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Abstract

In this work, we present some results for local and global in time
solutions (defined in the time interval (0, T ) with T < +∞ or T =
+∞) for the model of mass diffusion by using the spectral semi-Galerkin
approximations. We establish results related to the global existence of
weak solutions, to the existence of strong solutions (local in time or global
in time for small enough data in 3D domains or general data in 2D case),
to the regularity of strong solutions and the effects of the exponential
decay of the external force in the asymptotic behavior when t → +∞ for
global solutions.

1 Introduction

1.1 Model

Let Ω ⊆ R
d (d = 2 or 3) be a bounded domain with boundary Γ of class C1,1.

We will use the notation Q = Ω×(0, T ), Σ = Γ×(0, T ) being 0 < T ≤ +∞ and

n the unit outwards normal vector on Γ. We consider the following initial-value

problem concerning fluids with mass diffusion




ρut +
(
(ρu − λ∇ρ) · ∇

)
u − µ∆u − λ(u · ∇)∇ρ+ ∇p

+λ2

(
∇ ·

(
1

ρ
∇ρ⊗∇ρ

))
= ρf in Q,

∇ · u = 0 in Q, u|Σ = 0, u(0) = u0 in Ω,

ρt − λ∆ρ+ u · ∇ρ = 0 in Q,
∂ρ

∂n

∣∣∣∣
Σ

= 0, ρ(0) = ρ0 in Ω,

(1)

where the unknows are u the incompressible velocity, p the pressure and ρ the

fluid density. The data are, f the external force acting on the system and
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µ > 0, λ > 0 the viscosity and density coefficients respectively.

An extensive physical discussions and derivation of problem (1) can be seen

in Frank-Kamenestskii [5], Kazhikhov and Smagulov [12], Antoncev, Kazhikhov

and Monakhov [1].

Throughout this paper we will assume that there exists some constants

m,M > 0, such that

0 < m ≤ ρ0 ≤M in Ω. (2)

1.2 Known results

For the model (1) considered in this paper, Beirão da Veiga [2] and Secchi

[17], established the local existence of strong solutions by using linearization

and fixed point argument. Indeed, in [2] the local existence of strong solutions

(defined in (0, T )) imposing smallness constraints on data or on final time

for 3D domains is proved. In [17], λ/µ small enough is imposed in the 2D

case, obtaining existence and uniqueness of global strong solution (defined in

(0, T )). Moreover, it is showed the convergence, as λ → 0, towards a weak

solution of the Navier-Stokes problem with variable density. In the 3D case,

global existence of (1) and convergence (as λ → 0) towards weak solutions

of Navier-Stokes with variable density is proven in [7], imposing only positive

initial density (ρ0 ≥ 0). In [9], the existence and regularity of strong solutions

(and some error estimates) is proved by means of an iterative method.

The case where the solution is defined in t ∈ (0,+∞) is treated in [3],

imposing that the external force f ∈ L∞(0,+∞;L2(Ω)) and periodic in time

and studies the asymptotic behavior of the solution as t→ +∞.
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1.3 Some functional spaces and semi-Galerkin method

In the sequel,
(
·, ·

)
denotes the L2 inner product. Also, ‖·‖ will denote the L2-

norm. We now introduce the standard spaces of the Navier-Stokes framework:

H = {u : u ∈ L2(Ω),∇ · u = 0,u · n = 0 on ∂Ω},

V = {u : u ∈ H1(Ω), divu = 0,u = 0 on ∂Ω},

L2
0(Ω) = {p : p ∈ L2(Ω),

∫

Ω

p(x) = 0}.

The norms ‖u‖H1 and ‖∇u‖L2 are equivalent in V , and ‖u‖H2 and ‖Au‖L2

are equivalent in H2(Ω) ∩ V ([13, 19]). On the other hand, the norms ‖p‖H1

and ‖∇p‖L2 are equivalent in H1(Ω) ∩ L2
0(Ω).

On the other hand, for the density, let us consider the affine space (k = 2, 3)

Hk
N (Ω) =

{
ρ ∈ Hk(Ω) :

∂ρ

∂n
= 0 on ∂Ω,

∫

Ω

ρ(x) =

∫

Ω

ρ0(x)

}
.

Obviously, Hk
N (Ω) = ρ0 +Hk

N,0(Ω), where ρ0 =
1

|Ω|

∫

Ω

ρ0(x)dx and

Hk
N,0(Ω) =

{
ρ ∈ Hk(Ω) :

∂ρ

∂n
= 0 on ∂Ω,

∫

Ω

ρ(x) = 0

}
.

Therefore, Hk
N,0(Ω) (k = 2 or k = 3) is a closed subspace of Hk

N (Ω). Conse-

quently, thanks to the H2 and H3 regularity of the Poisson-Neumann problem,

norms ‖ρ‖H2 and ‖∆ρ‖L2 are equivalent in H2
N (Ω) and ‖ρ‖H3 and ‖∇∆ρ‖L2

are equivalent in H3
N (Ω) ([2]).

We also consider the Stokes operator A : D(A) → H defined by A = P (−∆)

with domain D(A) = H2(Ω) ∩ V where P : L2(Ω) → H is the Helmholtz

orthogonal projection and define V k = 〈u1, ...,uk〉 the finite vectorial space

spanned by the first k ∈ N eigenfunctions associated to the Stokes operator.

The spectral semi-Galerkin approximations of problem (1) are defined for

each k ∈ N as the solution (uk, ρk) ∈ C2([0, T ],V k) × C2([0, T ];H3
N (Ω)) of
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



(
ρkuk

t ,v
)

+
(
((ρkuk − λ∇ρk) · ∇)uk,v

)
+ µ

(
Auk,v

)

−λ
(
(uk · ∇)∇ρk,v

)
+ λ2

(
∇ ·

(
1

ρk
∇ρk ⊗∇ρk

)
,v

)

=
(
ρkf ,v

)
, ∀ v ∈ V k, in (0, T ).

