
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla
A study of subgroup discovery approaches for defect
prediction

Daniel Rodriguez, Roberto Ruiz , Jose C. Riquelme , Rachel Harrison
though
 have y
 this pa

 that are
practitio
 descri
entify
nd obje

 mitigat
r prepro
e result

software developm
of defective modu
Conclusions: The in
classification of the
which is useful in p

ciently support future development and project management
activities.

Data mining provides techniques to analyse and extract novel,
interesting patterns from data. Formally, it has been defined as
the process of inducing previously unknown and potentially useful
Keywords:
Subgroup discovery
Rules
Defect prediction
Imbalanced datasets

Context: Al
approaches
Objective: In
techniques
applied by
Method: We
rules that id
repository a
algorithms
the need fo
Results: Th
a b s t r a c t

 many papers have been published on software defect prediction techniques, machine learning
et to be fully explored.
per we suggest using a descriptive approach for defect prediction rather than the pre-cise classification
 usually adopted. This allows us to characterise defective modules with simple rules that can easily be
ners and deliver a practical (or engineering) approach rather than a highly accurate result.

be two well-known subgroup discovery algorithms, the SD algorithm and the CN2-SD algorithm to obtain
defect prone modules. The empirical work is performed with pub-licly available datasets from the Promise
ct-oriented metrics from an Eclipse reposi-tory related to defect prediction. Subgroup discovery

e against characteristics of datasets that hinder the applicability of classification algorithms and so remove
cess-ing techniques.

s show that the generated rules can be used to guide testing effort in order to improve the quality of
ent projects. Such rules can indicate metrics, their threshold values and relationships between metrics

les.
duced rules are simple to use and easy to understand as they provide a description rather than a complete
 whole dataset. Thus this paper represents an engineering approach to defect prediction, i.e., an approach
ractice, easily understandable and can be applied by practitioners.
1. Introduction

In the recent past, the application of data mining techniques in
software engineering has received a lot of attention. Problems such
as planning and decision making, defect prediction, effort estima-
tion, testing and test case generation, knowledge extraction, etc.
can be reformulated using a set of techniques under the umbrella
of data mining [15,73,27]. The extracted patterns of knowledge
can assist software engineers in predicting, planning, and under-
standing various aspects of a project so that they can more effi-
information from data collections [23]: ‘‘The two high-level primary
goals of data mining in practice tend to be prediction and description’’.
The former is related to the prediction of unknown or future values
(e.g. classification tree models, regression models, etc.), the latter,
involves finding interesting patterns that can be easily understood
by humans (e.g. association and clustering algorithms). It is worth
noting that Fayyad et al. also state that: ‘‘the boundaries between
prediction and description are not sharp (some of the predictive
models can be descriptive, to the degree that they are understandable,
and vice versa)’’. For example, clustering algorithms can be used as
classifiers or supervised feature selection methods can be consid-
ered descriptive. There are also techniques that hybridise predic-
tion and description as in the case of supervised descriptive
techniques [43]. The aim of these techniques is to understand the
underlying phenomena rather than to classify new instances; i.e.,
to find interesting information about a specific value. The informa-
tion should be useful to the domain experts and easily interpret-
able by them.

In this work, we tackle the defect prediction problem through a
descriptive induction process using Subgroup Discovery (SD) tech-

https://core.ac.uk/display/51406119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2013.05.002&domain=pdf
mailto:daniel.rodriguezg@uah.es
mailto:robertoruiz@upo.es
mailto:riquelme@lsi.us.es
mailto:rachel.harrison@brookes.ac.uk

niques. These kinds of algorithms are designed to find subgroups of
data that are statistically different given a property of interest
[39,71,72,32]. SD algorithms can be both predictive, finding rules
given historical data and a property of interest; and descriptive,
discovering interesting patterns in data. For the same purpose,
there are other types of supervised descriptive techniques, Con-
trast Set Mining (CSM) [6] and Emerging Pattern Mining (EPM)
[19]. CSM finds contrast sets which are defined as conjunctions
of attribute-value pairs that differ significantly in their distribu-
tions across groups (class variable). These contrast sets may have
a very low support but they must clearly differentiate the different
groups. EPM captures emerging patterns (EPs) in time-stamped
databases or useful contrasts in classification datasets (with a class
attribute). EPs are defined as itemsets (using association rule ter-
minology) whose support increases significantly from one dataset,
D1, to another dataset, D2. EPM searches for characteristics that dif-
ferentiate two itemsets, D1 and D2, based on the growthRate1 (ratio
between both supports) as quality measure. These techniques have
similarities: they all use rules as representation techniques and have
been proved to be equivalent [43]. However, the SD approaches have
better tool support (including the Orange toolkit) and the quality
measures used as objective function focus on finding statistically dif-
ferent subgroups (this is explained in Section 3).

The main contributions of this paper are as follows. Firstly, to
propose a descriptive approach based on subgroup discovery for
defect prediction which allows us to characterise defective mod-
ules with simple rules that can easily be applied by practitioners.
Such rules can describe thresholds and relationships between met-
rics. In this paper, we show how SD algorithms induce rules that
can indicate defective software modules with a fairly high proba-
bility. To do this, we rely on the fact that SD algorithms mitigate
against some of the characteristics of datasets that hinder the
applicability of many classical classification algorithms such as (i)
imbalanced datasets in which the number of non-defective mod-
ules is much larger than the number of defective modules, (ii)
duplicated instances and contradictory cases and (iii) redundant
and irrelevant attributes. In the literature these problems have
mainly been tackled with preprocessing techniques such as sam-
pling and feature selection. SD algorithms can be an alternative
to classical classification algorithms without the need to apply pre-
processing techniques. Modifying the original data or using pre-
processing techniques does not always guarantee better results
and can make it more difficult to extract knowledge from the data.
SD algorithms, on the other hand, can be applied to the original
data without the need for sampling or feature selection techniques
and the representation of the rules makes them easy to apply.

In summary, we search for simple models represented as rules
capable of detecting defective modules rather than highly accurate
models. Thus our research question is: can subgroup discovery be
used to detect the most defective modules in a system?

We describe and compare two well-known SD algorithms, the
Subgroup Discovery (SD) algorithm [25] and the CN2-SD algorithm
[44], by applying them to several datasets from the publicly avail-
able Promise repository [52], as well as the Bug Prediction Dataset
(BPD) created by D’Ambros et al. [16,17].

The organization of the paper is as follows. Section 2 covers the
related work in defect prediction followed by background related
to subgroup discovery concepts in Section 3. Next, Section 4 de-
scribes the experimental work, including datasets, rule induction,
study of the generalisation of the rule induced and discussion of
the results. Section 5 covers the threats to the validity. Finally, Sec-
tion 6 concludes the paper and outlines future research work.
1 growthRateðitemsetÞ ¼ supportD2
ðitemsetÞ

supportD1
ðitemsetÞ.
2. Related work

Defect prediction has been an important research topic for more
than a decade with an increasing number of papers including two
recent and comprehensive systematic literature reviews [12,29].
Many studies in defect prediction have been reported using tech-
niques which originated from the field of statistics and machine
learning. Such techniques include regression [8], logistic regression
[18,75], Support Vector Machines [20], etc. Others have their origin
in machine learning techniques such as classification trees [34],
neural networks [35], probabilistic techniques (such as Naïve
Bayes [53] and Bayesian networks [24]), Case Based Reasoning
[36], ensembles of different techniques and meta-heuristic tech-
niques such as ant colony optimisation [33,5,67].

Work has also been done on using rules as a representation
model or decision trees such as C4.5 [59] which can be easily trans-
formed to rules. For example, Koru and Liu [41] used C4.5 for defect
prediction with the NASA datasets to analyse the relationships be-
tween defects and module size. Also descriptive rules such as asso-
ciation rules [1] have been applied by Song et al. [66] to predict the
defect associations and defect correction effort. In general, rules
are easier to understand and apply than many other classification
techniques such as neural networks or ensembles of multiple clas-
sifiers which behave as black boxes and are difficult to generalise
across different datasets even when the same attributes are used.
Hierarchical rules, such as chained if . . . then . . . else rules are hard-
er to interpret and use by domain experts than independent rules
such as the ones obtained by SD approaches. For example, Van-
decruys et al. [67] reported the use of ant colonies as optimisation
technique for generating rules. A drawback of their approach is
that they cannot handle imbalanced datasets appropriately and
hierarchical rules can become hard to understand and apply. Azar
and Vybihal [5] have also used metaheuristic optimisation to in-
duce rules capable of predicting defective modules from a number
of static metrics that measure size, cohesion, coupling and inheri-
tance. In this case, the authors recognise and deal with the imbal-
ance by reporting Younden’s Jindex per class. In other work, Azar
et al. [4] also combine rules from different algorithms using meta-
heuristics. Their approach could be used to combine and select
rules induced from different SD algorithms (as shown in this work)
or as a postprocessing step if a large number of rules are generated.

