choice of the sequence (rn) for which there is a compact subset L ⊆ K of
positive planar measure such that the restriction mapping T :R(K)→ C(L) is a compact operator.

Proof of Lemma 2.10. Choose two sequences (rn), (Rn) such that 0 < rn < Rn and such that the following
inequalities hold

∞∑
n=1

R2
n < 1,

∞∑
n=1

rn
Rn

<∞.

Consider a rational function f with poles outside K, and let z ∈ (K\
⋃∞
n=1 ∂Dn) \∂D. It follows from

Cauchy’s integral formula that

f(z) =
1

2πi

∮
∂D

f(ξ)

ξ − z
dξ − 1

2πi

∞∑
n=1

∮
∂Dn

f(ξ)

ξ − z
dξ.

Now, consider the compact set

L0 = D\
∞⋃
n=1

D(zn, Rn).

Notice that L0 ⊆ K and L0 has positive planar measure. Next, there is an r < 1 such that the compact set
L = L0 ∩D(0, r) still has positive planar measure. Thus, for every z ∈ L we have

f(z) = (T0f)(z)−
∞∑
n=1

(Tnf)(z),

where the operators Tn are given by the expression

(T0f)(z) =
1

2πi

∮
∂D

f(ξ)

ξ − z
dξ, (Tnf)(z) =

1

2πi

∮
∂Dn

f(ξ)

ξ − z
dξ.
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Notice that

|(T0f)(z)| ≤ 1

1− r
‖f‖∞, |(Tnf)(z)| ≤ rn

Rn − rn
‖f‖∞,

so that we can extend the operators Tn:R(K)→ C(L) in such a way that

‖T0‖ ≤
1

1− r
, ‖Tn‖ ≤

rn
Rn − rn

.

Moreover, each Tn is a compact operator. Indeed, if f is a rational function with poles outside K that
satisfies ‖f‖∞ ≤ 1 then a quick computation with z, w ∈ L leads to the inequalities

|(T0f)(z)− (T0f)(w)| ≤ 1

(1− r)2
· |z − w|,

|(Tnf)(z)− (Tnf)(w)| ≤ rn
(Rn − rn)2

· |z − w|.

Hence, Tnf satisfies a Lipschitz condition with a Lipschitz constant that only depends on n. Therefore,
{Tnf : f ∈ R(K), ‖f‖∞ ≤ 1} is an equicontinuous family and it follows from Ascoli’s Theorem that Tn
is a compact operator. Finally, the restriction operator T :R(K) → C(L) is represented as a uniformly
convergent series expansion of compact operators

T = T0 −
∞∑
n=1

Tn,

and we conclude that T itself is a compact operator.

Theorem 2.11. There is a suitable choice of the sequence (rn) and there is a measure µ such that the unit
ball of R(K) is strongly precompact but the unit ball of A(K) fails to be strongly precompact.

Proof of Theorem 2.11. Let L ⊆ K be a compact subset as in Lemma 2.10. Let µ be a measure whose
support is K and whose restriction to L equals the planar Lebesgue measure and such that the restriction
of µ to K\L is discrete. Since A(K) = C(K), it follows from Theorem 1.2 that the unit ball of A(K)
fails to be strongly precompact. Now, let (fn) be a bounded sequence in R(K). Since µ restricted to K\L
is discrete, we may extract a subsequence (fnj

) that converges µ-almost everywhere on K\L. Since the
restriction mapping T :R(K) → C(L) is a compact operator, we may extract a further subsequence (fnjk

)
that converges uniformly on L. It follows from Theorem 1.1 that the algebra R(K) has a strongly precompact
unit ball.

Notice that in the proofs of Theorem 2.2 and Theorem 2.11 we have used the following fact. Let L ⊆ K
be a compact subset and let R ⊆ C(K) be a subalgebra. If the restriction mapping R:R → C(L) is compact
then, for any measure µ supported on L, the natural mapping R ↪→ L2(µ) is compact. The following result
shows how the assumption on the restriction mapping being compact can be relaxed to obtain a necessary
and sufficient condition for the natural mapping being compact. Recall that, according to Theorem 1.1, the
latter condition is equivalent for the algebra R to have a strongly precompact unit ball.

Theorem 2.12. Let L ⊆ K be two compact sets and let R ⊆ C(K) be a closed subspace. Then the following
conditions are equivalent:

1. The natural mapping R ↪→ L2(µ) is compact for every measure µ supported on L.

2. The restriction mapping R:R → C(L) does not fix a copy of `1.

Proof of Theorem 2.12. First, suppose that R does not fix a copy of `1 and take any sequence (fn) in ball(R).
Then (Rfn) does not admit a subsequence equivalent to the standard unit vector basis of `1. It follows from
Rosenthal’s Theorem that there is a weakly Cauchy subsequence (Rfnk

). (See the book of Diestel [1, p.201]
for a reference on Rosenthal’s Theorem.) Hence, for every x∗ ∈ C(L)∗, the scalar sequence x∗(Rfnk

) is
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convergent. In particular, taking x∗ = δz for z ∈ L, it follows that there is a function g:L → C such that
fnk

(z)→ g(z) for every z ∈ L. Since the sequence (fnk
) is uniformly bounded, it follows from the bounded

convergence theorem that fnk
→ g in L2(µ). Hence, the natural mapping R ↪→ L2(µ) is compact.

Next, suppose that R fixes a copy of `1, so that there is a bounded sequence (fn) in R such that (Rfn)
is equivalent to the standard unit vector basis of `1. Now, let X ⊆ C(L) be the closed linear span of (Rfn),
let (en) be the standard unit vector basis of `2, and consider the operator T :X → `2 defined by TRfn = en.
Since X is isomorphic to `1, it follows from Grothendieck’s Theorem that T is 2-summing. Then, it follows
from Pietsch’s Factorization Theorem that there is a measure µ supported on L and there is some C > 0
such that ‖Tg‖ ≤ C‖g‖L2(µ) for all g ∈ X. (See the book of Diestel, Jarchow and Tonge [2, p.15 and p.48]
for a reference on Grothendieck’s Theorem and Pietsch’s Factorization Theorem.) Finally, we have

√
2 = ‖en − em‖ = ‖TRfn − TRfm‖ ≤ C‖Rfn −Rfm‖L2(µ) = C‖fn − fm‖L2(µ),

so that the sequence (fn) has no convergent subsequence in L2(µ). Hence, the natural mapping R ↪→ L2(µ)
fails to be compact.
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2012 30748, and by Junta de Andalućıa under grants FQM-3737 and P09-FQM-4745.

References

[1] J. Diestel, Sequences and series on Banach spaces, Springer-Verlag, New York (1984).
[2] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press (1995).
[3] J. F. Feinstein and M. J. Heath, Swiss cheeses, rational approximation and universal plane curves, Studia Math. 196

(2010), 289–306.
[4] J. Froelich and M. Marsalli, Operator semigroups, flows, and their invariant sets, J. Funct. Anal. 115 (1993), 454–479.
[5] T.W. Gamelin, Uniform algebras, AMS Chelsea Publishing, Providence, Rhode Island (2005).
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