(3)





∂ρk

∂t
+ uk · ∇ρk − λ∆ρk = 0 in Q,

∂ρk

∂n
= 0, on Σ,

(4)

with the initial conditions

uk(x, 0) = Pku0 and ρk(0,x) = ρ0(x), ∀ x ∈ Ω.

respectively, where Pk is the proyection operator on V k.

Definition 1 A pair (ρ,u) is called a weak solution of (1) in (0, T ′) with T ′ =

T <∞ or T ′ = +∞ if it verifies:

a)

(u, ρ) ∈ L∞(0, T ′;H ×H1
N (Ω)),

(u, ρ) ∈ L2(0, T ′;V ×H2
N (Ω)) if T ′ <∞ or (u, ρ) ∈ L2

loc([0,∞);

V ×H2
N (Ω)) if T ′ = ∞,

0 < m ≤ ρ(x, t) ≤ M, a.e. (x, t) ∈ (0, T ′) × Ω.

b) ∀φ ∈ C1([0, t];V ) such that φ(t) = 0, where t ∈ (0, T ′)

∫ t

0

{
−

(
u, ρφt + (ρu − λ∇ρ) · ∇φ

)
+

(
µ∇u − λρ(∇u)t,∇φ

)}
ds

=

∫ t

0

(
ρf , φ

)
ds+

(
ρ0u0, φ(0)

)
.

c) The equation of mass diffusion is verified almost everywhere in (0, T ′)×Ω.



LOCAL AND GLOBAL STRONG SOLUTION 67

Definition 2 A weak solution (u, ρ) of (1) in (0, T ′) is said to be a strong

solution of Problem (1) in (0, T ′) with T ′ = T < ∞ or T ′ = +∞ if it satisfies

(u, ρ) ∈ L∞(0, T ′;V ×H2
N (Ω)),

The rest of the paper is as follows. In Section 2, we study the existence of

global weak solutions imposing λ/µ small enough for 2D and 3D domains. In

Section 3, we prove the existence and regularity of strong solutions, first for 3D

domains and second for the 2D case, where the main difference between these

two cases is that smallness of the data is necessary only for 3D domains. In

Section 4, we study the effects of exponential decay of the external force on the

global solution.

2 Existence of global weak solution

Theorem 3 Let Ω ⊂ R
3. Assume u0 ∈ H, ρ0 ∈ H1

N (Ω) verifying (2) and

either f ∈ L2(0, T ;L6/5(Ω)) if T < ∞ or f ∈ L∞(0,∞;L6/5(Ω)) if T =

∞. Then, if λ/µ is small enough, there exists a weak global solution (u, ρ) of

Problem (1) in (0, T ) and satisfies

0 < m ≤ ρ(x, t) ≤M in Q, (5)

‖(u(t), ρ(t))‖L2×H1 ≤ C ∀t ≥ 0, (6)

∀γ > 0, e−γt

∫ t

0

eγs‖(u(s), ρ(s))‖2
H1×H2 ds ≤ C, ∀t ≥ 0. (7)

Moreover, in the finite time case (T <∞), one can take γ = 0 in (7).

Proof: Since the Galerkin approximations (uk, ρk) will appear in the proof

everywhere, there will be no ambiguity in setting u = uk and ρ = ρk. For

brevity, we will only prove estimates (5)-(7) in the case T = +∞.
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The maximum principle applied to (4) gives (5).

Working as in [17] we can find the differential inequality (whenever λ/µ

small enough)

d

dt

[
‖ρ1/2u‖2 + αλ‖∇ρ‖2

]
+ αλ2‖∆ρ‖2 + µ‖∇u‖2 ≤ C‖f‖2

L6/5(Ω). (8)

for a certain α > 0 (depending on the data).

Let us denote ϕ1 = ‖ρ1/2u‖2 + αλ‖∇ρ‖2 and ψ1 = αλ2‖∆ρ‖2 + µ‖∇u‖2.

Then, (8) is written as

ϕ′
1 + ψ1 ≤ C‖f‖2

L6/5(Ω) ≤ C (9)

Using ϕ1 ≤ P1ψ1 where P1 > 0 is a Poincaré constant and multiplying (9) by

eγ∗t for γ∗ < 1/P1,

(
eγ∗tϕ1

)′

+
( 1

P1
− γ∗

)(
eγ∗tϕ1

)
≤ Ceγ∗t

which implies

eγ∗tϕ1(t) ≤ ϕ1(0) + C

∫ t

0

eγ∗sds ≤ ϕ(0) +
C

γ∗
(eγ∗t−1).

Thus, we obtain ϕ1(t) ≤ e−γ∗tϕ1(0) + C(1 − e−γ∗t) ≤ ϕ1(0) + C for all t ≥ 0,

hence ϕ1(t) ≤ C, ∀t ≥ 0 and (6) holds.

Getting back to (9), multiplying by eγt for any γ > 0 we get

(
eγtϕ1

)′

+ eγtψ1 ≤ Ceγt + γeγtϕ1 ≤ Ceγt.

From this last differential inequality is easy to deduce

e−γt

∫ t

0

eγsψ1(s) ds ≤ C,

for all t ≥ 0, hence (7) holds. �
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3 Existence of strong solution and regularity

This section is divided into two parts: the first part corresponding to 3D Case

and the second one to 2D Case. In both cases we study local and global exis-

tence of strong solutions and some regularity properties, but the main difference

is that for 3D domains some smallness constraints (on data or on the final time)

must be imposed, whereas for 2D domains these constraints do not appear.