Several papers have compared multiple techniques with single
datasets (e.g. [37]) or multiple datasets with multiple evaluation
measures. Peng et al. [57] evaluated 13 classification algorithms
with 11 measures over 11 software defect datasets. Although Sup-
port Vector Machines, nearest neighbour and the C4.5 algorithm
were ranked as the top three classifiers, the authors indicated that
a classifier which obtains the best result for a given dataset accord-
ing to a given measure may perform poorly with a different mea-
sure. Also in another work, Peng et al. [58] used 10 NASA
datasets to rank classification algorithms, showing that a CART
boosting algorithm and the C4.5 decision-tree algorithm with
boosting are ranked as the optimum algorithms for defect predic-
tion. Another extensive study, Lessmann et al. [45] compared 22
classifiers grouped into statistical, nearest neighbour, neural net-
works, support vector machine, decision trees and ensemble meth-
ods over 10 datasets from the NASA repository. The authors discuss
several performance metrics such as TPrate and FPrate but advocate
the use of Area Under the ROC (AUC) [21] as the best indicator
for comparing the different classifiers.

However, there are discrepancies among the outcomes of these
works where (i) no classifier is consistently better than the others;
(ii) there is no optimum metric to evaluate and compare classifiers
as highlighted in [49,56,74,53]; and (iii) there are quality issues
regarding the data such as imbalanced datasets, class overlaps,

Fig. 1. Classification (a) vs. subgroup discovery (b).
outliers, and transformation issues. that affect different classifiers
differently. Menzies et al. [55] argue that we may have reached
the limit of what we can do with standard classifiers and new
paths need to be explored, for example considering cost. Arisholm
et al. [3] compared a classification tree algorithm (C4.5), a coverage
rule algorithm (PART), logistic regression, neural networks and
support vector machines over 13 releases of a Telecom middleware
system developed in Java using three types of metrics: (i) object-
oriented metrics, (ii) churn (delta) metrics between successive re-
leases, and (iii) process management metrics from a configuration
management system. The authors concluded that although there
are no significant differences regarding the techniques used, large
differences can be observed depending on the criteria used to com-
pare them. The authors also propose a new cost-effectiveness met-
ric based on the area-under-the-curve (AUC) and the number of
statements so that larger modules are more expensive to test. Aris-
holm and Briand also considered cost [2]. Mende and Koschke [50]
also explored module size in conjunction with the AUC as evalua-
tion metrics in defect prediction using the NASA datasets as well as
datasets from three versions of Eclipse2 using random forests [9] as
the classification technique. Here we want to explore another alter-
native, subgroup discovery, which is explained in detail in the next
section.
3. Subgroup discovery

Subgroup Discovery (SD) [39,71,72,32] concerns the discovery
of statistically distinct subgroups with respect to some property
of interest. Subgroups are generally represented through rules,
e.g. if LoC > 100 and complexity > 4 then defective. More formally,
rules are represented as Cond ? Class, where Class (the conse-
quent) is a specific value of an attribute of interest (e.g. defec-
tive = true), and Cond (the antecedent) is usually composed of a
conjunction of attribute-value pairs through relational operators.
Discrete attributes can have the form of att = val or att – val and
for continuous attributes ranges need to be defined, e.g. val1 -
6 att 6 val2. We can generate rules for all values of the attribute
class; however, in this paper, we want to focus only on finding
rules that identify defect prone modules. Rules have various
advantages: they are able to explain the learned models (they pro-
vide knowledge of the learned domain), they are easily applicable
and they are understandable a by domain experts.

As shown in Fig. 1a, classification techniques are concerned
with prediction (dividing the data as accurately as possible) while
2 http://www.eclipse.org/.
SD algorithms focus on finding subgroups of data related to some
property of interest (see Fig. 1b).

Rules induced by SD algorithms are different from the ones in-
duced by classification algorithms. Fig. 2a shows rules induced as a
classification tree using Weka’s implementation of C4.5 and Fig. 2b
shows the rules generated by the SD algorithm CN2-SD. Graphi-
cally, we can also observe that the three rules induced by the
C4.5 classifier – which can be derived from the classification tree
– cover disjoint areas of the search space. The rule R1 divides the
search space into two partitions depending on whether the vari-
able total_loc is less than or equal to 155. Next, R2.1 and R2.2
spaces are created depending on design_complexity being less
or equal than 54. The graphical interpretation of the three disjoint
search spaces is shown in Fig. 3a.

On the other hand, SD algorithms can generate redundant rules
(see Fig. 2). For example, the rule for subgroup S4, unique_oper-
ators > 15 & branch_count > 32 & design_complexity > 3 is
more restrictive (specific) than the rules S2 and S3, which in turn
are again more restrictive than the first rule S1, unique_opera-
tor > 15. Fig. 3 shows graphically how the SD rules find subgroups
of data for the property of interest (in this case, defective modules).

As stated previously, the idea of SD is to label interpretable
groups of data in an intuitive manner. Therefore, there is a balance
between the specificity and generality of the induced rules. The
more conditions rules have (the more specific they are), the fewer
false positives the rules have. On the other hand, the fewer condi-
tions the rules have, the more generic the rules are, possibly gen-
erating a larger number false positives. For example, Fig. 4 shows
three different subgroups, the subgroup S1 covers a small number
of instances with only one error. However, subgroup S2 is more
generic (there are fewer conditions in the rules) but these more
generic rules increase the number of false positives, and the same
for S3. In this sense, SD can be compared to a form of cost-sensitive
classification which aims to find a high proportion of a particular
class. For a comprehensive survey of subgroup discovery, we refer
the reader to the work of Herrera et al. [32]. Table 1 summarises
the main differences between rules induced by classification and
SD techniques.

In this paper, we use two well-known SD algorithms widely ci-
ted in the literature and which are implemented in an extension3

of the Orange data mining tool4 We then describe both algorithms
including their objective functions.

The subgroup discovery algorithm SD [25] is a covering rule
induction algorithm [69] that uses beam search (where a set of
3 http://kt.ijs.si/petra_kralj/SubgroupDiscovery/.
4 http://www.ailab.si/orange/.

http://www.eclipse.org/
http://kt.ijs.si/petra_kralj/SubgroupDiscovery/
http://www.ailab.si/orange/

Fig. 2. Example of rules induced with classification (a) vs. subgroup discovery (b).

Fig. 3. Graphical Representation: classification (a) vs. subgroup discovery (b).

Fig. 4. Specificity vs. generality of the induced rules.
alternatives are kept while finding optimal solutions) to find rules
that maximise the following equation:

qg ¼
nðCond � ClassÞ

nðCond � :ClassÞ þ g
¼ TP

FP þ g
ð1Þ
where n(Cond � Class) represents the number of instances covered
by a rule in which both the antecedent (Cond) and consequent
(Class) are true (this is the number of true positives, TP). and n(Con-
d � :Class) is the number of instances in which the antecedent is
true but not the consequent (FP). The generalisation parameter g al-
low us to control the specificity of a rule, i.e., the balance between
the complexity of a rule and its accuracy, typically between 0.5
and 100. For values smaller than or equal to one, the induced rules
will have very high specificity. For values larger than one, the larger
the value, the larger the percentage of errors.

Algorithm 1. SD Algorithm [25].

Require: D dataset; g generalisation parameter; minSupp;
beamWidth

Require: l 2 L, where L is the set of all attribute values
Ensure: set of rules
1:for all rules in Beam and newBeam do
2: {} ? Cond . Initialisation
3: qg(i) 0 . i = 1 to beamWidth
4: end for
5: while there are improvements do
6: for all rules in Beam and newBeam do
7: for all l 2 L do
8: Cond(i) Cond(d) ^ l . add new

condition to the beam
9: qg ¼ TP

FPþg . calculate quality for

(continued on next page)

Table 1
Classification vs. subgroup discovery.

Classification Subgroup discovery

Induction Type Predictive Descriptive
Output Set of classification rules Individual rules to describe subgroups
Purpose To learn a model for classification or prediction To find interesting and interpretable patterns with respect to a specific attribute

5 http://code.google.com/p/promisedata/.
6 http://bug.inf.usi.ch/.
7 http://www.mccabe.com/.
8

the new rule
10: if TP

jEj P minSupp and qg P (qg(i) 2 newBeam) and

relevant then
11: replace worst rule with new rule
12: sort rules in newBeam according to quality
13: end if
14: end for
15: end for
16: Beam newBeam
17: end while

The CN2-SD [44] algorithm induces subgroups in the form of
rules using as a quality metric the relation between true positives
and false positives. It is an adaptation of the CN2 classification rule
algorithm [14], which consists of a search procedure using beam
search within a control procedure that iteratively performs the
search (see Algorithm 2). The CN2-SD algorithm uses the rule
Weighted Relative Accuracy (WRAcc) as a covering measure of the
quality of the induced rules:

WRAccðRiÞ ¼
nðCondÞ

N
� nðCond � ClassÞ

nðCondÞ � nðClassÞ
N

� �
ð2Þ

where N is the total number of instances, n(Cond) and n(Class) are
respectively the number of instances in a dataset in which the ante-
cedent and consequent hold. This measure, WRAcc, represents a
trade-off between the coverage of a rule, i.e., its generality or prob-
ability of the condition (p(Cond)) and its accuracy gain
(p(Class � Cond) � p(Class) expressed as probabilities), which is pro-
portional to TPrate � FPrate [43].

Algorithm 2. CN2-SD Algorithm [44].

Require: D dataset with discrete attributes.
Ensure: Set of rules
1: RuleSet ;
2:function UNSORTEDCN2(D,classValue)
3: for all target 2 Class do
4: RuleSet RuleSet

S
OneClassCN2(D,classValue)

5: end for
6: return RuleSet
7: end function
8:
9: function ONECLASSCN2(D, classValue)
10: rules ;
11: repeat
12: bestCond findBestCond (D,classValue)
13: if bestCond – null then
14: rules addRule (BestCond, classValue)
15: addWeightsToInstances(D,

bestCond) . Instances covered by the
rule

16: end if
17: until bestCondition = null
18: return rules
19: end function
Discretisation in both algorithms is required for continuous
attributes and so an entropy based discretisation method (Mini-
mum Description Length) [22] is used internally by the algorithms.
4. Experimental work and discussion

In this section, we first describe the datasets used and then
show the rules obtained by the SD algorithms for the individual
datasets as well as a simple validation dividing the datasets into
training and testing. Together with the rules we show the number
of true positives (TP) and false positives (FP) captured by the rules
to clarify of rule evaluation. Although there are multiple metrics
that can be used to measure the goodness of the induced rules
are, these metrics can all be derived from the number of true pos-
itives and false positives.

4.1. Datasets

In this paper we have used datasets from the Promise reposi-
tory5 [52] related to NASA projects (CM1, KC2, KC2, KC3, MC2,
MW1 and PC1) and projects from a Turkish white-goods manufac-
turer (AR) as well as from the Bug Prediction Dataset (BDP)6 col-
lected by D’Ambros et al. [16,17] from open source Java projects.

Table 2 shows the number of instances (modules or classes) for
each dataset with the number of defective and non-defective mod-
ules. The percentage of defective modules shows that all are highly
imbalanced varying from 7% defective to 40%. The last column is
the programming language used to develop those modules.

Table 3 summarizes the non-derived metrics collected for each
module. The NASA datasets and the AR dataset from the Promise
repository each contain different McCabe [47], Halstead [30] and
branch-count metrics together with the binary class attribute (true
or false indicating whether a module has reported defects). We
have decided to use base metrics, i.e. non-derived metrics, as there
is high variability in the metrics selected by feature selection algo-
rithms [61]. The McCabe metrics are based on the count of the
number of paths contained in a program based on its control flow
graph [48]. The other set of metrics included in these datasets is
Halstead’s Software Science [30].

The NASA datasets were created from projects carried out at
NASA and collected under their metrics programme using the
MaCabeIQ7 tool. The AR dataset was obtained by combining several
datasets (AR1, AR3, AR4, AR5, AR6) all from embedded systems
developed in C by a Turkish white-goods manufacturer as the indi-
vidual datasets were very small. In this case, the metrics were ob-
tained using the PREST tool.8 Although both the NASA and the AR
datasets share the same metrics, we did not merge them as they
were collected using different tools and belong to different domains.
It has been reported that different tools can obtain very different re-
sults for the same metrics [46].
http://code.google.com/p/prest/.

http://code.google.com/p/promisedata/
http://bug.inf.usi.ch/
http://www.mccabe.com/
http://code.google.com/p/prest/

Table 3
Summary of metrics – Promise datasets.

Metric Definition

McCabe loc McCabe’s Lines of code
v(g) Cyclomatic complexity
eV(g) Essential complexity
iv(g) Design complexity

Halstead Base uniqOp Unique operators, n1

uniqOpnd Unique operands, n2

totalOp Total operators, N1

totalOpnd Total operands N2

Branch branchCount No. of branches of the flow graph

Class false, true Does the module contain defects?

Table 5
Rules for the KC2 dataset using the SD and CN2-SD algorithms.

TP FP Precision Rule

SD
0 26 2 0.93 eV(g) > 4 ^ totalOpnd > 117
1 30 3 0.91 iv(g) > 8 ^ uniqOpnd > 34 ^ eV(g) > 4
2 29 3 0.91 loc > 100 ^ uniqOpnd > 34 ^ eV(g) > 4
3 28 3 0.90 loc > 100 ^ iv(g) > 8 ^ eV(g) > 4
4 26 3 0.90 loc > 100 ^ iv(g) > 8 ^ totalOpnd > 117
5 33 4 0.89 iv(g) > 8 ^ uniqOp > 11 ^ totalOp > 80
6 31 4 0.89 iv(g) > 8 ^ uniqOpnd > 34
7 31 4 0.89 totalOpnd > 117
8 30 4 0.88 loc > 100 ^ iv(g) > 8
9 30 4 0.88 eV(g) > 4 ^ iv(g) > 8

10 37 5 0.88 eV(g) > 4 ^ uniqOpnd > 34
11 29 4 0.88 loc > 100 ^ eV(g) > 4

Table 2
Description of the datasets.

Dataset # Inst. Non-def. Def. % Def. Lang.

CM1 498 449 49 9.83 C
KC1 2109 1783 326 15.45 C++
KC2 522 415 107 20.49 C++
KC3 458 415 43 9.39 Java
MC2 161 109 52 32.29 C++
MW1 434 403 31 7.14 C++
PC1 1109 1032 77 6.94 C

AR 428 368 60 14.01 C

Eclipse JDT Core 997 791 206 20.66 Java
Eclipse PDE-UI 1497 1288 209 13.96 Java
Equinox 324 195 129 39.81 Java
Lucene 691 627 64 9.26 Java
Mylyn 1862 1617 245 13.15 Java
The Bug Prediction Dataset (BPD) by D’Ambros et al. is com-
posed of Chidamber and Kemerer’s object oriented metrics [13]
(referred to here as the C&K metrics) as well as other metrics such
as fan-in, fan-out and number of attributes. As with the previous
dataset, we selected the C&K metrics because they are well-known
and frequently used in defect prediction [60,10]. Using this set of
reduced metrics helped to speed up the learning algorithms and al-
lows us to analyse and compare our results with previous work.
The wmc metric represents the sum of the complexity of all meth-
ods for a class. If w = 1, this is equal to the number of methods. The
dit metric counts the maximum level of the inheritance hierarchy
of a class; the root of the inheritance tree is at level zero of the
inheritance tree. The cbo metric for a class is a count of the number
of other classes to which is coupled, i.e., when one class uses meth-
ods or variables of another class. The noc metric is the count of the
number of subclasses belonging to a class. The lcom metric repre-
sents the extent to which methods reference a class’s instance
data. The rfc metric is the count of the set of all methods that
can be invoked in response to a message to an object of the class
or by some method in the class. Table 4 summarizes the metrics
collected for each Java class in the selected projects.

These metrics have been used for software quality assurance
during testing and maintenance to prioritise testing effort, to as-
Table 4
Summary of the C&K metrics – D’Ambros et al. [17] dataset.

Metric Definition

C&K wmc Weighted Method Count
dit Depth of Inheritance Tree
cbo Coupling Between Objects
noc No. of Children
lcom Lack of Cohesion in Methods
rfc Response For Class

Class true,false Does the module contain defects?
sess comprehensibility and as thresholds. For example, if the cyclo-
matic complexity of a module is between 1 and 10 then it is
considered to be a very low risk module; however, any module
with a cyclomatic complexity greater than 50 is considered to have
an unmanageable complexity and is a high risk module [11]. For
essential complexity (eV(g)), the threshold value is 4. Similarly,
other papers have suggested thresholds for the C&K metrics (e.g.,
[63,7,65,31]). Although all these metrics have been used for some
time, there are no clear thresholds and they are open to interpreta-
tion. For example, although McCabe [47,68] suggests a threshold of
10 for v(g), NASA’s in-house studies for this metric concluded that a
threshold of 20 can be a better predictor of a module being defec-
tive. This may indicate the need to use multiple metrics as we sug-
gest in this paper.
4.2. Inducted rules for the individual datasets

We next present examples of rules and their quality measures
induced for the KC2 dataset (Table 5 from the Promise repository)
and the JDT Core (Table 6 from the BPD dataset) as an example of
the rules obtained using the individual datasets. As stated previ-
ously, we used the Orange tool and its extension for subgroup
discovery.

After carrying out a manual sensitivity analysis we maintained
the default parameters in both algorithms as they allowed us to ob-
tain rules with a good balance between specificity and generality.
For the SD algorithm we can modify the minimal support (5%)
and confidence (80%), the generalisation parameter g (5) and beam
width (20) which refers to the number of solutions kept in each
iteration of the algorithm. For the CN2-SD algorithm, we can mod-
ify the k (5) parameter, which represents the number of times an
instance is kept before being removed from the training set
(CN2-SD is a weighted covering algorithm). The rules were quite
stable to modifications of the parameters because once a rule com-
plies with the parameters, i.e., minimal support and confidence,
such a rule will be kept in the solution and the best rules did not
change as g varies. Also discretisation is an internal preprocessing
12 33 5 0.87 iv(g) > 8 ^ uniqOp > 11
13 41 7 0.85 eV(g) > 4 ^ totalOp > 80 ^ v(g) > 6 ^ uniqOp > 11
14 33 6 0.85 iv(g) > 8 ^ totalOp > 80
15 42 8 0.84 eV(g) > 4 ^ totalOp > 80 ^ uniqOp > 11
16 42 8 0.84 eV(g) > 4 ^ totalOp > 80 ^ v(g) > 6
17 34 7 0.83 loc > 100 ^ uniqOpnd > 34
18 43 9 0.83 eV(g) > 4 ^ totalOp > 80
19 33 7 0.83 iv(g) > 8

CN2SD
0 37 5 0.88 uniqOpnd > 34 ^ eV(g) > 4
1 43 9 0.83 totalOp > 80 ^ eV(g) > 4
2 83 88 0.49 uniqOp > 11

Table 6
Rules for the JDT Core dataset using the SD and CN2-SD algorithms.