3.1 The 3D case

Theorem 4 Let Ω ⊂ R
3. Assume u0 ∈ V and ρ0 ∈ H2

N (Ω) satisfying (2).

Case 1: (T < +∞) Let f ∈ L2(0, T ;L2(Ω)). Then, there exists a unique

strong solution (u, ρ) of Problem (1) in (0, T ∗) for certain T ∗ ≤ T , verifying

‖(u(t), ρ(t))‖H1×H2 ≤ C, ∀t ∈ [0, T ∗], (10)

∫ T∗

0

‖(u(s), ρ(s),ut(s), ρt(s))‖
2
H2×H3×L2×H1ds ≤ C. (11)

Moreover, if ‖∇u0‖, ‖∆ρ0‖ are small enough, one can take T ∗ = T .

Case 2: (T = +∞) If ‖∇u0‖, ‖∆ρ0‖ and ‖f‖L∞(0,∞;L2(Ω)) are small

enough, then there exists a unique strong solution (u, ρ) of Problem (1) in

(0,∞) such that

‖(u(t), ρ(t))‖H1×H2 ≤ C, ∀t ≥ 0, (12)

∀γ > 0, e−γt

∫ t

0

eγs‖(u(s), ρ(s),ut(s), ρt(s))‖
2
H2×H3×L2×H1

ds ≤ C, ∀t ≥ 0.

(13)

Proof: Again, for brevity in the notation, we denote u = uk and ρ = ρk and

we will see estimates (10)-(11) and (12)-(13).

Taking as test function v = ut into (3), this gives
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µ

2

d

dt
‖∇u‖2 + ‖ρ1/2

ut‖
2 ≤

∣∣∣∣
(

((ρu − λ∇ρ) · ∇)u, ut

)∣∣∣∣ + λ

∣∣∣∣
(

(u · ∇)∇ρ, ut

)∣∣∣∣

+ λ
2

∣∣∣∣
(
∇ ·

(
1

ρ
∇ρ ⊗∇ρ

)
, ut

)∣∣∣∣ +

∣∣∣∣
(

ρf , ut

)∣∣∣∣.
(14)

Estimating the terms on the right-hand side of (14), taking into account

the Sobolev embedding H1(Ω) →֒ L6(Ω) and the interpolation ‖w‖L3(Ω) ≤

C ‖w‖1/2‖w‖
1/2
H1(Ω), recalling that 0 < m ≤ ρ(x, t) ≤M , one has ([9])

µ

2

d

dt
‖∇u‖2 +

3m

4
‖ut‖

2 ≤ C‖f‖2 + C
(
‖∇u‖2 + ‖∆ρ‖2

)3

+ δ‖Au‖2 + γ‖∇∆ρ‖2,

(15)

being γ and δ positive constants to be chosen later (and C > 0 is a constant

depending on γ and δ). In order to control the term ‖Au‖2 which appears

in (15), we take as test function v = Au in (3) (that is possible because the

spectral basis of A has been considered), getting

µ‖Au‖2 = −
(
ρut, Au

)
−

(
((ρu − λ∇ρ) · ∇)u, Au

)
− λ

(
(u · ∇)∇ρ,Au

)

+λ2

(
∇ ·

(
1

ρ
∇ρ⊗∇ρ

)
, Au

)
−

(
ρf , Au

)
.

The terms on the right-hand side can be estimated in the same way as before.

We only bound the first term

|(ρut, Au)| ≤M‖ut‖‖Au‖ ≤
M2

µ
‖ut‖

2 +
µ

4
‖Au‖2.

Then, we get the inequality

µ

2
‖Au‖2 ≤

M2

µ
‖ut‖

2 + C
(
‖∇u‖2 + ‖∇u‖2

)3

+ γ‖∇∆ρ‖2 + C‖f‖2. (16)

Multiplying (16) by
mµ

4M2
and adding to (15), one has (choosing δ small enough)
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µ

2

d

dt
‖∇u‖2 +

m

2
‖ut‖

2 +
mµ2

8M2
‖Au‖2 ≤ C

(
‖∆ρ‖2 + ‖∇u‖2

)3

+ γ‖∇∆ρ‖2 + C‖f‖2.

(17)

On the other hand, multiplying the density equation (4) by −∆ρt + λ∆2ρ

and integrating by parts, one obtains

‖∇ρt‖
2 + λ

d

dt
‖∆ρ‖2 + λ2‖∇∆ρ‖2 =

(
∇(u · ∇ρ),−∇ρt + λ∇∆ρ

)
.

Using the Hölder ’s and Young ’s inequalities in the previous equality, it becomes

(for arbitrary δ > 0)

λ
d

dt
‖∆ρ‖2 + ‖∇ρt‖

2 +
λ2

2
‖∇∆ρ‖2 ≤ C

(
‖∇u‖2 + ‖∆ρ‖2

)3

+ δ‖Au‖2. (18)

Finally, adding inequalities (18) and (19) and choosing γ and δ small enough,

we obtain

d

dt

{
µ

2
‖∇u‖2 + λ‖∆ρ‖2

}
+
m

2
‖ut‖

2 + ‖∇ρt‖
2 +

mµ2

8M2
‖Au‖2

+
λ2

4
‖∇∆ρ‖2 ≤ C

(
‖∆ρ‖2 + ‖∇u‖2

)3

+ C‖f‖2.

(19)

By setting ϕ2(t) =
µ

2
‖∇u(t)‖2 + ‖∆ρ(t)‖2, χ2(t) =

m

2
‖ut‖

2 + ‖∇ρt‖
2 and

ψ2(t) =
mµ2

8M2
‖Au‖2 +

λ2

4
‖∇∆ρ‖2, inequality (19) can be written as

ϕ′
2(t) + χ2(t) + ψ2(t) ≤ Cϕ3

2(t) + C‖f(t)‖2. (20)

Thus, using that ψ2 ≥ P2ϕ2 (with P2 > 0) and classical results of differential

inequalities we shall obtain two results:

Case 1: There exists a time T ∗ ≤ T small enough such that ϕ2(t) ≤ C for

all t ∈ [0, T ∗] and

∫ T∗

0

(
χ2(s) + ψ2(s)

)
ds ≤ C (see [11]), hence (10) and (11)

hold.
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On the other hand, if ϕ2(0) is sufficiently small, we get T ∗ = T ([19]).

Case 2: For ‖∇u0‖
2, ‖∆ρ0‖

2 and ‖f‖L∞(0,T ;L6/5(Ω)) sufficiently small, one

obtains ϕ2(t) ≤ C, hence (12) holds. Getting back to (20) and multiplying by

eγt, we can get e−γt

∫ t

0

eγs
(
χ2(s) + ψ2(s)

)
ds ≤ C for all t ≥ 0, hence (13)

holds. �

Corollary 5 Assume hypotheses of Theorem 4, u0 ∈ V ∩ H2(Ω) and ρ0 ∈

H3
N (Ω).

Case 1: (T < +∞) Let f ∈ L2(0, T ;H1(Ω)) and f t

∈ L2(0, T ;L6/5(Ω)). Then, the unique strong solution (u, ρ) of Problem (1)

in (0, T ∗) for certain T ∗ ≤ T given in Theorem 4 verifies the additional esti-

mates:

‖(u(t), ρ(t),ut(t), ρt(t))‖H2×H3×L2×H1 ≤ C, ∀t ∈ [0, T ∗], (21)

∫ T∗

0

‖(u(s), ρ(s),ut(s), ρt(s))‖
2
H3×H4×H1×H2 ≤ C. (22)

Moreover, if ρ0 ∈ H4
N (Ω)

‖(σ1/2(t)u(t), ρ(t), σ1/2ut(t), ρt(t))‖H3×H4×H1×H2 ≤ C, ∀t ∈ [0, T ∗], (23)

∫ T∗

0

‖(σ1/2u, ρ, σ1/2ut, ρt, σ
1/2utt, ρtt)‖

2
H4×H5×H2×H3×L2×H1 ≤ C. (24)

where σ(t) = min{1, t}.

Case 2: (T = +∞) Let f ∈ L∞(0,∞;H1(Ω)) and f t ∈ L∞(0,∞;L6/5(Ω)).

Then, the unique strong solution (u, ρ) of Problem (1) in (0,∞) given in The-

orem 4, verifies

‖(u(t), ρ(t),ut(t), ρt(t))‖H2×H3×L2×H1 ≤ C, ∀t ≥ 0, (25)
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∀γ > 0, e−γt

∫ t

0

e−γs‖(u(s), ρ(s),ut(s), ρt(s))‖
2
H3×H4×H1×H2 ≤ C. (26)

Moreover, if ρ0 ∈ H4
N (Ω)

‖(σ1/2(t)u(t), ρ(t), σ1/2ut(t), ρt(t))‖H3×H4×H1×H2 ≤ C, ∀t ≥ 0, (27)

∀γ > 0, e−γt

∫ t

0

eγs‖(σ1/2u, ρ, σ1/2ut, ρt, σ
1/2utt, ρtt)‖

2
H4×H5×H2×H3×L2×H1

≤ C,∀t ≥ 0.
(28)

Proof: Firstly, we are going to improve the a priori estimates obtained in the

previous Theorem for (ut, ρt). As a consequence, we will improve the estimates

obtained for (u, ρ) in D(A) and H3(Ω) norms respectively.

By differentiating the density equation (4) with respect to t and taking the

inner product of L2(Ω) with the term ∆ρt and integrating by parts

1

2

d

dt
‖∇ρt‖

2 + λ‖∆ρt‖
2 ≤ |(∇ut · ∇ρ,∇ρt)| + |(ut · ∇

2ρ,∇ρt)|

+ |(∇u · ∇ρt,∇ρt)| + |(u · ∇2ρt,∇ρt)|.

In virtue of the bounds for ‖∇u‖ and ‖∆ρ‖ obtained in Theorem 4, the

terms on the right-hand side can be estimated using the interpolation inequal-

ities ‖∇2ρ‖3 ≤ C ‖∆ρ‖1/2‖∇∆ρ‖1/2 and ‖∇ρ‖4 ≤ C ‖∆ρt‖
1/4‖∇ρt‖

3/4, the

Sobolev imbedding H1(Ω) →֒ L6(Ω) and Young’s inequality, getting

1

2

d

dt
‖∇ρt‖

2 +
3λ

4
‖∆ρt‖

2 ≤ γ‖∇ut‖
2 + C‖∇ρt‖

2, (29)

for any γ > 0 (with C depending on γ).
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Now, computing the derivative of system (3) with respect to t, taking as

test function v = ut and take into account equation (4), one gets

1

2

d

dt
‖ρ1/2ut‖

2 + µ‖∇ut‖
2

= −(ρt(u · ∇)u,ut) − (ρ(ut · ∇)u,ut) + (ρtf ,ut) + (ρf t,ut)

+λ {((∇ρt · ∇)u,ut) + ((ut · ∇)∇ρ,ut)} + λ((u · ∇)∇ρt,ut)

+λ2

(
ρt

ρ2
∇ρ⊗∇ρ,∇ut

)
− λ2

(
1

ρ
∇ρt ⊗∇ρ,∇ut

)
− λ2

(
1

ρ
∇ρ⊗∇ρt,∇ut

)
.