TP FP Precision Rule

SD
0 55 12 0.82 cbo > 16 ^ lcom > 171 ^ wmc > 141 ^ rfc > 88
1 62 14 0.82 cbo > 16 ^ rfc > 88 ^ wmc > 141
2 55 13 0.81 cbo > 16 ^ lcom > 171 ^ wmc > 141
3 62 15 0.81 cbo > 16wmc > 141
4 60 16 0.79 lcom > 171 ^ wmc > 141 ^ rfc > 88
5 60 17 0.78 lcom > 171 ^ wmc > 141
6 69 21 0.77 rfc > 88 ^wmc > 141
7 69 22 0.76 wmc > 141
8 39 14 0.74 wmc > 141 ^ noc = 0
9 42 17 0.71 noc > 0 ^ rfc > 88 ^ cbo > 16

10 93 38 0.71 cbo > 16 ^ rfc > 88
11 66 27 0.71 cbo > 16 ^ lcom > 171 ^ rfc > 88
12 51 21 0.71 cbo > 16 ^ noc = 0 ^ rfc > 88
13 34 17 0.67 cbo > 16 ^ wmc 2 (68,141]
14 35 18 0.66 cbo > 16 ^ lcom > 171 ^ noc < =0
15 46 24 0.66 noc > 0 ^ rfc > 88
16 69 38 0.64 cbo > 16 ^ lcom > 171
17 34 19 0.64 noc > 0 ^ rfc > 88 ^ lcom > 171
18 113 72 0.61 rfc > 88
19 74 48 0.61 lcom > 171 ^ rfc > 88

CN2SD
0 62 15 0.81 wmc > 141 ^ cbo > 16
1 93 38 0.71 rfc > 88 ^ cbo > 16
4 113 72 0.61 rfc > 88

9 http://www.cs.waikato.ac.nz/ml/weka/.
step of the algorithms and as a result, the intervals created from
the metrics remain constant (and consequently so do the rules).

As we can observe from Tables 5 and 6, rules tend to be
accurate according to their Positive Predictive Value or precision
rate TP

TPþFP

� �
or when comparing the number of true and false

positives (TP or FP) with the total number of defective examples
in the dataset. There are differences in the number of induced
rules between the subgroup discovery algorithms. The CN2-SD
algorithm tends to produce simpler and fewer rules covering
more samples (defective and non-defective) as weights are used
to increase the probability of inducing rules that cover unseen
examples.

As we allow the SD algorithm to generate a large number of
rules, some SD rules extend previous rules (rules that contain a
previously induced rule) generating a pyramidal effect (the re-
fined rules adding extra conditions to previously induced rule).
Such refined rules with more conditions are more accurate but
cover fewer instances. For example, consider the last two rules
of the SD algorithm in Table 6 (R18: rfc > 88) and (R19:
lcom > 171 ^ rfc > 88). The rule R19 covers 113 out of 206 modules
and 72 false positives; however, R18 is more specific as it covers
74 instances with 48 false positives. However, although it is more
specific this does not necessarily mean that it is a better rule as
we must also consider the other metrics. For a practical approach,
we could opt for simpler or more accurate rules depending on the
application domain, e.g. safety critical systems vs. management
information systems.

It is also important to consider the thresholds defined by the
discretisation which is carried out as a pre-processing step. Inter-
vals, which can be seen as thresholds, differ among datasets. Fay-
yad and Irany’s discretisation method [22] is a supervised
discretisation method that generates intervals to maximise the
probability of the class, i.e., detecting defective modules. The dit
metric did not provide any classification information, i.e. it does
not help to detect defective modules as its discretisation generated
a single interval. As a result we discarded this metric. Similar
observations have been reported in the literature [63,26]. The noc
metric also has poor prediction power and the rules mainly differ-
entiate between classes with and without children. These findings
are also corroborated by ranking the C&K attributes of two of the
datasets using Weka9 [69] with respect to various metrics as shown
in Table 7. The Information Gain and Gain ratio [28] are metrics based
on the entropy metric [59]. ReliefF [38,40] is an instance-based
based ranking method (we used the default parameter which is 10
neighbours and all instances). The v2 ranking method is based on
the v2 statistic with respect to the class. We did not find such ex-
treme cases in the attributes from the NASA and AR datasets.
4.3. Generalisation

For a project manager it may be interesting to extract general
knowledge so that any new expertise is not confined to a single
project. We can obtain general rules by applying the SD algorithms
to metrics collected from several projects or systems. In our case,
datasets in Table 2 are grouped according to their source. In this
section, we work with three datasets: AR, NASA and BDP (these
correspond to the datasets described in Section 4.1), in order to
determine whether the obtained rules are generalizable. We ran
two different experiments. First of all we applied the algorithms
to complete databases and then we divided the data into training
and testing sets [5,51].

Tables 8–10 show the results for the combined datasets. The
probability of a module being correctly identified as defective is
the ratio between the number of defective modules and the total
number of modules. Therefore, the probability that a random mod-
ule is correctly identified as defective is 0.13, 0.14 and 0.16 for the
NASA, AR and BDP datasets respectively according to Table 2. Out
of all possible evaluation measures that can be calculated for a rule,
we decided to use precision as it is both intuitive and useful. In this
context, precision can be understood as the probability of a module
being correctly identified as defective when covered by the condi-
tion(s) of the rule. Thus, a rule with high precision values will indi-
cate which modules should be tested most thoroughly.

The rules induced by the SD algorithm correctly identifies
defective modules with probability between 0.66 and 0.83 for
the AR dataset (Table 8), between 0.43 and 0.47 for the NASA data-
set (Table 9) and between 0.25 and 0.55 for the BDP dataset (Ta-
ble 10). In the case of the CN2-SD algorithm, the range is larger
and the rules are sorted from the most specific to the most generic.

Analysing the rules obtained by the SD algorithm, we can ob-
serve that they indicate thresholds for the metrics. The combina-
tion of the metrics with their threshold values can increase or
decrease the specificity of the rule. For example, in the case of
the AR dataset (Table 8), the threshold value for lines of code is
set to 155 while the threshold values of iv(g) and v(g) are 3 and
17 respectively. In relation to the number of operators and oper-
ands, the ratio of the thresholds for UniqOp (15) and UniqOpnd
(47) is approximately 1–3, while the ratio for totalOpnd (112)
and totalOp (170) is approximately 1–1.5. In the case of the NASA
datasets (Table 9), the threshold is lower for loc (88) and higher
for complexity; the ratios between total operators and operands
is maintained (1:1.5) although it is different for unique operators
and operands (1:2).

In the case of the BDP dataset (Table 10), the thresholds of the
wmc metric obtained by the SD algorithm are 24 and 87. Similarly,
there are also two thresholds induced by SD for cbo (15 and 25).
The threshold values for lcom and rfc are 45 and 68 respectively.
The obtained rules are combinations of these thresholds. The rules
induced by the CN2-SD algorithm are much simpler and the first
two rules are more specific than the ones induced by the SD algo-
rithm; wmc > 87 ^ cbo > 25 indicates a 0.7 probability of correctly

http://www.cs.waikato.ac.nz/ml/weka/

Table 7
Ranking of the C&K Attributes in the JDT Core and BPD Datasets.

JDT core BPD combined

Inf gain Gain ratio ReliefF v2 Inf gain Gain ratio ReliefF v2

wmc 0.1657 0.1018 0.006534 263.872 0.06461 0.03673 0.001645 581.228
rfc 0.1494 0.1721 0.005472 248.415 0.07159 0.04772 0.001598 659.484
cbo 0.1397 0.0835 0.012259 222.905 0.06499 0.04184 0.002236 567.614
noc 0.0754 0.0494 0.007773 24.788 0.00219 0.00335 0.002616 17.236
lcom 0.0168 0.0207 0.000423 120.473 0.04412 0.02727 0.000121 396.321
dit 0 0 0.006563 0 0 0 0.001853 0

Table 8
Rules of the combined AR dataset using the SD and CN2-SD algorithms.