We observe that the terms (ρt(u ·∇)u,ut) and (ρ(ut ·∇)u,ut) can be bounded

as in the Navier-Stokes case ([11]) and the bounds for the terms λ((∇ρt ·

∇)u,ut) and λ((ut · ∇)∇ρ,ut) are similar. The other terms are estimated

as follows

|(ρt(u · ∇)u, ut)| ≤ |(u · ∇ρ (u · ∇)u, ut)| + λ|(∆ρ(u · ∇)u, ut| (using eq. (4))

≤ ‖u‖∞‖∇ρ‖L6‖u‖L6‖∇u‖‖ut‖L6 + ‖∆ρ‖‖u‖L∞‖∇u‖L3‖ut‖L6

≤ C‖Au‖2 + γ‖∇ut‖
2

|(ρtf ,ut)| ≤ ‖f‖‖ρt‖L3‖ut‖L6 ≤ C‖f‖2‖∇ρt‖
2 + γ‖∇ut‖

2

(
ρt

ρ
∇ρ⊗∇ρ,∇ut

)
≤
C

m
‖∇ρt‖‖∆ρ‖

2‖∇ut ≤ C‖∇ρt‖
2 + γ‖∇ut‖

2

(
1

ρ
∇ρt ⊗∇ρ,∇ut

)
+

(
1

ρ
∇ρ⊗∇ρt,∇ut

)
≤

C

m
‖∇ρt‖L3‖∇ρ‖L6‖∇ut‖

≤ C‖∇ρt‖
2 + ε‖∆ρt‖

2

+ γ‖∇ut‖
2

Thus, we obtain the differential inequality (choosing γ sufficiently small)

1

2

d

dt
‖ρ1/2ut‖

2 +
3µ

4
‖∇ut‖

2 ≤ C(‖f‖2‖∇ρt‖
2 + ‖f t‖

2
L6/5(Ω)

)

+ C‖ut‖
2 + C‖∇ρt‖

2 + ε‖∆ρt‖
2.

Adding this inequality with (29), choosing suitable γ and ε, and taking the

notation ϕ3 = ‖ρ1/2ut‖
2 + ‖∇ρt‖

2 and ψ3 = µ‖∇ut‖
2 + λ‖∆ρt‖

2, one has

ϕ′
3 + ψ3 ≤ C‖f‖2ϕ3 + C‖f t‖

2
L6/5(Ω) + Cϕ3. (30)
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Case 1: Using Gronwall’s Lemma in (30), since ϕ3(0) ≤ C (in fact ‖ut(0)‖ ≤

C(‖u0‖H2(Ω), ‖ρ0‖H3

N (Ω), ‖f(0)‖) and ‖∇ρt(0)‖ ≤ C(‖u0‖H2(Ω), ‖ρ0‖H3

N (Ω)))

we obtain ϕ3(t) ≤ C for all t ∈ [0, T ∗] and

∫ T∗

0

ψ3(s) ds ≤ C, hence (21) and

(22) for (ut, ρt) hold.

Case 2: Multiplying by eγt in (30) (for any γ > 0) and integrating from 0

to t, we get

ϕ3(t) + e−γt

∫ t

0

eγτψ3(τ) dτ ≤ ϕ3(0) + Ce−γt

∫ t

0

e−γτ‖f t(τ)‖
2
L6/5(Ω) dτ

+ Ce−γt

∫ t

0

e−γτϕ3(τ) dτ.

(31)

Applying e−γt

∫ t

0

e−γτϕ3(τ) τ ≤ C e−γt

∫ t

0

e−γτχ2(τ) τ ≤ C, we get (25) and

(26) for (ut, ρt).

Now, we improve the regularity in time for D(A) and H3
N (Ω) norms for the

velocity and density respectively. Multiplying (4) by ∆2ρ, integrating over Ω

and integrating by parts,

λ

2
‖∇∆ρ‖2 ≤ C‖∇ρt‖

2 + C
(
‖∇u‖2 + ‖∆ρ‖2

)3

+ δ‖Au‖2 (32)

for any δ > 0. Adding (16) and (32), and taking suitable γ and δ, one obtains

the inequality

µ‖Au‖2 + λ‖∇∆ρ‖2≤C‖ut‖
2 + C‖∇ρt‖

2 + C
(
‖∇u‖2 + ‖∆ρ‖2

)3

(33)

From this last expression and the above estimates is easy to deduce (21) in

Case 1 or (25) in Case 2, for (ρ,u).
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Now, we want to obtain better estimates in space for the velocity. By taking

A2u as test function in (3), one has

µ‖A3/2u‖ ≤ ‖A1/2(ρut)‖ + ‖A1/2(((ρu − λ∇ρ) · ∇)u)‖

+ ‖A1/2(ρf)‖ + λ‖A1/2((u · ∇)∇ρ)‖

+ λ2

∣∣∣∣A
1/2

(
∇ ·

(
1

ρ
(∇ρ⊗∇ρ

))∣∣∣∣

hence, estimating on the right-hand side one has

‖A3/2u‖ ≤ C‖∇ut‖ + C, (34)

hence (22) in Case 1 or (26) in Case 2, for u, holds.

Analogously for the density. Applying the operator ∆ to (4) and taking the

inner product by −∆2ρ, one gets

λ

2
‖∆2ρ‖2 = ‖∆ρt + ∆u · ∇ρ+ u · ∆∇ρ‖2

≤ C(‖∆ρt‖
2 + ‖∆u‖2‖∇ρ‖2

∞ + ‖u‖2
∞‖∇∆ρ‖2)

≤ C(‖∆ρt‖
2 + ‖Au‖2‖ρ‖2

H3

N
) ≤ C(‖∆ρt‖

2 + 1).

(35)

Therefore, we conclude (22) in Case 1 or (26) in Case 2, for ρ.

In what follow, we suppose that ρ0 ∈ H4
N (Ω). By differentiating the ap-

proximate momentum system (3) with respect to t and considering v = utt as

test function, we have

‖ρ1/2utt‖
2 +

µ

2

d

dt
‖∇ut‖

2 = −
([

((ρu − λ∇ρ) · ∇)u
]

t
,utt

)

+λ
([

(u · ∇)∇ρ
]

t
,utt

)

−λ2

([
∇ ·

(
1

ρk
∇ρk ⊗∇ρk

)]

t

,utt

)
+

(
ρkf ,utt

)
.

Thus, bounding on the right-hand side, one obtains the following differential

inequality ([9])

‖ρ1/2utt‖
2 + µ

d

dt
‖∇ut‖

2 ≤ C‖∇ut‖
2 + C‖∆ρt‖

2 + C‖f‖2
H1

+ C‖f t‖
2 + C.

(36)
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Analogously, for the approximate density, we get

‖∇ρtt‖
2 + λ

d

dt
‖∆ρt‖

2 ≤ C‖∇ut‖
2 + C‖∆ρt‖

2 (37)

Case 1: Multiplying (36) by σ(t), where σ(t) = min{t, 1}, we have

σ(s)‖ρ1/2utt(s)‖
2 + µ

d

dt

(
σ(s)‖∇ut(s)‖

2
)
− µσ′(s)‖∇ut(s)‖

2

≤ Cσ(s)(‖∇ut‖
2 + ‖∆ρt‖

2 + ‖f‖2
H1 + ‖f t‖

2 + 1).

(38)

Integrating (38) from ε to t, with 0 < ε < t and using that σ(t) ≤ 1 and

σ
′

(t) ≤ 1 a.e. in [0, t], we have

σ(t)µ‖∇ut(t)‖
2 +m

∫ t

ε

σ(s)‖utt(s)‖
2 ds ≤ µσ(ε)‖∇ut(ε)‖

2

+ C

∫ t

ε

(
‖f(s)‖2

H1 + ‖f t(s)‖
2 + ‖∇ut‖

2 + ‖∆ρt‖
2 + 1

)
ds.

Since ∇ut ∈ L2(0, t), we can choose a sequence (εn) such that 0 < εn < 1 for

all n ≥ 1 and σ(εn)‖∇ut(εn)‖2 → 0 as εn → 0. Then, taking εn → 0, we have

µσ(t)‖∇ut(t)‖
2 +m

∫ t

0

σ(s)‖utt(s)‖
2 ds

≤ C

∫ t

0

(
‖f(s)‖2

H1 + ‖f t(s)‖
2 + ‖∇ut‖

2 + ‖∆ρt‖
2 + 1

)
ds.

On the other hand, working for the density as for the velocity, we shall obtain

λ‖∆ρt(t)‖
2 +

∫ t

0

‖∇ρtt(s)‖
2 ds

≤ λ‖∆ρt(0)‖2 + C

∫ t

0

(
‖∇ut‖

2 + ‖∆ρt‖
2 + 1

)
ds.

It is easy to bound ‖∆ρt(0)‖ ≤ C(‖u0‖H2 , ‖ρ0‖H4).

Then, we can conclude using the a priori estimates (ut, ρt) ∈ L2(0, T ∗;V ×

H2(Ω)) that σ1/2ut ∈ L∞(0, T ∗;V ), σ1/2utt ∈ L2(0, T ∗;H), ρt ∈

L∞(0, T ∗;H2
N (Ω)) and ρtt ∈ L2(0, T ∗;H1

N (Ω)). As well, from (34) and (35)

and previous estimates, we infer (u, ρ) ∈ L∞(0, T ∗;H3(Ω) ×H4(Ω)).



78 DAMÁZIO, G.-GONZÁLEZ, G.-SANTACREU, R.-MEDAR

Now, we want to obtain the following estimate

∫ T∗

0

(
σ(s)‖Aut(s)‖

2 + ‖∇∆ρt(s)‖
2
)
ds ≤ C.

Indeed, this bound can be obtained by taking v = Aut as test function in the

time derivative of the momentum system and applying the gradient operator

∇ in the time derivative of the density equation multiplied by ∇∆ρt and then

bounding the right-hand side of both equalities having in consideration the

previous estimates.

On the other hand, taking v = A3ut as test function in (3) and bounding

the right-hand side using the estimates obtained up to the moment, we get

‖A2u‖2 ≤ C(‖Aut‖
2 + 1).

As a consequence, σ1/2u ∈ L2(0, T ∗;H4(Ω)). Analogously for the density, we

can obtain ρ ∈ L2(0, T ∗;H5(Ω)).

Case 2: Working as in Case 1 changing the weight σ(t) for σ̃(t) = eγtσ(t)

and using that σ̃(t) ≤ eγt and σ̃′(t) ≤ Ceγt, one has

µσ̃(t)‖∇ut(t)‖
2 +

∫ t

ε

σ̃(s)‖utt(s)‖
2 ds ≤ σ̃(ε)‖∇ut(ε)‖

2

+C

∫ t

ε

eγs
(
‖f(s)‖2

H1 + ‖f t(s)‖
2 + ‖∇ut‖

2 + ‖∆ρt‖
2 + 1

)
ds.