TP FP Precision Rules

SD
0 19 4 0.83 totalOpnd > 112 ^ iv(g) > 3 ^ uniqOp > 15 ^ totalOp > 170
1 19 4 0.83 uniqOp > 15 ^ iv(g) > 3 ^ v(g) > 17
2 20 5 0.8 uniqOpnd > 47 ^ v(g) > 17 ^ uniqOp > 15
3 19 5 0.79 uniqOpnd > 47 ^ totalOp > 170 ^ uniqOp > 15
4 18 5 0.78 totalOpnd > 112 ^ iv(g) > 3 ^ v(g) > 17
5 18 5 0.78 uniqOpnd > 47 ^ iv(g) > 3 ^ branchCount > 32
6 18 5 0.78 loc > 155 ^ totalOpnd > 112
7 18 5 0.78 loc > 155 ^ v(g) > 17
8 20 6 0.77 uniqOpnd > 47 ^ branchCount > 32 ^ uniqOp > 15
9 19 6 0.76 loc > 155

10 19 6 0.76 totalOp > 170 ^ iv(g) > 3
11 19 6 0.76 totalOpnd > 112 ^ iv(g) > 3 ^ uniqOp > 15
12 23 8 0.74 uniqOp > 15 ^ iv(g) > 3 ^ branchCount > 32
13 20 7 0.74 uniqOpnd > 47 ^ v(g) > 17
14 20 7 0.74 uniqOpnd > 47 ^ uniqOp > 15
15 17 6 0.74 totalOpnd > 112 ^ iv(g) > 3 ^ uniqOpnd > 47
16 19 7 0.73 uniqOpnd > 47 ^ totalOp > 170
17 25 11 0.69 uniqOp > 15 ^ iv(g) > 3
18 20 9 0.69 uniqOpnd > 47 ^ branchCount > 32
19 23 12 0.66 uniqOp > 15 ^ totalOp > 170

CN2SD
0 20 5 0.8 v(g) > 17 ^ iv(g) > 3
1 23 8 0.74 uniqOp > 15 ^ branchCount > 32 ^ iv(g) > 3
2 25 11 0.69 uniqOp > 15 ^ iv(g) > 3
3 29 18 0.62 uniqOp > 15 ^ branchCount > 32
4 36 34 0.51 uniqOp > 15

Table 9
Rules combining the promise datasets using the SD and CN2-SD algorithms.

TP FP Precision Rules

SD
0 132 147 0.47 v(g) > 10 ^ totalOp > 103 ^ totalOpnd > 69 ^ iv(g) > 7 ^ branchCount > 20
1 133 150 0.47 iv(g) > 7 ^ totalOpnd > 69 ^ branchCount > 20
2 138 156 0.47 v(g) > 10 ^ totalOp > 103 ^ iv(g) > 7 ^ branchCount > 20
3 133 155 0.46 v(g) > 10 ^ totalOp > 103 ^ totalOpnd > 69 ^ iv(g) > 7
4 121 142 0.46 v(g) > 10 ^ totalOp > 103 ^ iv(g) > 7 ^ uniqOpnd > 36
5 139 164 0.46 v(g) > 10 ^ totalOp > 103 ^ iv(g) > 7
6 134 159 0.46 iv(g) > 7 ^ totalOpnd > 69 ^ v(g) > 10
7 123 146 0.46 v(g) > 10 ^ iv(g) > 7 ^ uniqOpnd > 36
8 122 145 0.46 iv(g) > 7 ^ totalOpnd > 69 ^ uniqOpnd > 36 ^ v(g) > 10
9 142 171 0.45 iv(g) > 7 ^ branchCount > 20

10 118 186 0.39 v(g) > 10 ^ iv(g) > 7 ^ uniqOp > 17
11 148 186 0.44 iv(g) > 7 ^ totalOp > 103 ^ totalOpnd > 69
12 151 192 0.44 iv(g) > 7 ^ totalOpnd > 69
13 125 159 0.44 iv(g) > 7 ^ totalOp > 103 ^ uniqOp > 17
14 123 157 0.44 iv(g) > 7 ^ totalOp > 103 ^ totalOpnd > 69 ^ uniqOp > 17
15 127 163 0.44 iv(g) > 7 ^ totalOp > 103 ^ uniqOpnd > 36
16 130 167 0.44 iv(g) > 7 ^ totalOpnd > 69 ^ uniqOpnd > 36
17 131 169 0.44 iv(g) > 7 ^ uniqOpnd > 36
18 143 185 0.44 v(g) > 10 ^ iv(g) > 7
19 124 162 0.43 iv(g) > 7 ^ totalOpnd > 69 ^ uniqOp > 17

CN2
1 130 112 0.54 loc > 88
2 251 462 0.35 totalOp > 103

Table 10
Rules combining the BDP datasets using the SD and CN2-SD algorithms.

TP FP Precision Rules

SD
0 181 148 0.55 wmc > 87
1 185 190 0.49 cbo > 25
2 139 251 0.36 cbo 2 (15,25] ^ lcom 2 (45,1225]
3 117 223 0.34 cbo 2 (15,25] ^wmc 2 (24,87]
4 140 279 0.33 cbo 2 (15,25] ^ noc = 0
5 176 374 0.32 cbo 2 (15,25]
6 227 496 0.31 rfc 2 (68,187]
7 189 414 0.31 lcom 2 (45,1225] ^ rfc 2 (68,187]
8 124 277 0.31 lcom 2 (45,1225] ^ rfc 2 (68,187] ^ wmc 2 (24,87] ^ noc = 0
9 150 336 0.31 lcom 2 (45,1225] ^ rfc 2 (68,187] ^ noc = 0

10 179 408 0.3 rfc 2 (68,187] ^ noc = 0
11 148 339 0.3 lcom 2 (45,1225] ^ rfc 2 (68,187] ^ wmc 2 (24,87]
12 146 336 0.3 rfc 2 (68,187] ^ noc = 0 ^ wmc 2 (24, 87]
13 174 406 0.3 rfc 2 (68,187] ^wmc 2 (24,87]
14 102 261 0.28 lcom 2 (45,1225] ^ noc > 0
15 230 667 0.26 lcom 2 (45,1225] ^ wmc 2 (24,87]
16 410 1202 0.25 lcom 2 (45,1225]
17 179 533 0.25 wmc 2 (24,87] ^ noc = 0 ^ lcom 2 (45,1225]
18 308 925 0.25 wmc 2 (24,87]
19 308 941 0.25 lcom 2 (45,1225] ^ noc = 0

CN2SD
0 128 56 0.7 wmc > 87 ^ cbo > 25
1 147 86 0.63 rfc > 187
2 410 1202 0.25 lcom 2 (45,1225]

Table 11
Rule generalisation results.

Dataset % Def. orig. SD CN2-SD

Precision % Def. capt. Precision % Def. capt.

NASA 0.13 0.37 0.52 0.44 0.29
AR 0.14 0.58 0.55 0.62 0.63
BDP 0.16 0.51 0.40 0.44 0.53
identifying a defective module and when rfc > 187 the probability
of correctly identifying a defective module is 0.63.

It can be observed that in the BDP datasets some rules define a
range (e.g. rules R2 lcom 2 (45,1225]) rather than a threshold (e.g.
rules R0 and R1). From the software engineering point of view we
could use the lower values of these metrics as thresholds (i.e.,
lcom > 45) instead of the intervals induced by the algorithms. The
quality of the rule will be very similar if we ignore the upper limit.
In relation to noc metric, its distribution is also very skewed; most
modules do not have children (as stated previously) and so this
metric is not a good discriminator for correctly identifying defec-
tive modules. Again, from the software engineering point of view,
we could ignore this attribute and the rule quality will be very sim-
ilar (although small differences can be observed in rules R4 and R5

using the SD algorithm).
An advantage of using the rules, in addition to simplicity, is that

they provide information about how to combine metrics that can
indicate error-prone modules. For example, when cbo > 25 a module
may be identified as error-prone, however when cbo is moderate
(cbo 2 (15,25]) but occurs with high values of other metrics (e.g.
lcom 2 (45,1225]) the probability of correctly identifying a defective
module is much higher. Finally, generating a large number of rules,
as the SD algorithm does, allows us to observe different threshold
values and their consequences (c.f. rules R0 and R18 in Table 10).

We can conclude that subgroup discovery rules can produce re-
sults for heterogeneous projects to indicate the probability of finding
defect-prone modules. These rules are obviously less specific than
the ones extracted from single projects but still useful to project
managers or quality engineers who need some guidance in the test-
ing process.

With respect to the comparison of SD and CN2-SD, the induced
rules are different due to the different approaches of the algo-
rithms. With SD, we can generate a larger number of rules with
greater overlap (rules covering the same examples). We could ap-
ply some post-processing to select rules as will be explained in
Section 4.4 depending on which rules are easier to apply or control.
On the other hand, CN2-SD induces a smaller number of rules but
with less overlap and similar specificity.

In order to check if the rules are generalizable we studied how the
algorithms behave when different datasets are used for training and
testing (Table 11). In this case we used half of the modules for train-
ing algorithms and the other half for testing. The figures shown in the
table are the average results of running this process twice. The sec-
ond column (%Def.Orig.) shows the percentage of defective modules
in each group of datasets. In addition, the table is divided vertically
into two parts, one for each SD algorithm. Each part has two col-
umns: the first column indicates the average precision of the rules
generated by the algorithm; whereas the value of the second column
indicates the percentage of defective modules captured (%Def.Capt.)
by the generated rules. This table shows that the obtained rules are
generalizable and not dependent on the training data. It can be ob-
served that for the NASA group application of SD rules increased
the precision rate from the original 0.13 to 0.37. With the AR and
BDP data the results are even better because the percision rate is
above 50%. Results with CN2-SD are very similar.