Choosing a special sequence (εn) → 0 such that σ̃(εn)‖∇ut(εn)‖2 → 0 as

n→ ∞ and taking limit, one obtains

µσ(t)‖∇ut(t)‖
2 +

∫ t

0

σ(s)‖utt(s)‖
2 ds

≤ Ce−γt

∫ t

0

eγs
(
‖f(s)‖2

H1 + ‖f t(s)‖
2 + ‖∇ut‖

2 + ‖∆ρt‖
2 + 1

)
ds.

from which one deduces σ1/2ut ∈ L∞(0,∞;H1) and σ1/2utt ∈ L2(0,∞;L2(Ω)),

thanks to the estimate e−γt

∫ t

0

eγτψ3(τ) dτ ≤ C.
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Multiplying (37) by eγt, we can get

λ‖∆ρt(t)‖
2 + e−γt

∫ t

0

eγs‖∇ρtt(s)‖
2 ds

≤ λe−γt‖∆ρt(0)‖2 + Ce−γt

∫ t

0

eγs
(
‖∇ut‖

2 + ‖∆ρt‖
2 + 1

)
ds.

Using e−γt

∫ t

0

eγτψ3(τ) dτ ≤ C, we deduce that ρt ∈ L∞(0,∞;H2(Ω)) and

ρtt ∈ L2(0,∞;H1(Ω)).

In the similar manner as in Case 1, we deduce (σ1/2u, ρ) ∈ L2
loc(0,∞;H4(Ω)×

H5(Ω)) and

∀γ > 0, e−γt

∫ T

0

eγs
(
σ(s)‖A2u(s)‖2 + ‖∇∆2ρ(s)‖2

)
ds ≤ C, ∀t ≥ 0.

�

3.2 The 2D case

Secchi needed to introduce in [18] the condition λ/µ sufficiently small in order

to obtain weak estimates. Now, we impose that condition in the following

theorem in the case of 2D domains, obtaining regularity of weak solutions

without constraints on data or on the final time .

Theorem 6 Let Ω ⊂ R
2. Assume u0 ∈ V , ρ0 ∈ H2

N (Ω) verifying (2) and λ/µ

is small enough.

Case 1: (T < +∞) Let f ∈ L2(0, T ;L2(Ω)). Then, there exists a unique

strong solution (u, ρ) of Problem (1) in (0, T ), verifying

‖(u(t), ρ(t))‖H1×H2 ≤ C, ∀t ∈ [0, T ], (39)

∫ T

0

‖(u(s), ρ(s),ut(s), ρt(s))‖
2
H2×H3×L2×H1 ≤ C. (40)
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Case 2: (T = +∞) Let f ∈ L∞(0,∞;L2(Ω)). Then, there exists a unique

strong solution (u, ρ) of Problem (1) in (0,∞) such that

‖(u(t), ρ(t))‖H1×H2 ≤ C, ∀t ≥ 0, (41)

∀γ > 0, e−γt
∫ t

0
eγs‖(u(s), ρ(s),ut(s), ρt(s))‖

2
H2×H3×L2×H1 ≤ C,

∀t ≥ 0.
(42)

Proof: Again there will be no ambiguity in setting u = uk and ρ = ρk.

From Theorem 3 (notice that we can choose f ∈ L2(0, T ;Lp(Ω) if T < ∞ or

f ∈ L∞(0,∞;Lp(Ω)) if T = ∞ with p > 1, since we are considering Ω ⊂ R
2),

we can deduce the following estimates:

0 < m ≤ ρ(x, t) ≤M in Q, (43)

‖(u(t), ρ(t))‖L2×H1 ≤ C ∀t ∈ [0, T ∗], (44)

∀γ > 0, e−γt

∫ t

0

eγs‖(u(s), ρ(s))‖2
H1×H2 ds ≤ C, ∀t ≥ 0. (45)

In the finite time case (T <∞), one can take γ = 0 in (45).

On the other hand, by working as in Theorem 4 and taking into account

the Gagliardo-Nirenberg inequality ‖w‖L4(Ω) ≤ C ‖w‖1/2‖w‖H1 and (44), we

get

ϕ′
2(t) + χ2(t) + ψ2(t) ≤ Cϕ2

2(t) + C‖f(t)‖2. (46)

where ϕ2(t) =
µ

2
‖∇u(t)‖2 + ‖∆ρ(t)‖2, χ2(t) =

m

2
‖ut‖

2 + ‖∇ρt‖
2 and ψ2(t) =

mµ2

8M2
‖Au‖2 +

λ2

4
‖∇∆ρ‖2.

Case 1: Using Gronwall’s Lemma in (46) jointly with (45) for γ = 0, we

obtain ϕ2(t) ≤ C for all t ∈ [0, T ] and

∫ T

0

(
χ2(t) + ψ2(t)

)
dt ≤ C, hence (39)

and (40) hold.
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Case 2: We obtain from (46)

ϕ′
2(t) ≤ Cϕ2

2(t) + C1.

We observe that

Cϕ2
2 + C1 ≤ 2Cϕ2

2

for all ϕ2 ≥ (C1/C)1/2. Then, either we have 0 ≤ ϕ2(t) ≤ L for all t ≥ 0 or

there exist some interval [t1, t2] with t2 ≥ t1 for which ‖ϕ2(t1)‖
2 = L and for all

t ∈ [t1, t2] one has ‖ϕ2(t)‖
2 ≥ L, where we take L = max

{
(C1/C)1/2, 1, ‖ϕ2(0)‖

}
.

Then, if we consider the second case, thanks to the choice of L, the differential

inequality
d

dt
ϕ2 ≤ Cϕ2

2 holds in the interval [t1, t2], or equivalently,

d

dt
lnϕ ≤ Cϕ in [t1, t2].