The conclusion of this analysis is twofold: first, the software
engineer can generate rules to improve the probability of correctly
detecting defect prone modules using historical data and apply the
rules to future development; and second, these rules provide
knowledge about which metrics are best at correctly detecting
defective modules and what threshold values we should use. This
implies the rules provide a mechanism to establish which modules
should be subjected to increased surveillance during the testing
phase.
4.4. Overlapping and rule selection

From the software engineering point of view, we want to select
a set of accurate rules covering a large number of samples in the
dataset. However this is not an easy task and expert knowledge
is required in most cases to select and understand the most useful

rules (as individual pieces of knowledge) in order to apply them
successfully. Although it is not the case with the CN2-SD algorithm,
which creates a small number of rules, we might need to select
rules from those generated by the SD algorithm or combine rules
from different algorithms for optimal results.

In order to measure how much the rules generated by the algo-
rithms overlap, we built Table 12. This table shows three values for
each algorithm: the average number of rules which cover a unique
defective module, the percentage with respect to the total number
of rules, and the number of defective modules covered by all the
rules. For example, for CM1, each correctly identified defective
module is covered by 13.86 rules on average (69.32% of 20) and
77.08% of all defective modules are covered.

In general, it can be seen that the SD algorithm provides numer-
ous similar rules regarding instances covered, although the metrics
and thresholds are different. To select a minimum set of rules that
are as different as possible and cover the same records as the com-
plete set of rules we have to define a distance measure between the
rules based on their overlap.

Given a set of rules it is possible to measure their overlap by
counting the number of different instances covered by the rules.
If c(Ri) is the set of instances covered by a rule, Ri, then we define
the distance between two rules as:

distðRi;RjÞ ¼ jcðRiÞj þ jcðRjÞj � 2 � jðcðRiÞ
\

cðRjÞj ð3Þ

where j � � � j indicates the cardinality of the set. This value represents
the number of different instances covered by any of the two rules
and provides a measure of how different the rules are. If both rules
cover the same instances, their distance will be equal to zero. The
greater the number of different instances covered by the rules, the
greater their distance. We can calculate a matrix of distances from
a set of rules using Eq. (3) in order to cluster the rules. Each cluster
will be composed of a set of rules that cover similar instances and ex-
plain similar characteristics. As an example, given the set of rules ob-
tained by the algorithm SD from the AR dataset (Table 8), we could
form 6 different clusters. The clusters are composed of 7 rules, 5
rules, two clusters with 3 rules and a cluster with a single rule. The
question is: what information can these clusters provide? For exam-
ple, the cluster with five rules is composed of the following rules:

� totalOpnd > 112 ^ iv(g) > 3 ^ uniqOp > 15 ^ totalOp > 170
� uniqOp > 15 ^ iv(g) > 3 ^ v(g) > 17
� totalOpnd > 112 ^ iv(g) > 3 ^ v(g) > 17
� totalOp > 170 ^ iv(g) > 3
� totalOpnd > 112 ^ iv(g) > 3 ^ uniqOp > 15

As it can be observed, in this cluster all rules have a common
condition iv(g) > 3 and a number of different conditions involving
the number of operands and operators that vary from rule to rule.
Software quality or testing engineers can choose between these
Table 12
Rule overlap.

Dataset SD

Avg. # rules % Rules

CM1 13.86 69.32
KC1 14.69 73.44
KC2 13.22 66.10
MC2 11.23 56.17
MW1 15.69 78.44
PC1 9.76 48.78

AR 12.68 63.39

Eclipse JDT Core 10.07 50.34
Eclipse PDE-UI 14.47 72.33
Equinox 10.20 51.02
Lucene 9.68 48.38
rules as they represent similar information. On the other hand,
each cluster represents different conditions for the modules that
are identified as error-prone. In this example, we could select 6
rules out of the 20 rules, one rule from each cluster, and we will
be able to cover a very similar number of instances as with the
whole ruleset but with minimal overlap. In this example, we could
select for example the following rules, one from each cluster:

� totalOp > 170 ^ iv(g) > 3
� uniqOpnd > 47 ^ v(g) > 17
� uniqOpnd > 47 ^ iv(g) > 3 ^ branchCount > 32
� loc > 155
� uniqOp > 15 ^ totalOp > 170
� uniqOp > 15 ^ iv(g) > 3

Bar charts are a rule visualisation technique for binary classes
[42] that can be used to evaluate and select rules in an intuitive
way. The first bar represents the distribution of the class attribute
(a colour for each value) where the imbalance can be observed
with the percentage of positive cases to the right and negative to
the left. The rest of the bars represent one rule each with their TP
and FP ratios.

For example, Fig. 5 shows bar chart representations of the rules
obtained using the CN2-SD algorithm for the AR dataset. The first
bar in these figures shows the proportion of non defective samples
(on the left-hand side of the bar) vs. defective samples (on the
right-hand side of the bar) for the entire dataset. The rest of the
rules show the proportion of FP and TP for each rule. For example,
the first rule for CN2-SD (uniqOp > 34 ^ eV(g) > 4) covers 35% of the
defective modules and only 1% of the non-defective ones. A simpler
rule like uniOp > 11 covers a larger number of defective modules
(78%) but also includes more non defective modules (21%). Both
colours together represent the size of the subgroup, i.e., the num-
ber of instances covered by the rule.
5. Threats to validity

There are some threats to validity [70] that we discuss in this
section.

Construct validity is the degree to which the variables used in
the study accurately measure the concepts they are intended to
measure. As discussed previously, the datasets are highly imbal-
anced and skewed. The algorithms used in this work do not di-
rectly work with continuous attributes and so we must discretise
continuous attributes during pre-processing. Further work is
needed to look into different discretisation techniques and trans-
formation of the data as a preprocessing step before applying the
SD technique. We have carried out some work to deal with contin-
uous attributes [62] but the algorithm is not yet integrated with
CN2-SD

% Def. Avg. # rules % Rules % Def.

77.08 3.40 68.00 83.33
34.36 2.54 50.83 62.88
46.73 2.89 57.86 78.50
57.69 2.79 55.86 55.77
51.61 3.95 78.95 61.29
53.25 2.16 43.20 64.94

51.67 3.59 71.89 61.67

57.28 4.02 80.35 54.85
62.68 1.03 20.61 62.68
79.84 1.91 38.13 74.42
57.81 3.73 74.67 46.88

Fig. 5. Bar chart visualization of rules for the AR dataset using the CN2-SD algorithm.
the Orange tool. Also, most of the metrics were selected manually,
using non-derived metrics and the C&K metrics for the BDP data-
sets. The validity of these metrics has been investigated but is still
open to debate [60].

We found problems in the datasets such as duplicates and
inconsistencies, that need to be further investigated. Finally, there
seems to be some agreement about the practical usefulness of met-
rics as predictors of quality, but there have also been some criti-
cisms concerning their effectiveness.

Conclusion validity threats are related to finding the right rela-
tions between the treatments and the outcomes. Rules were in-
duced using the algorithms’ default parameters provided by the
tool. Although results could be further optimised with different
parameters, a preliminary sensitivity analysis did not change
the most relevant rules. Furthermore, the aim of this paper is
to explore the use of SD to generate simple rules that are easy
to apply by practitioners. It is probably the case that within
some application domains of software engineering, a higher per-
centage of errors (false positives) is admissible when compared
with other disciplines such as medicine. Finally, the induced
rules do not cover all the defective modules, i.e. this is not a
complete solution for the whole search space. Future research
will analyse other quality metrics for sets of rules such as mea-
sures of the dispersion of a set of selected rules in addition to
the ones outlined in this work.

Internal validity is the degree to which conclusions can be
drawn. We used a relatively small number of datasets and
although there is some degree of consistency among the metrics
selected by the rules within each dataset, they vary among datasets
and so do the thresholds. Shepperd and Kadoda [64] reported the
influence of different data characteristics (dataset size, number,
type and independence of features, and type of distribution) using
simulated data over a number of different types of classifiers con-
cluding there is no one best classifier as the characteristics of the
data affect the outcomes.

External validity is the degree to which the results of the re-
search can be generalised to the population under study and other
research settings. It is suggested that the NASA repository can be
generalised to industry in general [54]. However, the source of
some of the data is not known and there are some issues with
the quality of the data. The object-oriented datasets come from a
unique open source project and therefore further replication stud-
ies are needed with other datasets, as well as other SD algorithms
and application domains. There is also a problem with the size of
the datasets as the complexity of the algorithms is O(n2). There
are new algorithms that have been proposed in the literature
[32]. However, they are spread across multiple tools which makes
them difficult to compare.
6. Conclusions and future work

Subgroup Discovery (SD) as initially proposed by Klösgen is
defined as the task of finding groups of individuals given a
property of interest. Machine learning approaches to defect pre-
diction in software engineering have mainly focused on classifica-
tion or clustering techniques. SD algorithms can be both
predictive (predicting the future given historical data and a prop-
erty of interest) and descriptive (discovering interesting patterns
in data). In our case, we used two SD algorithms to find rules
for correctly predicting modules which are likely to be defective.
The algorithms are robust to problems faced by classification
techniques such as highly imbalanced data, noisy data, and data
with high numbers of inconsistencies and redundancies. These
problems are present in most defect prediction datasets in the
software engineering domain.

In this paper, we analysed and compared different publicly
available datasets using two subgroup discovery algorithms, SD
and CN2-SD, showing that induced rules are capable of correctly
characterising subgroups of modules with a reasonable probability
of being defective. The set of induced descriptive rules is in general
simpler and easier to use than those obtained through classifica-
tion algorithms. This can provide a software engineering approach,
i.e., an approach which is useful in practice, easily understandable
and can be applied by project managers, testers and quality engi-
neers alike.

The experimentation was carried out in three different stages.
First, all datasets were analysed independently and the induced
rules were found to increase the probability of detecting defec-
tive modules. In the second stage, we verified that subgroup dis-
covery algorithms can obtain good results by combining all
datasets into three new datasets according to their source. Final-
ly, we analysed whether the rules could be generalised to un-
seen examples that were not present in the training datasets.
The results show that induced rules can be used to correctly
identify defect-prone modules. In any of the three stages dis-
cussed above, rules induced by subgroup discovery algorithms
were simpler and easier to understand and apply. The main dif-
ference between these two algorithms, is that the SD algorithm
can induce a large number of rules that cover the same instances
while the CN2-SD algorithm takes any overlap of rules into ac-
count (it is a weighted covering algorithm). However, in general,
the rules obtained with both algorithms have similar values for
support and precision. The rules obtained by the SD algorithm
can be post-processed to select those that minimise overlap
through a clustering process that finds sets of rules that cover
the same instances (the same process could be used to select
rules merged from different algorithms). It is worth noting that
knowing the rules that overlap can be an advantage, because
practitioners can establish relationships between the metrics
and select different metrics that cover the same defects. In con-
clusion, we answer our research question in the affirmative: sub-
group discovery can be used to detect the most defective
modules in a system.

Future work will consist of further exploring other SD algo-
rithms, datasets, quality measures (including multi-objective ap-
proaches) and the sensitivity of SD algorithms. There is a need
for further investigation of issues related to imbalanced data as a
part of feature selection as well as methods for evaluating the qual-
ity of defect prediction datasets.

Acknowledgements

The authors are grateful to Dr. Petra Kralj Novak for answering
some of our questions about the Orange tool and the anonymous
reviewers for their useful comments while improving this manu-
script. This work has been supported by the projects ICEBERG
(IAPP-2012-324356) and MICINN TIN2011-28956-C02-00. Also D.
Rodríguez carried out part of this work as a visiting research fellow
at Oxford Brookes University, UK.
References

[1] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of
items in large databases, SIGMOD Record 22 (1993) 207–216.

[2] E. Arisholm, L.C. Briand, Predicting fault-prone components in a Java legacy
system, in: Proceedings of the 2006 ACM/IEEE International Symposium on
Empirical Software Engineering (IESE’06), ACM, New York, NY, USA, 2006, pp.
8–17.

[3] E. Arisholm, L.C. Briand, E.B. Johannessen, A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models, Journal
of Systems and Software 83 (2010) 2–17.

[4] D. Azar, H. Harmanani, R. Korkmaz, A hybrid heuristic approach to optimize
rule-based software quality estimation models, Information and Software
Technology 51 (2009) 1365–1376.

[5] D. Azar, J. Vybihal, An ant colony optimization algorithm to improve software
quality prediction models: case of class stability, Information and Software
Technology 53 (2011) 388–393.

[6] S.D. Bay, M.J. Pazzani, Detecting group differences: mining contrast sets, Data
Mining and Knowledge Discovery 5 (2001) 213–246.

[7] S. Benlarbi, K.E. Emam, N. Goel, S.N. Rai, Thresholds for object-oriented
measures, in: 11th International Symposium on Software Reliability
Engineering (ISSRE 2000), pp. 24–39.

[8] S. Bibi, G. Tsoumakas, I. Stamelos, I. Vlahvas, Software defect prediction using
regression via classification, in: IEEE International Conference on Computer
Systems and Applications (AICCSA 2006), pp. 330–336.

[9] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.
[10] L. Briand, P. Devanbu, W. Melo, An investigation into coupling measures for

C++, in: Proceedings of the 19th International Conference on Software
Engineering (ICSE’97), ICSE’97, ACM, New York, NY, USA, 1997, pp. 412–421.

[11] K. Brune, D. Fisher, J. Foreman, J. Gross, R. Rosenstein, M. Bray, W. Mills, D.
Sadoski, J. Shimp, E. van Doren, C. Vondrak, M. Gerken, G. Haines, E. Kean, M.D.
Luginbuhl, C4 Software Technology Reference Guide: A Prototype, Technical
Report CMU/SEI-97-HB-001, Software Engineering Institute (SEI), Carnegie
Mellon University, 1997.

[12] C. Catal, B. Diri, A systematic review of software fault prediction studies,
Expert Systems with Applications 36 (2009) 7346–7354.

[13] S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE
Transactions on Software Engineering 20 (1994) 476–493.

[14] P. Clark, T. Niblett, The CN2 induction algorithm, Machine Learning 3 (1989)
261–283.

[15] J. Clarke, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell, S.
Mancoridis, K. Rees, M. Roper, M. Shepperd, Reformulating software
engineering as a search problem, IEE Software 150 (2003) 161–175.

[16] M. D’Ambros, M. Lanza, R. Robbes, An extensive comparison of bug prediction
approaches, in: 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), pp. 31–41.

[17] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: a
benchmark and an extensive comparison, Empirical Software Engineering 17
(2012) 531–577.

[18] G. Denaro, M. Pezze, An empirical evaluation of fault-proneness models, in:
Proceedings of the 24rd International Conference on Software Engineering
(ICSE 2002), 2002, pp. 241–251.

[19] G. Dong, J. Li, Efficient mining of emerging patterns: discovering trends and
differences, in: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’99, ACM, New York, NY, USA,
1999, pp. 43–52.

[20] K.O. Elish, M.O. Elish, Predicting defect-prone software modules using support
vector machines, Journal of Systems and Software 81 (2008) 649–660.

[21] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27
(2006) 861–874.

[22] U.M. Fayyad, K.B. Irani, On the handling of continuous-valued attributes in
decision tree generation, Machine Learning 8 (1992) 87–102.

[23] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From data mining to knowledge
discovery in databases, AI Magazine 17 (1996) 37–54.

[24] N. Fenton, M. Neil, A critique of software defect prediction models, IEEE
Transactions on Software Engineering 25 (1999) 675–689.

[25] D. Gamberger, N. Lavrac, Expert-guided subgroup discovery: methodology and
application, Journal of Artificial Intelligence Research 17 (2002) 501–527.

[26] T. Gyimothy, R. Ferenc, I. Siket, Empirical validation of object-oriented metrics
on open source software for fault prediction, IEEE Transactions on Software
Engineering 31 (2005) 897–910.
[27] M. Halkidi, D. Spinellis, G. Tsatsaronis, M. Vazirgiannis, Data mining in
software engineering, Intelligent Data Analysis 15 (2011) 413–441.

[28] M. Hall, G. Holmes, Benchmarking attribute selection techniques for discrete
class data mining, IEEE Transactions on Knowledge and Data Engineering 15
(2003) 1437–1447.

[29] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic literature
review on fault prediction performance in software engineering, , IEEE
Transactions on Software Engineering 38 (2012) 1276–1304.

[30] M. Halstead, Elements of software science, Operating And Programming
Systems Series, vol. 2, Elsevier Computer Science Library, Elsevier, New York,
Oxford, 1977.

[31] R. Harrison, S. Counsell, R. Nithi, Experimental assessment of the effect of
inheritance on the maintainability of object-oriented systems, The Journal of
Systems and Software 52 (2000) 173–179.

[32] F. Herrera, C.J. Carmona del Jesus, P. González, M.J. del Jesus, An overview on
subgroup discovery: foundations and applications, Knowledge and
Information Systems 29 (2011) 495–525.

[33] D.A. Houari A. Sahraoui, Quality estimation models optimization using genetic
algorithms: case of maintainability, in: Proc. of the 2nd European Software
Measurement Conference (FESMA’99).

[34] T.M. Khoshgoftaar, E. Allen, J. Deng, Using regression trees to classify fault-
prone software modules, IEEE Transactions on Reliability 51 (2002) 455–462.

[35] T.M. Khoshgoftaar, E. Allen, J. Hudepohl, S. Aud, Application of neural networks
to software quality modeling of a very large telecommunications system, IEEE
Transactions on Neural Networks 8 (1997) 902–909.

[36] T.M. Khoshgoftaar, N. Seliya, Analogy-based practical classification rules for
software quality estimation, Empirical Software Engineering 8 (2003) 325–
350.

[37] T.M. Khoshgoftaar, N. Seliya, Comparative assessment of software quality
classification techniques: an empirical case study, Empirical Software
Engineering 9 (2004) 229–257.

[38] K. Kira, L.A. Rendell, A practical approach to feature selection, in: Proceedings
of the Ninth International Workshop on Machine Learning, ML92, Morgan
Kaufman Publishers Inc., San Francisco, CA, USA, 1992, pp. 249–256.