Then, multiplying this differential inequality by eγ̄t this gives

d

dt

(
eγ̄t lnϕ2

)
≤ Ceγ̄tϕ2 + γ̄eγ̄t lnϕ2 in [t1, t2]. (47)

Taking into account the inequality lnϕ2 ≤ k + kϕ2, for all ϕ2 > 0 for a

certain k > 0 and integrating (47) between t and t1 for any time t ∈ [t1, t2],

one gets

eγ̄t lnϑ(t) − eγ̄t1 lnϑ(t1) ≤ (C + γ̄k)

∫ t

t1

eγ̄τϑ(τ) dτ + γ̄k

∫ t

t1

eγ̄τ dτ

hence, thanks to (45),

lnϑ(t) − e−γ(t−t1) lnL ≤ (C + γk)e−γt

∫ t

t0

eγτϑ(τ) dτ + γke−γt

∫ t

t0

eγτ dτ

≤ C(C + γk) := D

Since e−γ(t−t1) lnL ≤ lnL (here, L ≥ 1 is used), we have that ln
ϕ2(t)

L
≤ D,

which implies,

ϕ2(t) ≤ LeD, ∀t ∈ [t1, t2].
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Consequently ϕ2(t) ≤ LeD, for all t ≥ 0, hence one has (41).

Multiplying by eγt in (46) and considering (41) we get the estimate (42).

Remark 7 In the 2D case is possible to obtain the same regularity results given

in Corollary 5 but without smallness constraints on the data.

4 Global existence as the external force decay

exponentially

Theorem 8 Let Ω ⊂ R
3. Assume u0 ∈ V , ρ0 ∈ H2

N (Ω) verifying (2) and

sup
t≥0

eγt‖f‖2
L2(Ω) < ∞. If ‖∇u0‖, ‖∆ρ0‖ and ‖eγt/2f‖L∞(0,∞;L2(Ω)) are small

enough, then there exists a unique strong solution (u, ρ) of Problem (1) in

(0,∞) and a positive constant γ∗ ≤ γ such that

eγ∗t‖(u(t), ρ(t))‖H1×H2 ≤ C, ∀t ≥ 0, (48)

∫ t

0

eθs‖(u(s), ρ(s),ut(s), ρt(s))‖
2
H2×H3×L2×H1ds ≤ C, ∀t ≥ 0. (49)

for any θ: 0 ≤ θ ≤ γ∗ and θ < γ (indeed, if γ∗ < γ then θ = γ∗ is valid).

Proof: Multiplying (20) by eγ∗t with γ∗ > 0 (to be chosen), we have

(
eγ∗tϕ2(t)

)′

+ eγ∗t
(
χ2(t) + ψ2(t)

)
≤ Ceγ∗tϕ2(t)

3 + Ceγ∗t‖f‖2 + γ∗eγ∗tϕ2(t).

Now, by choosing adequate γ∗ such that γ∗ϕ2(t) < ψ2(t), we get

ϕ̃2(t)
′ + χ̃2(t) + ψ̃2(t) ≤ C e−2γ∗tϕ̃2(t)

3 + Ceγ∗t‖f‖2

being ϕ̃2(t) = eγ∗tϕ2(t), χ̃2(t) = eγ∗tχ2(t) and ψ̃2(t) = C1e
γ∗tψ2(t) where

C1 > 0 a constant depending on the data. Proceeding with similar arguments

as in Theorem 4 we prove (48) whenever ‖∇u0‖, ‖∆ρ0‖ and sup
t≥0

eγt‖f‖L2(Ω)
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are small enough. Then, multiplying (20) by eθt and integrating in (0, t), we

can arrive at (49). �

Corollary 9 Assume hypotheses of Theorem 8, u0 ∈ V ∩H2(Ω), ρ0 ∈ H3
N (Ω),

sup
t≥0

‖f‖H1(Ω) < ∞ and sup
t≥0

eγt‖f t‖
2
L6/5(Ω) < ∞ (γ is given in Theorem 8).

Then, the unique strong solution (u, ρ) of Problem (1) in (0,∞) given in The-

orem 8 verifies

‖eθt(u(t), ρ(t),ut(t), ρt(t))‖H2×H3×L2×H1 ≤ C, ∀t ≥ 0, (50)

∫ t

0

eθs‖(u(s), ρ(s),ut(s), ρt(s))‖
2
H3×H4×H1×H2 ≤ C. (51)

for any θ as in Theorem 8. Moreover, if ρ0 ∈ H4
N (Ω)

eθt‖(σ1/2(t)u(t), ρ(t), σ1/2ut(t), ρt(t))‖H3×H4×H1×H2 ≤ C,

∀t ≥ 0,
(52)

∫ t

0

eθs‖(σ1/2u, ρ, σ1/2ut, ρt, σ
1/2utt, ρtt)‖

2
H4×H5×H2×H3×L2×H1

≤ C, ∀t ≥ 0.

(53)

Proof: Multiplying (30) by eθt and taking into account (49) and
∫ t

0
eθτ‖f t‖

2
L6/5 ≤

C, we get (50) and (51) for (ut, ρt). Now, multiplying (33), (34) and (35) by

eθt, it is easy to deduce (50) and (51) for (u, ρ). The rest of estimates can be

obtained as in the proof of Theorem 4. �

Remark 10 The above result also is valid in the 2D case without constraints

on the data.

Remark 11 By using the results of the above sections together with the argu-

ments used by Heywwod [8], it is possible to prove, when Γ is of class C∞, the
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following regularity for the solution

u ∈ C∞((0,∞) × Ω), ρ ∈ C∞((0,∞) × Ω).

Remark 12 In this work we have used technics which are similar to those ones

used in [14], in the case of 2-dimensional viscous compressible flows.
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