[39] W. Klösgen,Explora: a multipattern and multistrategy discovery assistant, in:
Advances in Knowledge Discovery and Data Mining, 1996, American
Association for Artificial Intelligence Menlo Park, CA, USA, pp. 249–271.

[40] I. Kononenko, Estimating attributes: analysis and extensions of relief, in:
Proceedings of the European Conference on Machine Learning (ECML’94),
ECML-94, Springer, Verlag New York, Inc., Secaucus, NJ, USA, 1994, pp. 171–182.

[41] A.G. Koru, H. Liu, Building effective defect-prediction models in practice, IEEE
Software 22 (2005) 23–29.

[42] P. Kralj, N. Lavrač, B. Zupan, Subgroup visualization, in: Proceedings of the 8th
International Multiconference Information Society (IS 2005), pp. 228–231.

[43] P. Kralj Novak, N. Lavrč, G.I. Webb, Supervised descriptive rule discovery: a
unifying survey of contrast set, emerging pattern and subgroup mining,
Journal of Machine Learning Research 10 (2009) 377–403.

[44] N. Lavrač, B. Kavšek, P. Flach, L. Todorovski, Subgroup discovery with CN2-SD,
The Journal of Machine Learning Research 5 (2004) 153–188.

[45] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification
models for software defect prediction: a proposed framework and novel
findings, IEEE Transactions on Software Engineering 34 (2008) 485–496.

[46] R. Lincke, J. Lundberg, W. Löwe, Comparing software metrics tools, in:
Proceedings of the 2008 International Symposium on Software Testing and
Analysis (ISSTA’08), ISSTA’08, ACM, New York, NY, USA, 2008, pp. 131–142.

[47] T. McCabe, A complexity measure, IEEE Transactions on Software Engineering
2 (1976) 308–320.

[48] T.J. McCabe, C.W. Butler, Design complexity measurement and testing,
Communications of the ACM 32 (1989) 1415–1425.

[49] T. Mende, R. Koschke, Revisiting the evaluation of defect prediction models, in:
Proceedings of the 5th International Conference on Predictor Models in
Software Engineering (PROMISE’09), ACM, New York, NY, USA, 2009, pp. 1–10.

[50] T. Mende, R. Koschke, Effort-aware defect prediction models, in: Proceedings
of the 2010 14th European Conference on Software Maintenance and
Reengineering (CSMR’10), CSMR’10, IEEE Computer Society, Washington, DC,
USA, 2010, pp. 107–116.

[51] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, T.
Zimmermann, Local vs. global lessons for defect prediction and effort
estimation, IEEE Transactions on Software Engineering (2012a) (preprint).

[52] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, B. Turhan, The
PROMISE Repository of Empirical Software Engineering Data, 2012.

[53] T. Menzies, A. Dekhtyar, J. Distefano, J. Greenwald, Problems with precision: a
response to comments on data mining static code attributes to learn defect
predictors, IEEE Transactions on Software Engineering 33 (2007) 637–640.

[54] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to learn
defect predictors, IEEE Transactions on Software Engineering 33 (2007) 2–13.

[55] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, A. Bener, Defect prediction
from static code features: currentresults, limitations, new approaches,
Automated Software Engineering 17 (2010) 375–407, http://dx.doi.org/
10.1007/s10515-010-0069-5.

[56] I. Myrtveit, E. Stensrud, M. Shepperd, Reliability and validity in comparative
studies of software prediction models, IEEE Transactions on Software
Engineering 31 (2005) 380–391.

[57] Y. Peng, G. Kou, G. Wang, H. Wang, F. Ko, Empirical evaluation of classifiers for
software risk management, International Journal of Information Technology &
Decision Making (IJITDM) 08 (2009) 749–767.

http://refhub.elsevier.com/S0950-5849(13)00101-8/h0005
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0005
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0010
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0010
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0010
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0010
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0010
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0015
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0015
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0015
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0020
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0020
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0020
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0025
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0025
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0025
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0030
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0030
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0035
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0040
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0040
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0040
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0040
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0045
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0045
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0050
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0050
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0055
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0055
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0060
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0060
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0060
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0065
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0065
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0065
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0070
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0070
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0070
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0070
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0070
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0075
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0075
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0080
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0080
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0085
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0085
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0090
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0090
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0095
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0095
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0100
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0100
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0105
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0105
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0105
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0110
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0110
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0115
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0115
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0115
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0120
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0120
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0120
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0120
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0125
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0125
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0125
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0130
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0130
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0130
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0135
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0135
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0140
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0140
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0140
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0145
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0145
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0145
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0150
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0150
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0150
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0155
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0155
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0155
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0155
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0160
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0160
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0160
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0160
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0165
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0165
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0170
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0170
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0170
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0175
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0175
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0180
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0180
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0180
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0185
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0185
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0185
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0185
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0190
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0190
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0195
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0195
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0200
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0200
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0200
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0200
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0205
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0205
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0205
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0205
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0205
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0210
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0210
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0210
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0215
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0215
http://dx.doi.org/10.1007/s10515-010-0069-5
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0225
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0225
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0225
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0230
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0230
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0230

[58] Y. Peng, G. Wang, H. Wang, User preferences based software defect detection
algorithms selection using MCDM, Information Sciences, 191 (2012) 3–13.

[59] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San
Mateo, California, 1993.

[60] D. Radjenović, M. Heričo, R. Torkar, A. Živkovič, Software fault prediction
metrics: a systematic literature review, Information and Software Technology,
55 (2013) 1397–1418, http://dx.doi.org/10.1016/j.infsof.2013.02.009.

[61] D. Rodriguez, R. Ruiz, J. Cuadrado, J. Aguilar-Ruiz, Detecting fault modules
applying feature selection to classifiers, in: IEEE International Conference on
Information Reuse and Integration (IRI’07), pp. 667–672.

[62] D. Rodriguez, R. Ruiz, J. Riquelme, J. Aguilar-Ruiz, Searching for rules to detect
defective modules: a subgroup discovery approach, Information Sciences 191
(2012) 14–30.

[63] R. Shatnawi, W. Li, J. Swain, T. Newman, Finding software metrics threshold
values using ROC curves, Journal of Software Maintenance and Evolution:
Research and Practice 22 (2010) 1–16.

[64] M. Shepperd, G. Kadoda, Comparing software prediction techniques using
simulation, IEEE Transactions on Software Engineering 27 (2001) 1014–1022.

[65] Y. Singh, A. Kaur, R. Malhotra, Empirical validation of object-oriented metrics
for predicting fault proneness models, Software Quality Journal 18 (2010) 3–
35, http://dx.doi.org/10.1007/s11219-009-9079-6.

[66] Q. Song, M. Shepperd, M. Cartwright, C. Mair, Software defect association
mining and defect correction effort prediction, IEEE Transactions on Software
Engineering 32 (2006) 69–82.
[67] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, R. Haesen,
Mining software repositories for comprehensible software fault prediction
models, Journal of Systems and Software 81 (2008) 823–839.

[68] A.H. Watson, T.J. McCabe, D.R. Wallace, Structured testing: a testing
methodology using the cyclomatic complexity metric, NIST Special
Publication 500 (1996) 1–114.

[69] I. Witten, E. Frank, M. Hall, Data Mining: Practical Machine Learning Tools and
Techniques, third ed., Morgan Kaufmann, San Francisco, 2011.

[70] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[71] S. Wrobel, An algorithm for multi-relational discovery of subgroups, in:
Proceedings of the 1st European Symposium on Principles of Data Mining, pp.
78–87.

[72] S. Wrobel, Relational data mining, Relational Data Mining, Springer, 2001. pp.
74–101.

[73] T. Xie, S. Thummalapenta, D. Lo, C. Liu, Data mining for software engineering,
IEEE Computer 42 (2009) 55–62.

[74] H. Zhang, X. Zhang, Comments on ‘‘Data mining static code attributes to learn
defect predictors’’, IEEE Transactions on Software Engineering 33 (2007) 635–
637.

[75] T. Zimmermann, R. Premraj, A. Zeller, Predicting defects for eclipse, in:
International Workshop on Predictor Models in Software Engineering
(PROMISE’07), p. 9.

http://refhub.elsevier.com/S0950-5849(13)00101-8/h0235
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0235
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0235
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0240
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0240
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0240
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0245
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0245
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0245
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0250
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0250
http://dx.doi.org/10.1007/s11219-009-9079-6
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0260
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0260
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0260
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0265
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0265
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0265
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0270
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0270
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0270
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0275
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0275
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0275
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0280
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0280
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0280
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0280
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0285
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0285
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0285
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0290
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0290
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0295
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0295
http://refhub.elsevier.com/S0950-5849(13)00101-8/h0295

	A study of subgroup discovery approaches for defect prediction
	1 Introduction
	2 Related work
	3 Subgroup discovery
	4 Experimental work and discussion
	4.1 Datasets
	4.2 Inducted rules for the individual datasets
	4.3 Generalisation
	4.4 Overlapping and rule selection

	5 Threats to validity
	6 Conclusions and future work
	Acknowledgements
	References

